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Text complexity is inherently subjective, as it is not solely determined by linguistic properties but also
shaped by the reader’s perception. Factors such as prior knowledge, language proficiency, and cognitive
abilities influence how individuals assess the difficulty of a text. Existing methods for measuring text
complexity commonly rely on quantitative linguistic features and ignore differences in the readers’ back-
grounds. In this paper, we evaluate several machine learning models that determine the complexity of
texts as perceived by teenagers in high school prior to deciding on their post-secondary pathways. We
collected and publicly released a dataset from German schools, where 193 students with diverse demo-
graphic backgrounds, school grades, and language abilities annotated a total of 3,954 German sentences.
The text corpus is based on official study guides authored by German governmental authorities. In con-
trast to existing methods of determining text complexity, we build a model that is specialized to behave
like the target audience, thereby accounting for the diverse backgrounds of the readers. The annotations
indicate that students generally perceived the texts as significantly simpler than suggested by the Flesch-
Reading-Ease score. We show that K-Nearest-Neighbors, Multilayer Perceptron, and ensemble models
perform well in predicting the subjectively perceived text complexity. Furthermore, SHapley Additive
exPlanation (SHAP) values reveal that these perceptions not only differ by the text’s linguistic features
but also by the students’ mother tongue, gender, and self-estimation of German language skills. We also
implement role-play prompting with ChatGPT and Claude and show that state-of-the-art large language
models have difficulties in accurately assessing perceived text complexity from a student’s perspective.
This work thereby contributes to the growing field of adjusting text complexity to the needs of the target
audience by going beyond quantitative linguistic features. We have made the collected dataset publicly
available at https://github.com/boshl/studentannotations.
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1. INTRODUCTION

Text complexity, defined as the level of difficulty or intricacy of a text, affects a reader’s overall
perception of the content and how the embedded information is processed (Tolochko et al.,
2019). If a text is not adjusted to the intended audience, transmitting the relevant information
can become largely ineffective (Dahl et al., 2021; Spencer et al., 2019), potentially leading
to gaps in knowledge or motivation among the readers (Kleinnijenhuis, 1991; Fulmer et al.,
2015). Therefore, transmitting information in a way that is adjusted to the specific needs of
the target audience is crucial, particularly in contexts where written texts are used to inform
decision-making. Predicting text complexity is a crucial step in determining whether the text
could effectively serve its audience.

Early research on text complexity introduced readability measures to assess the complexity
of texts, such as the Flesch-Reading-Ease (Flesch, 1948), Gunning-Fog index (Gunning, 1952),
and LIX readability score (Anderson, 1983). These measures solely rely on countable lexical
or syntactic elements and commonly translate into the years of schooling a reader must have
completed to understand the text (see Table 7). These traditional formulas, while useful, often
fail to capture the nuanced aspects of text complexity (Jindal and MacDermid, 2017). More
advanced tools, such as TextEvaluator (Napolitano et al., 2015) and Coh-Metrix (Graesser et al.,
2004), incorporate a wider range of linguistic features, offering a more accurate assessment.

Moreover, recent studies on text complexity develop predictive models to determine text
complexity either for single words (Paetzold and Specia, 2016) or for entire sentences (Mos-
quera, 2022; Naderi et al., 2019). However, they do not account for individual reader character-
istics. Thus, an additional line of research trains machine learning models with words, sentences,
or larger text excerpts annotated by adults. These models are often fine-tuned transformer-based
models, predictive models that require linguistic features or a combination of these approaches
(Mohtaj et al., 2022). Yet, due to the multidimensional nature of text complexity (Tolochko
et al., 2019) and the specific needs of the audience, existing models to predict the perceived text
complexity are scarce and concentrate either on language learners or experts’ domain knowl-
edge (Gooding and Tragut, 2022; Seiffe et al., 2022) but do not take readers’ characteristics into
account.

Additional research on text complexity also explores automated text simplification tools
aimed at making the embedded information accessible to vulnerable groups such as non-native
speakers or those with low literacy levels (Al-Thanyyan and Azmi, 2021; Espinosa-Zaragoza
et al., 2023). Similarly, summarization techniques can be used to reduce cognitive load by con-
densing content into concise, essential statements while preserving the core meaning (Bar-Haim
et al., 2020). However, recent work by Shakil et al. (2024) highlights important challenges asso-
ciated with abstractive summarization, including potential distortions in meaning and a lack of
factual consistency. In addition, oversimplified texts can lead to mind wandering because read-
ers become inattentive to the content (Fulmer et al., 2015), which can reduce readers’ motivation
and engagement with the text (Yang et al., 2021; Spencer et al., 2019; Tolochko et al., 2019).

Surprisingly, despite the importance of adjusting written texts to the readers’ needs, there is
still a considerable gap in understanding how the intended audience actually perceives a text’s
complexity. While measuring objective text complexity is essential for providing students with
materials suited to their grade level, perceived text complexity captures subjective experiences
on an individual level. Assessing perceived text complexity is therefore crucial, as prior research
has demonstrated that perception significantly influences both comprehension and reading mo-
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tivation (Tolochko et al., 2019; Leroy et al., 2010).
In this paper, we thus build a model to predict text complexity as perceived by teenagers

prior to major educational choices, accounting for the heterogeneity in student characteristics
and abilities. Every year, high school students around the globe receive written materials aimed
at guiding their decisions on educational and occupational pathways upon graduating from high
school. Thus, teenagers are ideal candidates for this study because materials such as written
study guides are specifically designed for them. Yet it remains unclear whether these materi-
als are written in a way that effectively meets the teenagers’ needs. Given the importance of
these educational decisions, as they often have a life-long impact, it is crucial to understand
how teenagers perceive the text complexity of these materials. A better understanding of their
perceptions can help resolve the trade-off between making texts accessible without oversimpli-
fying them, while still providing enough cognitive challenge to engage and stimulate interest.
Hence, we train a regression model that can predict how teenagers perceive the complexity of
these texts. The model allows for incorporating student heterogeneity in terms of gender, age,
language and cognitive abilities, mother tongue, and occupational interests.

Because, to the best of our knowledge, no dataset is already available that incorporates stu-
dents’ person-related features and their perceptions of a text’s complexity, we self-collected data
from 193 high school students in Germany to get a solid data foundation to train the models.
Each student completed a short survey and annotated 20 to 100 sentences in different classroom
settings. The sentences are extracted from official study guides aimed at informing students
on possible post-secondary pathways. As such, these texts are ideally suited for our study be-
cause they directly target teenagers and therefore should contain the level of text complexity that
teenagers can comprehend. The dataset is described in more detail in section 3 and is available
here1.

Because we are interested in incorporating person-related features into the predictions, we
evaluate the performance of different machine learning models such as XGBoost (XGB), K-
Nearest-Neighbors (KNN), Multilayer Perceptron (MLP), and Support Vector Machines (SVM)
in this context. Our results show that KNN, MLP, and ensembles that combine some of these
models achieve good results in predicting the perceived text complexity. Furthermore, to get
a better understanding of the model’s predictions, we perform a SHapley Additive exPlanation
(SHAP) (Lundberg and Lee, 2017) analysis on the best-performing model. The SHAP analysis
reveals that the model has learned that students who speak German at home, have higher con-
fidence in their language abilities, or are male tend to perceive German texts as less complex
compared to those who do not share these traits. These insights are important because adjusting
informational texts comes at a low cost but may help attract underrepresented groups in specific
fields of study or occupations.

In addition, we employ large language models (LLMs) to predict text complexity as per-
ceived by students, simulating their perspectives through role-play prompting (Kong et al.,
2024). To evaluate the performance of state-of-the-art LLMs, we tested ChatGPT and Claude in
annotating sentences from the viewpoint of students with diverse profiles. The LLMs were pro-
vided with authentic student profiles and sample annotations to guide their responses, and then
tasked with assessing the text complexity of sentences as perceived by the respective student.
While the models made attempts to incorporate the provided personal information, a comparison
between student-annotated and machine-annotated sentences revealed that ChatGPT and Claude

1https://github.com/boshl/studentannotations
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struggled to fully capture the range of demographic and linguistic diversity across students.
This study contributes to different areas of text complexity. First, we show that including

person-related features improves the model’s prediction and outperforms baseline models. Our
model behaves like the intended audience and can thereby account for the diverse backgrounds
of the readers. Second, we let generative LLMs mimic teenagers who rate the complexity of
different sentences. Although research has shown that models like ChatGPT can outperform
human annotators in some NLP tasks (Gilardi et al., 2023), we find that they are not yet capa-
ble of taking into account all aspects of students’ heterogeneity. In this context, the presented
method can therefore serve as a tool to improve generative models that provide texts for specific
audiences. Third, we show that adjusting text complexity to the reader’s needs goes beyond
text simplification: the majority of students rate the sentences as less complex than one would
assume based on the sentences’ linguistic features. Still, the results reveal severe differences
based on the students’ demographic backgrounds, language, and cognitive skills. Using text
simplification tools is unlikely to serve the students’ needs in our context because reading sim-
plified texts may reduce cognitive challenge and lead to a lack of interest (Fulmer et al., 2015).
Fourth, we provide a novel dataset based on a large number of student annotators who differ in
their individual characteristics. This dataset enables the further development of more individual
and profile-based models when it comes to text complexity research.

Overall, the study’s insights are important for educational researchers and policymakers
alike: with more first-generation students entering higher education and an increasing number of
pathways through educational systems (Marginson, 2016), policymakers and higher education
providers must deal with the increased heterogeneity across students. Understanding the needs
of the audience may help to improve student counseling and leave no one behind.

2. RELATED WORK

Text complexity plays a crucial role in reading comprehension, learning outcomes, and student
engagement. Understanding how different levels of text complexity affect students’ ability to
process, retain, and engage with texts is essential for both educational research and instructional
design. Prior studies have explored the impact of text complexity on student performance, par-
ticularly in relation to motivation, comprehension, and cognitive load. Additionally, various
approaches have been proposed for assessing text complexity, ranging from traditional readabil-
ity formulas to modern machine learning-based methods. This section reviews key research on
the effects of text complexity on students and discusses different methodologies for assessing
text complexity.

2.1. EFFECTS OF TEXT COMPLEXITY ON MOTIVATION AND COMPREHENSION

Prior works have shown that text complexity can significantly affect readers’ comprehension
and engagement. Leroy et al. (2010) highlight how increased complexity in health-related texts
may hinder understanding, while Tolochko et al. (2019) report similar effects in the context of
political communication. Spencer et al. (2019) investigated the learning outcomes of 181 native
English-speaking adolescents (aged 9 to 15 years) when exposed to texts of varying complexity.
Their findings indicate that increased text complexity can hinder learning outcomes, particularly
in recalling and summarizing textual details, underscoring the need for appropriately leveled
texts. However, oversimplified texts may fail to sustain students’ interest, resulting in lower
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engagement. Fulmer et al. (2015) argue that students are more engaged when texts are both
stimulating and appropriately challenging. When a text lacks depth due to oversimplification,
students may lose motivation to read. Similarly, Yang et al. (2021) explored the effects of text
difficulty in extensive reading on the comprehension of the text and the motivation of learning
English as a foreign language among high school students in Taiwan. Participants read texts that
were either slightly easier or slightly more challenging than their current proficiency level, while
a control group followed the standard curriculum. The study found that students reading easier
texts demonstrated greater improvements in overall and literal comprehension, whereas those
reading more challenging texts showed higher reading motivation and self-efficacy. Overall, ex-
isting research on the effects of text complexity on motivation and comprehension underscores
the importance of balancing text complexity to enhance both. Simpler texts can improve re-
tention and engagement but may reduce cognitive challenge, whereas more complex texts can
stimulate interest but may hinder accessibility. This trade-off calls for adaptive text difficulty that
accommodates individual student needs, ensuring effective learning and sustained motivation.

2.2. TEXT COMPLEXITY ASSESSMENT

Developing formulas to measure text complexity has a long tradition, resulting in several estab-
lished methods for evaluating text difficulty, such as the Gunning-Fog Index (Gunning, 1952)
and the LIX readability score (Anderson, 1983). A popular and still widely used measure to
determine the readability of a text is the Flesch-Reading-Ease (FRE), developed for the English
language by Flesch (1948) and adjusted to the German language by Amstad (1978). The FRE
score maps the years of schooling a reader must have completed to understand the text (see Table
7). It ranges from 0 to 100, where higher scores refer to less complex texts.

Traditional readability formulas, such as the Flesch-Reading-Ease, rely on simplistic met-
rics like sentence length and word frequency, which often fail to capture the nuanced aspects of
text complexity. In contrast, more advanced computational tools such as TextEvaluator (Napoli-
tano et al., 2015) and Coh-Metrix (Graesser et al., 2004) integrate a broader range of linguistic
features into the calculation of a readability score. The incorporation of syntactic structures,
lexical difficulty, and textual cohesion provides a more comprehensive and accurate assessment
of readability.

Due to advances in machine learning and natural language processing, more recent research
focuses on developing predictive models to determine text complexity. These predictions can
be made for single words (Paetzold and Specia, 2016) or for entire sentences (Naderi et al.,
2019; Mosquera, 2022). On the level of words, the SemEval task for complex word identifica-
tion (Paetzold and Specia, 2016), in which non-native English speakers were asked to annotate
whether or not they could understand the meaning of a specific word in a sentence, was launched
in 2016 to train a model that is able to predict complex words in a binary fashion. On the level
of sentences, the Text Complexity DE Challenge 2022 (TCDE) (Naderi et al., 2019) aimed to
build regression models that could predict text complexity solely on linguistic features. For both
shared tasks, the SemEval and TCDE challenges, non-native speakers were asked to evaluate
the words’ and sentences’ complexity.

Identifying complex words and sentences in a given text is often related to text simplifica-
tion, i.e., replacing complex words with alternatives that are easier to understand for non-native
speakers. Existing research on text simplification thus mostly concentrates on language learners
and has provided a large set of tools that allow for reducing a text’s complexity without reduc-
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ing its informational content (Al-Thanyyan and Azmi, 2021; Espinosa-Zaragoza et al., 2023).
Similarly, automatic classification tools make it possible to classify texts depending on their
complexity. For instance, Santucci et al. (2020) provide an algorithm that classifies the readabil-
ity of Italian texts written for language learners according to six different categories.
In recent years, in-context learning (ICL) has emerged as an effective method for solving a wide
range of NLP tasks. In this approach, large language models are prompted with a few labeled ex-
amples at inference time, allowing them to perform tasks without any additional training (Brown
et al., 2020). Subsequent work has shown that the effectiveness of ICL can depend on several
factors, including the quality, order, and format of the provided examples (Min et al., 2022). In
the domain of text readability, Lee and Lee (2023) adapt this approach by using prompt-based
models to compare sentence pairs in terms of difficulty. Their results suggest that with carefully
constructed prompts, in-context learning provides a viable method for assessing text complexity.

2.3. READER-CENTERED APPROACHES TO TEXT COMPLEXITY

Understanding text complexity requires considering how different audiences perceive a text’s
difficulty, as individual characteristics such as age or language proficiency affect the readers’
comprehension and engagement. Thus, understanding text complexity goes beyond text simpli-
fication or classification for language learners. For instance, individuals with cognitive impair-
ments or low literacy levels may require simplified sentence structures to effectively process the
relevant information. Thus, individual characteristics may play a role in how readers evaluate a
text’s complexity. To date, only a few studies take into account individual characteristics of the
readers or annotators. Gooding and Tragut (2022) provide a complex word identification task
on a more individual level. Using an active learning framework, the authors create personalized
models for the annotators and show that these models outperform baseline and state-of-the-art
systems in predicting word complexity. On the level of sentences, Seiffe et al. (2022) use anno-
tated German sentences from an IT Service Provider about their products and ask experts and
non-experts to evaluate the complexity of these sentences. Despite better domain knowledge,
experts tend to rate sentences as more complex than non-experts. This highlights how individual
biases can shape subjective complexity assessments, as perception does not always align with
objective difficulty (Dunlosky and Metcalfe, 2008).

One approach to gain insights into students’ perception of text complexity is simulating
student responses using large language models (LLMs). Previous research has explored stu-
dent simulation in the context of both teaching plans and exam questions. Hu et al. (2025)
investigate the potential of LLMs to assist teachers by simulating teacher-student interactions,
refining teaching plans, and generating reflections on teaching processes. Similarly, Benedetto
et al. (2024) show that LLMs can simulate students of varying skill levels by answering exam
questions across different educational domains. However, they also highlight that prompts en-
gineered for specific models, such as GPT-3.5, do not generalize well to other LLMs, empha-
sizing the need for model-specific prompt engineering. Research on student simulation thus
suggests that while LLMs can be valuable tools for simulating student responses, their effective-
ness heavily depends on well-designed prompt engineering. Furthermore, insights into students’
perceived text complexity can be beneficial, as they enable the development of user-centric appli-
cations such as personalized writing assistants (Lee et al., 2024) that can help students improve
their writing and comprehension skills.

Overall, existing research on text complexity as perceived by the intended audience is scarce.

6
281 Journal of Educational Data Mining, Volume 17, No 1, 2025



Understanding how readers perceive a text is, however, of particular importance to transmit the
embedded information efficiently. This is in line with psychological research that suggests that a
low level of text complexity may lead to inattention during reading because mind wandering can
increase (Fulmer et al., 2015). While a large number of models exist that solely use linguistic
features to predict a text’s readability, there is a considerable gap in understanding how the
intended audience actually perceives a text’s complexity.

3. DATA COLLECTION AND FEATURE DEVELOPMENT

Developing and training a model for text complexity requires data on various factors, including
the perception of text complexity, individual characteristics such as native language and overall
linguistic abilities, as well as information on the readers’ active vocabulary. These features are
explained in more detail below.

3.1. PERCEPTION OF TEXT COMPLEXITY

Data on teenagers’ perceived text complexity was collected at five occasions in classroom set-
tings at the end of a lecture on the opportunities and challenges of generative AI in education.
The lecture excluded any association with text complexity to avoid any bias arising from an-
choring effects (Tversky and Kahneman, 1974). At the end of the lecture, all teenagers accessed
a randomly assigned annotation set by connecting to an online tool with their cell phones (see
Appendix B.1). The origin of the data and the survey design are explained in more detail in the
following.

3.1.1. Compilation of Text Corpus

The text corpus is based on two different datasets that comprise informational texts. The first
dataset contains sentences from student guides on “Study and Career Choice” published by the
German Federal Employment Agency to assist high school students during the transition from
high school to college or the labor market (Bock, 1974; Hertweck et al., 2024). Since 1971,
these annually updated books have been distributed to high school students in the year leading
up to high school graduation and are considered official study guides for Germany. Each book
comprises up to 800 pages describing the variety of educational and occupational pathways,
detailed information on all fields of study, as well as additional information on student life, such
as student housing and financial aid. Because these books are written for teenagers aged 16 to 19
years old to assist them in their post-secondary school choices, they have a very clear intended
audience.

We digitized all guides from 1971 to 2021 and extracted all texts on fields of study and
related occupations using PDFAct (Bast and Korzen, 2017). In a subsequent step, texts were au-
tomatically checked for punctuation and grammar rules using language tool python2. For each
sentence, the FRE score for the German language was calculated using the Python library text-
stat3. Afterwards, the sentences were grouped into five categories ranging from least complex
(FRE score of 100 to 80) to highly complex sentences (FRE score of 0 to 20). To create a mostly
balanced dataset, sentences were randomly selected from each of the five categories, aiming to
include an equal number of sentences per category.

2https://pypi.org/project/language-tool-python/
3https://pypi.org/project/textstat/
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Figure 1: Distribution of FRE scores versus student annotations.

The second dataset consists of sentences from the Text Complexity DE Challenge 2022
(TCDE). The TCDE corpus contains sentences from German Wikipedia articles of various gen-
res that were rated according to their complexity by non-native speakers. By combining these
two text corpora, we can combine sentences that have been exclusively written for teenagers as
well as sentences in the German language that have already been annotated by a large set of
readers.

In compiling the text corpus for our study, we randomly select sentences from both datasets
to be annotated by teenagers in classroom settings. The resulting text corpus consists of 1697
unique sentences, of which 1143 sentences are from the study guides (exclusively written for
teenagers) and 554 sentences from Wikipedia articles based on the TCDE challenge (written for
the general population).

3.1.2. Data Collection

To collect data on students and their perceptions of the complexity of different sentences, an
online tool was used. The tool was kept simple (see Appendix B.1) and presented questions in
a survey-style manner. At the beginning, students were asked to consent to the use of their data
for research purposes. Afterwards, the survey started with eight questions on the students’ de-
mographic characteristics (age, gender), information on their language skills (language spoken
at home, self-stated German skills), their plans after high school (type of education, field), and
their school grades in German and Maths. Finally, the students were asked to rate the complexity
of twenty sentences on a 5-point Likert scale, one sentence at a time. More precisely, students
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were asked:

In the following, individual sentences will be displayed to you. Please read through
the sentences and indicate how well you understand each sentence. The response
options range from 1 (‘very easy to understand’) to 5 (‘very difficult to understand’).

The number of sentences per student was purposely kept low, with only twenty sentences to be
read and rated, to avoid frequent challenges encountered in repetitive tasks such as participants’
learning and a decline in their attention as the tasks progress (Kahneman, 1973). Still, a few
students stopped rating before the end of the survey. Five student volunteers were additionally
asked to complete more than a single survey of previously annotated sentences to obtain a high
number of sentences with multiple annotations.

3.1.3. Resulting Dataset and Evaluation

After having completed data collection with a total of 193 students, each rating twenty out of the
1697 unique sentences, the dataset for the model was compiled. All annotations from students
below the age of 16 and those who did not consent to the use of their data had to be removed
to comply with data protection regulations. We extend the previously published dataset from
our earlier study (Thome et al., 2024): the final dataset comprises 3954 annotated sentences,
consisting of 794 sentences from the TextComplexityDE challenge as well as 3160 sentences
from the study guides. The combination allows for the inclusion of generic sentences for which
an assessment of their readability has already been available, as well as sentences that have been
written specifically for teenagers to inform them about future study and career opportunities.

Figure 1 illustrates the distribution of FRE scores of the sentences in comparison to the stu-
dents’ actual annotations. To match the labels of our survey, we defined FRE value ranges in
increments of 20 that reach from very easy to very difficult. The figure shows that the majority
of sentences are more complex (indicated by a lower FRE score) than what would be suitable
for high school students (FRE score of 60 to 80). When comparing the FRE distribution to
the student-assigned ratings, we notice an opposite distribution with a high level of imbalance
(see Figure 1): the students rated 46.7% of the sentences as very easy, 26.1% as easy, 18.1%
as medium, 6.5% as difficult, and 2.6% as very difficult. The distribution of complexity ratings
is heavily skewed towards the easier end of the spectrum. A significant majority of the stu-
dents (72.8%) labelled the sentences as very easy to easy, indicating that most students perceive
the sentences to be of low difficulty – despite their occasionally high linguistic complexity as
indicated by the low FRE scores.

On average, each of the 1697 unique sentences of the text corpus was labelled by 2.33
students. We calculate Krippendorff’s α for ordinal data using the Python library krippendorff 4

to measure the inter-annotator agreement (IAA) between the students. The annotations achieve
an IAA score of 0.23. We attribute the low IAA score to the high amount of heterogeneity in
the annotators’ personal characteristics. Beyond the potential inaccuracy of average predictions
based on this data, this highlights the necessity for a more individualized model.

3.2. INDIVIDUAL CHARACTERISTICS

To provide deeper insights into the distribution of person-related features, Table 1 presents a de-
tailed overview. A total of 193 high school students contributed to the sentence annotations, with

4https://pypi.org/project/krippendorff/
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Table 1: Distribution of person-related features.

Feature Value Count Percentage (%)

Academic (school type)
academic 77 39.9

non-academic 116 60.1

Age
16 64 33.16
17 71 36.79

18 or older 58 30.05

Gender

female 92 47.67
male 91 47.15

non-binary 6 3.11
no answer 4 2.07

Language
German 102 52.85

German and another language 63 32.64
another language 28 14.51

German skill

very good 72 37.31
good 100 51.81

medium 16 8.29
bad 5 2.59

very bad 0 0.00

German grade

very good 24 12.44
good 56 29.02

satisfactory 74 38.34
sufficient 28 14.51

poor 4 2.07
no answer 7 3.63

Maths grade

very good 33 17.10
good 52 26.94

satisfactory 48 24.87
sufficient 38 19.69

poor 16 8.29
no answer 6 3.11

Desired type of training
college 99 51.30

vocational 32 16.58
undecided 62 32.12

Desired field/occupation

STEM 40 20.73
languages and humanities 7 3.63

social sciences 34 17.62
teaching and education 7 3.63

other 57 29.53
undecided 48 24.87
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92 students (47.67%) identifying as female and 91 students (47.15%) as male. The remaining
10 students (5.18%) either stated to be non-binary or chose not to disclose their gender. In terms
of the language spoken at home, 52.85% of the students state that they only speak German at
home, while 14.51% of the students do not speak any German at home. The remaining 32.62%
of the students speak both German and another language at home. Moreover, the data reveal that
the majority of students achieve grades in the ‘good’ (2) and ‘satisfactory’ (3) range in Maths
and German, indicating a solid understanding in both subjects. However, a notable proportion
of students tend to score lower in Maths than in German.

3.3. OUT-OF-VOCABULARY WORDS

Students may rate a sentence as complex for various reasons, such as intricate sentence structure
or the presence of unfamiliar words. The exposure to the out-of-vocabulary words affects cog-
nitive processing and comprehension. We approximate the out-of-vocabulary words by combin-
ing the students’ grade in German with an existing text corpus, the GraphVar corpus (Romstadt
et al., 2024), on essays written by teenagers in Germany.

3.3.1. GraphVar Corpus

The GraphVar corpus (Romstadt et al., 2024) is a compilation of more than 1600 high school
essays written between 1917 and 2018 at a high school in Germany as part of the final exams in
the subjects History, Biology, and German. It is mainly used to describe the graphemic variation
and its development over time.

3.3.2. Feature Development

We use the GraphVar corpus to extract a vocabulary that approximates the lexical understanding
of the students in order to use it as an input feature for the text complexity model. Thus, we
only use essays from German exams, ensuring the data closely aligns with the students who
completed the survey. Based on the grades of the German essays from the GraphVar corpus, we
then create three different sets of vocabularies. These vocabularies approximate the words that
students from the survey are likely to understand and recognize, which is commonly referred to
as passive vocabulary.

Table 2: Overview of the vocabulary matching.

German grade Vocabulary Size

1 (very good)
V3 36,531

2 (good)
3 (satisfactory)

V2 36,324
4 (sufficient)
5 (poor)

V1 31,600
no answer

To create the three sets, we first subdivide the points of the grading systems into three
categories: V1: satisfactory and below (grades 5 to 3), V2: good and below (grades 5 to 2),
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and V3: very good and below (grades 5 to 1). By defining our vocabularies as nested subsets
V1 ⊂ V2 ⊂ V3, we assume that students with better German grades have a larger vocabulary.
Table 2 shows the assignment of the vocabularies to the students in our self-collected dataset
based on their German grades. To account for the fact that the passive vocabulary is larger than
the active vocabulary, i.e., the set of words a student actively uses, we assign each student a
slightly better vocabulary. All words from the respective vocabularies are lemmatized. In the
final step, we calculate the proportion of words in each sentence that a student with a given level
of German skills, as indicated by their German grade, might not be familiar with. We define the
out-of-vocabulary ratio (OOV) for each annotated sentence as

OOV =
Nunfamiliar

Ntotal

with Nunfamiliar being the number of unfamiliar words in the sentence and Ntotal being the total
number of words in the sentence. Using a relative measure instead of the absolute count of
unfamiliar words per sentence gives more weight to unfamiliar words in shorter sentences than
in longer ones. This is an important aspect because students may be able to infer the meaning
of an unfamiliar word from its context.

4. METHODOLOGY

In the following, we describe how we train several machine learning models to perform text
complexity predictions based on person-related and linguistic features. The entire model is
illustrated in Figure 2.

4.1. AVERAGE TEXT COMPLEXITY PREDICTION

This subsection focuses on the assessment of average text complexity scores. Our aim is to
predict average text complexity values that serve as a baseline and can be used as an input feature
for the perceived text complexity model. To do this, we train two BERT models on different
datasets in order to make predictions of the average text complexity ratings. The first model
is trained on our collected student dataset, whereas the second model is trained on the TCDE
dataset. Both models were trained separately since the datasets were annotated in different ways
regarding the settings, groups of annotators, rating schemes, and the overall compilation of the
sentences. Moreover, training two different models is beneficial because the regression models
can weigh the importance of the corresponding features separately.

4.1.1. Training on the Student Dataset

The dataset comprises 1697 unique sentences from the text corpus that were annotated on aver-
age 2.33 times. For each sentence, we calculate the arithmetic mean of the students’ complexity
ratings. The pre-trained BERT (Devlin et al., 2019) model bert-base-german-cased5 and the
pre-trained DistilBERT (Sanh et al., 2019) model distilbert-base-german-cased6 are fine-tuned
to predict the average text complexity scores of the sentences. We perform an exhaustive search
with a 5-fold cross-validation to find the best hyperparameters for the model based on the range

5https://huggingface.co/google-bert/bert-base-german-cased
6https://huggingface.co/distilbert/distilbert-base-german-cased
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Figure 2: Perceived text complexity model overview.

of values as suggested by Devlin et al. (2019). In each fold, we fine-tune the model on the re-
spective test split in order to obtain average predictions for all sentences, which are then used
as a feature in the downstream regression task. The best-performing configuration for the Dis-
tilBERT model is batch size=32, learning rate=3e-5 and epochs=3, while for the
BERT model, it is batch size=32, learning rate=2e-5 and epochs=2. For the im-
plementation, we use the Huggingface7 library and configure the model for a regression task by
setting the problem type=‘regression‘ parameter. This results in a linear layer on top
of the final hidden state of the [CLS] token, trained using a mean squared error loss (L2 regres-
sion). We then use the resulting predictions as an input feature for the perceived text complexity
models.

4.1.2. Training on the TCDE Dataset

The second model for average predictions is trained on the Text Complexity DE Challenge
dataset (Naderi et al., 2019). DistilBERT (Sanh et al., 2019) is fine-tuned for the regres-
sion task. As Arps et al. (2022) suggested in the TCDE Challenge, we use the pre-trained
distilbert-base-german-cased model and set its hyperparameters as follows: batch size=10,
learning rate=2e-5, and epochs=5. After training, we use this model to make predic-
tions of average values on our student dataset. The predictions of this model are also used as an
input feature for the perceived text complexity models.

7https://huggingface.co/
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Table 3: Feature overview.

Feature Description
BERT predictions (student dataset) Predicted average complexity of each sentence by the

fine-tuned BERT model trained on our student-annotated
dataset

Predictions (TCDE dataset) Predicted average complexity of each sentence by the
fine-tuned DistilBERT model trained on the TCDE
dataset

Out of vocabulary (OOV) Estimated share of unfamiliar words in a sentence
Age 16; 17; 18 or older
Gender (1) male, (2) non-binary or no answer, (3) female
Language at home (1) German, (2) German and another language, (3) an-

other language
German skills (self-stated) Ranges from very good (1) to very bad (5)
Type of training (1) college, (2) vocational training, (3) not yet decided
Field/occupation (1) STEM, (2) non-STEM, (3) other / not yet decided
German grade Ranges from (1) very good to (6) no answer
Maths grade Ranges from (1) very good to (6) no answer
Academic (1) non-academic high school, (2) academic high school

4.2. FEATURE SELECTION

In total, twelve features are used to train the regression models in predicting perceived text
complexity scores. The features are based on students’ individual characteristics, the predicted
labels from the fine-tuned BERT and DistilBERT models, and the vocabulary originating from
the GraphVar corpus (Romstadt et al., 2024). The predictions of the BERT models and the ra-
tio of out of vocabulary words are the only linguistic features that we include in the regression
model. All remaining features relate to students’ demographic characteristics, information on
their language skills, field/occupation and type of training desired after high school, the type of
high school, and their school grades in German and Maths. To achieve a better feature inter-
pretation in the SHAP analysis, we use an ordinal encoding for the features gender, language
at home, type of training, and field. Additionally, we reduce the field feature characteristics to
STEM, non-STEM, and other / not yet decided by merging all answer options that belong to the
non-STEM field to get a more balanced feature representation. An overview of all features used
is provided in Table 3.

4.3. PERCEIVED TEXT COMPLEXITY PREDICTION

To incorporate the linguistic and person-related features for the text complexity predictions, sev-
eral machine learning models are trained to perform a regression task. Figure 2 illustrates the
model and the sources of input features. We use the student-annotated dataset containing 3954
individually annotated sentences and split the data into 80% training data and 20% test data. All
models are optimized using a 5-fold cross-validation for hyperparameter tuning on the training
set. In the following, we give an overview of the regression models and their best hyperparame-
ter values:
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Linear Regression (LR):
A linear regression model (Galton, 1886) aims to explain a linear relationship between a depen-
dent and multiple independent variables. Using this model, we assume that the input features,
such as school grades or average text complexity predictions, are linearly connected to the per-
ceived text complexity.

Support Vector Machine (SVM):
A Support Vector Machine (Cortes and Vapnik, 1995) maps input features into a high-dimensional
space using a kernel function, e.g., linear, polynomial, radial basis function (rbf). It aims to find
a hyperplane in this space that best separates the data. Depending on the chosen kernel func-
tion, it can be used to explain linear or non-linear relationships in the data. The hyperparameter
values are set as follows (see Appendix C): kernel=rbf, degree=2, gamma=0.1, C=10,
epsilon=0.01

Multilayer Perceptron (MLP):
A multilayer perceptron (Rumelhart et al., 1986) is a feedforward artificial neural network that
consists of an input layer, multiple hidden layers, and an output layer. Each node, or neu-
ron, in one layer connects to every node in the following layer, with these connections rep-
resenting the weights of the model. Since MLPs can capture non-linearities and interactions
between features, they differ strongly from linear models. The hyperparameter values are set as
follows: activation=tanh, max iter=20000, hidden layer sizes=(100,50),
learning rate=constant, solver=adam, alpha=0.001

XGBoost (XGB):
XGBoost (Chen and Guestrin, 2016) trains a series of decision trees in a gradient boosting
framework. Each tree attempts to minimize a loss function, which measures the difference be-
tween the predicted and actual values. The hyperparameter values are set as follows: gamma=1,
learning rate=0.05, n estimators=100, max depth=7, min child weight=1,
colsample bytree=0.8, subsample=0.8

K-Nearest-Neighbors (KNN):
K-Nearest-Neighbors (Cover and Hart, 1967) is an instance-based algorithm that saves training
data in a multidimensional space where each dimension represents a feature. When perform-
ing a regression task, its predictions are based on the average (weighted) value of the k-nearest
datapoints that were saved in the multidimensional space during training. The hyperparameter
values are set as follows: k=15, weights=distance, metric=manhattan

Voting Regressor:
A voting regressor is an ensemble model (Dietterich, 2000) that combines the predictions from
multiple regression models to make a prediction. We evaluate all possible combinations of the
base regressors listed above and adjust the weight of the voting regressor to get the best possible
results. We decided to implement a voting regressor due to the fact that ensemble models can
improve robustness and reduce overfitting.
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4.4. SHAP ANALYSIS

SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) is a method to explain the
output of machine learning models. It is based on the concepts of game theory, particularly the
Shapley value, which is a method for assigning payouts to players depending on their contribu-
tion to the total payout. SHAP leverages this concept to explain how each feature in a dataset
contributes to a model’s prediction.

To calculate the Shapley value ϕi for feature i, the model needs to be retrained on all possible
feature subsets S ⊆ F , where F is the set of all features. A model fS∪{i} that was trained
including feature i is then compared to a model fS that is trained excluding feature i. The
model’s predictions are subtracted fS∪{i}(xS∪{i}) − fS(xS) on the current input xS in the set S
with and without the presence of feature i. SHAP values are described as a weighted average of
all possible differences (Lundberg and Lee, 2017):

ϕi =
∑

S⊆F\{i}
|S|!(|F |−|S|−1)!

|F |!
[
fS∪{i}(xS∪{i})− fS(xS)

]
.

We use SHAP values to interpret the feature importance of our selected features. Moreover, we
analyze how different feature values affect the predictions of our model. Due to the additive
property of SHAP values, it is possible to perform the analysis for specific instances.

4.5. LARGE LANGUAGE MODELS MIMICKING STUDENTS

In-context learning (ICL) refers to the ability of large language models to perform tasks based on
examples provided in the input prompt, without updating the model parameters. This approach
was investigated by Brown et al. (2020), who demonstrated that autoregressive models such as
GPT-3 can generalize to new tasks through a small number of examples provided at inference
time (few-shot learning). Building on this idea, we employ role-play prompting, which is a
specific prompt engineering method that lets a large language model (LLM) assume a certain
role or persona by giving it a description of the characteristics of that person. Recent studies
have shown that role-play prompting can improve the performance of LLMs when it comes
to executing specific tasks (Kong et al., 2024). To evaluate current state-of-the-art LLMs for
determining the perceived text complexity, we test the capabilities of ChatGPT8 and Claude9 in
annotating sentences from the students’ point of view. Therefore, we use the separate surveys
from each of the 193 students that contain eight person-related questions and twenty German
sentences. The student profiles vary by age, gender, language spoken at home, self-reported
German proficiency, current school type, intended post-secondary education, field of study, and
grades in German and Maths. We parse these characteristics into multiple textual descriptions
that serve as role-play prompts for ChatGPT and Claude. To ensure that the LLMs annotate
from the perspective of a German student and avoid potential confusion arising from translation
errors – such as those related to differing educational or grading systems – we present all queries
in the German language. An example of a prompt that was translated into English is as follows:

Imagine you are the described person: You are 17 years old. You are a boy. You
mainly speak a language other than German at home. You rate your German lan-
guage skills as average. Your last school grade in German was satisfactory (C).

8https://chat.openai.com/
9https://claude.ai
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Your last school grade in Maths was good (B). You are interested in social pro-
fessions or social or economic sciences. You are currently attending a grammar
school.

In addition to the description of the persona, the twenty sentences that were originally anno-
tated by the corresponding student are provided. In the query, we emphasize the importance of
annotating the sentences from the perspective of the described student. Also, we ask the LLMs
to provide the results of the text complexity as perceived by the specific role-play prompted
student.

In the zero-shot scenario, all human-annotated labels are removed, and ChatGPT and Claude
annotate all sentences from the survey without having seen any exemplar annotations by the stu-
dent beforehand. Then, this process is repeated, but the LLMs are given a fixed number of
examples consisting of sentences and their assigned labels. We randomly select 2, 4, 6, 8, 10,
and 12 sentences per survey and reveal the assigned labels to the large language models.
All prompts are executed by utilizing Anthropic’s API for Claude and OpenAI’s API for Chat-
GPT. We use the most recent models, Claude Sonnet 3.5 (version: claude-3-5-sonnet-20240620)
and ChatGPT-4o (version: gpt-4o-2024-08-06). The temperature of the models is set to 0 to re-
duce variability and improve the consistency of the answers.

5. RESULTS

In this section, the predictions of the text complexity models are evaluated. We interpret the
results of our best model using a SHAP analysis and see how the features impact the predictions
of our model. As our main evaluation metric, we use the root mean squared error (RMSE),
which is defined as

RMSE =
√

1
M

∑M
i=1

(
y(i) − ŷ(i)

)2,

where M is the number of observations, y(i) is the actual value of the observation i and ŷ(i) is
the predicted value for observation i. Due to its high interpretability and heavy penalization of
large errors, the RMSE is well-suited for the evaluation of the models. We apply bootstrapping
to estimate the uncertainty of our RMSE. In a final step, we analyze the capabilities of LLMs
mimicking students based on the described role-play prompts.

5.1. MODEL EVALUATION

The evaluation of the regression models is split into two parts. First, the student data model
for the average text complexity predictions is evaluated. Then, we compare the models that
incorporate person-related features.

5.1.1. Average Text Complexity

We measure the quality of the results for the average text complexity models. As shown in Table
4, the bert-base-german-cased model achieves an RMSE of 0.931, while the lowest RMSE of
0.927 is obtained by fine-tuning the distilbert-base-german-cased model. The results suggest
that DistilBERT is slightly better suited for the task, as it achieves a lower RMSE while main-
taining a comparable standard deviation across folds. Therefore, we use its predictions as an
input feature for training the perceived text complexity models.
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Table 4: Average text complexity predictions.

Model RMSE ± Std.

bert-base-german-cased 0.931± 0.057

distilbert-base-german-cased 0.927 ± 0.058

Table 5: Perceived text complexity model evaluation.

Model RMSE ± Std. R2

Baseline (Mean) 1.070± 0.012 0.000
Avg. Text Complexity (BERT) 1.036± 0.013 0.061
Linear Regression (LR) 0.965± 0.026 0.168
Support Vector Regression (SVR) 0.866± 0.019 0.329
XGBoost (XGB) 0.855± 0.023 0.348
Multilayer Perceptron (MLP) 0.836± 0.024 0.375
K-Nearest-Neighbors (KNN) 0.836± 0.024 0.375
LR + XGB 0.890± 0.022 0.292
LR + MLP 0.861± 0.023 0.337
LR + SVR 0.859± 0.020 0.341
KNN + LR 0.854± 0.022 0.349
SVR + MLP 0.836± 0.023 0.376
KNN + SVR 0.828± 0.022 0.388
SVR + XGB 0.824± 0.021 0.393
XGB + MLP 0.824± 0.023 0.393
KNN + MLP 0.824± 0.024 0.394
KNN + XGB 0.822± 0.024 0.396

5.1.2. Perceived Text Complexity

As baseline models, we use the arithmetic mean of all annotated labels from the training dataset
and the average text complexity model trained on the self-collected student dataset. A com-
parison of all models is illustrated in Table 5. It shows that all regression models trained on
person-related features outperform the baseline models when predicting the text complexity as
perceived by students. K-nearest-Neighbors (KNN) and Multilayer Perceptron (MLP) are the
best single regressors since both models achieve an RMSE of 0.836 and an R2-Score of 0.375.
Therefore, most of the ensemble models that include KNN or MLP outperform the other mod-
els. The best results are achieved by combining KNN and XGB into a voting regressor with the
following weights: KNN: 0.55, XGB: 0.45. This model has an RMSE of 0.822 and an R2-Score
of 0.396. It is noticeable that creating ensembles of the regression models leads to better results
since many of the ensemble models outperform the best single regression model. Even an en-
semble model consisting of two weaker models, like Support Vector Regression and XGBoost,
achieves better results than any of the single regression models.
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Figure 3: SHAP feature importance.

5.2. MODEL EXPLANATION

To get a better understanding of our machine learning model and the relevance of the input
features, a SHAP analysis is performed. Thus, we analyze how the different features influence
the predictions of our model. All model explanations refer to the best performing model, i.e.,
the voting regressor consisting of KNN (55%) and XGB (45%).

5.2.1. Feature Importance

Feature importance is measured by the mean absolute SHAP values aggregated over all instances
and is shown in Figure 3. The x-axis shows the mean absolute Shapley values of the features
that are displayed on the y-axis. A higher value reflects that the feature has a higher impact on
the predictions of the model.

With a mean absolute SHAP value of 0.13, the TCDE predictions are the most relevant
feature for our predictions and even have a higher importance than the student predictions with
a SHAP value of 0.07. This might be explained by the fact that the sentences in the TCDE
dataset are annotated on average 9.5 times, whereas the sentences in the student dataset are on
average annotated 2.33 times. Due to the larger number of annotations per sentence, the TCDE
dataset seems to be better suited for fine-tuning a model used to make average text complexity
value predictions. The third linguistic feature, out-of-vocabulary, achieved a rather low feature
importance of 0.02. Although having a rather low feature importance, the feature still has a
positive effect on our model’s performance (see Appendix D), but is more complex to interpret
because it also depends on the student’s vocabulary.

Regarding the person-related features, the language the students speak at home is the most in-
fluential aspect for the model, achieving a feature importance score of 0.09. We assume that this
feature represents a large part of the amount of exposure a student has to the German language.
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Figure 4: SHAP feature impact example.

It is worth noting that the gender of the students is the second most significant person-related
feature. It has a relatively high feature importance of 0.08, indicating that perceptions of text
complexity differ by gender. Also, the self-estimated German skill has a feature importance of
0.07 and seems to be of higher importance than their actual German grade. Overall, a combi-
nation of students’ self-estimations, gender identities, and amount of exposure to the German
language are the most relevant student-related features.

5.2.2. Impact of Features

To get a deeper understanding of how the features affect the model’s predictions, we further ex-
amine the Shapley values of each instance. A positive Shapley value indicates that the predicted
value has increased, meaning that the model assesses the text as more complex. On the other
hand, a negative Shapley value indicates the opposite, i.e. a lower value for the predicted text
complexity.

Figure 4 shows an example of the feature impacts when predicting the perceived text com-
plexity of a specific instance. This sentence originally got labelled as very easy by the student.
It demonstrates how each feature contributes to the difference between the actual prediction
f(x) = 1.654 and the average predictions E[f(x)] = 1.857 of the model. The x-axis shows the
text complexity score, and the actual feature values are displayed on the y-axis. In this example,
the average predictions of the student model and the TCDE model have the highest impact on
the prediction. Since both models assigned rather low text complexity values, the resulting pre-
diction gets shifted downwards by −0.15 and −0.13. Additionally, the student states to speak
German at home, which again makes the model reduce the value for the text complexity predic-
tion by −0.05. Other factors, such as the student attending a non-academic high school, a higher
number of out-of-vocabulary words, and average grades in maths, slightly increase the model’s
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Figure 5: SHAP feature influence.

predicted text complexity for this instance.
Figure 5 provides an overview of each feature’s impact on the model’s predictions. Each

instance is represented by a dot on the feature rows. The position of each dot on the x-axis
depends on the SHAP value of the feature for that specific instance. A color gradient, ranging
from blue to red, represents the features’ characteristics and reflects the intensity of their values.
Besides the fact that the TCDE predictions have the greatest impact on our model, they also
have a mostly linear relationship with the model’s predictions. As the feature value increases,
the SHAP value increases and vice versa. For the feature language at home, the students had
three answering options: (1) German, (2) German and another language, and (3) another lan-
guage. Especially the students who solely speak German at home perceive the texts as being
less complex. In contrast, the students who either speak another language or German and an-
other language at home, perceive the texts as more complex. This effect can be seen by the clear
separation of the blue and red dots in Figure 5 and is even more pronounced across students who
report not speaking any German at home.

There is also a noticeable distinction between male and female students: the model tends to
rate sentences as less complex when the reader is male (blue dots in Figure 5 for gender) and as
more complex when the reader is female (red dots). This relationship can be explained by male
teenagers’ overconfidence, which made them rate the sentences as less complex compared to
female students (Cooper et al., 2018). Students who stated being non-binary or gave no answer
are represented by the purple dots (we note that only 10 students fall into this category). The few
purple dots either accumulate in the middle area or on the right-hand side of the SHAP values,
which stands for a high text complexity value.

Also, the self-stated German skill of the students affects the predictions of the model. For
this feature, a low value (blue) means that the student has stated to have a very good German
skill, whereas a higher feature value (red) stands for a very bad German skill. This feature
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seems almost to be linearly connected to the predictions of the model, with a better estimation
of their own language abilities resulting in lower values for the text complexity annotations.
While most of the students stated to have very good or good German skills, fewer students rated
their German skills as average or worse. If students have stated to have very bad German skills,
their SHAP value increases immensely. Therefore, the model expects these students to assign
higher text complexity values.

5.2.3. Role-play Model Evaluation

Finally, we evaluate Claude and ChatGPT by regarding sentences with revealed labels as few-
shot examples and sentences with removed labels as a test set. For each prompt, we collect
the suggested labels from the output and compare them to the human-labelled annotations.
Both Claude and ChatGPT are queried with the same prompts for comparison. We start by
role-playing in a zero-shot scenario where the LLMs do not see any revealed labels within the
prompts. After that, we repeat this process but reveal a fixed number of examples to the LLMs.

Table 6: Role-play model evaluation.

ChatGPT Claude Revealed
(RMSE) (RMSE) Labels

1.961 1.864 0
1.554 1.579 2
1.327 1.462 4
1.286 1.437 6
1.245 1.367 8
1.180 1.308 10
1.171 1.252 12

Table 6 shows that Claude and ChatGPT clearly benefit from having received more examples
with revealed labels. For both models, the zero shot approach leads to a very high root mean
square error (RMSE). By increasing the number of examples in the prompt to 12, Claude’s
RMSE decreases by 0.61, and ChatGPT’s RMSE decreases by 0.79, compared to the zero-
shot approach. Except for the zero-shot setting, Claude is always outperformed by ChatGPT,
assuming both models have seen the same number of examples. Even though the performance
can be improved by increasing the number of few-shot examples, both models perform worse
than a baseline model that simply predicts the arithmetic mean for each label (RMSE of 1.070).

In Figure 6, we compare the relative distribution of labels between the students and the
role-play models. For better interpretation, we focus on the best-performing role-play models
that have seen the highest amount of example annotations before assigning any labels. It is
noticeable that the label distribution of the role-play models differs from the actual distribution,
especially when looking at label (1) very easy. The students’ annotations peak at the very easy
label as this label was assigned in 45.27% of the sentences from the test dataset, whereas both
role-play models peak at label (2) easy. In contrast to that, only about a quarter of the sentences
have been labelled as very easy by ChatGPT and Claude. On average, Claude assigns a value of
2.44, which is slightly higher than the value that ChatGPT assigns on average (2.30), indicating
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Figure 6: Role-play models label distribution.

that Claude expects students to perceive the sentences as more complex than ChatGPT and
significantly more complex than the real students, who have an average value of 1.93.

6. DISCUSSION

Our analysis provides valuable insights into how teenagers perceive text complexity, based on
a detailed investigation of sentence-level judgments collected from German-speaking students.
While the findings offer meaningful contributions to understanding perceived complexity in
this population, they must be interpreted within the specific linguistic and demographic context
of the study. All data was collected in German, using prompts tailored to the language, and
we employed language-specific models alongside German prompts for large language models
like ChatGPT and Claude. Linguistic features specific to German, such as syntactic structure
and morphological complexity, may have influenced both human judgments and model outputs.
Furthermore, cultural and educational background factors specific to German-speaking students
likely shaped how text complexity was perceived. Therefore, our results are most directly ap-
plicable to German-speaking students and may not directly generalize to other languages or
demographic groups without further investigation. This might also explain why models like
ChatGPT and Claude, which are typically optimized to reflect broader user preferences through
techniques like reinforcement learning from human feedback, showed limitations in predicting
student-specific ratings of complexity. Their responses may align well with general trends, as
shown in studies like (Zheng et al., 2023), but not necessarily with narrower or demographically
distinct groups such as teenagers in an educational context.
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Addressing a notable gap in the literature, this paper focuses specifically on high school
students’ perceptions of text complexity, a group largely overlooked in existing research. The
results in section 5 show that including person-related features helps to make more accurate
predictions on how students perceive a written piece of information. Unlike previous studies
that primarily involve language learners (Santucci et al., 2020) or experts (Seiffe et al., 2022),
we provide a comprehensive analysis that accounts for the diverse demographic and language
backgrounds of the teenagers. By incorporating these person-related features and utilizing a
large dataset of annotated texts, our work enhances the understanding of how students perceive
text complexity in relation to their unique backgrounds. Furthermore, we move beyond tra-
ditional models that rely solely on linguistic features by integrating person-related features to
more accurately reflect the complexities of students’ perceptions. This multifaceted approach
not only broadens the scope of text complexity research but also contributes valuable insights
into effective communication strategies tailored to young readers.

Thus, our model offers potential applications in enhancing adaptive learning systems by
analyzing how students perceive various sections of a text. Despite the texts in our study hav-
ing relatively low FRE scores, indicating rather complex linguistic structures, many students
rated most of the sentences as very easy. We thus assert that students tend to overestimate
their ability to understand texts. This aligns with prior research indicating that the evaluation
of one’s own thought processes, known as metacognition, is often biased (Dunlosky and Met-
calfe, 2008). Comparing students’ self-assessments with objective measures of text complexity
can help identify gaps in understanding and more effectively address weaknesses in knowledge
acquisition through reading.

Beyond that, our findings show that using LLMs to mimic students’ perceptions proved to be
insufficient. While these models can generate text and simulate certain linguistic characteristics,
they seem to lack the nuanced understanding of individual backgrounds and experiences that
influence how students perceive texts. Specifically, they fail to adjust to the dataset’s strong
skewness and cannot replicate students’ behavior in text complexity annotations.

Our comprehensive data collection, although very resource-intensive, yields invaluable in-
sights directly from high school students. By engaging with a diverse group of annotators, we
were able to capture the complexities of their perceptions and the unique factors that shape their
understanding of texts. This direct approach not only enhances the validity of our findings but
also underscores the importance of human input in developing models that accurately reflect the
experiences of real-world learners.

There are some limitations to our study that warrant consideration. First, our research con-
centrates on measuring text complexity as perceived by teenagers, but it does not directly eval-
uate their ability to process and comprehend the presented information. This distinction is im-
portant as a text may be perceived as complex yet still be understood effectively, or vice versa.
Future research could consider incorporating comprehension assessments to establish a more
comprehensive understanding of how perceived complexity correlates with actual information
processing. This is, however, beyond the purpose of our paper.

Second, the model is based on a self-collected dataset of 3,954 sentences annotated by 193
high school students. Yet, despite the large number of sentences and the diversity of annotat-
ing students, we may still not fully capture the breadth of linguistic diversity present among
all high school students. Factors such as regional dialects, cultural nuances, and varying lev-
els of exposure to academic language could affect students’ perceptions of text complexity but
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may not be adequately represented in our data. Also, it could be possible that different demo-
graphic factors interact with each other and affect text perceptions differently. Thus, the model’s
accuracy in predicting perceived text complexity may be influenced by biases inherent in the
dataset, in our model, or the selected demographic features during the surveys. While our find-
ings are promising, further validation in diverse educational contexts and among people with
even greater demographic heterogeneity is necessary to improve the model and our understand-
ing of perceived text complexity. Future research could also employ different models, including
interactions between the students’ demographic characteristics and their abilities, to facilitate a
deeper understanding of the underlying mechanisms at play.

Third, although previous work highlights the need for model-specific prompt engineering,
we used the same prompts for both ChatGPT and Claude to maintain consistency across mod-
els. This may have limited their performance, as the prompts were not optimized for the specific
characteristics of each LLM. Future work could investigate whether model-specific prompt tun-
ing leads to more accurate simulations of student behavior.

7. CONCLUSION

In this paper, we investigate whether incorporating person-related features in machine learn-
ing models improves the prediction of perceived text complexity. The study is based on self-
collected data that comprise 1697 unique sentences annotated by a total of 193 German high
school students. Most sentences were extracted from study guides intended to inform students
about potential post-secondary pathways.

By utilizing our annotated dataset, multiple regression models are trained to predict the
perceived text complexity based on different student profiles and a few linguistic features. Our
findings show that K-Nearest-Neighbors (KNN), Multilayer Perceptron (MLP), and ensemble
models perform well in predicting the perceived text complexity. Our findings also reveal that
ChatGPT and Claude are not able to produce accurate annotations mimicking the real student
profiles. Providing the LLMs with multiple examples of annotated sentences enhances their
performance in role-play prompting. However, even with this improvement, the role-playing
LLMs still do not surpass any of the baseline models.

Most importantly, all regression models that incorporate person-related features outperform
the baseline models that predict average text complexity values. A SHAP analysis reveals that
the students’ language they speak at home, gender, and self-estimation of German skills play a
decisive role in the predictions of our model.

While metacognition is inherently subjective (Dunlosky and Metcalfe, 2008), assessing per-
ceived text complexity remains highly relevant. Readers’ subjective perception of complexity
influences their engagement, motivation, and ability to process information effectively. Adjust-
ing texts based on perceived difficulty can enhance comprehension and encourage sustained
reading effort, making it a key factor in fields such as education, healthcare, and politics (Leroy
et al., 2010; Tolochko et al., 2019). In these domains, ensuring that information is not only ob-
jectively accessible but also perceived as approachable can improve learning outcomes, facilitate
informed decision-making, and foster greater public understanding.

Bullet points generated by LLMs may serve as a convenient alternative for summarizing con-
tent. However, this approach comes with some limitations. Summaries provided by LLMs are
prone to omitting key details or context, depending on the quality and specificity of the prompts
used (Benedetto et al., 2024). Thus, using LLMs to summarize texts can lead to oversimplifi-
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cation or misrepresentation of the material. As a result, such summaries may fail to adequately
convey the nuances of the original text, hindering the audience’s ability to fully engage with or
comprehend the content.

In future work, our proposed method could serve as a valuable tool for enhancing genera-
tive models to better accommodate the needs of diverse target groups beyond language learners
or individuals with low literacy levels. While existing tools primarily focus on text simplifi-
cation, tailoring texts to teenagers from various backgrounds could facilitate information pro-
cessing and support their transition from secondary to post-secondary education. Furthermore,
our model could be leveraged to recommend academic texts based on perceived text complex-
ity or be integrated into adaptive learning systems that detect students’ overestimation of their
comprehension in specific parts of a text.

Finally, our dataset should be extended in the future to include other subgroups of the popu-
lation, and not only high school students. It is possible that the impact of specific person-related
features differs if other groups than students are considered. This is up to future research.

While this study shows that person-related factors can have a great impact on the perceived
text complexity, there still remains a gap between perceived and actual text complexity. The
perception of the students could be influenced from an over- or underestimation of their own
abilities. Therefore, future works should focus on measuring the distortion that is caused by
these effects. This might reveal weaknesses of specific target groups when it comes to under-
standing written texts.
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SEIFFE, L., KALLEL, F., MÖLLER, S., NADERI, B., AND ROLLER, R. 2022. Subjective text complexity
assessment for German. In Proceedings of the Thirteenth Language Resources and Evaluation Con-
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A. FLESCH-READING-EASE (FRE)

The Flesch-Reading-Ease (FRE) scoring system, based on Flesch (1948), shown in Table 7,
categorizes texts based on their readability and the educational level required for comprehension.
Scores ranging from 0 to 30 are considered very difficult and are typically suitable for academic
audiences, while scores of 90 to 100 represent very easy texts, appropriate for readers at a
primary school level. Intermediate scores, such as standard readability (60–70), align with texts
designed for secondary school readers.

Table 7: Flesch-Reading-Ease (FRE).

FRE score Readibility Educational level
0 to 30 very difficult academics
30 to 50 difficult
50 to 60 fairly difficult
60 to 70 standard secondary school
70 to 80 fairly easy
80 to 90 easy
90 to 100 very easy primary school

B. DATA

B.1. SCREENSHOTS OF THE ONLINE TOOL

Figure 7 shows screenshots of the online tool that we have used to do the survey. The students
scanned QR codes using their mobile phones and got redirected to their individual survey pages.

C. SUPPORT VECTOR MACHINE EVALUATION

The radial basis function (rbf) kernel performed well in our SVM regression model (see Table
8) as it effectively captured the non-linear relationships of the several features, such as language
background and school grades, which influence the perceived text complexity. Its ability to map
data into a higher-dimensional space allowed for better modeling of complex interactions, lead-
ing to improved predictive performance compared to linear approaches. Note that the RMSE
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Figure 7: Screenshot of online annotation and survey tool.

values reported during hyperparameter tuning differ from the final test set results, as the Grid-
Search was conducted using a 5-fold cross-validation on the training data. These values reflect
the model’s performance variability across different training-validation splits, whereas the final
evaluation is performed on a separate test set that was not used during training or validation.

Table 8: Best parameters and RMSE for different SVM kernels.

Kernel C Degree Epsilon Gamma RMSE
linear 0.1 2 1 scale 1.509
poly 0.1 9 1 scale 1.493
sigmoid 100 2 0.01 scale 1.484
rbf 10 2 1 0.1 1.429
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D. GRAPHVAR EVALUATION

Table 9: Perceived text complexity model evaluation with and without GraphVar feature.

Model
RMSE

Difference
GraphVar without GraphVar

Linear Regression (LR) 0.965 0.965 ±0.000
Support Vector Regression (SVR) 0.866 0.937 −0.071
XGBoost (XGB) 0.855 0.855 ±0.000
Multilayer Perceptron (MLP) 0.836 0.834 +0.002
K-Nearest-Neighbors (KNN) 0.836 0.855 −0.019
LR + XGB 0.890 0.889 −0.009
LR + MLP 0.861 0.857 +0.004
LR + SVR 0.859 0.920 −0.061
KNN + LR 0.854 0.858 −0.004
SVR + MLP 0.836 0.856 −0.020
KNN + SVR 0.828 0.863 −0.035
SVR + XGB 0.824 0.871 −0.047
XGB + MLP 0.824 0.822 +0.002
KNN + MLP 0.824 0.833 −0.009
KNN + XGB 0.822 0.830 −0.008

Table 9 shows the difference between including and excluding the out-of-vocabulary feature
based on the GraphVar corpus. Since most of the models achieve slightly better results when
including the feature, we decided to incorporate it into our model.
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