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Teachers often use open-ended questions to promote students’ deeper understanding of the content. These
questions are particularly useful in K–12 mathematics education, as they provide richer insights into stu-
dents’ problem-solving processes compared to closed-ended questions. However, they are also challeng-
ing to implement in educational technologies as significant time and effort are required to qualitatively
evaluate the quality of students’ responses and provide timely feedback. In recent years, there has been
growing interest in developing algorithms to automatically grade students’ open responses and gener-
ate feedback. Yet, few studies have focused on augmenting teachers’ perceptions and judgments when
assessing students’ responses and crafting appropriate feedback. Even fewer have aimed to build empir-
ically grounded frameworks and offer a shared language across different stakeholders. In this paper, we
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propose a taxonomy of feedback using data mining methods to analyze teacher-authored feedback from
an online mathematics learning platform. By incorporating qualitative codes from both teachers and re-
searchers, we take a methodological approach that accounts for the varying interpretations across coders.
Through a synergy of diverse perspectives and data mining methods, our data-driven taxonomy reflects
the complexity of feedback content as it appears in authentic settings. We discuss how this taxonomy can
support more generalizable methods for providing pedagogically meaningful feedback at scale.
Keywords: feedback taxonomy, teacher feedback, open-ended student response, K-12 mathematics edu-
cation, correlation analysis, factor analysis, cluster analysis

1. INTRODUCTION

The role of feedback on learning is well-established in educational research (Hattie and Tim-
perley, 2007; Shute, 2008). Studies have shown that feedback can bridge the gap between
a learner’s current understanding and the intended learning goals (Sadler, 1989; Kluger and
DeNisi, 1996) and address any misconceptions that students may hold (Gusukuma et al., 2018).
Feedback can foster other critical aspects of learning, including motivation (Narciss et al., 2014;
Fong and Schallert, 2023) and self-regulation (Labuhn et al., 2010). Despite its importance,
there remains a lack of consensus on which specific characteristics make feedback most effec-
tive across diverse educational contexts (Hattie and Timperley, 2007; Wisniewski et al., 2020).
Some researchers suggest that feedback can foster deeper learning when its content highlights
key concepts while minimizing cognitive load (Corral and Carpenter, 2020; Moreno, 2004).
Others, however, place a larger focus on the timing of feedback (Kulik and Kulik, 1988; Abdu
Saeed Mohammed and Abdullah Alharbi, 2022).

In many educational technologies, particularly in domains such as mathematics, correctness
feedback can be provided immediately upon the submission of students’ responses due to the
prevailing number of closed-ended problems, such as multiple-choice and fill-in-the-blank ques-
tions. Although correctness feedback can help identify areas where a student may be struggling,
this alone is often insufficient to provide students with the types of guidance needed to remedi-
ate gaps in understanding. With growing interest in integrating self-explanation opportunities in
digital learning platforms (Bisra et al., 2018; Rau et al., 2015; Wylie and Chi, 2014), prompting
students to demonstrate not only procedural fluency but also their deeper conceptual reasoning
behind their answers (e.g., Kwon et al., 2006; Munroe, 2015), there is increased potential to
explore more directed, elaborated, and exemplary forms of feedback.

Open-ended and explanation-focused questions can promote deeper learning, yet the time-
intensive nature of interpreting students’ responses and crafting feedback makes real-time, high-
quality intervention challenging to implement (e.g., Botelho et al., 2023). Recent advances in
large language models (LLMs) (McNichols et al., 2024; Baral et al., 2024) present new oppor-
tunities, shifting the focus from how to generate feedback at scale to how to generate the most
effective feedback to foster learning in specific contexts. However, evaluating the effectiveness
of such feedback is complex due to the vastness of the pedagogical design space. For instance,
personalized feedback messages are inherently tied to unique combinations of knowledge states,
learner goals, and situational contexts, making it impractical to conduct traditional evaluation
studies for every possible feedback instance across possible scenarios. Therefore, there is a
need for a more generalized way of describing different types of feedback that is able to cap-
ture situational nuance without being so reductive that it obscures the personalized nature of the
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messages given. Such a framework would allow researchers and designers to compare, refine,
and ultimately deliver targeted, personalized feedback across a wide range of contexts.

A foundational barrier to such scalability is the lack of empirically grounded frameworks
that identify the types of feedback that teachers use in practice. Considering that theory-driven
taxonomies may not capture the full range of instructional components or forms that feedback
takes in authentic settings, prior work in educational technologies has often developed and ap-
plied coding schemes. While this inductive approach can more accurately reflect the structure
of a given dataset, a lack of shared terminology results in inconsistencies in how feedback is
interpreted, applied, and acted upon. For example, Boyer et al. (2008) categorized feedback into
cognitive types (e.g., positive, lukewarm, negative, and neutral) and motivational types (e.g.,
praise and reassurance). A more recent study by Grawemeyer et al. (2017) expanded on this by
treating the motivational component as a form of affective feedback and incorporated additional
task-related categories, such as instructive and problem-solving feedback.

In this paper, we leverage several data mining methods to investigate the complexity of
feedback content as it emerges from diverse interpretations. Specifically, we analyze teachers’
feedback messages in response to students’ open-ended work in an online middle school math-
ematics platform. Using a discovery-oriented modeling pipeline involving qualitative coding,
factor analysis, and cluster analysis, we identify common structures and reconcile differing per-
spectives in the construction of a unified taxonomy. While initially informed by domain-specific
features of mathematics instruction, our methodology provides a means of revealing broader pat-
terns of feedback structure and intent as interpreted by both researchers and classroom teachers.
Our broader goal is to support the design of feedback systems, whether human- or AI-driven, that
require a structured understanding of feedback content that is grounded in authentic classroom
practice. This work offers a foundational framework for organizing feedback at scale, enabling
future research on the effectiveness of different types of feedback across various instructional
contexts.

2. RELATED WORK

2.1. FEEDBACK DESIGN IN EDUCATIONAL TECHNOLOGY

Many digital learning platforms provide immediate correctness feedback and even textual feed-
back (e.g., Gurung et al., 2023) for closed-ended questions as exemplified by platforms such
as McGraw Hill’s ALEKS, Carnegie Learning’s MATHia, and ASSISTments. As noted in the
earlier section, correctness feedback offers a limited, but still important merit in various aspects
(Aleven et al., 2016). For instance, the immediacy of feedback allows students to make timely
adjustments to their conceptual understanding or learning strategies (Sweller, 2011; Mory, 2013;
Vanacore et al., 2024). At the same time, teachers can use these systems to monitor progress,
while researchers benefit from large-scale data without delays from human assessment, con-
tributing to the rapid development of student models and better learning systems (e.g., Corbett
and Anderson, 1994; Baker et al., 2004, 2010).

While closed-ended questions are useful for assessing student learning and providing op-
portunities for practice, correctness feedback alone is often insufficient for facilitating deeper
conceptual understanding when students struggle to learn new topics. Some platforms of-
fer open-ended questions, which prompt students to articulate reasoning and problem-solving
strategies (Chi, 2000; Chi et al., 1994). This format also brings teachers back into the feedback
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loop by surfacing students’ deeply rooted misconceptions or recurring patterns that may require
targeted interventions. Research has shown that qualitative feedback written by teachers can
enhance learning (Konold et al., 2004; Gan et al., 2021), particularly by fostering learner agency
and critical thinking over time (Hargreaves, 2014). These are especially relevant in computer-
based learning environments, where such targeted support is often limited yet critically needed
(Van der Kleij et al., 2015).

Relatedly, a growing body of research has focused on automated scoring and generation of
feedback across various domains, such as essay writing (Madnani et al., 2013; McNamara et al.,
2015), computer science (Hou and Tsao, 2011; Klein et al., 2011), and science education (Lee
et al., 2019). Researchers have also explored a variety of computational approaches, including
machine learning (Hou and Tsao, 2011; Madnani et al., 2013), deep learning (Taghipour and
Ng, 2016; Qi et al., 2019), and more recently, transformer- and LLM-based models (Gaddipati
et al., 2020; Botelho et al., 2023; McNichols et al., 2024; Baral et al., 2024).

2.2. OPPORTUNITIES AND CHALLENGES WITH OPEN RESPONSES

Open-ended questions encourage students to articulate their mathematical problem-solving strate-
gies and reasoning in their own words. In this self-explanation process (e.g., Rau et al., 2015;
Wylie and Chi, 2014), students are encouraged to demonstrate not only procedural fluency, but
also the conceptual understanding underlying their answers (e.g., Bisra et al., 2018). These types
of questions have long been of interest in K–12 mathematics education research (Anderson and
Biddle, 1975; Boaler, 1998). Studies found that open-ended questions can reveal how students
apply different strategies to solve a problem, offering insights into their thought processes that is
not accessible through numeric answers in closed-ended questions (Chi et al., 1994; Bisra et al.,
2018; Wylie and Chi, 2014). Moreover, open-ended questions have been identified as a promis-
ing approach for promoting learning transfer (Bahar and Maker, 2015), particularly in contexts
where students must apply school-learned concepts and procedures beyond simply finding the
correct answer in well-structured problems.

However, delivering pedagogically meaningful feedback at scale remains a major challenge.
As the emphasis shifts from the correctness of the answer to the quality of the reasoning, teach-
ers must interpret a wide range of responses, each reflecting varied approaches and levels of
understanding. It is an effort that requires substantial expertise (Wylie and Chi, 2014), such
as identifying misconceptions, evaluating the depth and logic of reasoning, and assessing both
mathematical accuracy and fluency. In addition, designing feedback often requires multiple
steps, such as aligning with learning goals, monitoring progress, and providing actionable next
steps (Barabasheva, 2021). Traditionally, teachers invest considerable time and effort to deliver
effective feedback that is tailored to students’ needs and contextualized within specific instruc-
tional settings (Shute, 2008).

Assessing open-ended responses presents unique challenges across disciplines, but this is
particularly pronounced in mathematics, where student work is often concise and blends sym-
bolic language, notations, and visuals (Baral et al., 2023). These practical difficulties are also
reflected in the ASSISTments platform, where a decline in teachers’ use of open-ended ques-
tions has been observed over time (Baral et al., 2021; Erickson et al., 2020). Even when open-
ended tasks are assigned, few are followed by teachers’ feedback or grading, suggesting that
open-ended formats remain under-utilized despite their instructional value. Addressing these
challenges requires advancing methodologies that better support teachers in interpreting and

4
4 Journal of Educational Data Mining, Volume 17, No 2, 2025



responding to open-ended student work.

2.3. CONSIDERATIONS FOR OPERATIONALIZING TEACHER FEEDBACK

To support teachers in scaling high-quality feedback, it is essential to understand how feedback
functions in authentic classroom contexts and to identify certain types of feedback that are both
pedagogically meaningful and potentially applicable more broadly (Kwon et al., 2006; Munroe,
2015). In research, two main approaches are commonly used to operationalize feedback: theory-
driven taxonomies developed deductively from prior literature and coding schemes developed
inductively from empirical data. While both approaches offer valuable insights, each is not
without methodological limitations.

First, taxonomies can be developed deductively from theory-driven frameworks, which offer
structured ways to conceptualize feedback based on established literature. For example, Hattie
and Timperley (2007) described four feedback levels (i.e., task, process, self-regulation, and
self) while Yang and Carless (2013) expanded the concept to include cognitive, social-affective,
and structural dimensions, considering not only feedback content but also the broader feedback
processes. More recently, Ryan et al. (2021) proposed a learner-centered framework that focuses
on how effective feedback involves actionable components for students. While valuable, these
frameworks may not fully capture the full complexity of feedback content and instructional
strategies, which are often shaped by teachers’ different judgment, norms, and commitments
(Meier et al., 2006; Thompson and Senk, 1998).

Second, data-driven approaches often develop coding schemes inductively, grounding them
in the specific context of the study. This is particularly common in the design of agents that
deliver real-time feedback in computer-based learning environments, where frameworks are de-
rived from patterns in annotated corpus data. For example, Boyer et al. (2008) categorized feed-
back into cognitive types (e.g., positive, lukewarm, negative) and motivational types (e.g., praise,
reassurance), while Grawemeyer et al. (2017) expanded the typology to include task-oriented
strategies such as reflective prompts and think-aloud support. Similarly, Cheng, Hampton, and
Kumar (2022) identified both domain-general suggestions and domain-specific comments on
content and presentation in human-delivered feedback. Although these inductive approaches
are grounded in empirical data, they often reduce multiple coder perspectives to a singular in-
terpretive lens (Saldaña, 2021), which may obscure alternative conceptualizations of feedback.
In many cases, codes are treated as mutually exclusive despite evidence that feedback often
embodies overlapping instructional and affective functions (Cheng et al., 2022). A more criti-
cal limitation concerns the potential disconnect between researchers who develop frameworks
and teachers who implement them. As Coburn and Turner (2012) noted, even carefully con-
structed coding schemes may fail to align with the interpretive stances or pedagogical goals of
practitioners, limiting their applicability in real-world classrooms.

As such, there is a need for a taxonomy that provides a shared language and a consistent
interpretive framework across feedback agents, including students, teachers, and technological
systems. To address the limitations outlined above, such a taxonomy should be firmly grounded
in empirical evidence, co-developed by both researchers and practitioners serving as coders, and
guided by a methodological approach that accounts for variation in interpretation. A taxon-
omy constructed through a contextualized and systematic analysis of feedback can preserve the
richness and nuance of teacher practice while offering a structure that is interpretable to those
involved in the design and implementation of assessment tools. More broadly, a taxonomy de-
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veloped with methodological consideration for replicability has the potential to inform a wider
audience. By supporting more generalizable approaches to analyzing, evaluating, and generat-
ing feedback, the resulting taxonomy can contribute to a deeper understanding of how feedback
mechanisms operate across diverse contexts and educational systems.

Our investigation is guided by three research questions:

• RQ1. How do perceptions and judgments of feedback characteristics vary among individ-
uals with different backgrounds and experiences?

• RQ2. What underlying factors emerge across varying perceptions and judgments of the
feedback characteristics?

• RQ3. What types of feedback emerge from the measured factors?

3. METHODOLOGY

3.1. STUDY CONTEXT

This study is situated in ASSISTments (Heffernan and Heffernan, 2014), a free, web-based
learning platform for K-12 mathematics education. Combining traditional classroom teaching
methods with online educational materials and interactive problem-solving activities, the AS-
SISTments platform is used by more than 20,000 teachers across the United States (Feng et al.,
2023). The assignments often contain a combination of closed-ended and open-ended ques-
tions. While closed-ended questions are automatically assessed in ASSISTments, open-ended
problems require teachers to manually review student responses and provide written (or textual)
feedback.

Specifically, we collected data from QUICK-Comments, a teacher-augmentation tool de-
signed to support teachers in assessing open-ended student responses within the ASSISTments
platform (Botelho et al., 2023). As shown in Figure 1, this tool allows teachers to select from
a repository of pre-authored comments, which has been tailored to address common student er-
rors or misconceptions. By streamlining the feedback process without compromising quality,
QUICK-Comments allows teachers to efficiently deliver personalized, timely feedback while
supporting a dynamic and responsive learning experience for students.

3.2. DATASET

The dataset1 we use in this study focuses on middle school mathematics and encompasses widely
used open-response mathematics curricula. The dataset consists of 8,307 open-ended mathemat-
ics problems and 193,187 total responses from 23,853 different students. These open responses
from the students were evaluated by their mathematics teachers, who assigned scores on a 5-
point integer scale ranging from 0 to 4, with 0 being the lowest and 4 the highest. In addition to
numeric scores, each student response was accompanied by teacher-authored textual feedback.
A total of 1,296 teachers contributed to the full dataset.

For the present study, we randomly sampled 100 student responses and their associated feed-
back messages in two separate rounds. Both samples were used to iteratively develop and refine

1While our data cannot be publicly shared, all analysis code, as well as instructions for establish-
ing a data sharing agreement, are provided through OSF: https://osf.io/puhyr/?view only=
514d8534e9be41d9a57ad82e9efb3249
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Figure 1: A screenshot of the QUICK-Comments interface in ASSISTments

the coding scheme, and the second sample, once fully coded, served as the basis for the analysis
reported in this paper. This analytic subset includes responses evaluated and annotated by 57
different teachers and drawn from 97 unique students, reflecting a wide range of performance
levels. Approximately 14% of responses received a score of 0, 10% a score of 1, 25% a score of
2, 23% a score of 3, and 28% a score of 4.

3.3. DEVELOPING THE CODING SCHEME

To understand and characterize different pedagogical dimensions exhibited through teacher-
authored feedback messages, we developed a coding scheme through an iterative, expert-informed
process. Three researchers from diverse cultural backgrounds in learning sciences and educa-
tional technology participated in the initial development of the codebook. One researcher drafted
a preliminary set of codes, descriptions, and examples based on the sample dataset. Drawing
from a previously developed feedback framework (Cheng et al., 2022), initial coding included
positive and negative affect, criticism, question, correction, explanation, suggestion, and state-
ment.

Two researchers independently applied this initial codebook to a sample of 100 teacher feed-
back messages. They then met to discuss disagreements and revise the codebook to incorporate
additional types of feedback identified through coding. A second round of coding was conducted
on another randomly sampled set of 100 feedback messages, followed by further reconciliation
and refinement; Kappa scores were not calculated during these early iterations, with discussion
around each sample instead taking place to confirm and understand reasoning behind both in-
stances of agreement and disagreement. The researchers expanded the codebook by adding new
codes and clarifying definitions to improve comprehensiveness.
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Table 1: description of different feedback characteristics used for qualitative coding

Feedback Characteristic Description
Personal Individualized feedback that particularly calls upon a stu-

dent’s name.
Confirmation Acknowledges or affirms the correctness or accuracy of a

student’s response to a question.
Generic Broadly applicable feedback that is not specific to any par-

ticular mathematics topic or concept.
Specific Addresses a particular mathematics topic, question, or de-

tails about a student’s mathematics work.
Positive Affect Evokes positive emotions, attitudes, or feelings in the stu-

dent with encouraging positive messages.
Negative Affect Evokes negative emotions, attitudes, or feelings in the stu-

dent with negative and discouraging messages.
Criticism Offers a critical assessment of a student’s work, highlight-

ing errors and shortcomings. These types of feedback are
factual negative comments.

Emoji Use of emoticons or graphical symbols, such as smiley
faces in the feedback, to convey a teacher’s emotional state.

Explanation Elaborate and informative explanations to help a student
better understand a concept and solve a problem.

Question Poses questions or follow-up inquiries to the student to en-
courage him or her to think critically or understand their
processes better.

Correction Identifies and rectifies errors in the student’s work, high-
lighting inaccuracies in the answer and offering guidance
on correcting them.

Mathematical Sugges-
tions

Recommendations or advice related to mathematical con-
cepts, reasoning, or problem-solving strategies.

Learning Strategy Sug-
gestion

Provides suggestions on how to improve the student’s learn-
ing approaches, study habits, and techniques.

Hints Provides hints or subtle clues for the next steps without giv-
ing away the answer.

Example Response Includes a sample or model response to a given question.
Follow-up Teacher asks the student to follow up with them in person.
No Mathematics Feedback which indicates the mathematics work is either

missing or not shown.
Student Explanation Feedback that asks for further clarification or explanation of

the work.
Other Any other feedback that doesn’t fall into the above-

mentioned types.
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3.4. APPLYING CODING SCHEME

Following these iterations, a group of six expert coders was established to independently code
a new random sample of 100 feedback messages using the updated codebook (see Table 1).
This group included three researchers (two of whom were those who established the codebook)
and three mathematics teachers with over 20 years of teaching experience, all of whom had
some familiarity with the learning platform used in this study. Among the six coders, two
researchers identified as Asian, while the remaining four (including the three teachers) identified
as American.

In approaching the coding task, it is important to note that coders were encouraged to ap-
ply the codes based on how they interpret both the feedback messages and description of the
feedback characteristics which form the codebook; their goal was to incorporate their individual
perspectives in interpreting both the teacher-authored feedback as well as how each characteris-
tic may be represented within each message.

Table 2 presents the Fleiss’ Kappa values for each feedback feature, computed separately for
the research team, the teacher experts, and the combined group of all six coders. As described
in our research questions, it is important to reiterate that the purpose of this calculation is not
to validate the coding scheme, but to use this as an initial measure to identify differences in
perspectives across coders. We expand on how the level of agreements also varied depending on
the nature of the specific code in the subsequent section.

Table 2: The Fleiss’ kappa among the set of coders for each feature

Research Team Teacher Experts Combined
Personal2 — -0.096 —

Confirmation 0.277 0.470 0.457
Generic 0.608 0.073 0.354
Specific 0.270 0.096 0.253

Positive Affect 0.888 0.644 0.748
Negative Affect -0.020 0.437 0.250

Criticism 0.537 0.385 0.405
Emoji 0.906 1.000 0.955

Explanation 0.521 0.548 0.527
Question 0.812 0.518 0.704

Correction 0.438 0.409 0.363
Mathematical Suggestions 0.411 0.262 0.337

Learning Strategy Suggestion 0.362 0.127 0.201
Hints 0.023 0.104 0.133

Example Response 0.176 0.472 0.312
Follow-up 0.240 0.427 0.418

No Mathematics 0.625 0.385 0.463
Student Explanation 0.213 0.363 0.259

Other 0.415 0.245 0.313

2Fleiss’ Kappa for this code was computed for the teacher group but is undefined for the research team and
combined groups, as no researcher applied the code.
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3.5. CORRELATION ANALYSIS

Building on the qualitative coding, we conducted a correlation analysis to answer RQ1 (How
do perceptions and judgments of feedback characteristics vary among individuals with different
backgrounds and experiences?). Given that the data were not normally distributed, we used
Spearman’s rank correlation as our analytical method (Hauke and Kossowski, 2011). We com-
puted correlations within each group, first among the researchers, then among the teachers, and
finally across all six coders combined. This comparative analysis enables us to examine how
background factors such as disciplinary expertise and cultural experience may influence percep-
tions of feedback characteristics. Additionally, we analyzed the average of the ratings for each
feature across coders, which serves as a middle-ground representation of consensus.

3.6. FACTOR ANALYSIS

To address RQ2 (What underlying factors emerge across varying perceptions and judgments of
the feedback characteristics?), we conducted an exploratory factor analysis (EFA) to uncover
latent dimensions underlying the coded feedback characteristics. Of the original 114 variables
derived from 19 feedback codes independently applied by six coders, six of them (i.e., “Per-
sonal” (N=4), “Negative” (N=1), and “Generic” (N=1)) contained null values throughout and
were removed from this analysis, leaving 108 variables for analysis. In conducting our EFA, we
intentionally made no prior assumptions about the relationships among the 114 variables that re-
sulted from the 19 codes across the six coders. Instead, we treated each set of codes as uniquely
distinct variables, thereby allowing the constructs to naturally emerge across different lenses
of three researchers and three teachers. The number of factors was identified by using parallel
analysis, which suggested a 12-factor solution. Based on this, we performed a Minimum Rank
Factor Analysis (MRFA) with Promax rotation.3

3.7. CLUSTER ANALYSIS

While the factor analysis revealed latent dimensions underlying teacher feedback, it remained
unclear how these dimensions might form higher-order feedback types. To explore the higher-
level structure of teacher feedback, we conducted a K-means clustering analysis using the fac-
tor scores from the previous analysis as input features. K-means is an unsupervised machine
learning algorithm commonly used in exploratory analyses to identify underlying patterns in
high-dimensional data. A key step in clustering is determining the optimal number of clusters
(k). We used the silhouette method to evaluate multiple values of k, selecting the number that
yielded the highest average silhouette width. In parallel, we also manually explored a range of
cluster sizes to ensure that the resulting clusters were interpretable and meaningfully distinct.
From this, 10 clusters emerged from our analysis. To aid interpretation, we renamed the ten
resulting clusters to reflect their defining feedback characteristics. The clusters are visualized
in Figure 4 as a heatmap, where columns represent normalized factor scores (via z-scores), and
rows represent cluster averages for each feature.

3We used the EFA.MRFA package by Navarro-Gonzalez and Lorenzo-Seva (2021).
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4. RESULT

The goal of this study was to construct a taxonomy of teacher feedback by using data mining
methods to account for both the structural complexity of authentic data and the variability in
coder perspectives. This section addresses each research question by focusing on how each
stage contributed to a nuanced understanding and measurement of distinct feedback types.

4.1. RESULTS OF THE CODING AND CORRELATION

As shown in Table 2, while the research team generally showed higher agreement than the
teacher experts, we found weak agreement with combined kappa values below 0.30 for certain
codes, such as “Specific,” “Learning Strategy Suggestion,” and “Hints.” Also, we observed
strong agreement among all coders for “Emoji” and “Positive Affect,” as these codes are oper-
ationalized in ways that make them more directly observable than others. Interestingly, teacher
experts achieved stronger alignment within their group on a few features, such as “Negative Af-
fect” and “Example Response,” suggesting that professional teaching experience may influence
how certain types of feedback are perceived.

In the correlation analysis, we further examined similarities and differences between each
coder group (i.e., researchers, teachers, combined) in the coding process. Figure 2 presents the
pairwise correlations with stronger positive relationships visualized in bright green and yellow,
and stronger negative associations in dark blue. For all coder groups combined, we observed
strong positive correlations between several codes, suggesting that some codes commonly co-
occur in practice. For instance, correlations between “Confirmation” and “Positive Affect,”
suggest that when teachers affirm the correctness of a student’s response, such feedback is often
perceived as emotionally supportive. Similarly, “Mathematical Suggestions” and “Hints” were
positively correlated, indicating that teachers’ mathematical advice is often framed as scaffolds
to support student understanding.

4.2. RESULTS OF THE FACTOR ANALYSIS

We identified 12 underlying factors which emerged from across the 114 codes (i.e., 19 charac-
teristics times 6 coders). The results are presented in Figure 3, where each bar plot displays
the highest-loading characteristics within a given factor. Most codes were loaded onto a factor
with one or more other codes, with a few exceptions (i.e., Factors 3, 4, 6, and 12). For instance,
six variables of the same code “Emoji” showed loadings higher than 0.8 for Factor 3. Simi-
larly, Factor 4 had strong loadings from five variables of code “Question,” Factor 12 had strong
loadings from six variables of “Other,” and Factor 6 of “Explanation,” suggesting high internal
consistency. Notably, Factor 9 had strong loadings from five variables of “Criticism” and three
of “Negative Affect,” indicating a potential overlap in how these codes are applied despite the
differences in how they were initially operationalized. In Section 5, we discuss the remaining
factors with loadings from different codes in relation to the research questions and how they
contribute to the mapping the complex structure of feedback.

4.3. RESULTS OF THE CLUSTER ANALYSIS

As shown in Figure 4, we identified 10 clusters, each representing a distinct type of feedback
content. To characterize these clusters, we report their most salient defining features, as repre-
sented by factor loadings from the exploratory factor analysis. These factors highlight patterns
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Figure 2: Correlation among the feedback characteristics (a) for the three researchers, (b) for the
three teachers, and (c) for the six coders combined

that are more pronounced within a given cluster relative to others. We present the clusters in
descending order of size, reflecting the relative prevalence of each feedback type in the dataset.

As the largest cluster with 26 observations, Cluster 9 was defined by high values of Factor
11 “Example Provision” and Factor 6 “Explanation,” indicating a strong emphasis on providing
students with concrete examples and detailed explanations to support conceptual understanding.
The second-largest cluster was Cluster 10, with 16 observations. This cluster was marked by a
positive value of Factor 1 “Positive Affirmation” and a negative value of Factor 2 “Specificity,”
suggesting that this type of feedback is rich in encouragement and emotional support but lacks
actionable guidance.

Next, five clusters had a comparable number of observations. Cluster 2 was characterized
by Factor 5 “Follow-up Prompting,” Factor 1 “Positive Affirmation,” and Factor 2 “Specificity,”
suggesting a feedback type that is sufficiently supportive but defers full clarification by asking
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Figure 3: Factor loadings of each feedback dimension as coded by researchers and teachers

students to follow up in person. Cluster 3 involved Factor 7 “Suggestive Hinting,” Factor 9
“Critique,” and Factor 2 “Specificity,” indicating a feedback strategy that scaffolds student un-
derstanding through subtle guidance without explicitly providing answers. Cluster 6 was distin-
guished by Factor 10 “Strategy Correction” and Factor 8 “Justification Prompting,” suggesting
feedback to enhance students’ problem-solving approaches by encouraging them to explain their
reasoning. Cluster 1 had high positive values of Factor 9 “Critique,” Factor 12 “Convention-
ality,” and Factor 2 “Specificity,” but high negative values of several features, such as Factor
4 “Inquiry,” Factor 5 “Follow-up Prompting,” and Factor 6 “Explanation.” This feedback type
shows a traditional focus on identifying errors, but with minimal scaffolding. In comparison,
Cluster 5 had a high positive value for Factor 4 “Inquiry,” indicating the use of rhetorical ques-
tions to encourage critical thinking and promote deeper student reflection.

The other clusters are composed of relatively few observations. Cluster 4, with four obser-
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Figure 4: A heatmap of 10 clusters based on the factor scores as input features

vations, showed high values of Factor 3 “Use of Emoji” and Factor 1 “Positive Affirmation,”
indicating a heavy reliance on non-verbal emotional cues to convey encouragement. Cluster 7,
based on a single observation, had negative values across all features, most notably in Factor 8
“Justification Prompting,” Factor 1 “Positive Affirmation,” and Factor 11 “Example Provision.”
Similarly, Cluster 8, with two observations, had negative values across multiple features, with
particularly low values in Factor 12 “Conventionality” and Factor 9 “Critique.” While the small
sample sizes in these clusters warrant caution in interpretation, they may represent emerging
feedback strategies that were not fully captured by our coding scheme.

5. DISCUSSION

This study demonstrates the use of data mining methods to identify key types of teacher feed-
back on students’ open-ended responses. Across our analyses, we established a set of feedback
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clusters that were derived from a set of factors underlying our 19 coded feedback characteristics.
This section examines these results in the context of our three research questions.

5.1. RQ1. HOW DO PERCEPTIONS AND JUDGMENTS OF FEEDBACK CHARACTERIS-
TICS VARY AMONG INDIVIDUALS WITH DIFFERENT BACKGROUNDS AND EXPERI-
ENCES?

Notable variations emerged between how our two groups coded. Overall, divergent interpre-
tations were more pronounced for context-dependent codes such as “Hints” compared to more
clear-cut codes like “Question.” However, certain context-dependent codes, such as “Nega-
tive Affect” and “Example Response,” exhibited higher agreement among teacher coders than
among researchers. Given that researchers were involved in the initial code development, such
discrepancies suggest that the variations may reflect domain-specific experiences rather than
coder training alone. This finding aligns with prior research indicating that teachers often rely
on distinct rubrics shaped by their professional knowledge and experience (e.g., Meier et al.,
2006), further reflecting how coders’ individual interpretations of the coding schema and the
given data can influence coding practices (e.g., Belur et al., 2021).

Several distinct correlation patterns were observed between researchers and teachers. Within
the researcher group, “Specific” was strongly correlated with both “Correction” and “Explana-
tion,” whereas in the teacher group, “Mathematical Suggestions” was correlated with both “Spe-
cific” and “Explanation.” One interpretation of this difference is that researchers consider speci-
ficity in terms of the extent to which feedback helped clarify students’ understanding through
corrective or elaborated feedback. Teachers, by contrast, focus on the degree of mathemati-
cal relevance and details in feedback to promote students’ mathematical knowledge and skills.
Differences also emerged in how researchers and teachers qualitatively coded “Student Explana-
tion.” Among researchers, this code was most strongly associated with “Learning Strategy Sug-
gestion,” indicating a focus on guiding students toward effective problem-solving approaches.
For teachers, it correlated more with “Question” and “No Mathematics,” reflecting an emphasis
on prompting students for further clarification or identifying missing mathematical content.

Overall, the findings suggest that each group’s interpretative lens is shaped by their pro-
fessional backgrounds and experiences. For researchers, the emphasis was on the diagnostic
function of feedback, while for teachers, it centered on pedagogical design underlying the feed-
back. Understanding these differences offers a more nuanced perspective on how feedback is
constructed and interpreted by different stakeholders, providing a foundation for more compre-
hensive frameworks that can bridge these perspectives in future research and practice.

5.2. RQ2. WHAT UNDERLYING FACTORS EMERGE ACROSS VARYING PERCEPTIONS
AND JUDGMENTS OF THE FEEDBACK CHARACTERISTICS?

The factor analysis revealed several groupings of codes with strong loadings, suggesting that
latent constructs formed by different codes can provide insights into how distinct features com-
bine and contribute to a nuanced understanding of feedback. Three factors had two or more
codes loaded with primarily positive values (i.e., Factors 5, 8, and 9). For example, Factor 5,
which we refer to as Follow-up Prompting, included “Follow-up” (N=7) and “No Mathemat-
ics” (N=3), suggesting that feedback at this dimension involved teachers taking a more proactive
measure to address significant lack of mathematical work in students’ response. Similarly, Fac-
tor 8 Justification Prompting included “No Mathematics” (N=6) and “Student Explanation”
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(N=4), suggesting that this dimension of feedback encourages students to articulate reasoning
when their responses are under-developed.

Several factors had both positive and negative loadings, indicating inverse relationships
among codes within the construct. In some cases, these relationships were consistent with the
underlying logic of the coding scheme. For instance, Factor 1 Positive Affirmation included
strong positive loadings from “Positive Affect” (N=6) and “Confirmation” (N=5) and negative
loadings from “Correction” (N=2). Similarly, Factor 2 Specificity had positive loadings from
“Specific” (N=5) and “Confirmation” (N=3) and negative loadings from “Generic” (N=4). Inter-
estingly, Factor 10 Strategy Correction had strong positive loadings from “Negative Affect”
(N=4), and “Learning Strategy Suggestion” (N=3), suggesting that this dimension of feedback
involves teachers recommending strategic learning approaches, often prompted by a negative
evaluation of the student’s response.

In other cases, the inverse relationships among codes highlighted subtle distinctions between
constructs that likely reflect different instructional goals. For example, Factor 7 Suggestive
Hinting included positive loadings from “Mathematical Suggestions” (N=4) and “Hint” (N=3)
but negative loadings from “Explanation” (N=2). On the other hand, Factor 11 Example Pro-
vision included positive loadings from “Example Response” (N=6) and negative loadings from
“Hint” (N=2). The different directions of loadings for hint underscores how it functions as a
more indirect form of support without explicitly providing the near-complete solution.

5.3. RQ3. WHAT TYPES OF FEEDBACK CONTENT EMERGE FROM THE MEASURED
FACTORS?

As part of our initial goal, we present a taxonomy with 10 distinct types of feedback content that
teachers provide in the context of middle school mathematics. Table 3 summarizes each cluster
using descriptive labels that characterize the feedback type and provides illustrative examples
drawn from the dataset. This data-driven taxonomy illustrates how core dimensions of teacher
feedback can combine to reveal distinct patterns of instructional practice.

The majority of the feedback centered on various forms of scaffolding, or strategies ori-
ented towards playing a facilitative role, such as “Hinting,” “Rhetorical Question,” “Show Your
Work,” and “Worked Example.” These strategies can be used to prompt students to rethink their
problem-solving processes by respectively posing thought-provoking questions, requesting ex-
planations of their thought processes, or presenting exemplars. This categorization offers a more
nuanced perspective than Shute (2008), which broadly frames elaborated feedback as guidance
that directs learners without explicitly presenting the correct answer. However, it similarly in-
cludes prompts, hints, and examples as different ways of guiding students’ next steps.

Another set of feedback types includes different types of responses regarding the correct-
ness of student answers. For example, “Direct Correction” focuses on identifying specific errors
and providing corrective guidance. While this type of feedback may provide limited opportuni-
ties for deeper reflection, it can offer more concrete direction than other types such as “Direct
Critique” or “Generic Comment,” where lack of specificity can add uncertainty, frustration, or
cognitive load on students (Shute, 2008). Affirmation feedback is further differentiated into
“Targeted Affirmation,” “Non-specific Positivity,” and “Non-verbal Affirmation,” each varying
in its degree of specificity or modality. Rather than treating all correctness-related feedback as a
single category as in Narciss (2013), our taxonomy delineates subtle distinctions between these
subtypes.
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Table 3: A taxonomy of feedback types with illustrative examples

Cluster Type of Feedback Example
1 Direct Correction “Missing one X above 2 1/4.”; “You did not complete

the table.”
2 Targeted Affirmation “Good start, but you should include how many classes

the slope shows you can attend for that price.”
3 Hinting “Very nice drawing. Make sure you multiply the nu-

merator and denominator.”
4 Non-verbal Affirmation “:)”
5 Rhetorical Question “You are on the right track. What about the 6’s inside

the boxes in the tape diagram?”
6 Show Your Work “Show what you were thinking. You can use the cor-

rect answer to help you show the work for the correct
answer.”

7 Generic Comment “Keep trying.”
8 Direct Critique “You need to improve your explanation.”
9 Worked Example “12 is correct. You would get 3/12 + 2/12, which

would give you an answer of 5/12.”
10 Non-specific Positivity “Great job!”; “You got it!”

In summary, the taxonomy, grounded in authentic contexts, highlights subtle yet important
differences in how teachers confirm correctness, provide corrective guidance, or scaffold student
thinking, illustrating the nuanced ways feedback operates in practice.

6. IMPLICATIONS FOR RESEARCH AND PRACTICE

This taxonomy has implications for both research and practice. By categorizing feedback con-
tent in systematic and interpretable ways for both researchers and teachers, the taxonomy es-
tablishes a shared language to discuss, evaluate, and refine feedback practices. When integrated
into learning systems, the taxonomy can support teachers in delivering feedback that is not only
pedagogically meaningful but also more consistent, thereby reducing the variability often asso-
ciated with human-authored feedback at scale. Also, the taxonomy provides researchers with a
structured foundation to investigate the effects of specific feedback types on learning outcomes
and to examine their function across varied instructional contexts and student populations. By
fostering stronger alignment between research and practice, this taxonomy can support the de-
livery of feedback that is timely, pedagogically grounded, and responsive to the learner’s needs.

7. LIMITATIONS AND FUTURE WORK

This work has several limitations that can be addressed in future work. First, while the data were
drawn from a widely used learning platform, the scope of this study was confined to teacher-
written feedback in middle school mathematics. As the methodological approach taken in this
study offers a means for identifying broader patterns in feedback structure and developing a
data-driven taxonomy, future work can examine its generalizability to other subject areas, grade
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levels, and instructional modalities beyond web-based learning platforms. Broadening the scope
of inquiry in these directions would also strengthen the robustness of the taxonomy, and improve
its practical utility for both researchers and practitioners across diverse educational domains and
settings.

Second, this study considered potential differences in how various stakeholders, such as
researchers and teachers, interpret teacher feedback; however, it did not account for students,
who are the primary agents of learning. While this study focused on teacher-authored messages,
it is equally important to understand how students perceive and act on feedback (e.g., Ryan et al.,
2021). Future research should involve students in the design and evaluation process to ensure
that feedback is interpreted as intended and fulfills its purpose of serving learners. Given that
the effectiveness of feedback varies across students (Dawson et al., 2019), involving students
as stakeholders can help ensure that the feedback delivered, whether by teachers or AI, is both
interpretable and actionable, ultimately promoting student learning.

Finally, while this paper does not directly propose a system for automated feedback genera-
tion, it is motivated by the need to support scalable approaches to evaluating feedback through
a principled understanding of feedback types. One promising direction for future research con-
cerns the integration of large language models to support the generation and evaluation of feed-
back. Prior work has explored the use of natural language processing and clustering techniques
to facilitate scalable feedback and assessment (Basu et al., 2013; Brooks et al., 2014; Zhao
et al., 2017; Botelho et al., 2023). However, these systems often lack frameworks grounded
in human-in-the-loop design principles, which limits their interpretability and pedagogical rele-
vance (Bhutoria, 2022; Monarch, 2021). The taxonomy developed in this study provides an em-
pirically grounded foundation for informing the design and evaluation of LLM-based feedback
systems. Specifically, the identified feedback types may be used to guide prompt engineering,
fine-tuning objectives, or evaluation criteria, helping to ensure that generated feedback aligns
with authentic instructional goals and classroom practice.

8. CONCLUSION

In this paper, we proposed and implemented a discovery-oriented modeling pipeline for devel-
oping a taxonomy of teacher-authored feedback in response to open-ended mathematics prob-
lems. This study contributes to the growing conversation around scaling effective feedback in
the design of educational technologies. By allowing different teachers’ feedback types or their
interpretations to be represented as distinct features within our approach, our work seeks to pre-
serve the complex decision-making processes and perceptions involved in designing feedback.
We argue that this type of data-driven, context-aware taxonomy offers a practical foundation
for understanding and generating feedback at scale. In doing so, it supports the development
of AI-enhanced systems that can deliver feedback that is not only timely but also pedagogically
meaningful. As such, this study lays the groundwork for future work on feedback evaluation,
classification, and generation that reflects the realities of classroom teaching.
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