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Researchers use many different metrics for evaluation of performance of student models. The aim of
this paper is to provide an overview of commonly used metrics, to discuss properties, advantages, and
disadvantages of different metrics, to summarize current practice in educational data mining, and to
provide guidance for evaluation of student models. In the discussion we mention the relation of metrics
to parameter fitting, the impact of student models on student practice (over-practice, under-practice), and
point out connections to related work on evaluation of probability forecasters in other domains. We also
provide an empirical comparison of metrics. One of the conclusion of the paper is that some commonly
used metrics should not be used (MAE) or should be used more critically (AUC).

1. INTRODUCTION

A key part of adaptive educational systems are models that estimate knowledge of students. To
compare and improve these models we use metrics that measure quality of model predictions;
these metrics are also called scoring rules (Gneiting and Raftery, 2007). Metrics are also used
(sometimes implicitly) for parameter fitting, since many fitting procedures aim to optimize pa-
rameters with respect to some metric (e.g., log-likelihood). There is no single universal metric
for model evaluation and thus researchers have to decide which metric to use. The choice of a
metric is an important step in the research process. Differences in predictions between compet-
ing models are often small and the choice of a metric can influence results more than the choice
of a parameter fitting procedure. Moreover, fitted model parameters are often used in subsequent
steps in educational data mining and thus the choice of a metric can indirectly influence many
other aspects of research.

This problem of performance metric choice is not specific only to student modeling. Partic-
ularly for classification problems and probabilistic predictions there are many possible metrics
and it is not obvious which one to use in experiments and thus the issue has been thoroughly
discussed in literature. Metrics have been studied (including experimental evaluation of rela-
tionships between metrics) in the general context of machine learning (Caruana and Niculescu-
Mizil, 2004; Ferri et al., 2009), with special attention to behaviour of metrics for imbalanced
sets (Jeni et al., 2013). For specific domains researchers have provided discussions of metrics
specifically for a particular domain, e.g., Herlocker et al. (2004) discuss metrics for evaluation
of recommender systems, Liu et al. (2011) provide overview of metrics used in ecology (species
distribution models) with a focus on statistical tests for model comparison. Particularly evalu-
ation of models for weather forecasting (Toth et al., 2003) can provide interesting inspiration
for evaluation of student models, e.g., the concept of Brier score decomposition (discussed in
Section 5.1.).
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In the area of student modeling the discussion of performance metric has been very limited
so far. Despite the importance of metrics and absence of consensus on their usage, the topic gets
very little attention in most research papers. Many authors do not provide any rationale for their
choice of a metric1. Sometimes it is not even clear what metric is exactly used (particularly in
the case of R2 metric), so it may be even difficult to use the same metric as previous authors.

The main aim of this paper is to fill this gap and to provide an overview of performance
metrics relevant for evaluation of student models and to discuss issues specific to student model-
ing. One of the goals is also to raise awareness of issues that are not well-known in educational
data mining community (e.g., that MAE is not a proper score). We also provide an empirical
comparison of metrics and discuss whether small differences in performance metric matter – an
issue raised for example by Beck and Xiong (2013). Based on the arguments in the paper we
finally provide summary of specific recommendations for future evaluations of student models,
e.g., the MAE metric should not be used for evaluation and the AUC metric should be used more
critically (based on the intended use of studied model).

2. TYPES OF STUDENT MODELS

Before we try to assess which metrics are suitable for evaluation of student models, it is useful
to discuss main types of student models and their typical uses.

2.1. SKILL MODELING

The most often used type of student models (Desmarais and de Baker, 2012) are models of
student skills; typical example is Bayesian knowledge tracing (Corbett and Anderson, 1995).
These models predict performance of students; their evaluation is done by comparing the pre-
dicted performance and the actual observed performance (using suitable metric). In most cases
the observed performance is binary, typically correctness of an answer to an exercise. Some-
times the performance measure can have multiple values or be continuous (taking into account
hint use or response time).

Skill models are used to guide adaptive behaviour of educational systems, particularly for
mastery learning (deciding whether a student has reach mastery of a topic) and for selection
of examples of appropriate difficulty (Klinkenberg et al., 2011; Papoušek et al., 2014). These
applications use directly model prediction. However, we are often interested not only in model
predictions, but also in model parameters (e.g., problem difficulty, degree of learning). Model
parameters may provide useful feedback to content authors, system developers, and students,
e.g., in the form of open learner models (Bull, 2004). Skill models may be also used for discov-
ery with models (Baker and Yacef, 2009), i.e., models are used in another analysis or in higher
level modeling (Beck and Mostow, 2008; Cocea et al., 2009).

2.2. MODELS OF AFFECT AND MOTIVATION

In addition to skill modeling, educational systems recently try to model also other aspects of
student behaviour, particularly affective states like boredom, concentration, confusion, or frus-
tration (Baker et al., 2012), and behaviours like gaming the system (Baker et al., 2004). Evalua-

1For example a recent EDM paper (González-Brenes et al., 2014) uses sophisticated modeling and provides
extensive discussion of experimental results, but uses only the AUC metric without any justification for the choice
of the metric (beside the fact that it is “a popular machine learning metric”).
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tion of these models is done by comparing the predicted state (e.g., “bored” versus “not bored”)
with the observed state (by human observers) or by evaluating agreement between two types of
detectors, e.g., with and without physiological sensors.

Models of affective states may be used as an additional input for the choice of exercises
(e.g., adjusting difficulty level to the actual student affective state), or to provide personalized
feedback to students using text messages or animated agents (Arroyo et al., 2014). Models can
also be used as a tool for evaluation of educational systems and as a guide in their development
(e.g., hint availability).

3. OVERVIEW OF METRICS

As the discussion of student models shows, in student modeling the most common type of mod-
els predict binary events (correctness of answer or student state). To attain clear focus and
readability we will in the following discuss only this type of models. Extensions of discussed
metrics for multiple classes are described for example by Ferri et al. (2009). In the case of
continuous predictions (e.g., response time) the choice of a metric is usually simpler. Common
choice is root mean square error, which is in this case equivalent to log-likelihood with the as-
sumption of normally distributed noise (Bishop, 2006). Previous experience in student modeling
with continuous predictions suggest that even other choices of metric do not influence results of
model comparison (Jarušek and Pelánek, 2012).

In the description of metrics we use the following notation. We assume that we have data
about n cases, numbered i ∈ {1, . . . , n}, a student model provides predictions pi ∈ [0, 1], and
the observed value is given by the binary value oi ∈ {0, 1}. A model performance metric is
a function f(~p, ~o). Note that the word “metric” is traditionally used in the context of student
modeling in a sense “any function that is used to make comparisons”, not in the mathematical
sense of a distance function.

The standard terminology of metrics is, unfortunately, slightly confusing. Some metrics
(MAE, RMSE) are “errors” (lower is better), others (accuracy, AUC, likelihood-based metrics)
are “rewards” (higher is better). This lack of clear convention unnecessarily complicates under-
standability of research results. However, definitions of these metrics are so firmly established
that we do not try to fight the tradition and provide definitions in their standard (non-systematic)
way.

Note that since we are interested in using metrics for comparison, monotone transformations
(square root, logarithm, multiplication by constant) are inconsequential and are used mainly for
better interpretability or for traditional reasons.

In the following we use classification of metrics into three families as proposed by Ferri et al.
(2009): probabilistic understanding of errors, qualitative understanding of errors, and assessing
ranking of examples.

3.1. PROBABILISTIC UNDERSTANDING OF ERRORS

The first set of metrics is based on probabilistic understanding of predictions pi and of errors,
i.e., difference between pi and oi. In the case of student modeling this type of metrics is natural
mainly for predictions of performance (correctness of answers).

In other domains (e.g., decision analysis, weather forecasting) a summary measure for the
evaluation of probabilistic forecasts is called a scoring rule and a useful notion of proper scoring
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Table 1: Most often used metrics based on probabilistic understanding of errors. For MAE and
RMSE lower is better, for LL higher is better.

Mean Absolute Error MAE 1
n

∑n
i=1 |oi − pi|

Root Mean Square Error RMSE
√

1
n

∑n
i=1(oi − pi)2

Log-likelihood LL
∑n

i=1 oi log(pi) + (1− oi) log(1− pi)

rules is studied (Gneiting and Raftery, 2007). Scoring rule is just another name for a performance
metric2 – a function S which for a predictive distribution ~p and an actual outcome ~o assigns a
reward S(~p, ~o). By S(~p, ~q) we denote the expected value of S(~p, ·) under distribution ~q. The
scoring rule is said to be proper if S(~q, ~q) ≥ S(~p, ~q) for all ~p and ~q (strictly proper if the equality
holds only if ~p = ~q). The intuition behind this definition is that if the forecaster’s best judgment
is the distributional forecast ~q, he has no incentive to predict any ~p 6= ~q (Gneiting and Raftery,
2007).

Table 1 shows definition of most commonly used metrics based on probabilistic understand-
ing of errors. Mean absolute error (MAE) considers absolute differences between predictions
and answers. This is not a suitable performance metric, because it prefers models which are
biased towards the majority result. In the context of scoring rules this function is also called
“linear score” and is well-known to be an improper scoring rule (Gneiting and Raftery, 2007),
i.e. it may lead to misleading conclusions (specific example is discussed below). Despite this
clear disadvantage, MAE is sometimes used for evaluation of student models (Cen et al., 2006;
Pardos and Heffernan, 2010; Qiu et al., 2011).

A similar metric, root mean square error (RMSE), is obtained by using squared values in-
stead of absolute values. As opposed to MAE, RMSE is a proper score (Gneiting and Raftery,
2007). Note that from the perspective of model comparison, the important part is only the sum
of square errors. The square root in RMSE is traditionally used to get the result in the same units
as the original “measurements” and thus to improve interpretability of the resulting number. In
the particular context of student modeling and evaluation of probabilities, this is not particularly
useful, since the resulting numbers are hard to interpret anyway. In order to get better inter-
pretability, researchers sometimes use R2 metric: R2 = 1 −

∑n
i=1(oi − pi)

2/
∑n

i=1(oi − ō)2.
With respect to comparison of models, R2 is equivalent to RMSE since the only model depen-
dent part is again the sum of square errors. In context of the standard linear regression (where
it is most commonly used) R2 has nice interpretation as “explained variability”. In the case of
logistic regression (which is closely connected to student models) this interpretation does not
hold and different “pseudo R2” metrics are used (e.g., Cox and Snell, McFadden, Nagelkerke).
Thus the disadvantage of R2 is that unless researchers are explicit about which version of R2

they use (often they are not), a reader cannot know for sure which metric is reported.
In educational data mining the use of RMSE metric is very common, particularly for evalua-

tion of skill models (Beck and Xiong, 2013; Gong et al., 2010; Wang and Beck, 2013; Wang and
Heffernan, 2013; Yudelson et al., 2013; Papoušek et al., 2014; Nižnan et al., 2015). RMSE was
also used as a metric in the KDD Cup 2010 focused on student performance evaluation. In other

2As opposed to metrics, scoring rules are consistently used as rewars, i.e., higher is better.
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Table 2: Expected values of MAE, RMSE, and LL on a simple example.

Model A Model B

MAE 0.7 · |1− 0.7|+ 0.3 · |0− 0.7| = 0.42 0.7 · |1− 0.9|+ 0.3 · |0− 0.9| = 0.34
RMSE 0.7 · (1− 0.7)2 + 0.3 · (0− 0.7)2 = 0.21 0.7 · (1− 0.9)2 + 0.3 · (0− 0.9)2 = 0.25
LL n · 0.7 · log(0.7)+ n · 0.7 · log(0.9)+

n · 0.3 · log(1− 0.7) = −0.61n n · 0.3 · log(1− 0.9) = −0.76n

domains (particularly in weather forecasting) the mean square error (RMSE without the square
root) is called a Brier score (Brier, 1950; Toth et al., 2003) or a quadratic scoring rule3 (Gneiting
and Raftery, 2007). The Brier score is sometimes decomposed into additive components (Mur-
phy, 1973), which provide further insight into behaviour of predictive models. We discuss this
issue in more detail in Section 5.

Another related metric is based on the notion of likelihood. The likelihood of data (observed
answers) given the model (predicted probabilities) is L =

∏n
i=1 p

oi
i ·(1−pi)(1−oi). For reasons of

numerical stability and indifference of our concerns to monotonic transformations we typically
work with log-likelihood (LL), i.e., the logarithm of the likelihood (Table 1). Note that although
the behaviour of this metric is similar to RMSE, the absolute values are interpreted in completely
different way than RMSE. Log-likelihood values are negative, it is not averaged (i.e., it decreases
with the size of data set), and it has interpretation as a reward (higher is better).

The LL metric can also be interpreted from information theoretic perspective as a measure
of data compression provided by a model (Roulston and Smith, 2002), i.e., from theoretical
perspective this metric has better foundations than RMSE (Jewson, 2003). The LL metric is
used in student modeling (Khajah et al., 2014; Pavlik et al., 2009), but much less frequently than
RMSE. Its use is often connected with extensions like Akaike information criterion (AIC) or
Bayesian information criterion (BIC). These metrics penalize large number of model parameters
and thus aim to avoid overfitting. In the context of student modeling it is typically much better
to address the issue of overfitting by cross-validation (Stamper et al., 2013). Since AIC and BIC
provide faster way to asses models than cross-validation, they may be useful as heuristics in
some algorithms (Cen et al., 2006; Stamper et al., 2013).

The main part of MAE, RMSE, and LL is in all cases “sum of error contributions for in-
dividual predictions”. The metrics differ in the function which specifies the error contribution,
Figure 1 shows graphically this difference. Note mainly the comparison between RMSE and LL
– they are quite similar, the main difference is in the interval [0.95, 1], i.e., in cases where the
predictor is confident and wrong. These cases are penalized very prohibitively by LL, whereas
RMSE is relatively benevolent. In fact the LL metric is unbounded, so single wrong prediction
(if it is too confident) can ruin the performance of a model. This property is usually undesirable
and an artificial bound is used (bound 0.01 is used in a below presented experiment). Note that
in the context of student modeling this corresponds to forcing a possibility of a slip and guess
behaviour into a model. After this modification the error contributions for RMSE and LL are
rather similar. Nevertheless, the LL approach “penalize mainly predictions which are confident
and wrong” is reasonable and it can be argued that it is preferable to RMSE (Jewson, 2003).

3Quadratic scoring rule differs from mean square error by some technical transformations, which change it from
an error to a reward.
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Figure 1: Comparison of error contributions for individual predictions for MAE, RMSE, LL
metrics. For LL metric the function log(1− x) is scaled by 1

3 to make it better comparable to the
function x2 for RMSE.

Although MAE seems quite similar to RMSE and LL, there is a fundamental difference
between these metrics as MAE is an improper score and RMSE and LL are proper scores. As
this fact is not commonly known in educational data mining community, it is worthwhile to
illustrate the improper behaviour in an explicit situation. As a simple illustration consider a
simulated student who answers correctly with constant probability 0.7. Let us compare two
simple student models: Model A always predicts probability of correct answer 0.7, Model B
always predicts probability of correct answer 0.9. Table 2 shows expected values of MAE,
RMSE and LL for these two models. Model B achieves better MAE, but in this case Model A
is clearly a better model, since it is equivalent to the ground truth. Thus the use of MAE leads
to a wrong conclusion. Both RMSE and LL choose the correct model, in fact it is easy to verify
that Model A achieves optimal RMSE and LL.

3.2. QUALITATIVE UNDERSTANDING OF ERRORS

Another set of metrics is based on qualitative understanding of errors, i.e., either the prediction
is correct or incorrect (0-1 loss). In student modeling this approach is suitable mainly for pre-
dictions of student state (e.g., boredom). In other domains this type of metrics is used mainly
for evaluation of classification tasks in pattern recognition and information retrieval.

When we use qualitative understanding of errors, predictions have to classified into just
two classes. If the predictions are in the interval pi ∈ [0, 1], the classification can be done
easily by choosing a threshold and doing the classification by comparison to this threshold.
Once predictions are binarized, they can be classified as as true/false positives/negatives by a
confusion matrix (Table 3). Qualitative metrics are then defined using the values from this
matrix, the most common ones are shown in Table 4. The F1-score is a harmonic mean of
precision and recall. The kappa statistic was originally proposed to measure interrater agreement
as an improvement over agreement by chance.

As opposed to metrics based on probabilistic understanding of errors, values of these metrics
depend on an external parameter – the choice of the classification threshold. They are also
sensitive to prediction only with respect to this threshold. For example if we use a threshold
0.5, predictions 0.49 and 0.51 are considered different, whereas predictions 0.51 and 0.99 are
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Table 3: Confusion matrix.

Observed (true class)
Positive Negative

Predicted Positive true positive (TP ) false positive (FP )
Negative false negative (FN ) true negative (TN )

Table 4: Metrics associated with a confusion matrix (for all of these metrics higher is better).

Accuracy (TP + TN )/n
Precision TP/(TP + FP)
Recall (sensitivity) TP/(TP + FN )
F-measure (F1 score) 2TP/(2TP + FP + FN )
Kappa statistic (Accuracy −R)/(1−R)

R = ((TP + FN )(TP + FP) + (TN + FP)(TN + FN ))/n2

treated as same. Such behaviour can be for many student modeling applications undesirable.
It is possible to use variants of these metrics also in a threshold independent way, e.g., to use
maximum accuracy (Liu et al., 2011), but this approach is not common in student modeling.

These types of metrics are mainly used for evaluation of models of affective states (con-
centration, confusion, boredom, frustration, joy, distress), researches use mainly the kappa met-
ric (San Pedro et al., 2013; Baker et al., 2012; D’Mello et al., 2008), or accuracy (Conati and Ma-
claren, 2009). Accuracy has also been used for evaluation of skill models (Pardos and Yudelson,
2013; Käser et al., 2014), but for this type of models it is much less appropriate and common.

3.3. ASSESSING RANKING OF EXAMPLES

The third possible approach to evaluation of predictions takes into account ranking of predic-
tions, i.e., the values of pi are considered relatively to each other. There is only one commonly
used approach of this type – receiver operating characteristics (ROC) curve and the related area
under the ROC curve (AUC) metric.

The ROC curve summarizes the qualitative error of the prediction model over all possible
thresholds. The curve has “false positive rate” FP/(FP + TN ) on the x-axis and “true posi-
tive rate” TP/(TP + FN ) on the y-axis, each point of the curve corresponds to a choice of a
threshold; for a detailed introduction to ROC curve construction and interpretation see Fawcett
(2006). Area under the ROC curve (AUC) provides a summary performance measure across all
possible thresholds. It is equal to the probability that a randomly selected positive observation
has higher predicted score than a randomly selected negative observation. AUC is 1 for a perfect
model and 0.5 for a random predictions, i.e., it is interpreted as a reward (higher is better).

Figure 2 shows examples of ROC curves for two student models evaluated over data from
geography learning application (Papoušek et al., 2014). For illustration the figure explicitly
highlights the false and true positive rates for three selected threshold values. Note that although
the two curves have similar overall shape, locations of points for individual thresholds signifi-
cantly differ for the two models. The AUC value is 0.792 for Model 1 and 0.784 for Model 2.

The area under the curve can be approximated using a metric called A’ (Fogarty et al., 2005):
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Figure 2: Illustration of ROC curves.

A′ = 1/(|C||I|) ·
∑

i∈C
∑

j∈I v(pi, pj), where C = {i|oi = 1} (positive observations), I =
{i|oi = 0} (negative observations), v(x, y) = 1 if x > y, v(x, y) = 0.5 if x = y, and v(x, y) = 0
if x < y. This A’ metric is equivalent to the well-studied Wilcoxon statistics (Fogarty et al.,
2005), which provides ways to study statistical significance of results (but requires attention to
assumptions of the tests, e.g., independence).

The ROC curve and the AUC metric are successfully used in many different research areas,
but their use is sometimes criticized (Lobo et al., 2008; Hand, 2009), e.g., because the metric
summarizes performance over all possible thresholds, even over those for which the classifier
would never be practically used. From the perspective of student modeling it is important to take
into account that the AUC metric considers predictions only in relative way – if all predictions
are divided by 2, the AUC metric stays the same. For this reason the AUC metric should not
be used (as the only metric) in cases where we need absolute values of predictions to be well
calibrated.

To address disadvantages of the AUC metric, several extension have been proposed, e.g.,
scored AUC (Ferri et al., 2009), which incorporates absolute values of probabilities in the def-
inition, and partial AUC (Dodd and Pepe, 2003), which considers only part of the ROC curve
that is relevant for a particular application. These extensions are currently not commonly used in
student modeling, although they may be useful (e.g., in student modeling we are often interested
mainly in model decisions with high thresholds).

In student modeling the AUC (resp. A’) metric is often used for evaluating models of affec-
tive states (San Pedro et al., 2013; Baker et al., 2012), and related student behaviour like gaming
the system (Baker et al., 2004; Baker et al., 2008). These are natural classification problem and
the use of AUC in these cases seems appropriate. The AUC metric, however, is also widely
used for evaluation of skill models (Baker et al., 2008a; Beck and Chang, 2007; Baker et al.,
2008b; Baker et al., 2010; González-Brenes and Mostow, 2013; Pardos et al., 2013; Pardos
et al., 2012; Pardos and Heffernan, 2011; Sao Pedro et al., 2013; González-Brenes et al., 2014).
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The suitability of AUC in these cases is disputable, particularly in cases where AUC is used as
the only metric, since applications of skill models often need well calibrated absolute values of
predictions. Moreover, in some cases AUC is used as the only metric for final evaluation, but
the parameter fitting procedure uses (implicitly) different metric (RMSE or LL). Particularly in
cases of brute force fitting this approach is strange. If AUC is really a proper metric for a specific
application, it should be used not just for final evaluation, but also for parameter fitting (this may
not be easy to do with gradient descent or expectation maximization, but it is easy to realize in
case of brute force search).

4. METRICS AND USEFULNESS OF MODELS

Predictive ability of student models is not an end in itself, but mainly a mean to improving
behaviour of educational systems and for getting insight into the learning process. Now we look
at the relation of performance metrics to these goals.

4.1. IMPACT ON STUDENT PRACTICE

Model predictions are often used to guide the behaviour of an adaptive educational systems. The
goal of these systems is to provide efficient learning. Models are used mainly to select practice
opportunities and the goal of efficient learning thus means choosing suitable practice items. This
is often operationalized as minimizing over-practice (practice of items that the student already
mastered, i.e., “wasted time” of students) and under-practice (missing practice that is necessary
for mastery of a topic and for further progress).

Over-practice and under-practice are clearly more important than predictive ability of models
, but they cannot be measured directly. Since we do not have any direct information about student
mastery, we can only make indirect inferences about over-practice and under-practice. More-
over, the amount of over-practice and under-practice depends not only on the student model, but
also on other aspects of the educational system, e.g., settings of thresholds for mastery learning.

Nevertheless, it is important to study over-practice and under-practice and to analyze their
relation to model performance metrics to see if the easily measurable performance metrics pro-
vide a good proxy measure for these more important goals. Previous research (Yudelson and
Koedinger, 2013) demonstrated on real student data that small differences in predictive per-
formance can lead to significant impact on student under-practice and over-practice (7-20%).
Other authors (Fancsali et al., 2013; Fancsali et al., 2013; Lee and Brunskill, 2012; Pardos and
Yudelson, 2013; Pelánek, 2015) performed experiments with simulated data (in most cases us-
ing Bayesian knowledge tracing model) to investigate the impact of different models or different
mastery thresholds on the amount of student practice. Pardos and Yudelson (2013) used simu-
lated data to study the relation between different performance metrics and identification of the
“moment of learning” (step in which a student learned a skill). They obtained good results for
the RMSE metric and poor results for the AUC metric.

4.2. IMPACT ON PARAMETER FITTING

Student models are valuable not only for their predictions, but also for their parameters. Even
through “black box” techniques (like ensembles) can potentially improve predictive perfor-
mance (Pardos et al., 2012), most researchers and system developers prefer interpretable models
like Bayesian knowledge tracing. Model parameters can provide us with valuable insight into
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the learning process and can be used for interventions (Liu et al., 2014) or even in higher-level
modeling (Hershkovitz et al., 2013). For example, Cen et al. (2007) discuss a specific case where
analysis of model parameters leads to changes in the tutoring system reducing the over-practice
of students.

Even if parameter fitting is the real goal of a particular application of student modeling,
metrics of predictive performance are still important. Parameter fitting is typically done by opti-
mizing performance of a model with respect to a chosen metric – although this step is often not
explicitly mentioned, e.g., when researchers use the EM algorithm, which implicitly optimizes
the LL metric. However, we should not rely too much on performance metric for analysis of
model parameters. The fact that a model with particular parameter values achieves best results
with respect to a choosen metric does not mean that these parameters are “correct” or even stable.
Stability of parameters should get more attention and be studied for example with bootstraping
experiments (estimating parameters from different samples of data).

A choice of metric with respect to which model parameters are optimized can have large
impact on parameter values. Dhanani et al. (2014) performed experiments with simulated data
based on the Bayesian knowledge tracing model. They studied the relation between metrics
and a distance of the fitted parameters to ground truth parameters (parameters that were used to
generate the data). The results show that RMSE and LL metrics are able to retrieve parameters
well (RMSE being slightly better), whereas the AUC metric leads to poor results.

5. BEYOND SINGLE NUMBER

Metrics summarize performance of a student model by a single number, which gives a simpli-
fied view of model behaviour. This simplification may be necessary for parameter fitting, but for
model comparison and for better understanding of model behaviour it may be useful to quantify
model performance in more detail. One commonly used possibility is to use several perfor-
mance metrics and check whether they agree. In this way we obtain several ‘views’ of model
performance, but they all still capture only the summary performance and give limited insight
into details of model performance.

Another possibility is to decompose a particular metric into several components or decom-
pose predictions into disjoint groups and analyze model performance for individual groups. We
discuss some of these possibilities in more detail.

5.1. BRIER SCORE DECOMPOSITION

In Section 3.1. we mentioned that mean square error (RMSE without the square root) is some-
times called the Brier score (Brier, 1950; Toth et al., 2003). In this context the metric is often
decomposed into additive components (Murphy, 1973; Toth et al., 2003; Cohen and Goldszmidt,
2004), which provide further insight into the behaviour of the predictor.

Assume that predictions pi take only c different values (if there is a large number of different
values we can bin them into c classes, with c typically between 10 and 30). Let us denote these
values qk, the number of predictions in the same category nk, and the observed frequency of
these predictions fk =

∑
i,pi=qk

oi/nk. Finally, let f be the base rate (proportion of positive
observations). Then the Brier score can be decomposed as (Toth et al., 2003):

BS = 1
N

∑
k nk(qk − fk)2 − 1

N

∑
k nk(fk − f)2 + f(1− f)

BS = REL− RES + UNC
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Figure 3: Reliability diagrams and sharpness graphs for two student models.

The first term (REL) is reliability, which measures the difference between predicted probabili-
ties and observed probabilities. It is not difficult to achieve perfect reliability if the model just
predicts the base rate of events. Useful model should also predict wide range of probabilities.
This is captured by the second term (RES ) called resolution. Resolution measures how much
do predictions differ from the base rate. A good model needs both reliability and resolution. The
third term (UNC ) is uncertainty, which quantifies the inherent uncertainty of events. This part
is independent of a model.

5.2. RELIABILITY DIAGRAMS

Closely related to Brier score decomposition are reliability diagrams (Bröcker and Smith, 2007;
Niculescu-Mizil and Caruana, 2005; Toth et al., 2003). Reliability diagram shows predicted
frequency versus observed frequency for individual classes (bins). The number of cases falling
into individual bins is often highly uneven, so it is customary to show the reliability diagram
together with a ‘sharpness graph’ (a histogram of number of cases in each bin), see Figure 3.
The reliability graph is directly related to the reliability term in the Brier score decomposition,
the sharpness graph is related to the resolution term. Bröcker and Smith (2007) provides thor-
ough discussion of possibilities for the choice of bins and their centers, and also of methods for
assessing reliability of reliability diagrams (e.g., with consistency bars).

Figure 3 gives a specific example of reliability diagrams for two student models (the same
models which were used for construction of Figure 2). The difference in RMSE is only very
small (Model 1: 0.344, Model 2: 0.345), but the behaviour of the models is actually quite dif-
ferent. Model 2 has quite poor resolution, with most predictions being around 0.93; Model 1
has better resolutions. Note that this difference can also be detected in the ROC curve when we
highlight specific thresholds (Figure 2). Both models have good reliability; Model 2 being only
slightly better. For Model 1 we can notice a trend in the reliability diagram – the model tends
to slightly overestimate students when probability of correct answer is low, and underestimate
students when probability of correct answer is high. Such observation can lead to an improve-
ment of the student model or the learning system. Similar kind of analysis can be performed
in terms of residual analysis, Käser et al. (2014) provides a specific example (with analogical
observations about underestimation and overestimation).
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6. USAGE OF METRICS

In this section we discuss some recurring issues about practical application of performance met-
rics.

6.1. INTERPRETABILITY

Interpretability is sometimes an important reason why researchers use a particular metric. How-
ever, even for seemingly interpretable metrics like AUC, the interpretation can be difficult and
misleading. Particularly when data are not homogeneous (widely different difficulties of items
or skills of students), metrics can indicate good performance even through good results are
achieved mainly due to the variability in data, which could be easy captured by a simple model.
Hamill and Juras (2006) discuss this effect in detail in the context of weather forecasting. To
make the point they present analysis of a hypothetical scenario with predicting weather on two
islands with different climatology. Their scenario is analogical to student modeling for two
classes of students with different background knowledge.

Even if we ignore this issue, interpretability is a wrong reason for use of a particular metric
for model comparison or parameter fitting. In model comparison and parameter fitting we care
only about relative performance of models and we should use metrics most suitable for the
particular context. Specifically, for evaluation of skill models we should prefer RMSE or LL to
AUC. The AUC metric may be reported additionally to provide a more complete (interpretable)
picture of the evaluation results.

6.2. DOES THE CHOICE OF METRIC REALLY MATTER?

Is the choice of metric really practically important? Do different metrics actually lead to different
conclusions? We report an experiment inspired by comparison of metrics for evaluation of
recommender systems (Herlocker et al., 2004).

To compare metrics we used the following experiment with simulated data. To generate
data we used standard student models – Bayesian knowledge tracing (Corbett and Anderson,
1995) and additive factor model based on logistic function (Käser et al., 2014). Using different
parameter settings we generated 20 datasets. The datasets differ in the number of simulated
students and length of student traces. The total number of attempts is, however, same in all
datasets (10,000). For predictions we used Bayesian knowledge tracing (Corbett and Ander-
son, 1995), Performance Factor Analysis (Pavlik et al., 2009), and adaptation of the Elo rating
system (Pelánek, 2014). Using different parameter values we specified 15 concrete models.
For each dataset and model (300 combinations) we evaluated the performance using the most
commonly used metrics for evaluation of skill models: MAE, RMSE, LL, AUC.

Figure 4 shows scatter plots and correlation coefficients for all combinations of studied met-
rics. The presented comparison includes all combinations of datasets and models, including
some cases of significant mismatch between data and a model. Such cases would not occur in
practical situations. To test the relations among metrics on “good models”, we counted how
often do metrics agree on the best model (from the given fixed set of 15 models). Table 5 shows
these results.

The three metrics based on probabilistic understanding of errors (MAE, RMSE, and LL)
have large overall correlations – this is not surprising, since they all have similar functional form
(as discussed in Section 3.1.). Particularly RMSE and LL agree very strongly with each other,
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Figure 4: Correlations among metrics.

both in overall correlation and in the choice of the best model. The MAE metrics, on the other
hand, has only good overall correlation with RMSE and LL, it does not agree on the choice of
the best model, i.e., these result show that the difference between MAE and RMSE/LL occurs
also in practice and not only in artificially constructed examples like the one in Table 2. The
AUC metric behaves differently from RMSE and LL, both with respect to the overall correlation
and with respect to the choice of the best model. These results show that the choice of metric
is really important and can influence conclusions of experiments. An exception is the choice
between RMSE and LL, which is pronounced neither in the reported experiment nor in the
literature.

Table 5: Agreement in the choice of the best model (out of 20 cases).

AUC LL MAE RMSE

AUC – 5 2 7
LL 5 – 2 17
MAE 2 2 – 3
RMSE 7 17 3 –
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6.3. DO SMALL DIFFERENCES IN METRICS MATTER?

Evaluations of student models often report only small differences in the final values of perfor-
mance metrics (e.g., third decimal place in RMSE). A frequent topic in educational data mining
research4 (raised explicitly by Beck and Xiong (2013)) is how much do these small differences
in predictive ability matter.

To be important, differences between models should either have impact on student practice or
lead to interpretable and actionable results. Previous research have shown that even small differ-
ences in RMSE can have significant impact on student over-practice and under-practice (Yudel-
son and Koedinger, 2013) and can be interpretable and lead to improvements in the tutoring
system (Liu et al., 2014).

As a practical tool for estimating the importance of model differences it is useful to analyze
correlations of model predictions. Small differences in performance metric can be caused by
quite different situations. The model predictions may be highly correlated, with one model
systematically achieving slightly better predictions. Such result may be interesting, but in most
cases it will have only minimal practical impact. On the other hand, it can also happen that
models differ only slightly in a summary metric, but their predictions are not well correlated,
i.e., individual predictions are actually quite different (at least in some cases). In such a case the
model difference may be of significant practical importance.

As a specific example consider a hypothetical scenario, where we have two similar models
based on Q-matrices (Barnes, 2005). One of them is ‘correct’ and has 10 skill (knowledge
components), the other one is ‘incorrect’ and merges two of the skills together. The difference
between performance metrics of these two models will be necessarily small, since in most cases
their predictions will be identical. The difference is, however, of practical significance, because
if a tutoring system uses the incorrect model, students may miss practice of one of the skills. A
realistic scenario of this type is reported by Liu et al. (2014).

This issue may be further highlighted by a feedback loop between models and data collec-
tion (Nižnan et al., 2015). The data that are used for model evaluation are often collected by
an intelligent tutoring system which uses mastery learning. The mastery is judged by a student
model, i.e., the used model influences which data are collected and used for evaluation. So it
can happen that the used model does not collect data that would show its deficiencies. As a
specific example consider the above mentioned scenario. If the tutoring system uses the incor-
rect model with merged skills, then it may happen that students answer very few questions on
one of the merged skills, because their mastery is declared based on their correct answers to the
second merged skill. This distortion of collected data further reduces differences in performance
metrics.

Note that the presence of this feedback loop is an important difference compared to other
forecasting domains. In weather forecasting models do not directly influence the system and
cannot distort collected data, in student modeling they can. This aspect of evaluation of student
models deserves further attention.

4Note that this question is not specific to educational data mining, e.g., Herlocker et al. (2004) discuss the same
issue in the context of collaborative filtering recommender systems.
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7. CONCLUSIONS

Finally, let us summarize the main issues relevant for researchers who need to evaluate student
models. In most cases there is not an unequivocal answer to the question “Which metric should I
use for my experiments?” The choice of suitable metric depends on the intended use of a student
model. Are the absolute values of estimated probabilities important? Is the relative ordering of
predictions more relevant? Do we care only about binary classification? Many papers which
propose or evaluate student models lack any discussion of the specific purpose of described
models. Such discussion or specific arguments for a particular choice of metric should become
standard part of papers that include evaluation of student models.

The arguments presented in this work suggest some guidelines for choice of metrics. A clear
conclusion concerns the MAE metric. For predictors of binary outcomes, which are typical in
student modeling, the MAE metric should not be used and reported at all, since it is not a proper
score and can lead to misleading conclusions.

Metrics based on the confusion matrix and the AUC metric may be appropriate for evaluation
of models of affective states, but they are less suitable for evaluation of skill models. Particularly
the use of AUC metric deserves attention. It is widely used for evaluation of skill models as it is
seemingly more interpretable than RMSE or LL. But with respect to skill models it has several
important disadvantages: it considers only relative ordering of predictions, previous research
indicates that it has poor relation to over-practice and under-practice (Pardos and Yudelson,
2013) and that it is unsuitable for optimizing parameter values (Dhanani et al., 2014). For
particular application of skill models the use of the AUC metric may be justifiable, but the
justification needs to be explicitly discussed (which is not a current practice).

A reasonable choice of metric for evaluation of skill models seems to be the LL metric or
the RMSE metric. The RMSE metric is currently much more used than the LL metric, and it is a
plausible choice due to its connection to Brier score decomposition and reliability graphs, which
provide further insight into properties of predictions. The LL and RMSE metrics have similar
form, the main difference occurs for predictions that are confident and wrong. This difference
may be in some application quite important and the log-likelihood deserves more attention than
it currently gets.

The issue of performance metrics is widely discussed in the context of general machine
learning and applications in other domain (Caruana and Niculescu-Mizil, 2004; Ferri et al.,
2009; Jeni et al., 2013; Gneiting and Raftery, 2007; Herlocker et al., 2004; Liu et al., 2011; Toth
et al., 2003). The educational data mining community may find useful inspiration in this rich
literature.
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