A model-based approach to predicting graduate-level performance using indicators of undergraduate-level performance

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 28, 2015
Judith Zimmermann Kay H. Brodersen Hans R. Heinimann Joachim M. Buhmann

Abstract

The graduate admissions process is crucial for controlling the quality of higher education, yet, rules of thumb and domain-specific experiences often dominate evidence-based approaches. The goal of the present study is to dissect the predictive power of undergraduate performance indicators and their aggregates. We analyze 81 variables in 171 student records from a Bachelor’s and a Master’s program in Computer Science and employ state-of-the-art methods suitable for high-dimensional data-settings. We consider regression models in combination with variable selection and variable aggregation embedded in a double-layered cross-validation loop. Moreover, bootstrapping is employed to identify the importance of explanatory variables. Critically, the data is not confounded by an admission-induced selection bias, which allows us to obtain an unbiased estimate of the predictive value of undergraduatelevel indicators for subsequent performance at the graduate level. Our results show that undergraduatelevel performance can explain 54% of the variance in graduate-level performance. Significantly, we unexpectedly identified the third-year grade point average as the most significant explanatory variable, whose influence exceeds the one of grades earned in challenging first-year courses. Analyzing the structure of the undergraduate program shows that it primarily assesses a single set of student abilities. Finally, our results provide a methodological basis for deriving principled guidelines for admissions committees.

How to Cite

Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A model-based approach to predicting graduate-level performance using indicators of undergraduate-level performance. JEDM | Journal of Educational Data Mining, 7(3), 151-176. Retrieved from https://jedm.educationaldatamining.org/index.php/JEDM/article/view/JEDM070
Abstract 520 | PDF Downloads 528

##plugins.themes.bootstrap3.article.details##

Keywords

Predicting performance at the graduate level, regression models, double-layered cross-validation, bootstrapping, explanatory variables

References
AGBONLAHO, R. O., AND OFFOR, U. J. 2008. Predicting success in a Master of Information Science degree programme. Education for Information 26, 3-4, 169-190.

AKAIKE, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 9, 6, 716-723.

ASTIN, A. W. 1993. What Matters in College?: Four Critical Years Revisited. Jossey-Bass Publishers, San Francisco, CA, USA.

ATKINSON, R. C., AND GEISER, S. 2009. Reflections on a century of college admissions tests. Educational Researcher 38, 9, 665-676.

BACKHAUS, K., ERICHSON, B., PLINKE, W., AND WEIBER, R. 2006. Multivariate Analysemethoden (11th ed.). Springer, Berlin/Heidelberg, Germany.

BAIRD, J.-A. 2011. Why do people appeal Higher Education grades and what can it tell us about the meaning of standards?. Assessment in Education: Principles, Policy & Practice 18, 1, 1-4.

BAKER, R. S. J. D., AND YACEF, K. 2009. The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining 1, 1, 3-17.

BAKER, R. S. J. D., GOWDA, S. M., AND CORBETT, A. T. 2011. Automatically detecting a student’s preparation for future learning: Help use is key. Proceedings of the 4th International Conference on Educational Data Mining, 179-188.

BARON-BOLDT, J., SCHULER, H., AND FUNKE, U. 1988. Prädiktive Validität von Schulabschlussnoten: Eine Metaanalyse. Zeitschrift für Pädagogische Psychologie 2, 79-90.

BERGIN S., AND REILLY, R. 2006. Predicting introductory programming performance: A multiinstitutional multivariate study. Computer Science Education 16, 4, 303-323.

BIRKEL, P. 1978. Mündliche Prüfungen. Kamp, Bochum, Germany.

BOWERS, A. J. 2011. What's in a grade? The multidimensional nature of what teacher-assigned grades assess in high school. Educational Research and Evaluation 17, 3, 141-159.

BREIMAN, L. 2001. Random forests. Machine Learning 45, 1, 5-32.

BREIMAN, L., AND SPECTOR, P. 1992. Submodel selection and evaluation in regression. The XRandom case. International Statistical Review 60, 3, 291-319.

BRIDGEMAN, B., BURTON, N., AND CLINE, F. 2009. A note on presenting what predictive validity numbers mean. Applied Measurement in Education 22, 2, 109-119. BÜHLMANN, P. AND VAN DE GEER, S. 2011. Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, Berlin/Heidelberg, Germany.

CAMARA, W. J. 2005. Broadening criteria of college success and the impact of cognitive redictors. In Choosing Students: Higher Education Admissions Tools for the 21st Century, W. J. Camara and E. W. Kimmel (Eds.). Lawrence Erlbaum Associates, Mahwah, NJ, USA, 53-79.

CHO, Y., AND BRIDGEMAN, B. 2012. Relationship of TOEFL iBT® scores to academic performance: Some evidence from American universities. Language Testing 29, 3, 421-442.

CONLEY, D. T. 2005. College Knowledge: What it Really Takes for Students to Succeed and What We Can Do to Get Them Ready. Jossey-Bass, San Francisco, CA, USA.

COSTELLO, A. B., AND OSBORNE, J. W. 2005. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation 10, 7, 173-178.

CRONBACH, L. J. 1951. Coefficient alpha and the internal structure of tests. Psychometrika 16, 297- 334.

CRONBACH, L. J. 1971. Test validation. In Educational Measurement (2nd ed.), R. L. Thorndike (Ed.). American Council on Education, Washington, DC, USA, 443-507.

CUNY, J., AND ASPRAY, W. 2000. Recruitment and retention of women graduate students in computer science and engineering: Results of a workshop organized by the Computing Research Association. SIGCSE Bulletin 34, 168-174.

DAWES, R. 1975. Graduate admission variables and future success. Science 187, 4178, 721-723. DE FEYTER, T., CAERS, R., VIGNA, C., AND BERINGS, D. 2012. Unraveling the impact of the big five personality traits on academic performance: The moderating and mediating effects of selfefficacy and academic motivation. Learning and Individual Differences 22, 4, 439-448.

DISTEFANO, C. 2009. Understanding and using factor scores: Considerations for the applied researcher. Practical Assessment, Research & Evaluation 14, 20, 1-11.

DOWNEY, M., COLLINS, M., AND BROWNING, W. 2002. Predictors of success in dental hygiene education: A six-year review. Journal of Dental Education 66, 11, 1269-1273. EACEA. 2012. The European Higher Education Area in 2012: Bologna Process Implementation Report. Education Audiovisual & Culture Executive Agency (EACEA), Belgium.

EFRON, B., AND TIBSHIRANI, R. J. 1994. An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability 57. Chapman and Hall, London, UK.

EVANS, P., AND WEN, F. K. 2007. Does the medical college admission test predict global academic performance in osteopathic medical school? Journal of the American Osteopathic Association 107, 4, 157-162.

FABRIGAR, L. R., WEGENER, D. T., MACCALLUM, R. C., AND STRAHAN, E. J. 1999. Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods 4, 272-299.

FETTER, J. H. 1997. Questions and Admissions: Reflections on 100,000 Admissions Decisions at Stanford. Stanford University Press, Stanford, CA, USA.

FRANK, M., CHEHREGHANI, M., AND BUHMANN, J. M. 2011. The minimum transfer cost principle for model-order selection. Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science Series 691. Springer, Berlin/Heidelberg, Germany, 423-438.

FREY, K., AND FREY-EILING, A. 2009. Ausgewählte Methoden der Didaktik. vdf UTB, Stuttgart, Germany.

GEORGE, D., AND MALLERY, P. 2011. SPSS for Windows Step by Step: A Simple Guide and

Reference, 18.0 Update (11th ed.). Allyn & Bacon / Pearson, Boston, MA, USA.

GUYON, I., AND ELISSEEFF, A. 2003. An introduction to variable and feature selection. Journal of Machine Learning Research 3, 272-299.

GRAHAM, J.G. 1987. English language proficiency and the prediction of academic success. TESOL Quarterly 21, 3, 505-521.

HARTNETT, R.T., AND WILLINGHAM, W.W. 1980. The criterion problem: What measure of success in graduate education? Applied Psychological Measurement 4, 281-291.

HERZOG S. 2006. Estimating student retention and degree-completion time: Decision trees and neural networks vis-à-vis regression. New Directions for Institutional Research 131, 17-33.

KAISER, H. F. 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187-200.

KANE, M. T. 2013. Validating the interpretations and uses of test scores. Journal of Educational Measurement 50, 1, 1-37.

KEHM, B. M. 2010. The future of the Bologna Process ‒ The Bologna Process of the future. European Journal of Education 45, 4, 529-534.

KLAPP LEKHOLM, A., AND CLIFFORDSON, C. 2008. Discrepancies between school grades and test scores at individual and school level: Effects of gender and family background. Educational Research and Evaluation 14, 2, 181-199.

KOYS, D. 2010. GMAT versus alternatives: Predictive validity evidence from Central Europe and the Middle East. Journal of Education for Business 85, 3, 180-185.

KUNCEL, N. R., ONES, D. S., AND HEZLETT, S. A. 2001. A comprehensive meta-analysis of the predictive validity of the graduate record examinations: Implications for graduate student selection and performance. Psychological Bulletin 127, 162-181.

LANE, J., LANDE, A., AND COCKERTON, T. 2003. Prediction of postgraduate performance from selfefficacy, class of degree and cognitive ability test scores. Journal of Hospitality, Leisure, Sport and Tourism Education 2, 1, 113-118.

LANGFELDT, H.-R., AND FINGERHUT, W. 1974. Empirische Ansätze zur Aufklärung des Konstruktes "Schulleistung". In Leistungsbeurteilung in der Schule, K. Heller (Ed.). Quelle & Meyer, Heidelberg, Germany.

MEINSHAUSEN, N., AND BÜHLMANN, P. 2010. Stability selection (with discussion). Journal of the Royal Statistical Society B 72, 417-473.

MESSICK, S. 1989. Validity. In Educational Measurement (3rd ed.), R. L. Linn (Ed.). Macmillan New York, NY, USA, 13-103.

NEWTON, P. E. 2012. Questioning the consensus definition of validity. Measurement: Interdisciplinary Research and Perspectives 10, 1-2, 110-122.

NUGENT, G., SOH, L.-K., SAMAL, A., AND LANG, J. 2006. A placement test for computer science: Design, implementation, and analysis. Computer Science Education 16, 1, 19-36.

OSWALD, F. L., SCHMITT, N., KIM, B., RAMSAY, L. J., AND GILLESPIE, M. A. 2001. Developing a biodata measure and situational judgment inventory as predictors of college student performance. Journal of Applied Psychology 89, 187-207.

OWENS, M. K. 2007. Executive Education: Predicting Student Success in 22 Executive MBA Programs. GMAC® Report Series, RR-07-02.

PEÑA-AYALA, A. 2014. Review: Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications 41, 4, 1432-1462.

POROPAT, A. 2009. A meta-analysis of the five-factor model of personality and academic performance. Psychological Bulletin 135, 322-338.

PRECKEL, D., AND FREY, K. 2004. Ein Überblick über Prädiktoren für Studienerfolg. Retrieved from: http://www.ifvf.ethz.ch/news/index.

RA, J., AND RHEE, K.-J. 2014. Efficiency of selecting important variable for longitudinal data. Psychology 5, 1, 6-11.

RAFFERTY, A. N., DAVENPORT, J., AND BRUNSKILL, E. 2013. Estimating student knowledge from paired interaction data. Proceedings of The 6th International Conference on Educational Data Mining (EDM 2013).

RAMSEIER, E. 1977. Determinanten des Studienerfolgs: Zusammenfassung der Ergebnisse einer Befragung des schweizerischen Immatrikulationsjahrganges 1965 in einer Pfadanalyse. Revue Suisse de Sociologie 3, 3, 57-73.

RAU, W. 2001. Response: To replicate or not to replicate: Is that Schuman's question? Sociology of Education 74, 1, 75-77.

RAU, W., AND DURAND, A. 2000. The academic ethic and college grades: Does hard work help students to "Make the Grade"? Sociology of Education 73, 1, 19-38.

RINDERMANN, H., AND OUBAID, V. 1999. Auswahl von Studienanfängern durch Universitäten - Kriterien, Verfahren und Prognostizierbarkeit des Studienerfolgs. Zeitschrift für Differentielle und Diagnostische Psychologie 20, 3, 172-191.

RITZEN, J. 2010. A Chance for European Universities or: Avoiding the Looming University Crisis in Europe. University Press, Amsterdam, The Netherlands.

ROMERO, C., AND VENTURA, S. 2010. Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics 40, 6, 601-618.

ROMERO C., ROMERO J. R., AND VENTURA S. 2014. A survey on pre-processing educational data. In Educational Data Mining. Studies in Computational Intelligence 524, A. Peña-Ayala (Ed.). Springer International Publishing, Switzerland, 29-64.

SCHUMAN, H. 2001. Comment: Students' effort and reward in college settings. Sociology of Education 74, 1, 73-74.

SCHWARZ, G. 1978. Estimating the dimension of a model. The Annals of Statistics 6(2), 461-464.

SCIME, A. 2008. Globalized computing education: Europe and the United States. Computer Science Education 18, 1, 43-64.

SOMMERLA, G. 1976. Zur Praxis der Leistungsfeststellung und Bewertung in der Schule. Westermanns Pädagogische Beiträge 28, 450-461.

SUELLWOLD, F. 1983. Pädagogische Diagnostik. In Enzyklopädie der Psychologie. Themenbereich B: Methodologie und Methoden. Serie II: Psychologische Diagnostik. Band 2: Intelligenz- und Leistungsdiagnostik, L. Michel (Ed.). Hogrefe, Göttingen, Germany, 307-386.

TENT, L. 1969. Die Auslese von Schülern für weiterführende Schulen: Möglichkeiten und Grenzen. Beiträge zur Theorie und Praxis. Hogrefe, Göttingen, Germany.

THEOBALD R., AND FREEMAN, S. 2014. Is it the intervention or the students? Using linear regression to control for student characteristics in undergraduate STEM education research. CBE-Life Sciences Education 13, 41-48.

THURSTONE, L. L. 1947. Multiple-factor Analysis. The University of Chicago Press, Chicago, IL, USA.

TIMER, J. E., AND CLAUSON, M. I. 2010. The use of selective admissions tools to predict students' success in an advanced standing baccalaureate nursing program. Nurse Education Today 31, 6, 601-606.

THORSEN, C. 2014. Dimensions of norm-referenced compulsory school grades and their relative importance for the prediction of upper secondary school grades. Scandinavian Journal of Educational Research 58, 2, 127-146.

THORSEN, C., AND CLIFFORDSON, C. 2012. Teachers’ grade assignment and the predictive validity of criterion-referenced grades. Educational Research and Evaluation 18, 2, 153-172.

TRAPMANN, S., HELL, B., WEIGAND, S., AND SCHULER, H. 2007. Die Validität von Schulnoten zur Vorhersage des Studienerfolgs: Eine Metaanalyse [The validity of school grades for predicting academic success: A metanalysis]. Zeitschrift für Pädagogische Psychologie 21, 11-27.

TRUELL, A. D., ZHAO, J. J., ALEXANDER, M. W., AND HILL, I. B. 2006. Predicting final student performance in a graduate business program: The MBA. Delta Pi Epsilon Journal 488, 3, 144- 152.

VENTURA JR., P. R. 2005. Identifying predictors of success for an objects-first CS1. Computer Science Education 15, 3, 223-243.

WIKSTRÖM, C., WIKSTRÖM, M., AND LYRÉN, P.-E. 2009. Prediction of study success: Should selection instruments measure cognitive or non-cognitive factors? In Assessment for a Creative World. Paper presented at 35th Annual IAEA Conference, Brisbane, Australia, 13-18 September 2009.

WILLINGHAM, W. W. 1974. Predicting Success in Graduate Education. Science 183, 4122, 273-278.

WILLINGHAM, W. W., YOUNG, J. W., AND MORRIS, M. M. 1985. Success in college: The role of personal qualities and academic ability. College Board Publications, NY, USA.

ZOU, H. 2006. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association 101, 476, 1418-1429.
Section
Articles