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Protecting Personally Identifiable Information (PII), such as names, is a critical requirement in educa-
tional data mining to safeguard the privacy of students and teachers and maintain trust. Accurate PII
detection is an essential step toward anonymizing sensitive information while preserving the utility of
educational data. Motivated by recent advancements in artificial intelligence, our study investigates
the GPT-4o-mini model as a cost-effective and efficient solution for PII detection tasks. We explore
both prompting and fine-tuning approaches and compare GPT-4o-mini’s performance against established
frameworks, including Microsoft Presidio and Azure AI Language. Our evaluation on two public datasets,
CRAPII and TSCC, demonstrates that the fine-tuned GPT-4o-mini model achieves superior performance,
with a recall of 0.9589 on CRAPII. Additionally, fine-tuned GPT-4o-mini significantly improves precision
scores (a threefold increase) while reducing computational costs to nearly one-tenth of those associated
with Azure AI Language. Furthermore, our bias analysis reveals that the fine-tuned GPT-4o-mini model
consistently delivers accurate results across diverse cultural backgrounds and genders. The generalizabil-
ity analysis using the TSCC dataset further highlights its robustness, achieving a recall of 0.9895 with
minimal additional training data from TSCC. These results emphasize the potential of fine-tuned GPT-
4o-mini as an accurate and cost-effective tool for PII detection in educational data. It offers robust privacy
protection while preserving the data’s utility for research and pedagogical analysis. Our code is available
on GitHub: https://github.com/AnonJD/PrivacyAI
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1. INTRODUCTION

Personally Identifiable Information (PII) includes the information (e.g., names, email addresses,
and phone numbers) that can identify an individual. Protecting PII is critical as computer-
assisted learning systems become increasingly pervasive across all educational levels. For ex-
ample, online human tutoring platforms collect vast amounts of interaction data, including con-
versational dialogues between students and tutors (Reidenberg and Schaub, 2018). While the
analysis of such educational data offers insights for data-informed research and improved ped-
agogical practices (Portnoff et al., 2021; Chen et al., 2016; Lin et al., 2024), it also introduces
significant privacy risks due to the sensitive nature of PII (Fung et al., 2010). Safeguarding PII
is essential to prevent unauthorized access and misuse (Carrell et al., 2012). Moreover, robust
privacy protections are vital for fostering trust among educational stakeholders—students, ed-
ucators, and parents—and ensuring the responsible adoption of learning technologies (Zeide,
2018). These efforts align with global regulatory frameworks, such as the General Data Protec-
tion Regulation (GDPR) and the Family Educational Rights and Privacy Act (FERPA), which
mandate the protection of personal data.

Given the vast amounts of data collected by learning systems, automating the anonymization
of PII in the education domain has become a critical necessity. Previous work has explored rule-
based, statistical-based, and neural network-based approaches to detect PII in education-related
tasks, such as essay grading (Chen et al., 2016; Liu et al., 2023). Though showing effectiveness,
given the advent of advanced AI models, PII detection can be further enhanced in detection accu-
racy, robustness, and generalizability when applied to diverse and complex educational datasets.
Moreover, many previous works (Caines et al., 2022; Pal et al., 2024; Lison et al., 2021; Sama-
rati, 2001) focus solely on redacting PII from the original data (e.g., the name John from the
original sentence “Thanks, John” processed by redacting: “Thanks, [REDACTED]”). While
this approach mitigates certain risks, it falls short of ensuring comprehensive privacy protection,
especially given that current models still fail to achieve perfect accuracy in PII detection (Holmes
et al., 2024). This raises concerns about potential PII leakage. Thus, these challenges underscore
the urgent need for more advanced, scalable, and robust methods to facilitate the anonymization
process in educational data, ensuring comprehensive protection of PII and mitigating the risks
of unintended exposure.

As proposed by Carrell et al. (2012), the Hidden in Plain Sight (HIPS) method introduces
the protection of PII in datasets by first identifying PII entities and then replacing them with syn-
thetic information that retains contextual characteristics. Unlike traditional redaction methods
that use generic tokens such as [REDACTED] to redact PII, the first step of the HIPS method
replaces PII with tokens that indicate the category of information, such as <Name>, <Email>,
or <Address>. This multi-category entity recognition is a prerequisite for HIPS, as a single,
generic [REDACTED] tag—as used in other recent LLM-based redaction studies (Zambrano
et al., 2025)—lacks the semantic information required for generating realistic, type-specific sur-
rogate data. The process of identifying PII entities relies on Named Entity Recognition (NER),
a task in natural language processing that aims to locate and classify specific entities within
text into predefined categories, such as names, email addresses, and phone numbers (Sang and
Meulder, 2003). Once NER is performed on the data corpus, the original PII entities can be
replaced with synthetic information while retaining their contextual relevance. For example, a
sentence such as “{John Smith}Name lives at {123 Main Street}Address” can be trans-
formed into “{Alex Doe} lives at {456 Elm Avenue},” preserving the sentence structure
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while anonymizing sensitive details. According to (Carrell et al., 2019), the HIPS method en-
hances the protection of PII by minimizing the risk of re-identification through context-aware
anonymization, while still maintaining the utility of the dataset for research and analysis. How-
ever, the effectiveness of the HIPS method also relies on the accuracy of the initial PII identifica-
tion step performed through NER. Therefore, while the broader goal of our work is to improve
the end-to-end de-identification of educational data, this study specifically focuses on the foun-
dational detection stage, as its accuracy and categorical precision are necessary prerequisites for
enabling high-utility de-identification methods like HIPS.

The recent advancements in large language models (LLMs) have introduced significant op-
portunities to enhance PII detection. Recent studies (Singhal et al., 2024) have explored the use
of LLMs, such as the GPT-4 model, to identify PII in education datasets. While these models
exhibit high recall scores, indicating their ability to identify a broad range of PII entities, their
performance often comes at a high computational and financial cost (Samsi et al., 2023). More-
over, these studies frequently report relatively low precision scores, which poses challenges for
further data analysis. This trade-off is evident in the latest work; for example, Zambrano et al.
(2025) report that while prompted GPT-4o, LLaMA 3.3 70B, and LLaMA 3.1 8B all achieved
high average recall scores (over 0.9), their precision remained an unsolved challenge, with even
the top-performing GPT-4o only reaching 0.579. This persistent issue of low precision poses
challenges for further data analysis. Although high recall is essential for safeguarding PII by en-
suring that sensitive information is comprehensively identified, we argue that high precision is
also important in the context of the HIPS method. Low precision, characterized by a high rate of
false positives, can lead to unnecessary replacement of non-PII entities using the HIPS method.
This can disrupt the semantic integrity of the dataset, potentially breaking important informa-
tion relevant to further analysis of educational data. For example, consider the sentence, “The
{Newton} method is used for optimization,” which could be replaced with “The {David}
method is used for optimization.” In this case, the term “Newton” was incorrectly identified
as PII and replaced. Such disruptions might break the mathematical context and hinder further
analysis.

To address these challenges, our study investigates methods to enhance the recall scores of
PII detection while preserving precision and reducing computational costs. Striking this balance
is crucial for developing a more cost-effective solution for large-scale anonymization without
compromising robust privacy protection. To guide our investigation, we propose a main Re-
search Question (RQ): To what extent can large language model-based approaches effectively
identify PII compared to baseline approaches, such as Microsoft Presidio and Azure AI Lan-
guage?

By answering this question, our study makes the following key contributions:
(1) Fine-Tuned Model for PII Detection: We employ and evaluate a fine-tuned GPT-4o-

mini model for PII detection. Our findings show it achieves high recall scores (over 0.95) at a
fraction of the cost of comparable commercial services.

(2) Verifier Model for Enhancing Precision: We introduce a two-step verifier model that
enhances detection precision. By reducing false positives, this approach helps better preserve
non-PII data, which can support de-identification methods such as Hidden in Plain Sight (HIPS)
that aim to minimize disruption to non-sensitive information.

(3) Cultural and Gender Bias Analysis: We conduct an analysis of model fairness, eval-
uating performance across cultural and gender groups using name-based subgroup analysis in
the TSCC dataset, where names were replaced according to cultural and gender distributions.
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Our results reveal that the fine-tuned GPT-4o-mini delivers equitable performance, reducing the
cultural biases present in established baseline models.

(4) Evaluation on Domain Adaptation Study: We demonstrate the model’s robustness
by testing it on a different dataset (i.e., TSCC). The model proves to be adaptable, achieving
high accuracy (Precision of 0.9708, Recall of 0.9895, and F1 Score of 0.9801) on the new
domain after fine-tuning on a small sample, confirming its suitability for deployment across
varied educational contexts.

2. RELATED WORK

2.1. DEIDENTIFICATION OF PERSONALLY IDENTIFIABLE INFORMATION

A significant aspect of the deployment of learning technologies in the actual learning and teach-
ing environment is ensuring data privacy. To address the concern about data privacy, two com-
monly used deidentification methods are direct redaction and Hidden In Plain Sight (HIPS)
(Caines et al., 2022; Osborne et al., 2022). Both approaches aim to safeguard PII by concealing
sensitive data but they differ significantly in their implementation and impact on downstream
data usability.

Redaction is one of the most widely used methods for PII protection in education-related
research (Lison et al., 2021; Sánchez and Batet, 2015). In this approach, sensitive information is
replaced with generic placeholders, such as “[REDACTED]”, effectively removing it from the
dataset. For example, “John Smith contacted the office via john.smith@example.com” can be
redacted as “[REDACTED] contacted the office via [REDACTED].” While redaction is effec-
tive at concealing sensitive information, maintaining consistently high accuracy in PII detection
often comes at a significant cost. For instance, the study by Singhal et al. (2024) employed
prompting with the GPT-4 model, which incurs expenses of $30.00 per 1M input tokens and
$60.00 per 1M output tokens. Given the vast amounts of data collected from learning systems,
it is crucial to strike a balance between cost and performance to ensure practical scalability.

The HIPS method offers a more nuanced approach to protecting PII (Carrell et al., 2012).
Instead of simply redacting sensitive information, HIPS replaces PII entities with synthetic but
semantically equivalent placeholders that retain the category of the original information (Carrell
et al., 2019). Compared to the redaction method, HIPS could effectively enhance privacy protec-
tion. Even if some PII entities are missed during the initial detection step, their replacement with
synthetic counterparts ensures no sensitive information is exposed. For example, Carrell et al.
(2020) employed the MITRE Identification Scrubber Toolkit (MIST) to identify PII entities, af-
ter which the HIPS method is used to replace those identified entities with realistic surrogates
across two corpora. Following substitution, expert annotators examine the anonymized corpus
to detect leaked PII—the entities that MIST failed to identify. On average, only 26.8% of the
leaked PII are detected, and 62.8% of the entities considered leaked by human attackers are
actually not leaked PII. In Osborne et al. (2022), researchers introduced BRATsynthetic as a
novel HIPS replacement strategy that leverages a Markov chain–based approach to dynamically
substitute PII entities with realistic surrogates. This method notably reduces the risk of PII
leakage due to false negatives in PII detection. For instance, under a 5% false negative error
rate, document-level leakage is decreased from 94.2% (using a traditional HIPS replacement) to
57.7%.

It should be noted that the effectiveness of the HIPS method relies heavily on the accuracy of
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the Named Entity Recognition (NER) step. Misidentified entities (false positives) could lead to
unnecessary replacements, disrupting the dataset’s integrity (Fung et al., 2010; Carvalho et al.,
2022). Conversely, undetected PII (false negatives) could leave sensitive information exposed.
Thus, enhancing precision is important. However, existing work in the AI in education field that
focuses on developing NER systems for downstream HIPS replacement still demonstrates low
precision scores. For example, one study reported a precision score of 0.24 (Holmes et al., 2023).
Given the advantages of using the HIPS method compared to redaction, our study focuses on the
application of the HIPS method and particularly aims to enhance the detection of PII entities.

2.2. LARGE LANGUAGE MODELS FOR DATA PRIVACY

Recent advancements in LLMs, such as GPT-4, which are trained on extensive datasets from
diverse domains, enable them to capture long-range dependencies and contextual nuances that
are crucial for identifying PII. Studies leveraging GPT-based models have demonstrated their
ability to achieve high recall scores, effectively identifying a broad range of PII entities (Wang
et al., 2025). Additionally, LLMs can leverage this internal knowledge to distinguish actual PII
from non-PII. Some recent evidence supports this view: for instance, a recent study prompts
GPT-3 for a NER task, suggesting that fine-tuning such large models could yield more notable
results (Wang et al., 2025), especially since fine-tuned LLMs tend to outperform their prompted
counterparts on NLP tasks (Zhang et al., 2023; Mosbach et al., 2023).

The approach of fine-tuning an LLM for PII identification aligns well with the emerging
AI-for-education domain, where labeled text data for PII identification are often scarce and
fragmented. Due to this limited availability, a model can be trained on data that are not repre-
sentative of the actual use case, and less experienced users may require a tool that can quickly
adapt to their specific domain. Consequently, a source model capable of learning effectively
from sparse and unrepresentative datasets is needed. Previous work has shown that an LLM
can be fine-tuned with just a few labeled examples (few-shot learning) (Mosbach et al., 2023).
Although studies also indicate that successful few-shot learning is achievable with other archi-
tectures, these typically require carefully designed learning strategies and meticulous parameter
tuning to prevent overfitting (Shen et al., 2021; Lee et al., 2023). In contrast, larger LLMs have
been proven to be more resistant to overfitting as their size increases (Mosbach et al., 2023;
Gadre et al., 2025), potentially owing to their memorization dynamics (Tirumala et al., 2022).

There has been work showing that current standard redactors perform worse in certain gender
and cultural groups. The redactors identify names in the African and Asian / Pacific cultural
group with a higher error rate (Mansfield et al., 2022). Performance disparity has also been
reported between identifying male and female names of an NER system (Zhao et al., 2024).
LLMs, which have been aligned to remedy gender and cultural bias, could be the base models
for the development of a PII identification system with reduced bias (Ouyang et al., 2022).

A final advantage of fine-tuning an LLM for PII de-identification lies in its lower finan-
cial and computational cost compared to prompt-engineering an LLM for PII de-identification,
which often requires multiple demonstrations in the input prompts (Wang et al., 2025). The
above observation highlights the potential for fine-tuning large models, with GPT emerging as
a promising candidate. Several studies have utilized prompted GPT approaches to de-identify
PII entities, demonstrating encouraging results (Singhal et al., 2024; Wang et al., 2025). The
most recent work by Zambrano et al. (2025) provides a key benchmark, confirming high recall
(over 0.9) for prompted models but also underscoring the limitations of low precision (0.579 for
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GPT-4o, 0.506 for LLaMA 3.3, and 0.262 for LLaMA 3.1) and calling for future research into
fine-tuning and algorithmic bias analysis. However, the analysis of algorithmic bias has not been
a primary focus in most prior PII de-identification studies, a gap our research aims to address.
With the growing availability of cost-effective fine-tuning APIs and the lack of prior work using
fine-tuned GPT for PII identification, we aim to explore this approach further.

3. METHODS

3.1. DATA AND DATA PRE-PROCESSING

Our study utilized the Cleaned Repository of Annotated Personally Identifiable Information
(CRAPII)1 dataset (Holmes et al., 2024), which comprises 22,688 samples of student writings
collected from a massive open online course (MOOC) offered by a university in the United
States. The course focused on critical thinking through design, teaching learners strategies such
as storytelling and visualization to solve real-world problems (Holmes et al., 2024). The dataset
includes seven PII categories as direct identifiers: Names, Email Addresses, Usernames,
IDs, Phone Numbers, Personal URLs, and Street Addresses (Holmes et al., 2024).
A sample of the dataset is shown in Table 1. In total, the dataset contains 4,871 labeled words
categorized as PII entities. To enable entity-based matching during our analysis, we extracted
the character-wise positions of all annotated PII entities within the text.

Table 1: Illustrated Example of CRAPII Dataset

Attribute Example Value
full text Hi John Doe. Tel: (555)555-5555

document 379

tokens [‘Hi’, ‘John’, ‘Doe’, ‘.’, ‘Tel’, ‘:’,

‘(555)555-5555’]

labels [‘O’, ‘B-NAME’, ‘I-NAME’, ‘O’,

‘O’, ‘O’, ‘B-PHONE NUM’]

trailing whitespace [True, True, False, True, False,

True, False]

We also introduced another dataset, the Teacher-Student Chatroom Corpus (TSCC) (Caines
et al., 2022), to examine the generalizability of our investigated models, as detailed in Section
3.6. Generalizability is crucial for evaluating a model’s robustness when applied to datasets
with different distributions. The TSCC dataset contains 260 chatroom sessions, with a total
of 41.4K conversational turns and 362K word tokens. We processed the dataset by extracting
the role and edited columns and combining them into a simplified role: text format,
where each conversational turn is represented on a new line. A sample excerpt of the processed
transcription is shown below:

teacher: Hi there 〈STUDENT〉, all OK?
student: Hi 〈TEACHER〉, how are you?

1Cleaned Repository of Annotated PII. https://www.kaggle.com/datasets/langdonholmes/
cleaned-repository-of-annotated-pii/data
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3.2. MODELS FOR PII DETECTION

Microsoft Presidio.2 It is an open-source toolkit designed for detecting and anonymizing PII
across various text and image formats. It employs a regular-expression parser alongside NER
models (such as en core web lg and en core web trf ). Those NER models utilize linguistic
patterns and deep learning techniques to classify words or phrases into predefined named entities
(e.g., names, emails, and phone numbers). The backbone for en core web lg is a convolutional
neural network (CNN), and en core web trf is a transformer-based model.3 The model sizes
for both are 382 and 436 MB. Additionally, Presidio provides options for integrating external
machine learning models for enhancing PII detection.

In our study, Presidio serves as one of the baseline models for detecting PII entities. As in-
dicated in previous work (Holmes et al., 2024), en core web lg is a standard NER model based
on the spaCy4 framework that primarily relies on statistical techniques, while the transformer-
based en core web trf leverages pre-trained transformers, capturing long-range dependencies
for more accurate context-based entity recognition. Thus, we primarily used these two configu-
rations: en core web lg and en core web trf, as depicted in Fig. 1 (①).

Azure AI Language.5 It offers a cloud-based PII detection service capable of identifying
and redacting sensitive information such as phone numbers and email addresses. Our study
adopted Azure AI Language as one of the baseline models for detecting PII entities in our dataset,
as illustrated in Fig. 1 (②). The version we use is 2023-04-15-preview. We used asynchronous
processing through the REST API6 to handle texts up to 125,000 characters per document. This
approach is necessary because the longest transcript in our dataset contains 17,405 characters,
exceeding the synchronous processing limit of 5,120 characters. Requests are batched with 5
documents per request and a rate limit of 1000 requests per minute, ensuring compliance with
Azure’s service limits for PII detection.7 Each asynchronous request was completed within 24
hours, ensuring timely processing of all data.

GPT-4o-mini (Prompting). Motivated by the effectiveness of prompting LLMs in de-
identifying PII, as demonstrated in a recent study (Singhal et al., 2024), our study adapts their
prompting strategy with modifications to fit our task. Instead of employing GPT-4, as used in
their work (Singhal et al., 2024), we opted for GPT-4o-mini, which requires only 1/200 of
the cost per million input tokens and 1/100 of the cost per million output tokens compared to
GPT-4.8 Then, we modified the prompt structure by leveraging special identifiers for label-
ing detected entities rather than using a redaction method such as replacing detected PII with a
generic label like [REDACTED] as shown in their work (Singhal et al., 2024).

Inspired by the GPT-NER method (Wang et al., 2025), special identifiers can be used to
mark entities, preserving non-PII content and ensuring precise PII detection. This method also

2Microsoft Presidio: Data Protection and De-identification SDK. https://microsoft.github.io/
presidio/

3https://spacy.io/models
4https://spacy.io/
5Microsoft Azure AI Language: Personally Identifiable Information (PII) Detection.

https://learn.microsoft.com/en-us/azure/ai-services/language-service/
personally-identifiable-information/overview

6Azure AI Language Service: Using Asynchronous Requests. https://learn.microsoft.com/
en-us/azure/ai-services/language-service/concepts/use-asynchronously

7Azure AI Language Service: Data Limits. https://learn.microsoft.com/en-us/azure/
ai-services/language-service/concepts/data-limits

8OpenAI Models Pricing: https://openai.com/api/pricing/
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Figure 1: Overview of Five PII Detection Models. ① Presidio: Uses Microsoft Presidio with pre-
trained spaCy models (en core web lg and en core web trf) to detect PII entities. ②

Azure AI Language: Leverages the PII detection feature in Microsoft Azure AI Language
for entity recognition in input text. ③ Prompting LLM: Utilizes GPT-4o-mini with few-shot
prompting and special identifiers to annotate PII entities in text. The red arrow shows the prompt
used to guide the model for PII annotation. ④ Fine-tuning LLM: Fine-tunes a GPT-4o-mini
model for PII detection. The blue arrow represents the prompt used to train the model during fine-
tuning. ⑤ Verifier Models: Fine-tunes a GPT-4o-mini model to verify detected entities from
the base model within their textual context. The green arrow indicates the prompt used to verify
the entities within their context. Verification is performed with and without chain-of-thought
(CoT) reasoning.
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reduces issues such as hallucinations and over-labeling that can arise with generative models. In
particular, we require the detected entity positions to be an exact match to the true entity posi-
tions, but GPT often struggles with positional accuracy in long texts due to hallucinations and
counting limitations (Ball et al., 2024). To address this, we let GPT label detected PII entities by
surrounding them with special identifiers for different categories (see Table 2) and subsequently
extract them using regular expressions, ensuring accurate detection and positioning.

Table 2: Special Tokens for PII Detection

PII Category Special Identifiers Example
Student Name @@@Text### @@@John Doe###

Personal URL &&&Text$$$ &&&www.example.com$$$

Personal Email QQQTextˆˆˆ QQQjohnd@example.comˆˆˆ

Phone Number %%%Text˜˜˜ %%%(555)555-5555˜˜˜

To guide GPT-4o-mini in accurately identifying different types of PII entities, we employ
a few-shot learning strategy that incorporates robust text-preservation instructions adapted from
Singhal et al. (2024) and tailored to our multi-class labeling task. Few-shot learning provides
contextual examples that help the model understand the diversity of entity types and nuances
within our dataset (Brown et al., 2020). This approach is chosen because the additional exam-
ples often improve the model’s ability to handle ambiguous cases and enhance consistency in
PII identification. Table 3 outlines the structure of the System, User, and Assistant prompts
used in prompting GPT-4o-mini. Three examples9 are selected from the CRAPII dataset and
incorporated into the user prompt. The text-preservation instructions adapted from Singhal et al.
(2024) are highlighted in bold for clarity. The Assistant’s output is the input text with labeled
PII entities. The prompting process is detailed in Fig. 1 (③).

Table 3: Prompt Structures for Prompting-GPT-4o-mini Using Special Identifiers

Role Content
System You are an expert in labeling Personally Identifiable Information (PII). Start your re-

sponse right away without adding any prefix (such as “Response:”) or suffix.

User Label the entity of the following text: @@@, ### to label student name; &&&, $$$
to label personal URL; QQQ, ˆˆˆ to label personal email; %%%, ˜˜˜ to label phone
number. Ensure that the rest of the text remains unchanged, word for word. Maintain
the original punctuation, quotation marks, spaces, and line breaks. If the text does not
contain any PII, return it as is.
For example, if the input is: {Example One}
The output should be: {Example One with Labeled PII} Another example:
{Example Two} Another example: {Example Three} Please repeat this process
with the following file: {Text Input}

Assistant {Text Input with Labeled PII}

GPT-4o-mini (Fine-tuning). Our study employed a fine-tuning strategy on GPT-4o-mini
for PII detection. We utilized the same approach of incorporating special tokens, as shown in

9https://github.com/AnonJD/PrivacyAI/blob/main/few-shots-example.txt
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Table 2. Then, GPT-4o-mini was fine-tuned on the Base Train Set and evaluated on the Test
Set (as defined in Section 3.3) to assess its performance. The detailed structure of the system,
user, and assistant prompts used during the fine-tuning process is presented in Table 4, while the
implementation process is illustrated in Fig. 1 (④).

Table 4: Details of Fine-tuning GPT-4o-mini Using Special Identifiers

Role Content
System You are an expert in labeling Personally Identifiable Infor-

mation. Start your response right away without adding any
prefix (such as Response:) or suffix.

User Label the entity of the following text: @@@, ### to la-
bel student name; &&&, $$$ to label personal URL; QQQ,
ˆˆˆto label personal email; %%%, ˜˜˜to label phone number.

{Text Input}
Assistant {Text Input with Labeled PII}

Verifier Models. To improve the precision (Equation 1) of PII detection while maintain-
ing recall (Equation 2), we propose the addition of a verifier model as a second step to verify
whether predictions are accurately identified as PII. This approach is inspired by recent studies
(Brandfonbrener et al., 2024; Li et al., 2023) that integrate verifiers into multi-step reasoning
tasks in LLMs. For the implementation of verifier models, we propose two variants: Verifier
Model I (Without CoT) and Verifier Model II (With CoT). These verifier models assess detected
entities within their surrounding context to eliminate false positives while retaining true PII en-
tities, thereby enhancing the precision of PII detection systems. Both verifiers are fine-tuned
versions of the GPT-4o-mini model. The process of the verifier model approach is illustrated
in Fig. 1 (⑤).

The Verifier Model II (With CoT) incorporates Chain-of-Thought (CoT) reasoning, a method
shown to enhance decision-making by breaking down complex problems into intermediate steps
(Wei et al., 2022). The Verifier Model II (With CoT) aims to improve interpretability and ro-
bustness by generating reasoning before the final classification. However, it generates more out-
put tokens, leading to higher computational costs. The Verifier Model I (Without CoT), which
directly classifies entities without reasoning, is retained for scenarios where computational re-
sources are limited or speed is a higher priority.

To construct the training data for the verifier models, we used the dedicated Verifier Train
Set (as defined in Section 3.3). The process begins by running a base PII detection model of
the user’s choice on this dataset to generate an initial list of detected PII entities. For each
detected entity from this list, we then extracted it along with its surrounding textual context.
This (entity, context) pair was subsequently labeled as T (True PII) or F (False PII) by
comparing the entity to the ground-truth labels.

For the Verifier Model II (With CoT), we use GPT-4o-mini to generate reasoning to sup-
port the classification. If the reasoning does not align with the ground truth after six attempts, the
label defaults to T to avoid mistakenly removing true PII entities and prioritize privacy preser-
vation. The prompt structures for both verifier models are shown in Table 5.

Once the verifier models are trained, they can be applied to verify detected entities from
any base model depending on user priorities. It is important to note that applying the verifier
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Table 5: Prompt Structures for Verifier Models

Role Verifier Model I (Without CoT) Verifier Model II (With CoT)
System You are an expert in labeling Personally Identifiable Information. Start your

response right away without adding any prefix (such as Response:) or suffix.

User Determine if {entity} is a privately
identifiable information in its context:
{context}, think carefully before say-
ing no to protect against PII leakage, only
output T or F.

Determine if {entity} is a privately
identifiable information in its context:
{context}. Think step-by-step before
outputting T or F, format your response as
(your reasoning) + [Response:] T or F

Assistant ‘‘T’’ or ‘‘F’’ ‘‘{CoT Reasoning} + T’’ or
‘‘{CoT Reasoning} + F’’

will not increase recall, as false negatives remain unchanged. Instead, the verifier reduces false
positives, potentially at the expense of some true positives. If preserving PII is a higher priority
than maximizing precision, the verifier should be applied to the base model with the highest
recall. Conversely, for tasks that emphasize precision, the verifier may be applied to other base
models as needed.

GPT-4o-mini Training and Inference. We set temperature = 0 and top p = 1 for both our
GPT-4o-mini-based PII detector models (prompted and fine-tuned) and all verifier models to
ensure strict adherence to the required output formats as suggested in the prior research (Wang
et al., 2025). For the fine-tuning process, we adopted the hyperparameters recommended by the
OpenAI platform: epochs = 2, batch size = 1, and a learning rate multiplier = 1.8. No further
hyperparameter tuning was performed due to these platform constraints.

3.3. SPLITTING DATA FOR TRAINING AND TESTING

Our study focuses on four specific categories from the CRAPII dataset for PII detection: NAME,
URL PERSONAL, EMAIL, and PHONE NUM. To support our multi-stage experimental design,
which involves training base models and then separate verifier models, the 22,688 files in the
CRAPII dataset are split into three distinct sets: Base Train Set (25%, 5,672 files), Verifier
Train Set (15%, 3,403 files), and Test Set (60%, 13,613 files). This split ensures that all sets
contain a sufficient number of entities from each category, including rare categories such as
PHONE NUM, which only has 15 entities in total. Table 6 presents the distribution of true entity
counts across the three sets.

Table 6: True Entity Counts Across Data Splits

Entity Type Total Base Train Set Verifier Train Set Test Set
NAME STUDENT 4394 1091 693 2610

URL PERSONAL 354 76 66 212

EMAIL 112 29 21 62

PHONE NUM 15 3 3 9

TOTAL 4871 1199 783 2889
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3.4. EVALUATION METRICS

When evaluating the performance of a model designed to detect PII, it is essential to assess the
model’s ability to correctly identify true PII entities while minimizing incorrect classifications.
The True Positives (TP) indicate the number of correctly identified PII entities. The False Posi-
tives (FP) represent the number of non-PII entities incorrectly classified as PII, which can reduce
the utility of the dataset by unnecessarily removing valuable information. The False Negatives
(FN) denote the number of missed detections of actual PII entities, which could result in privacy
breaches and violations of legal regulations. To evaluate the model’s capability in accurately de-
tecting PII, we adopt the evaluation method suggested in Sang and Meulder (2003). This method
considers a PII entity to be correctly identified only if it is an exact match with the corresponding
entity in the text data. To provide a comprehensive assessment of the model’s performance, we
consider multiple metrics that capture different aspects of the model’s effectiveness.

Precision (Equation 1) measures the proportion of correct PII predictions out of all entities
that the model classified as PII. High precision means that when the model identifies words as
PII, it is very likely to be correct. This is particularly important when false positives (incorrectly
labeling non-PII as PII) are costly or disruptive, such as when anonymizing educational datasets
where unnecessary removal of non-PII data can reduce the value of the dataset for analysis.

Precision =
TP

TP + FP
(1)

Recall (Equation 2) measures the proportion of actual PII entities that the model successfully
identifies. High recall is crucial in privacy protection, as it ensures that most, if not all, sensitive
information is detected and appropriately handled, minimizing the risk of unmasked PII being
exposed and resulting in potential privacy breaches or legal violations.

Recall =
TP

TP + FN
(2)

The F1 Score (Equation 3) provides a balance between precision and recall, offering a single
metric that reflects both the model’s ability to correctly identify PII and its ability to minimize
false positives. The F1 Score is especially useful when both precision and recall are equally
important.

F1 Score = 2× Precision × Recall
Precision + Recall

(3)

The F5 Score (Equation 4) places a stronger emphasis on recall than precision. In privacy-
sensitive domains like education, where missing a piece of PII (a false negative) can be much
more damaging than accidentally flagging non-PII as sensitive, the F5 Score helps prioritize
models that do a better job at catching all PII, even if it means more false positives.

F5 Score = (1 + 52)× Precision × Recall
(52 × Precision) + Recall

(4)

3.5. ANALYSIS OF CULTURAL AND GENDER BIAS IN NAME DETECTION BY MODELS

Evaluating the model’s performance in detecting <NAME STUDENT> entities across different
cultural and gender distributions is quite important. We adopt Hofstede’s definition of culture
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as “the collective programming of the mind that distinguishes the members of one group or cat-
egory of people from another” (Hofstede, 2001). Because this collective programming shapes
online expression and data creation, cultural groups are not represented equally in large-scale
datasets. Training data, often sourced from the internet, tends to reflect the disproportionate
influence of dominant cultures, leading to their overrepresentation. A similar imbalance exists
for gender, where available data often feature a skewed distribution of male and female names.
Models trained on imbalanced datasets may underperform in identifying names of groups that
are underrepresented in training data. Specifically, if the training data lacks sufficient repre-
sentation of names from certain cultural backgrounds, the model may exhibit a lower recall or
precision for those names. This dimension of model evaluation is necessary to ensure fairness
and inclusivity in PII detection systems, especially as names serve as direct identifiers with
critical privacy implications.

We analyzed the cultural and gender distributions of the names in the <NAME STUDENT>
entities in detail by using a two-step approach. First, we used a rule-based name parser10 to
split each name into components, typically a first name and a last name. We then determined the
gender of each name based on the first name and matched the nationality using the last name.
This method aligns with the approach described in the CRAPII paper (Holmes et al., 2024). In
the second step, we mapped the identified countries to their respective regional cultures using the
ISO-3166 dataset with the UN regional codes.11 Specifically, we relied on the all.format
file, which includes detailed regional and sub-regional classifications for each country. For
example, “Nigeria” maps to the Africa region, while “United States of America” maps to the
Americas. The ISO-3166 dataset provides five cultural regions: Asia, Americas, Europe, Africa,
and Oceania. Notably, no names in the CRAPII dataset belonged to Oceania, so we focused on
the remaining four cultural groups.

To quantify potential biases, we evaluate the model for fairness using the principle of Equal-
ity of Opportunity (Hardt et al., 2016). This metric assesses whether the model correctly identi-
fies student names at equal rates across different protected groups. We measure this by comput-
ing the true positive rate (TPR) for each cultural and gender subgroup, where fairness is achieved
if the following condition holds:

∀A,P [Ŷ = 1|A = 1, Y = 1] = P [Ŷ = 1|A = 0, Y = 1]

Here, Y = 1 represents a true <NAME STUDENT> entity, and A is an indicator variable
for membership in a protected group (e.g., A = 1 for ‘Female,’ A = 0 for ‘Male’). This
metric evaluates if the probability of a correct identification (Ŷ = 1) is independent of group
membership (A), given that a name is actually present (Y = 1).

Our decision to aggregate countries into four continental cultural groups was driven by data
sparsity. Although a country is a more granular cultural indicator, our data contains names from
many countries, with most being represented by only a few samples. Therefore, we opted for this
coarser grouping. This methodological choice is supported by recent research demonstrating a
convergence of cultural values at the continental level (Jackson and Medvedev, 2024). Similarly,
our gender analysis is limited to a binary classification because, to our knowledge, there is no
reliable computational method for mapping personal names to non-binary genders.

10https://github.com/derek73/python-nameparser
11https://github.com/lukes/ISO-3166-Countries-with-Regional-Codes
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3.6. ANALYSIS OF MODELS’ GENERALIZABILITY

To analyze the generalizability of our investigated models, we employed the TSCC dataset, as
introduced in Section 3.1. Notably, the TSCC dataset has been pre-redacted, with most redacted
words replaced by placeholders indicating their name entity types, such as <STUDENT> and
<TEACHER>. To evaluate the model’s ability to generalize across diverse contexts, it was nec-
essary to replace these placeholders with synthetic entities that reflect diversity in gender and
cultural backgrounds. This replacement ensures a realistic evaluation of the models’ perfor-
mance when encountering unseen data with varying demographic characteristics. To generate a
diverse and representative set of synthetic names, we systematically created a mapping of first
and last names categorized by gender and cultural groups. This process involved the following
steps:

1. For each culture, we identified its corresponding countries based on the all.format
file in the United Nations dataset.

2. For each country, we used the get top names function from the names-
dataset Python package12 to retrieve first names based on gender and last names based
on the country, as outlined in the CRAPII paper (Holmes et al., 2024).

3. We combined the names of all the countries that belong to that culture into one list, filter-
ing out names containing non-English characters to maintain consistency with the TSCC
dataset (Caines et al., 2022).

4. Finally, the processed list of names for the given gender and cultural group was stored in
a dictionary, with the group defined as a tuple of (gender, culture).

Once this mapping was complete, the 260 transcripts in the TSCC dataset were randomly
assigned to the 10 gender-culture groups (2 gender by 5 culture groups), ensuring each group
contained 26 transcripts. For each transcript, synthetic names were randomly sampled from the
corresponding gender-culture group and used to replace placeholders. In addition to name place-
holders, the dataset also contained 13 non-name placeholder categories (e.g., 〈AGE〉, 〈DATE〉,
and 〈INSTAGRAM ACCOUNT〉). These were replaced with synthetic entities generated using
GPT-4o to ensure semantic consistency throughout the dataset.

This process resulted in a realistic and culturally diverse dataset that retains the original
conversational structure while introducing diversity in entity representation. For instance, the
processed version of the transcript shown in Section 3.1 appears as follows:

teacher: Hi there John Doe, all OK?
student: Hi Jane Doe, how are you?

4. RESULTS

The performance metrics of all proposed PII detection models are summarized in Table 7.

12https://github.com/philipperemy/name-dataset

14
68 Journal of Educational Data Mining, Volume 17, No 2, 2025

https://github.com/philipperemy/name-dataset


Table 7: Performance Metrics for Different PII Detection Models (The highest values across all
models are shown in bold to indicate the best performance for each metric.)

Models Entity Type # True Positive # False Positive # False Negative Precision Recall F1 Score F5 Score

1. Presidio
(en core web lg)

NAME STUDENT 1,805 9,294 805 0.1626 0.6916 0.2633 0.6147

URL PERSONAL 181 2,256 31 0.0743 0.8538 0.1367 0.6082

EMAIL 61 10 1 0.8592 0.9839 0.9173 0.9784

PHONE NUM 8 37 1 0.1778 0.8889 0.2963 0.7704

Overall 2,055 11,597 838 0.1505 0.7103 0.2484 0.6214

2. Presidio
(en core web trf)

NAME STUDENT 2,172 6,849 438 0.2408 0.8322 0.3735 0.7604

URL PERSONAL 180 2,257 32 0.0739 0.8491 0.1359 0.6049

EMAIL 61 10 1 0.8592 0.9839 0.9173 0.9784

PHONE NUM 8 37 1 0.1778 0.8889 0.2963 0.7704

Overall 2,421 9,153 472 0.2092 0.8368 0.3347 0.7503

3. Azure AI
Language

NAME STUDENT 2,451 7,074 159 0.2573 0.9391 0.4040 0.8522

URL PERSONAL 145 917 67 0.1365 0.6840 0.2276 0.5926

EMAIL 61 8 1 0.8841 0.9839 0.9313 0.9796

PHONE NUM 8 161 1 0.0473 0.8889 0.0899 0.5279

Overall 2,665 8,160 228 0.2462 0.9212 0.3885 0.8333

4. Prompting
GPT-4o-mini

NAME STUDENT 2,036 750 574 0.7308 0.7801 0.7546 0.7781

URL PERSONAL 153 313 59 0.3283 0.7217 0.4513 0.6899

EMAIL 57 55 5 0.5089 0.9194 0.6552 0.8917

PHONE NUM 5 45 4 0.1000 0.5556 0.1695 0.4727

Overall 2,251 1,163 642 0.6593 0.7781 0.7138 0.7727

5. Fine-tuned
GPT-4o-mini

NAME STUDENT 2,507 1,597 103 0.6109 0.9605 0.7468 0.9398

URL PERSONAL 199 206 13 0.4914 0.9387 0.6451 0.9069

EMAIL 60 10 2 0.8571 0.9677 0.9091 0.9630

PHONE NUM 8 4 1 0.6667 0.8889 0.7619 0.8776

Overall 2,774 1,817 119 0.6042 0.9589 0.7413 0.9377

6. Verifier Model
I

(Without CoT)

NAME STUDENT 2,098 278 512 0.8830 0.8038 0.8416 0.8066

URL PERSONAL 161 2 51 0.9877 0.7594 0.8587 0.7662

EMAIL 60 8 2 0.8824 0.9677 0.9231 0.9642

PHONE NUM 2 1 7 0.6667 0.2222 0.3333 0.2281

Overall 2,321 289 572 0.8893 0.8023 0.8435 0.8053

7. Verifier Model
II

(With CoT)

NAME STUDENT 2,261 704 349 0.7626 0.8663 0.8111 0.8618

URL PERSONAL 173 74 39 0.7004 0.8160 0.7538 0.8109

EMAIL 60 9 2 0.8696 0.9677 0.9160 0.9636

PHONE NUM 8 3 1 0.7273 0.8889 0.8000 0.8814

Overall 2,502 790 391 0.7600 0.8648 0.8091 0.8603
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4.1. OVERALL-LEVEL ANALYSIS OF MODEL PERFORMANCE

4.1.1. Presidio Models

For the two Presidio models utilizing different spaCy configurations, en core web trf consis-
tently outperforms en core web lg across all metrics, as shown in Table 7. The transformer-
based en core web trf achieves higher overall precision (0.2092 vs. 0.1505) and recall (0.8368
vs. 0.7103), likely due to its enhanced ability to capture long-range dependencies in text. How-
ever, both configurations exhibit low precision, which is likely due to the inclusive detection
approach of the models. Although this approach enables the identification of a wide range of
entities, including less common ones, it also leads to a significant number of false positives,
thereby reducing overall precision.

4.1.2. Azure AI Language

The Azure AI Language model achieves an overall precision of 0.2462 and a recall of 0.9212,
with the recall being the second highest across all models, slightly lower than the fine-tuned
GPT-4o-mini model. Its strong recall highlights its ability to capture most true positives, re-
flected in the low number of false negatives (228). However, the low precision of the model,
driven by a high number of false positives (8,160), limits its reliability for applications that re-
quire accurate predictions. The F1 score of 0.3885 and F5 score of 0.8333 further emphasize
its recall-oriented nature, indicating that while Azure AI Language improves recall compared to
rule-based methods, it struggles to maintain precision, resulting in an imbalanced trade-off.

4.1.3. Prompting GPT-4o-mini

The prompting GPT-4o-mini model achieves an overall precision of 0.6593 and recall of 0.7781,
resulting in an F1 score of 0.7138 and an F5 score of 0.7727. Although the model demonstrates
notable improvements in precision compared to rule-based approaches such as Presidio, its rel-
atively low recall, as evidenced by the 642 false negatives, indicates that a significant number
of true positives are missed. This limitation suggests that the model may not be ideal for con-
texts that require exhaustive PII detection. Despite these challenges, the improvement in preci-
sion highlights the potential of GPT-4o-mini’s prompting capabilities, particularly for scenarios
where accuracy is prioritized over comprehensive detection.

4.1.4. Fine-tuned GPT-4o-mini

The fine-tuned GPT-4o-mini model demonstrates strong overall performance, achieving the
highest recall among all models at 0.9589. This high recall ensures that nearly all PII enti-
ties are identified, making the model highly effective for comprehensive privacy protection. Its
precision of 0.6042 represents a notable improvement over both the Presidio and Azure AI Lan-
guage models, highlighting the benefits of fine-tuning in balancing precision and recall. The
model achieves the highest F5 score (0.9377) among all models, balancing high recall with rea-
sonable precision. This highlights the potential of fine-tuning GPT-4o-mini for PII detection in
educational texts, offering clear advantages over baseline and prompting models.
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4.1.5. Verifier Models

The Verifier Model I (Without CoT) achieves the highest precision (0.8893) among all models
by not defaulting to retaining entities when uncertain. However, this less conservative approach
leads to the wrong removal of some true positives during verification, resulting in a lower recall
of 0.8023. The Verifier Model II (With CoT) demonstrates a more balanced trade-off with a recall
of 0.8648, as its conservative behavior defaults to retaining entities when uncertainty arises.
Notably, the precision scores for both verifier models surpass that of all other five methods,
aligning with our effort to improve precision. However, their recall is lower than that of the
Fine-tuned GPT-4o-mini model, suggesting that these verifier models may be better suited for
tasks that prioritize precision over exhaustive detection.

4.2. PII CATEGORY-LEVEL ANALYSIS OF MODEL PERFORMANCE

4.2.1. Name Detection (NAME STUDENT)

The Presidio models demonstrate low precision (0.1626 and 0.2408) due to over-identifying
common names, leading to a high number of false positives, but maintain moderate recall
(0.6916 and 0.8322). The Fine-tuned GPT-4o-mini model achieves the highest recall (0.9605)
and F5 score (0.9398), making it the most reliable for comprehensive name detection, despite a
moderate precision of 0.6109. The Verifier Model I (Without CoT) achieves the highest preci-
sion (0.8830) but sacrifices recall (0.8038). For names as a direct identifier, we recommend the
Fine-tuned GPT-4o-mini model, given its superior recall and F5 score.

4.2.2. URL Detection (URL PERSONAL)

For the task of detecting personal URLs (links that can reveal personal information), the Fine-
tuned GPT-4o-mini model achieves the highest recall (0.9387) and F5 score (0.9069), indicating
a strong performance in capturing true positives. However, its precision (0.4914) remains mod-
erate, suggesting room for improvement in reducing false positives. The Verifier Model I (With-
out CoT) significantly improves precision, achieving the highest value (0.9877) and F1 score
(0.8587), but at the cost of reduced recall (0.7594). This demonstrates the verifier model’s ef-
fectiveness in filtering false positives while highlighting the inherent trade-off between precision
and recall, as no model achieves high performance in both metrics simultaneously.

4.2.3. Email Detection (EMAIL)

All models demonstrate strong performance in detecting email entities, with recall values con-
sistently high across both rule-based and GPT-based methods. The Presidio models and Azure
AI Language achieve the highest recall (0.9839), missing only one true email entity out of 61,
followed closely by the Fine-tuned GPT-4o-mini model and both Verifier models with a recall
of 0.9677. In terms of precision, Azure AI Language achieves the highest value (0.8841), while
the Presidio models (0.8592), Fine-tuned GPT-4o-mini model (0.8571), and Verifier Model I
(Without CoT) (0.8824) also perform well. In general, email detection appears to be a rela-
tively straightforward task, with most models achieving strong performance in both recall and
precision, as reflected by their high F1 and F5 scores.
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4.2.4. Phone Number Detection (PHONE NUM)

Five models, including both Presidio models, Azure AI Language, Fine-tuned GPT-4o-mini,
and Verifier Model II (With CoT), achieve the highest recall of 0.8889 for phone number de-
tection. However, Presidio and Azure AI Language exhibit low precision, with Azure showing
the lowest precision of 0.0473. In contrast, GPT-based models demonstrate higher precision,
with the Fine-tuned GPT-4o-mini model reaching 0.6667. The Verifier Model I (Without CoT)
records the lowest recall (0.2222), suggesting that it likely removed many true positives from the
Fine-tuned GPT-4o-mini model’s detected entities, possibly due to the lack of Chain-of-Thought
reasoning. The Verifier Model II (With CoT) achieves the highest F1 (0.8000) and F5 (0.8814)
scores, balancing strong precision and recall.

Overall, no single model dominates across all tested categories, as each exhibits distinct
strengths. Azure AI Language performs best for email detection, while Verifier Model II (With
CoT) is more effective for phone number detection. For names and URLs, the Fine-tuned GPT-
4o-mini model and Verifier Model I (Without CoT) present a trade-off between recall and preci-
sion, allowing users to select a model based on the specific priorities of their task.

4.3. IMPACT OF LOW-PRECISION PII DETECTION: EXAMPLES OF SEMANTIC DISRUP-
TION

To better understand how low-precision PII detection can disrupt the semantic integrity of
datasets and hinder downstream data analysis for educational research, we present three ex-
amples. These examples demonstrate cases where Presidio and Azure AI Language incorrectly
identify non-PII entities as PII (false positives), resulting in unnecessary replacements that alter
the intended meaning of the data. Such disruptions can negatively impact the utility of the data
for educational insights and analysis. In contrast, all GPT-based models successfully identify
these cases as non-PII (true negatives), thereby preserving the semantic meaning and ensuring
the dataset’s utility for downstream research tasks.

In Example 1, Presidio incorrectly identifies Jesus Christ, Mary, Joseph, and Jesus as PII.
However, these names are not sensitive information in this context but are instead central to
the story’s historical and cultural narrative. The clue “Nazareth” is a key component of the
story, as it is widely recognized as the hometown of Jesus Christ. Replacing the associated
names with synthetic alternatives disrupts the educational purpose of the text, as students may
no longer connect “Nazareth” to its religious significance. This could lead to misunderstandings
and confusion in the learning process.

Example 1
Original: At the beginning of the story, you do not know the names of the characters. Then at the
end, I drop the first clue “Nazareth” - which is well known to be the home town of Jesus Christ.
You can maybe guess that the family are Mary and Joseph with Jesus as a boy.
Replaced: At the beginning of the story, you do not know the names of the characters. Then
at the end, I drop the first clue “Nazareth” - which is well known to be the home town of
Elias Carson. You can maybe guess that the family are Lena and Daniel with Elijah as a boy.

The incorrect anonymization of names changes the intended meaning of the text, as the con-
nection between “Nazareth” and its historical and religious significance is lost. This disruption
affects students’ understanding and the utility of the data in educational contexts. Moreover,
anonymization negatively impacts the utility of the text for machine learning applications. If the
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anonymized text is used to train or fine-tune a language model or included in a knowledge base
for a Retrieval-Augmented Generation (RAG) pipeline, it may result in incorrect or misleading
responses to queries about “Nazareth” (Wang et al., 2025). Repeated inclusion of anonymized
instances, such as associating “Nazareth” with unrelated names like “Elias Carson,” may erode
the model’s understanding of its cultural significance, leading to inaccuracies in subsequent ap-
plications (Bender et al., 2021; Sun et al., 2020).

Similarly, Azure AI Language exhibits similar challenges when handling famous individu-
als. In Example 2, Azure AI Language identifies notable figures such as Bill Gates, Steve Jobs,
Zuckerberg, and Elon Musk as PII entities. The subsequent replacement with random surro-
gate names strips the text of its unique context and relevance. These figures’ specific ages,
entrepreneurial journeys, and market contexts are integral to the narrative, explaining why their
stories “didn’t translate well” into the students’ environment.

Example 2
Original: It became clear that while the students were excited about setting up and running
startup companies on campus, they had very little background information to do so. Their
role models came from the other part of the world namely Bill Gates, Steve Jobs, Zuckerberg,
Elon Musk etc. Their stories or anecdotes didn’t translate well into the environment of our
students.
Replaced: It became clear that while the students were excited about setting up and running
startup companies on campus, they had very little background information to do so. Their
role models came from the other part of the world namely Benjamin Bloom, Stephen Jackson,
Oliver Underwood, Aiden Miles etc. Their stories or anecdotes didn’t translate well into the
environment of our students.

Another common false positive pattern in both Presido and Azure is de-identifying the end
and start of two consecutive sentences (with no whitespace) as a URL, illustrated by the example
below:

Example 3
Original: Consider hiring a copywriter to craft a compelling menu.Keep menus clean – no
grease and no food or water stains. Get rid of worn or torn menus.Update menu and prices at
least once a year.Build menu around popular items.
Replaced: Consider hiring a copywriter to craft a compelling
https://techwaveinsight.ioeep menus clean – no grease and no food or water stains. Get rid of
worn or torn menus.Update menu and prices at least once a http://elitecodingacademy.org menu
around popular items.

Replacing key terms such as “menu,” “Keep,” “year,” and “Build” with arbitrary URLs
disrupts the original meaning. The instructions lose clarity, merging steps into a single ill-
structured, confusing sentence.

4.4. COST ANALYSIS

Table 8 presents the cost associated with each PII detection model, complementing the per-
formance metrics in Table 7. The results emphasize the potential of GPT-based approaches,
particularly the Fine-tuned GPT-4o-mini model, for high-quality PII detection at significantly
lower costs.
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Table 8: Cost Breakdown for PII Detection Models (in USD)

Models Base
Fine-

tuning

Base
Model De-
pendency

Verifier
Training

Data
Construction

Verifier
Fine-

tuning

Evaluation Total Average
(per 1M
tokens)

Presidio (en core web lg) — 0 0 0

Presidio (en core web trf) — 0 0 0

Azure AI Language — $63.27 $63.27 $4.90

Prompting GPT-4o-mini — $5.22 $5.22 $0.40

Fine-tuned GPT-4o-mini $7.22 — $4.71 $11.93 $0.92

Verifier Model I (Without CoT) — $11.93 $1.16 $0.80 $0.08 $13.97 $1.09

Verifier Model II (With CoT) — $11.93 $1.50 $1.08 $0.18 $14.69 $1.13

The Fine-tuned GPT-4o-mini model achieves the highest overall recall (0.9589) and F5 score
(0.9377), outperforming both the free Presidio models and the expensive Azure AI Language
model. While the Presidio models incur no cost, their low precision (0.1505 and 0.2092) and
F5 scores (0.6214 and 0.7503) highlight their limitations in balancing false positives and true
positives. In contrast, the Azure AI Language model, though more precise, costs $63.27 ($4.90
per 1M tokens), which is approximately 6 times higher than the Fine-tuned GPT-4o-mini model
($0.92 per 1M tokens). Then, the Verifier models marginally increase the total cost to $13.97
(Without CoT) and $14.69 (With CoT), enhancing precision for applications where minimizing
false positives is critical. Despite the additional cost, these models remain far more economical
than Azure AI Language model while retaining GPT’s high recall and semantic accuracy. Thus,
GPT-based models, led by the Fine-tuned GPT-4o-mini model, outperform both Presidio and
Azure AI Language in balancing cost and performance. This underscores their potential as an
efficient and scalable solution for PII detection in educational data.

4.5. NAME CULTURE AND GENDER BIAS ANALYSIS

Based on the results in Table 7, we selected three models—Presidio with en core web trf, Azure
AI Language, and Fine-tuned GPT-4o-mini—for the analysis of cultural and gender bias in name
detection. To statistically validate these observations, we also perform two-tailed Mann-Whitney
U tests. Each test evaluates whether a model’s performance on a specific protected group is
significantly different from its performance on the aggregate of the other groups within the same
category (e.g., recall on African names vs. all non-African names). The total number of entities
for each gender and culture group and their recall are shown in Table 9. The results of these tests
are shown in Table 10.

Gender Analysis. The results indicate that the recall scores between male and female
names across the three models are similar. For Presidio and Azure AI Language, there is a
marginally higher recall for female names compared to male names. Specifically, Azure AI Lan-
guage achieves a recall of 0.9541 for female names and 0.9494 for male names. In contrast,
the Fine-tuned GPT-4o-mini model performs slightly better on male names (0.9646) compared
to female names (0.9591). However, the differences in recall for male and female names are
minimal, suggesting consistent performance between gender groups in all models.
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Table 9: Recall comparison across gender and culture groups for selected models

Type Group Total Presidio Azure AI GPT-4o-mini

Gender
Male 1582 0.8786 0.9494 0.9646

Female 1002 0.8832 0.9541 0.9591

Culture

Europe 410 0.9024 0.9585 0.9756

Americas 858 0.9091 0.9755 0.9790

Asia 500 0.8640 0.9320 0.9840

Africa 238 0.7647 0.9244 0.9748

Table 10: Statistics on TPR differences across gender and cultural groups for selected models, as
measured by the Mann-Whitney U test

Category Group Model Group TPR Rest TPR U-statistic p-value

Gender

Male

Presidio 0.8786 0.8832 788937 n.s.

Azure 0.9494 0.9541 788888 n.s.

GPT-4o-mini 0.9646 0.9591 796957 n.s.

Female

Presidio 0.8832 0.8786 796431 n.s.

Azure 0.9541 0.9494 796480 n.s.

GPT-4o-mini 0.9591 0.9646 788411 n.s.

Culture

Europe

Presidio 0.9024 0.8734 336670 n.s.

Azure 0.9585 0.9543 328579 n.s.

GPT-4o-mini 0.9756 0.9799 325760 n.s.

Americas

Presidio 0.9091 0.8571 518076 ***
Azure 0.9755 0.9399 510039 ***
GPT-4o-mini 0.9790 0.9791 492456 n.s.

Asia

Presidio 0.8640 0.8845 368796 n.s.

Azure 0.9320 0.9628 364898 ***
GPT-4o-mini 0.9840 0.9774 378976 n.s.

Africa

Presidio 0.7647 0.8948 183022 ***
Azure 0.9244 0.9593 203048 **
GPT-4o-mini 0.9748 0.9796 209372 n.s.

Significance levels: n.s. = not significant, * p < 0.1, ** p < 0.05, *** p < 0.01
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Culture Analysis. The cultural analysis reveals more significant differences in model per-
formance. Both Microsoft models show significantly lower recall for African and Asian names.
In particular, Presidio exhibits a notable performance gap, with recall rates of 0.7647 for African
names and 0.8640 for Asian names, compared to 0.9024 for European and 0.9091 for American
names. Azure AI Language also shows a lower recall for African names (0.9244), although the
gap is less pronounced than in Presidio. These results suggest inherent biases in the Microsoft
models, possibly stemming from imbalances in the training data or gaps in cultural representa-
tion. In contrast, the Fine-tuned GPT-4o-mini model achieves consistent and high recall across
all cultural groups, demonstrating no statistically significant performance differences among the
cultural groups. It performs with recall scores of 0.9756 for European names, 0.9790 for Amer-
ican names, 0.9840 for Asian names, and 0.9748 for African names. This minimal variation
in recall across cultural groups demonstrates the model’s ability to mitigate cultural bias and
generalize effectively across diverse name distributions.

Therefore, the gender analysis does not show significant differences in recall for male and
female names across all models, indicating consistent performance in this aspect. However,
cultural analysis reveals that both Presidio and Azure AI Language exhibit performance gaps
for African and Asian names, with lower recall for these groups. The Fine-tuned GPT-4o-
mini model, on the other hand, performs generally well across all cultural groups, effectively
addressing the bias observed in the baseline models and highlighting its superior generalization
capability.

4.6. GENERALIZABILITY ANALYSIS

Table 11: Performance Metrics for Different PII Detection Approaches on the TSCC Dataset
(The highest values across all models are shown in bold to indicate the best performance for each
metric.)

Models # TP # FP # FN Precision Recall F1 Score F5 Score

1. Presidio (en core web trf) 1,513 2,694 102 0.3596 0.9368 0.5198 0.8824

2. Azure AI Language 1,320 1,316 295 0.5008 0.8173 0.6210 0.7979

3. GPT-4o-mini + few-shot prompting 1,604 641 11 0.7145 0.9932 0.8311 0.9785

4. Fine-tuned GPT-4o-mini + zero-shot prompting 1,273 2 342 0.9984 0.7882 0.8810 0.7947

5. GPT-4o-mini + fine-tuning 1,561 26 54 0.9836 0.9666 0.9750 0.9672

6. Fine-tuned GPT-4o-mini + fine-tuning 1,598 48 17 0.9708 0.9895 0.9801 0.9887

To further evaluate the performance of different models for PII detection, we further used
the TSCC dataset (as introduced in Section 3.1) to evaluate the models that were implemented
on the CRAPII dataset. Table 11 presents the performance for different PII detection models on
the TSCC dataset. The metrics are the same as those presented in Table 7.

We selected one Presidio model Presidio (en core web trf) model as it demonstrated higher
precision and recall compared to the en core web lg variant (Model 1 from Table 7). As shown
in Table 11, the Presidio (en core web trf) model demonstrates relatively high recall (0.9368)
and low precision (0.3596). This is likely due to its conservative approach to entity detection,
which enables it to capture a wide range of entities, including rare or unconventional names.
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This conservatism results in a large number of false positives (2,694), the highest among all six
models, which significantly impacts its precision.

Then, Azure AI Language was chosen as another baseline to compare with both rule-based
methods and LLM-based models. The Azure AI Language model exhibits relatively balanced
precision (0.5008) and recall (0.8173). However, its overall performance is suboptimal com-
pared to the GPT-based approaches. With 1,316 false positives and 295 false negatives, the
model fails to achieve the level of precision or recall seen in other approaches. This is reflected
in its moderate F1 score of 0.6210 and F5 score of 0.7979.

Next, we investigated the Fine-tuned GPT-4o-mini model which was fine-tuned on the CRAPII
dataset. To gain a better understanding of the GPT models on PII detection on TCSS dataset.
We used a three-shot prompting strategy to directly prompted GPT-4o-mini to identify PII enti-
ties in the TSCC dataset. We also prompted the Fine-tuned GPT-4o-mini model (fine-tuned on
the CRAPII dataset, Model 5 in Table 7) without examples to assess its generalizability on the
unseen TSCC dataset. Both models employed the same prompt structure presented in Table 3,
adjusting the user prompt to only label names with special identifiers as names were the only PII
category in the dataset. The results in Table 11 show that directly prompting GPT-4o-mini with
few-shot examples achieves the highest recall among all models at 0.9932, demonstrating the
model’s capability to detect almost all true PII entities in the dataset. However, its precision is
relatively low at 0.7145 due to the higher number of false positives (641). While this approach
achieves a strong F5 score of 0.9785, the F1 score of 0.8311 indicates that the lower precision
affects its overall performance. Then, prompting the Fine-tuned GPT-4o-mini model (on the
CRAPII dataset) results in the highest precision across all models (0.9984), with only two false
positives. This indicates that the entities it detects are highly accurate. However, the recall is
relatively low at 0.7882, leading to a F1 score of 0.8810 and a lower F5 score of 0.7947. This
approach is particularly suited for scenarios where precision is more critical than recall.

We also provided users with a practical option to improve model performance by fine-tuning
on a minimal labeled subset of their dataset, enabling the model to better align with the specific
characteristics of the TSCC dataset. Of the 260 transcripts in the processed TSCC dataset,
we randomly selected 10 transcripts for fine-tuning purposes introduced below and used the
remaining 250 transcripts for evaluation across all models. First, we directly fine-tuned GPT-4o-
mini on the 10 selected transcripts. Second, we further fine-tuned the Fine-tuned GPT-4o-mini
model (Model 5 from Table 7) using the same 10 transcripts. Both fine-tuning models used the
prompt structure described in Table 4. As with prompting, the only adjustment was to instruct the
model to label names using @@@ and ###. Fine-tuning GPT-4o-mini on the 10 selected TSCC
transcripts achieves a strong balance between precision (0.9836) and recall (0.9666). With only
26 false positives and 54 false negatives, this model achieves a F1 score of 0.9750 and a F5

score of 0.9672. This demonstrates the potential of fine-tuning even on a small labeled subset to
adapt the model to new datasets effectively. Then, further fine-tuning of the Fine-tuned GPT-4o-
mini model (on the CRAPII dataset) using the 10 selected transcripts results in the best overall
performance. This model achieves a high recall of 0.9895 and a precision of 0.9708, striking
an excellent balance between the two metrics. Although its recall is slightly lower (about 0.3%)
than the few-shot prompting model, its precision improves significantly by approximately 26%.
This leads to the highest F1 score (0.9801) and the F5 score (0.9887) among all models, making
it the most robust approach to PII detection on the TSCC dataset.

Therefore, the Fine-tuned GPT-4o-mini + fine-tuning approach achieves the highest F1 and
F5 scores, highlighting its ability to maintain high precision and recall simultaneously. These

23
77 Journal of Educational Data Mining, Volume 17, No 2, 2025



results also demonstrate the potential of GPT-based approaches over traditional models such as
Presidio and Azure, offering superior performance in both precision and recall. While other
approaches, such as few-shot prompting with GPT-4o-mini, excel in recall, the overall balance
achieved by fine-tuning makes it a versatile option. Users can choose the most appropriate
method based on their specific requirements, whether to prioritize recall, precision, or a combi-
nation of both.

5. DISCUSSION AND CONCLUSION

Our study demonstrates notable performance and cost-effectiveness of a Fine-tuned GPT-4o-
mini model for identifying personally identifiable information in educational texts. Compared
to established rule-based (Presidio) and commercial (Azure AI Language) methods, our fine-
tuned model achieves a recall of over 95%, providing a viable approach for privacy protection.
To address the need for high precision in downstream applications (e.g., curating anonymized
datasets to support machine learning and educational research), our study also introduced a
verifier model capable of filtering false positives, thus helping to preserve the semantic meaning
of data when using methods such as Hidden in Plain Sight.

Furthermore, our fairness analysis reveals that the Fine-tuned GPT-4o-mini model delivers
balanced performance across cultural and gender groups, reducing the biases present in baseline
systems. Testing on a unseen, different data corpus confirms the model’s ability to generalize,
as it requires only limited fine-tuning to achieve similar performance. Finally, our cost analysis
shows that this strong performance is achievable at a lower cost than other commercial services,
reducing barriers to privacy-preserving research in education.

5.1. CONSIDERATIONS FOR DEPLOYING PROPRIETARY AND OPEN-SOURCE MODELS

Risk of PII leakage. While our study demonstrates notable performance of using the proprietary
model, i.e., GPT-4o-mini from OpenAI, the handling of sensitive data raises relevant considera-
tions. Since data must be transmitted to OpenAI’s servers, there is a possible risk that PII, if used
in training, could be exposed through techniques like prompt injection attacks, as highlighted
by recent studies (Nasr et al., 2025). However, it should be noted that OpenAI has implemented
data processing agreements and maintains a policy ensuring that data submitted via their API is
not used for model training.13 These measures provide an added layer of safeguard, reducing the
risk of unintentional data leakage. In comparison, while deploying open-source models locally
ensures that no third-party data processors gain access to PII, it still carries baseline privacy
risks. Open-source models downloaded from platforms like Hugging Face may contain obfus-
cated harmful code that executes during model use, allowing attackers to perform reverse shell
attacks to gain control of the user’s machine and access PII, leading to further damage (Zhao
et al., 2024).

Implementation Cost. Open-source LLMs (e.g., LLaMA 3, Mistral, DeepSeek, etc.) give
developers full control over their data and fine-tuning process, making them a suitable option
for privacy-sensitive tasks such as educational PII de-identification. However, adopting these
models also introduces implementation challenges. A typical 8-billion-parameter model (e.g.,
LLaMA 3.1 8B (Grattafiori et al., 2024)) needs more than 90 GB of GPU memory to fine-
tune—beyond what a single GPU can provide. This constraint pushes teams toward multi-GPU

13https://openai.com/policies/data-processing-addendum
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clusters and distributed training, both of which require specialized skills in parallel comput-
ing. Although memory saving methods such as LoRA and ZeRO can reduce the requirement
to roughly 6 GB of VRAM, configuring them correctly still requires technical knowledge in
large-model optimization (Singh et al., 2024). In short, open-source models are scalable and
secure once deployed, but they are best suited for teams with sufficient hardware resources and
technical experience. In comparison, commercial APIs such as GPT and Claude offer easier
deployment and minimal infrastructure requirements, making them more accessible for small
teams or educational institutions.

Energy footprint. Beyond implementation costs, the operational energy consumption of
LLMs raises environmental concerns due to the associated carbon footprint. Measuring the en-
ergy footprint is challenging for proprietary models due to limited public information on model
architecture and deployment, making it difficult to assess the energy costs borne by providers.
While direct measurement of energy consumption is difficult, many AI models are deployed on
cloud computing platforms, which allows for indirect estimation. A study measuring the energy
consumption of various models found that GPT-4o-mini is among the most efficient of OpenAI’s
models, with an energy cost comparable to open-source LLaMA models (Jegham et al., 2025).
This study noted that lower electricity usage does not always equal to superior energy efficiency:
models that cost less energy to run may perform worse. This distinction matters in educational
PII detection, as prior work confirms that LLaMA 3.1 8B achieves suboptimal performance,
particularly in terms of precision (Zambrano et al., 2025). Therefore, a model like GPT-4o-mini
may be a reasonable choice, balancing a manageable energy footprint with the high accuracy
required for effective PII de-identification.

5.2. IMPLICATIONS

5.2.1. Integrating Privacy-Preserving Models in AI Educational Platforms

Our study explores potential solutions to the rising concerns about privacy and data security
in the deployment of AI-powered educational technologies (Ive et al., 2024), such as chatbots.
We recommend that future developments of educational tools—particularly those integrating
chatbots into teaching and learning environments—consider adopting privacy-preserving mod-
els within their system development processes. Many teachers and students may unknowingly
expose sensitive personal information—such as their name, age, gender, and occupation—when
interacting with these AI-driven platforms (Ive et al., 2024). This is especially likely when users
are prompted to share such information in exchange for more personalized responses from the
chatbot (Carmichael et al., 2022), a common strategy in prompt engineering to enhance the
accuracy of AI outputs. Moreover, as some educational tools (e.g., chatbots) collect data for
performance enhancement or research purposes, there is a risk that this data could be further
exposed or misused (Nasr et al., 2025). Given the increasing reliance on data for improving AI
systems, there is a growing need to support safer data handling practices in educational tools.
In such cases, privacy-preserving techniques—such as using a PII detection model like the one
explored in this study in combination with the Hidden in Plain Sight method—can help replace
detected PII with synthetic entities that preserve the semantic structure of the original content.
This approach may enable broader use of AI tools, including chatbots, in educational contexts
without exposing sensitive personal information.
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5.2.2. Expanding the Evaluation of PII De-Identification in Educational Data Mining

Our findings suggest that relying solely on aggregate performance metrics may be insufficient
for thoroughly evaluating PII de-identification systems. Such metrics can obscure underlying
flaws in a model’s behavior. We observed that these limitations can have ethical and practical
implications, particularly in educational settings where fairness is important. To address this,
we recommend that researchers and practitioners consider incorporating additional evaluation
strategies—such as (1) performance breakdowns by demographic subgroups to assess fairness
(e.g., equality of odds and equal opportunity), and (2) evaluations on unseen datasets to evaluate
generalizability. By adopting more comprehensive evaluation practices, the reliability and fair-
ness of PII de-identification systems can be improved for real-world educational applications.

5.3. FUTURE WORKS

First, our evaluation primarily addressed PII categories that are commonly recognized by ex-
isting baseline methods (e.g., names, emails). Extending this approach to more granular or
domain-specific categories—such as street addresses, student ID numbers, or indirect identifiers
like dates and ages—poses additional challenges. Identifying these categories often requires
deeper contextual understanding; for example, a string of digits could represent an ID number
or an unrelated quantity, and an age is only sensitive when associated with an identifiable indi-
vidual. Successfully detecting such PII would require the creation of new, high-quality annotated
datasets and the development of more context-aware fine-tuning strategies.

Second, while we focused on Microsoft Presidio and Azure AI Language for benchmarking
due to their prevalence, a broader comparative analysis would be valuable for future work. Incor-
porating additional frameworks—such as Google’s Cloud Data Loss Prevention API, Amazon
Comprehend, or open-source models from platforms like Hugging Face—could help further
clarify the strengths and limitations of our approach. Such comparisons may also highlight
performance-cost trade-offs and reveal cases where alternative models perform better for spe-
cific data types.

Third, although we conducted a preliminary generalizability test on the TSCC dataset, the
diverse nature of educational contexts suggests that some unseen PII distributions may still pose
challenges. A more comprehensive evaluation across a broader range of datasets, representing
different age groups (K-12 vs. higher education) and context (e.g., lecture or student presenta-
tion), is needed to better define the model’s operational boundaries and identify where domain-
specific fine-tuning may be necessary.

Fourth, while the verifier models we developed enhance precision, their trade-off in recall
requires further improvement. The current implementation, although effective at reducing false
positives, can overcorrect by eliminating true PII entities, which poses a risk in privacy-sensitive
applications. Future work could explore alternative multistage verification strategies, such as
implementing the verification process as a multi-model plurality or veto vote, to further reduce
PII leakage. This may enable more nuanced filtering, preserving high recall while improving
precision.

Fifth, although this study focused on optimizing detection and verification processes, incor-
porating red-teaming or adversarial testing strategies is a promising direction for future work.
These methods can help uncover blind spots and edge cases that may be overlooked during
standard evaluation, particularly in noisy, multilingual, or informal educational data. By simu-
lating targeted attack scenarios or modeling real-world misuse patterns, adversarial testing can
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offer valuable stress tests of model assumptions and reveal subtle failure modes. Integrating
such strategies into the development pipeline could improve the robustness and reliability of PII
detection systems across diverse deployment contexts.

Sixth, despite their high precision, fine-tuned GPT-4o-mini models exhibit false alarms for
a specific group of non-PII entities: fictional names in student essays. For example, the name
“Rick” in “Personas are based on user research but tell a story about your insights. An example
persona might be Rick, a 47-year-old manager struggling with his work-family-life balance”
is a fictional persona from a student’s essay, yet it is incorrectly identified as PII. These errors
suggest that certain fictional or example names can confuse high-precision PII detection systems.
Future work could focus on better distinguishing these cases, which are especially common in
educational texts. Additionally, fine-tuned GPT-4o-mini sometimes fails to detect actual PII,
such as author names. For example, “Maribel Navarrete” in “Francesco 1 Maribel Navarrete
Design Thinking for Business Innovation April 21” is not identified as PII. This highlights the
need for more context-aware training strategies to improve the model’s handling of ambiguous
or domain-specific PII.

Finally, beyond the precision–recall trade-off, our model’s robustness is limited by domain
shift. When evaluated on the out-of-domain TSCC dataset, which consists of teacher–student
conversations, the model showed a notable drop in recall. This performance degradation is likely
due to distributional differences between TSCC and our training corpus, CRAPII, which com-
prises student essays. To build a more broadly applicable PII detection model, future work can
prioritize fine-tuning on a larger, more diverse dataset that reflects a wider range of educational
contexts. This could improve the model’s generalizability and reduce performance loss when
applied to unseen domains.
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P. 2022. The teacher-student chatroom corpus version 2: More lessons, new annotation, automatic
detection of sequence shifts. In Proceedings of the 11th Workshop on NLP for Computer Assisted
Language Learning, D. Alfter, E. Volodina, T. François, P. Desmet, F. Cornillie, A. Jönsson, and
E. Rennes, Eds. LiU Electronic Press, Louvain-la-Neuve, Belgium, 23–35.

CARMICHAEL, L., POIRIER, S.-M., COURSARIS, C. K., LÉGER, P.-M., AND SÉNÉCAL, S. 2022.
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