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Students’ activities in game/scenario-based tasks (G/SBTs) can be characterized by a sequence of
time-stamped actions of different types with different attributes. For a subset of G/SBTs in which only
the order of the actions is of great interest, the process data can be well characterized as a string of
characters (i.e., action string) if we encode each action name as a single character. In this article, we
report our work on evaluating students’ performances by comparing how far their action strings are from
the action string that corresponds to the best performance, where the proximity is quantified by the edit
distance between the strings. Specifically, we choose the Levenshtein distance, which is defined as the
minimum number of insertions, deletions, and replacements needed to convert one character string into
another. Our results show a strong correlation between the edit distances and the scores obtained from the
scoring rubrics of the pump repair task from the National Assessment of Education Progress Technology
and Engineering Literacy assessments, implying that the edit distance to the best performance sequence
can be considered as a new feature variable that encodes information about students’ proficiency, which
sheds light on the value of data-driven scoring rules for test and task development and for refining the
scoring rubrics.

1. INTRODUCTION

Innovations in educational assessments have been accelerated by the advance of technology over
the past decade. The objective of educational assessments is to collect and make sense of in-
formation about what students know and can do and to evaluate their progress or shape their
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future learning experience (Mislevy et al., 2014). The more students are engaged and put effort
into the assessments, the better will be the information collected about them (Schmit and Ryan,
1992; Sundre and Wise, 2003). Gee (2007) has pointed out that video games or simulations have
the capability to increase students’ engagement and to create better conditions that boost learn-
ing. From the assessment perspective, game/scenario-based tasks (G/SBTs) promise to offer a
sweet spot in the assessment design space for some purposes and some circumstances (Mislevy
et al., 2014). Moreover, G/SBTs can provide students with new opportunities to demonstrate
proficiencies in complex interactive environments that traditional assessment formats cannot
afford (Klopfer et al., 2009).

Given these nice features, G/SBTs are considered one of the major future directions of edu-
cational assessment and have received considerable attention over the past decade. In practice,
G/SBTs have been widely used in real assessments ranging from low- to medium-stakes tests,
such as the Technology and Engineering Literacy assessments (TEL) from the National Assess-
ment of Educational Progress (NAEP) (TEL, 2013), to high-stakes tests, such as the innovative
assessments in the U.S. Medical Licensure Examinations (USMLE, 2014).

For traditional item formats, such as multiple choice (MC) or constructed response (CR),
the scoring rubrics are generally straightforward to develop and implement. But for G/SBTs,
developing the scoring rubrics itself becomes much more complicated, and it is no longer a
trivial task to implement the scoring rubrics too. The complications come from at least two
sources. First, owing to the increased complexity provided by the interactive environment of
G/SBTs, developing operational scoring rubrics requires more iterations with the help of proper
data-mining techniques to uncover meaningful features from students’ activities. G/SBTs are
generally developed by following an evidence-centered design (ECD) (Almond et al., 2002;
Mislevy and Riconscente, 2006), where several rounds of iterations are implemented to explicate
the actions or state information relevant to the targeted construct. However, in practice, it is
almost impossible to predict all possible behaviors in the game or simulation ahead of time,
which makes data mining the log file a necessary step to uncovering empirical evidence relevant
to the construct to be measured. Second, the logistics of handling the log files from the G/SBTs
are very challenging. Students’ activities are kept in the log files, and parsing through the log
file to extract useful information is generally not a trivial task, requiring additional data analysis
techniques.

Discovering new features from the logs of specific G/SBTs requires creativity and insight,
which are generally difficult to standardize. Therefore, finding new approaches that can be ap-
plied to rather generic G/SBTs is highly desirable. There are a lot efforts have been devoted
to analyzing the sequential data from educational games/simulations. For example, tempo-
ral Bayesian Networks has been used to model students’ performance in Orthopedic Surgery
Training (Chieu et al., 2010). Various sequence detection techniques are discussed for gener-
ating adaptive feedback in mathematical generalisation (Gutierrez-Santos et al., 2010). Clus-
ter analysis has been used to analyze action sequences in personalized e-learning (Köck and
Paramythis, 2011), scenario based assessment (Bergner et al., 2014) and systematic inquiry
behaviors (Sao Pedro et al., 2013). In addition to directly cluster the event sequence, the clus-
tering of activity state sequence with interval sampling technique has been studied (Desmarais
and Lemieux, 2013). Moreover, a set of tools used for sequence mining have been assembled
together into a R package, TraMineR (Gabadinho et al., 2009).

In this article, we propose an edit distance–based approach to extract useful information
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from the logs of certain types of G/SBTs, where we know what the best practices are.1 In this
approach, students’ performances are measured by how far or close their action sequences are
from the action sequences corresponding to the “best” practices. To measure how far or close
they are, we propose to use the “action distance,” which is the (weighted) number of certain
operations needed to bring one action sequence to another (usually, the one corresponding to
the best practice). If we dummy code each action name as a single character and choose the
operations as some text-editing operations, such as insertion, deletion, and substitution, the ac-
tion distance is exactly the well-known edit distance that originally emerged in natural language
processing (NLP).

To demonstrate the usefulness of this approach, we apply it to a specific task, the pump
repair task from the NAEP TEL (PumpRepair, 2013). In our analysis, we dummy code the
action names with lowercase letters and turn each student’s response into a character string.
Then, to compare the differences between the strings, we choose one of the most widely used
edit distances, the Levenshtein distance (Levenshtein, 1966), which is defined as the minimum
number of deletions, insertions, and substitutions that will transform one string into another.
Our analysis shows that though such a measure is obtained from a very different perspective,
it correlates significantly with the scores obtained from the scoring rubrics. This provides a
new perspective from which we can quantify students’ performances in G/SBTs and that can be
readily applied to a number of similar G/SBTs where only the order of the actions is of primary
interest.

It is worth noting that the approach presented in this article, like other data-mining ap-
proaches, should not be considered as a replacement for rubric-based scoring. Rather, data-
mining approaches should be considered independent checks for scoring rubrics, useful in flag-
ging potential problems. Direct score reporting based on data-mining approaches can only be
done after results are properly interpreted.

The article is organized as follows. In section 2, we introduce edit distance, the basic al-
gorithms, and their applications to G/SBAs. In section 3, we apply the edit distance approach
to a specific simulation-based task, the pump repair task from NAEP, and show the results. In
section 4, we discuss the applicabilities and limitations of the edit distance approach.

2. EDIT DISTANCE

2.1. FROM ACTION DISTANCE TO EDIT DISTANCE

A student’s response to the G/SBTs forms a sequence of time-stamped actions, which we refer to
as an action sequence. For certain types of G/SBTs, we know what action sequences correspond
to the best performance based on the design rubrics, which we refer to as ideal action sequences.
Therefore, we can introduce an action distance that is a measure of how far the action sequence
from a response is to the ideal action sequence. The action distance reduces to the edit distance
if we dummy code each action name as a single character, ignoring the temporal component
corresponding to the time stamp of each action and restricting the operations only to editing
operations such as insertion, deletion, and substitution. In this article, we focus on a subset

1Note that, in many cases, finding the best practice is one of the important goals of data mining. Here we assume
we know this, which is true for a subset of G/SBTs.
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of the G/SBTs where the temporal information is not of major concern.2 Therefore, from now
on, we simply use edit distance as a surrogate for action distance. Edit distance is defined as
the minimum weights (costs) of the editing operations used to transform one string into another
(Jurafsky and Martin, 2000). Under this definition, there can be many possible variants in terms
of the types of editing operations (such as insertion, deletion, substitution, transposition) and the
associated weight of each operation.

It is worth noting that we are not fully free to use any type of operation and weight. To prop-
erly define the edit distance in metric space, some rules (known as metric axioms) must be met
(Bryant, 1985). Assume that we have two strings, denoted as X[1, ...i, ..N ] and Y [1, ...j, ...M ];
the additional requirements are depicted by

• d(X, Y ) ≥ 0 if X 6= Y : Nonnegativity

• d(X, Y ) = 0 if X = Y : Identity of the indiscernible

• d(X, Y ) = d(Y,X): Symmetry

• d(X, Y ) ≤ d(X,Z) + d(Z, Y ): Triangle inequality

where d(X, Y ) denotes the edit distance between string X and string Y . These conditions lead
to the following requirements for the operations and weights: (1) there is always an inversion
operation with equal weight for each editing operation and (2) all weights associated with the
edit operations are positive. These requirements significantly reduce the possible space of the
variants of the edit distance and are important guidelines for “inventing” new edit distances.

Obviously, the choice of specific edit distance may be “optimized” for a specific purpose by
adjusting the types of edit operations and their associated weights. However, for exploratory data
analysis, where we generally do not have information about what is the best way to adjust those
parameters a priori, it will be sensible to start with the simplest situation, that is, the Levenshtein
distance. Throughout the rest of the article, unless noted otherwise, all edit distances we discuss
are Levenshtein distances.

2.2. WEIGHTED LEVENSHTEIN DISTANCE

Among all possible variants of the edit distance, the most widely used is the Levenshtein dis-
tance. If we keep the edit operations but allow the weights associated with each operation to be
variable, we arrive at the weighted Levenshtein distance (Jurafsky and Martin, 2000). This is a
more general situation than the Levenshtein distance, and manipulating the weights gives one an
extra knob to “optimize” the edit distance for a specific task. So, in the following, we introduce
the algorithm for the weighted Levenshtein distance and hold the Levenshtein distance as a spe-
cial case where all weights are set to 1. Algorithmically, the computational time for calculating
the weighted Levenshtein distance is O(M ∗ N) when realized by dynamic programming (Ju-
rafsky and Martin, 2000). The algorithm is generally specified as two steps. The first step is
initialization:

2For a subset of G/SBTs, the order of the actions encodes most of the information, and we can ignore the specific
temporal information of each action.
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d00 = 0, (1)
di0 = di−1,0 + wdel(Xi), 1 ≤ i ≤ N,

d0j = d0,j−1 + wins(Yj), 1 ≤ j ≤M.

Following initialization, a recurrence relation updates the edit distance:

dij =





di−1,j−1, Xi = Yj,

min





di−1,j + wdel(Xi),
di,j−1 + wins(Yj), Xi 6= Yj,
di−1,j−1 + wsub(Yj, Xi).

(2)

where the functions wdel, wins, and wsub denote the weights of deletion, insertion, and substitu-
tion, respectively. Note that the weights are not necessarily constants for all i and j. The edit
distance between X and Y is given by dNM . As we mentioned earlier, adjusting the weights
provides an extra handle on the resulting edit distance. When there are well-motivated reasons
to choose a specific set of weights, one should go with it. For example, the keyboard layout
makes certain typos more likely than others. Depending the purpose of the analysis, one can
increase or decrease the weights associated with the editing operations relevant to those keys.
But in general situations, such as the application discussed in this article, we usually do not have
a clear motivation for a specific choice for the weights. From a Bayesian point of view, such
weight choices can be considered a priori based on the edit distance.

2.3. APPLICATION TO G/SBTS

The process data of a student’s response to a G/SBT can be summarized as a sequence of time-
stamped actions with corresponding attributes. Depending on the complexity of the specific
game or scenario-based task, this sequence of actions can be very different in terms of length
and variability. For a subset of G/SBTs, the time stamp plays a minor role, as the student’s
performance is mainly determined by the order of his or her actions during the task. Then, each
student’s performance is fully characterized by a sequence of actions whose order encodes the
majority of information about the performance. As we show, the edit distance approach is well
suited for this subset of G/SBTs.

For certain types of G/SBTs, we know the action sequences corresponding to the best prac-
tices, that is, the ideal action sequences. The ideal action sequences can be a single sequence
from the beginning to the end of the task or a set of segmented sequences, each of which corre-
sponds to evidence nuggets that support the proficiency of a certain skill. Conversely, the action
sequences from students’ actual responses can be very diverse, some of them following closely
or being exactly the same as the ideal action sequences, whereas others may be very different.
Therefore, how close the actual response is to the ideal action sequence provides a measure of
how good the student’s performance is, if one can appropriately specify the metric for “close-
ness.” We suggest that edit distance, specifically the Levenshtein distance, can be considered a
promising candidate for this purpose.

Now, the most challenging question comes. How do we quantify that the edit distance does
its job properly? Is there a method that allows us to test whether the edit distance for a specific
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task really works properly? The answer is yes. What we propose is to compare edit distances
calculated based on students’ actual responses to the edit distances calculated based on fake
responses after randomizing the orders of the actions. If the distribution of edit distances from
actual responses is systematically lower than the distribution from random responses, it is a good
indication that the edit distance is doing its job decently. If the distribution of the edit distance
from actual responses is statistically indistinguishable from the distribution calculated based on
random responses, then the edit distance won’t provide much useful information. This also gives
a way to winnow good ideal action sequences that can be used to calculate the edit distance.

To apply the edit distance as a measure of proximity between actual responses and ideal
action sequences, another prerequisite is easily neglected. That is, we need to dummy code
action names into single letters or numbers because the edit distance is operating directly on
character strings. For the dummy coding, there are at least two different situations. In the first
situation, one just codes each action as a unique single letter or number. In the second situation,
instead of coding each action as a unique letter or number, one codes a class of actions to the
same unique letter or number; that is, the actions can be classified into different groups first, and
then the dummy coding is done at the group level. This has important implications in practice,
because it will be possible that there are actions that play similar roles in terms of revealing the
proficiency of certain constructs, and one may want to treat all these actions the same.

Last, but not least, if a task has multiple ideal action sequences (sequence segments), extra
wisdom is needed to decide how to combine the edit distances corresponding to these segments.
A confirmatory factor analysis can check an optimal concatenation of the edit distances if there
is a clear cognitive motivation. If there is no clear motivation, principal component analysis
(PCA) or cluster analysis can guide the combination. In the next section, we demonstrate all
these ideas using a specific scenario-based task: the pump repair task from the NAEP TEL.

3. PUMP REPAIR TASK

3.1. THE TASK AND SCORING RUBRICS

The TEL (TEL, 2013) is trying to measure whether students can apply what they learn about
technology and engineering skills to real-life situations. TEL is implemented via “computer-
based and interactive scenario-based tasks to gauge what students know and can do.” Among
the TEL tasks, the pump repair task was released to the public after the TEL pilot study was
conducted in 2013. In the pump repair task, students are asked to play the role of an engineer to
troubleshoot a water well that fails to work in a remote village in Nepal. There are two major
parts in the pump repair task. In the first part, students can ask a set of questions about why the
pump does not work and can get hints about the causes of the problems. In the second part, the
students set out to fix the problem. According to the “pump manual,” students are told that there
are five common problems for the hand pump. The recommended cycle for troubleshooting each
problem is check first, followed by repair, and then followed by a test to determine whether it is
fixed. In Figure 1, we include two screenshots from the pump repair task, which correspond to
the two major phases of the task.

Students’ responses are recorded in the following way: the check, repair, and test operations
are denoted by C, R, and P, respectively. The five common problems are indexed as 1 through 5.
For example, if a student performs the operations of check the fourth common problem followed
by repairing the pump for that problem, followed by testing the pump, his or her action sequences
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Figure 1: Screenshots of the pump repair task. (left) Questions students can ask the system to
get hints about problems with the well system. (right) Troubleshooting part of the task, where
students can choose to fix the problems.

Table 1: The scoring rules along the systematicity dimension

Score Level Details
4 All checks performed before repairs

Pump is checked immediately following each repair
3 All checks performed before repairs

Pump is not checked immediately following each repair
2 One repair is performed before the associated check (or check is omitted)

Pump may not be checked immediately following each repair
1 Two or more repairs performed before the associated check

Pump may not be checked immediately following each repair

will be recorded as C4R4P. The scoring rubrics used in the pilot study defined two dimensions
for the construct probed by this pump repair task: systematicity and efficiency. Systematicity
refers to the idea that students need to follow a systematic operation cycle, that is, check, repair,
and test, when they troubleshoot the well. Efficiency refers to the idea that students can quickly
identify which problems the well actually has and repair them. According to the design of the
task, if students are very careful in the first part of the task, they should be able to infer that only
problems 4 and 5 are real trouble makers and need to be checked, fixed, and tested.

Each student’s response is recorded in the log files as we described earlier. The scoring
rubric (TEL, 2013) of the task defines the scoring rules for each of the two dimensions, as
follows. For systematicity, the performances are classified into four levels, as shown in Table 1.
Conversely, for efficiency, there are five levels, as shown in Table 2.

On the basis of the scoring rubrics, the responses from a total of 1,325 students in the pilot
study are scored; a cross table of the score distribution is shown in Figure 2. Looking at the
distribution, the two dimensions have low correlation, with a Spearman correlation of r = 0.347.
Notably, one can observe from Figure 2 that 162 students got the highest level of efficiency
score but the lowest level of systematicity score. Conversely, only four students are placed at the
highest level of systematicity score but get the lowest efficiency score. This means that many
students know where the problems are but cannot fix them systematically, but fewer people who
can fix the problem systematically do not know where the problems are.
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Table 2: The scoring rules along the efficiency dimension

Action definitions Efficient actions: E = P, C4, R4, C5, R5
Unnecessary checks: C = C1, C2, C3
Unnecessary repair: R = R1, R2, R3

Score Level Details
5 Only actions from set E
4 Actions from E + 1 action from C
3A Actions from E + 2–3 actions from C
3B Actions from E + 0–1 action from C + 1 action from R
2 Actions from E + 2–3 actions from C + 1–2 actions from R
1 Actions from E + 3 actions from C + 3 actions from R

1 2 3 4 5

Efficiency Score

1

2

3

Sy
st

em
at
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ity

 S
co

re

45

26

4

60

47

16

136

71

103

6

15

55

162

137

442

Figure 2: Cross table of the efficiency score and systematicity score for the responses from the
pilot study. Note that for the systematicity score, no responses get to level 4.
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Table 3: Two dummy coding schemes

Action name C1 C2 C3 C4 C5 R1 R2 R3 R4 R5 P
Coding scheme I a b c d e f g h i j k
Coding scheme II a a a b b c c c d d e

3.2. DUMMY CODING OF ACTION NAMES

Students’ actions are recorded, for example, as “C4, R4, P, C5, R5, P.” To apply the edit distance
analysis, one needs to turn this into a string with each action recoded as a single letter; that is,
one needs to recode the preceding response string by mapping each action or some actions to
a single letter. In our implementation, we choose two coding schemes. In coding scheme I,
we just convert each action name into a single and unique letter. In coding scheme II, we first
classify the actions as necessary actions if they are associated with either 4 or 5 or P. The rest
will be classified as unnecessary actions. Then, we code all the unnecessary actions of the same
type (e.g., check, repair) to the same letter. The reason for considering coding scheme II is that
we want to see whether the edit distance measure will lead to different results if we dummy code
the actions in a different but meaningful way. In Table 3, we list the specific mappings of the
two schemes.

It is worth noting that the way one chooses to code the action names is somewhat arbitrary
in a certain sense. But comparing with random responses for each coding scheme will provide
a way to test whether the coding scheme is reasonable.

3.3. EDIT DISTANCE OF THE RESPONSES

In this subsection, we present the results of the edit distances calculated with respect to the
action sequences. For the pump repair task, we know the action sequences that correspond to
the highest level of skill, for example, C4R5PC5R5P and C5R5PC4R4P. As these two ideal
sequences are equally good, we will choose a final edit distance that is the minimum of the
edit distances corresponding to each of them. In addition to the ideal action sequences, some
other action sequence segments represent certain levels of system thinking, for example, C1R1P,
C2R2P, C3R3P, C4R4P, and C5R5P. So we also calculate the edit distances between the actual
responses and these action sequence segments. By doing this, we hope to capture all possible
information via the edit distances and then explore the space these edit distances span via PCA
and cluster analysis. To facilitate the discussion, we introduce the abbreviations corresponding
to different edit distances in Table 4.

The first thing we want to check is a comparison of edit distances from actual responses
to those from random responses. We create the random responses in the following way: after
coding the actual responses into character strings, we build a set of string lengths by counting
the length of each character string. Then, we randomly sample the letters based on the coding
schemes to form random strings whose lengths are randomly sampled from the set of character
string lengths. According to the task design, one must have the test operation (P) done before
he or she can submit the results. So, when we sample the letters, we reserve the last letter
of each string as that corresponding to action P. Through this process, we generated two sets
of random responses corresponding to the two coding schemes. Then, we calculated the edit
distances based on these random responses in the same way we did for the actual responses. In
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Table 4: Abbreviations for edit distances corresponding to different action sequences

Abbreviation Action sequence
dist0 C4R4PC5R5P
dist1 C5R5PC4R4P
dist2 C4R4P
dist3 C5R5P
dist4 C1R1P
dist5 C2R2P
dist6 C3R3P
dist min(dist0, dist1)

Figure 3, we plot the distributions of the edit distances from both actual responses and random
responses under the two coding schemes. Looking at these figures, one can observe that only
the edit distances “dist” from actual responses are significantly less than those from the random
responses; “dist2” and “dist3,” from actual responses, are slightly less than those from random
responses, whereas for the “dist4,” “dist5,” and “dist6,” there are no clear differences between
actual responses and random responses. This suggests that “dist” contains most of the useful
information about students’ performances.

The second thing we want to check is how well the edit distances are associated with the
systematicity and efficiency scores defined in the scoring rubrics. Here we mention association
rather than correlation because the edit distances’ relation may not be linear, whereas correlation
mainly captures the linear association. We calculate both the Spearman correlation and the
adjusted mutual information (Vinh et al., 2009) between the scores and the edit distances. The
results are presented in Figure 4. On the basis of the results, one can observe that the trends of
the associations for the Spearman correlation and adjusted mutual information are very close.
To make the discussion more intuitive, we focus on the Spearman correlation in the following
discussion. For the Spearman correlation, coding scheme I leads to higher absolute correlations.
All edit distances show relatively high correlations with the efficiency score, and the highest
correlation is from the “dist,” which is about −0.82. For the systematicity score, only “dist”
shows a significant correlation of −0.56, while the other edit distances do not correlate to the
systematicity score significantly. Similar conclusions held true based on the adjusted mutual
information. Given that “dist” contains most of the information, it will be interesting to see
the cross tables between “dist” and the efficiency and systematicity scores for the two coding
schemes. We present the results for both coding schemes in Figure 5.

By carefully examining all these results, the following conclusions can be drawn. First, the
two different coding schemes do not lead to significantly different edit distances in terms of
the correlations and adjusted mutual information with the systematicity and efficiency scores,
though some variabilities have been introduced. Clearly one can also introduce other coding
schemes based on specific motivations and compare the results in a similar fashion. In this
article, our goal is to demonstrate the methodology rather than give an exhaustive analysis of
various coding schemes under different motivations, so we conclude our discussion along this
line. Second, the edit distance to the ideal action sequences encodes the most information about
students’ performance, as revealed both by correlations and adjusted mutual information with
the rubric-based scores and by the distribution comparison with random responses. This in-
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Figure 3: Distributions of the edit distances from actual responses and from random responses
for coding schemes I and II. The specific definitions of the labels along the x axis are given in
Table 4.
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forms us that the edit distances to the ideal action sequences are the best first guess to create an
edit distance–based measure to quantify students’ performance in G/SBTs, and thus can serve
as an informative feature variable that characterizes the performance. Third, most of the edit
distances other than “dist” do not display distinct distributions compared with those calculated
from random responses, whereas most of them do show high correlations with the efficiency
score; this implies that the efficiency score may not be a well-defined dimension of the construct
as it highly correlates with those edit distances that do not manifest clear distinctions between
real responses and random responses. Finally, the information encoded in the edit distances is
different from the information contained in the rubric-based scores, though there are reasonably
high (negative) correlations. Each of these approaches probes the process data from a specific
perspective, and the vector space all these features span needs to be analyzed to extract complete
information about the students’ performances in G/SBTs. In the next subsection, we focus on
the vector space spanned by the edit distances corresponding to different action sequences and
explore the ways to combine them.

3.4. PRINCIPAL COMPONENT ANALYSIS AND HIERARCHICAL CLUSTER ANALYSIS

The various edit distances corresponding to different action sequences lead to a multidimen-
sional (six, in our case) vector space. Given the possible correlations among the edit distances, a
natural question is, what is the actual dimension of this space, and what are the ways to combine
these edit distances that are on the same dimension? To tell how many actual dimensions the
vector space really has, probably the best approach is to perform a PCA. In Figure 6, we show
results from the PCA for the two coding schemes. The results show that both coding schemes
lead to two effective dimensions (PCs) based on the scree plot for the vector spaces spanned by
the six edit distances. The first PC is predominant, explaining over 90% of the variability of the
data.

It is interesting to see how these PCs correlate with the scores from the scoring rubrics,
because the results will tell us whether the space spanned by the edit distances covers the space
spanned by the systematicity and efficiency scores. We show the results of the correlation in
Figure 7. One can see that the PCs from the two coding schemes correlate differently with the
two rubric-based scores. For coding scheme I, the first PC highly correlates (positively) with
the efficiency score, while the second PC highly correlates (negatively) with the systematicity
score. The other PCs are not strongly correlated with either score. Similar conclusions are
applied to coding scheme II, though with some adjustments. For a more intuitive picture about
what the correlation numbers mean, we present the scatter plots between the two rubric-based
scores and the first and second PCs corresponding to coding scheme I in Figure 8. All these
results show that the space spanned by the edit distances covers the space spanned by the rubric-
based scores. Moreover, given that the first PC explains most of the variability in the data, and
it is highly correlated with the efficiency score, one can infer that among the two rubric-based
scores, the efficiency score is subject to higher variability and therefore might not be a very well
defined dimension of the construct. This observation echoes our previous conclusion.

Conversely, one may want to check how we should group the edit distances. If there is a
strong cognitive motivation, we can do a confirmatory factor analysis to check the grouping.
However, in our case, the cognitive motivation is not yet very clear, and therefore we perform a
hierarchical cluster analysis on the edit distances to see whether the results are consistent with
our general understanding of the task. In Figure 9, we show the results for the two different
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Figure 5: Cross table of the scores from the scoring rubrics vs. the edit distance for coding
schemes I and II. Here the edit distance refers to the minimum of the edit distance with respect
to C4R4PC5R5P and C5R5PC4R4P.
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Figure 8: Scatter plots between the first two PCs and the rubric-based scores for coding scheme
I. Each dot is the mean value of the bin, and the error bar is the standard deviation of the mean.

coding schemes. In coding scheme I, one can observe that there are three clusters: dist; dist2,
dist3; and dist4, dist5, dist6. Such a clustering pattern is very consistent with our understanding
of the task. The “dist” corresponds to the ideal action sequence and should be different from
others; “dist2” and “dist3” correspond to the main action sequence segments in the ideal ac-
tion sequence and is different from the rest (e.g., “dist4,” “dist5,” and “dist6”). So, a simple
hierarchical cluster analysis further confirms the consistency of our choice of the ideal action
sequences and action sequence segments. Similar conclusions are held for coding scheme II.

4. DISCUSSION

In this article, we propose an edit distance approach to analyzing the process data from certain
G/SBTs, where only the order of the actions is of primary interest. By considering a specific task,
the pump repair task, from NAEP TEL, we lay down step-by-step procedures for applying the
edit distance approach to the process data. By comparing the edit distances with the scores from
the existing scoring rubrics of the pump repair task, we conclude that the information contained
in the two scores is also reflected by the edit distances, though the latter is obtained from quite
a different perspective. Moreover, PCA on edit distances, together with the internal consistency
among the edit distances from actual responses and from random responses, suggests that the
efficiency score based on the existing scoring rubrics needs further scrutinization.

However, the edit distance approach in its current form does have restrictions on what types
of tasks it is applicable to. One of the major restrictions is that the temporal information as well
as the properties of different actions are not included in the current scheme. This additional
information about the process data may be accommodated into the edit distance scheme by as-
signing appropriate weights to the edit operations based on the time interval or action attributes.
In addition to this restriction, how to properly interpret the “edit” operations is also challenging.
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Figure 9: Hierarchical clustering analysis using complete linkage for edit distances dist, dist2,
dist3, dist4, dist5, dist6.

The interpretation may be different for different G/SBTs, which leaves great room for imagi-
nation. In an ongoing study, we are applying the approach to a number of other G/SBTs, and
we hope we can find more generalizable ways to interpret the “edit” operations after comparing
across different tasks. Nevertheless, the edit distance approach remains a useful tool for explor-
ing the process data from G/SBTs, allowing quick construction of meaningful feature variables
to help to refine the scoring rules.
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