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An important dimension of classroom group dynamics & collaboration is how much each person con-
tributes to the discussion. With the goal of distinguishing teachers’ speech from children’s speech and
measuring how much each student speaks, we have investigated how automatic speaker diarization can be
built to handle real-world classroom group discussions. We examined key design considerations such as
the level of granularity of speaker assignment, speech enhancement techniques, voice activity detection,
and embedding assignment methods to find an effective configuration. The best speaker diarization sys-
tem we found was based on the ECAPA-TDNN speaker embedding model and used Whisper automatic
speech recognition to identify speech segments. The diarization error rate (DER) in challenging noisy
spontaneous classroom data was around 34%, and the correlations of estimated vs. human annotations
of how much each student spoke reached 0.62. The accuracy of distinguishing teachers’ speech from
children’s speech was 69.17%. We evaluated the system for potential accuracy bias across people of
different skin tones and genders and found that the accuracy did not show statistically significantly differ-
ences across either dimension. Thus, the presented diarization system has potential to benefit educational
research and to provide teachers and students with useful feedback to better understand their classroom
dynamics.

Keywords: speaker diarization, automatic speech recognition, automatic classroom analysis, group col-
laboration
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1. INTRODUCTION

In modern classroom learning, it is vital that students not only learn academic subjects such as
math, reading, and writing, but also develop broader critical thinking, communication, and col-
laborative learning skills (Fung et al., 2016). These skills are not limited to any particular subject
but permeate the entirety of students’ learning journeys. Instrumental for nurturing these skills
is to incorporate discussions into the classroom, either as whole-class interactions or in small
groups. Students who actively participate in these discussions tend to achieve better learning
outcomes than those who do not (Howard, 2015). Moreover, a strong correlation exists between
the frequency and quality of student talk during a lesson and student achievement (Sedova et al.,
2019). Asking, explaining, and discussing with others helps to stimulate students’ thinking and
to deepen their memory of the curricula. Thus, the amount of “talking time” for each student is
an important metric to analyze a student’s learning process.

Measuring classroom speech: Given the importance of fostering effective student collabo-
ration in group discussions, it could be beneficial for educators to automatically gauge students’
behaviors in classroom group discussions, both to facilitate large-scale research studies and to
provide learners with feedback. However, measuring classroom speech is challenging due to the
complexity of real-world classroom dynamics. Traditional methods of assessing classroom ac-
tivities, such as inviting experts into the classroom to observe and manually record discussions,
or relying on survey questionnaires, cannot provide a comprehensive assessment of students’
performance in group discussions (Quansah, 2018). These methods are labor-intensive, time-
consuming, prone to subjective biases, and therefore may lack accuracy and objectivity. Having
an automatic tool to assist the teacher in understanding each group’s discussions and evaluat-
ing students’ performance within each group would thus be highly valuable. Currently, deep-
learning-based methods have been widely applied to various aspects of automated classroom
analysis (Ramakrishnan et al., 2023; Sümer et al., 2021; He et al., 2024; Alharbi, 2023; Gazawy
et al., 2023; Thomas et al., 2024). In this work, we aim to implement automated classroom
speech analysis using deep learning techniques.

Speaker diarization for classroom discussion analysis: Modern deep-learning-based speech
analysis algorithms offer new ways to measure both the quality and quantity of classroom
speech, and they can help avoid some of the problems and risks associated with traditional
assessments. In particular, speaker diarization algorithms can automatically identify “who is
speaking when” (Anguera et al., 2012). Speaker diarization can assist educators in understand-
ing students’ level of participation and in assessing their communication and collaboration skills.
However, to date, there is a lack of research on how speaker diarization can be deployed in noisy,
real-world classrooms with the unscripted speech of children. Our paper seeks to help fill this
gap. Unlike other classroom analytic methods that require specialized hardware (e.g., one LENA
microphone for each child), our approach requires only a single table-top microphone for each
group, making it easier to deploy and less obtrusive.

Research contribution: This paper is an extension of the paper “Speaker Diarization in the
Classroom: How Much Does Each Student Speak in Group Discussions?” (Wang et al., 2024).
In the previous paper, we systematically explored the design and implementation of a robust
and accurate speaker diarization system capable of identifying speech segments and the corre-
sponding speakers during classroom group discussions. Due to privacy concerns, we focused on
locally deployable solutions rather than cloud-based diarization services. We presented a general
speaker diarization framework and described how it could be deployed in real-world classrooms
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to quantify each person’s contribution to a group discussion. Building on these achievements,
we extend our work in the following aspects. We employ a new dataset, the Casual Conversation
Dataset, to investigate whether the embedding model performs differently across various demo-
graphics. Additionally, we incorporate another public dataset, the National Center for Research
on Early Childhood Education Pre-Kindergarten Dataset (NCRECE), to validate the robustness
of the core idea and demonstrate another real-world application.

The significance of this research lies in its potential to drive changes in educators’ class-
room management and student assessment methods. Firstly, automated speech recognition and
speaker identification processes alleviate teachers’ burdens in classroom supervision, enabling
them to devote more time and energy to fostering meaningful discussions and interactions with
students. Secondly, the objective data collected through automatic assessment methods provide
educators with a more comprehensive and objective basis for evaluating students’ performance,
promoting fairness and effectiveness in educational practices. Furthermore, since each student
is a unique individual, the detailed feedback provided by the system for each student enables
educators to offer personalized guidance.

Outline: In the following sections, we will first introduce the related work in this field in
Section 2, and then describe the three datasets we use in this study in Section 3. Section 4 will
present the proposed framework, and in Section 5 we will provide the details of the experiments
and the results. Section 6 includes an evaluation of bias for the framework. Sections 7 and 8
present two real-world applications of the proposed framework.

2. RELATED WORK

2.1. SPEECH ANALYSIS OF CLASSROOM INTERACTIONS

There are numerous applications of speech processing methods in educational data mining and
learning analytics. Beccaro et al. (2024) utilized speaker diarization as the core method to build
a speech processing model to assess student performance and engagement during oral exams.
They then examined the correlation between the emotional expressions of the students during
speech and their final scores on the oral exam. Gomez et al. (2022) also employed speaker
diarization for classroom analysis, which is a similar application to ours. They confronted the
same challenges we faced, such us limited data with substantial noise. Instead of using deep
learning methods, they addressed the problem using a physical-based model and virtual micro-
phones. They computed the spatial information of the speakers based on speaker geometry and
estimated the room impulse responses (RIRs). Ultimately, they predicted the speakers based on
the cross-correlation matrix calculated from the RIRs. Olney et al. (2017) utilized SMOTEBoost
to tackle the issue of imbalanced data across different categories when automatically assessing
the dialogic properties of classroom discourse in real classrooms.

Cao et al. (2023) investigated the impact of automatic speech recognition (ASR) errors on
the analysis of collaborative classes and provided constructive suggestions for optimizing group
discourse modeling tasks. Dutta et al. (2022) proposed a translation framework that applied
ASR to track the conversational speech of preschool children. Kelly et al. (2018) applied ASR
to detect authentic questions in the classroom to support improvements in teaching effectiveness.
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2.2. SPEAKER DIARIZATION

Speaker diarization aims to automatically identify “who speaks when” within an input audio
(Park et al., 2022). There are various mature methodologies to achieve this, including fea-
ture embeddings (Rouvier et al., 2015), speaker modeling (Reynolds et al., 2000; Markov and
Nakamura, 2008), segmentation and clustering algorithms (Landini et al., 2022), as well as
end-to-end methods (Zhang et al., 2022; Fujita et al., 2019; He et al., 2022). In recent years, an
increasing number of approaches based on deep learning models have been proposed for speaker
diarization. Desplanques et al. (2020) used an Emphasized Channel Attention, Propagation and
Aggregation (ECAPA) deep learning model based on the Time-Delay Neural Network (TDNN)
system, named ECAPA-TDNN. In this model, they applied architectural enhancements, addi-
tional skip connections, and channel attention to improve performance. Chen et al. (2022) pro-
posed WavLM to solve full-stack downstream speech tasks. It employs gated relative position
bias for the Transformer structure and jointly learns masked speech prediction and denoising
during pre-training. WavLM achieves state-of-the-art performance on the CALLHOME speaker
diarization benchmark. Finally, Amazon (Amazon, 2021), Google (GoogleCloud, 2021) and
other companies offer cloud-based diarization services. However, for many schools, these ser-
vices are unacceptable due to privacy concerns.

3. DATASETS

There are three datasets involved in this study: the Sensor Immersion Dataset, which is utilized
to explore the architecture and configurations of the speaker diarization framework; the Casual
Conversation Dataset, which is employed to assess potential biases in the proposed framework;
and the National Center for Research on Early Childhood Education Pre-Kindergarten Dataset
(NCRECE), which is used in one of the real-world applications.

3.1. SENSOR IMMERSION DATASET

As in our previous study, we used the Sensor Immersion Dataset (Southwell et al., 2022) for
the diarization task here. This dataset includes both enrollment audio and test audio. Sensor
Immersion was collected “in-the-wild” from middle- and high school classrooms in the western
United States (see Figure 1). It consists of 32 audio recordings, each approximately 5 minutes
long. All recordings are unscripted and contain authentic student interactions. Each audio was
recorded during a group discussion involving 2 to 4 students, who were discussing how to use
different sensors (temperature, moisture, CO2, etc.) to complete a collaborative science task.
Rather than providing each student with their own microphone, which was both inconvenient and
arguably intrusive to both teachers and students, we used omnidirectional table-top microphones
to record the audio. Due to the presence of multiple discussion groups within the same classroom
simultaneously, the audio recordings contain significant noise, including non-speech noise (e.g.,
traffic, air conditioners) as well as non-target speech noise from students in other groups. The
proportions of audio containing different numbers of simultaneous speakers are shown in Table
1.

3.1.1. Speaker Enrollment

Prior to each group discussion, the students in the group “enroll” themselves by recording a
sentence of their voice and stating their name. Each enrollment audio is at least 5 seconds long
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Figure 1: Classroom setup of our study, containing multiple groups of interacting students.

Table 1: Proportions of simultaneous speech from different numbers of speakers in the Sensor
Immersion Dataset.

# Speakers 0 1 2 3

Proportion 63.37% 35.02% 1.60% 0.01%
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and encompasses a short greeting and the student’s name. The goal is for each student to provide
a clean and brief (5-second) recording of only their speech, so that the diarization system can
learn what their voice sounds like. These enrollment audios are not part of the classroom group
discussion itself but are recorded beforehand. For each enrollment audio, there is only one
speaker, thus avoiding the case where multiple speakers are talking simultaneously. However,
it often still contains background noise. Each student possesses only one enrollment recording.
Teachers and other researchers in the classroom do not have enrollments and thus we treat their
speech as noise. If their enrollments were available, it would be straightforward to detect their
speech.

3.1.2. Annotation

All of the audios in our dataset were manually labeled for “who-spoke-when”. In particular,
each utterance spoken by a student was annotated with its start and end times, as well as the
content of what was said. These labels enable us to analyze how accurately an automatic speaker
diarization system can perform on the dataset.

3.1.3. Challenges

In the Sensor Immersion setting, students were divided into groups of two to four people, and
each group was recorded by a table-top omnidirectional microphone. However, since all groups
were in the same classroom, each microphone captured not only the voices of its own group but
also the voices of the other groups. Furthermore, due to the limited amount of actual classroom
data (only 32 recordings), which were reserved for testing the system’s efficacy, we were unable
to use this data for training or fine-tuning models.

3.2. CASUAL CONVERSATION DATASET

Due to the lack of gender and skin tone labels for children in the Sensor Immersion Dataset,
we used alternative datasets to assess race and gender bias. We employed the Casual Conversa-
tion Dataset published by Meta (Hazirbas et al., 2022), which is “designed to help researchers
evaluate the accuracy of their computer vision and audio models across a diverse set of age,
genders, apparent skin tones, and ambient lighting conditions”. Gender labels in this dataset
were self-reported by participants as either male or female. We used skin tone labels as a proxy
for race and/or ethnicity, with the rationale that if there was bias across skin tones, there might
also be bias across race/ethnicity. The skin tones in this dataset were annotated by a group of
professionally trained annotators using the Fitzpatrick skin type scale (Fitzpatrick, 1988). Skin
tones were classified into six levels, ranging from light to dark, categorized as Type 1 to Type
6. The videos in this dataset were recorded in the United States. Participants in the videos were
asked random questions from a pre-approved list, and they provided their unscripted answers.
Each video was recorded independently, featuring only one participant. The audio was clear
with minimal noise. Occasionally, some audios contained the voice of the person asking the
questions, but this individual did not appear in the videos.

Due to the large scale of the entire dataset, which contained a total of 3011 speakers, we
selected a subset for bias evaluation. This subset comprised 78 speakers and the detailed distri-
butions of their skin tones and genders are shown in Table 2 and Table 3. The average length
of the audio was 68 seconds, with the longest being nearly 2 minutes and the shortest about 30
seconds.
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Table 2: Casual Conversation Dataset Speakers Distribution by Skin Tone Type

Skin Tone Type Speakers Number
1 8
2 17
3 17
4 2
5 12
6 22

Table 3: Casual Conversation Dataset Speakers Distribution by Gender

Gender Speakers Number
Female 44
Male 34

3.3. NATIONAL CENTER FOR RESEARCH ON EARLY CHILDHOOD EDUCATION PRE-
KINDERGARTEN DATASET

To explore the potential application of the proposed framework to a different age group, we in-
vestigated its performance in distinguishing teachers’ speech from children’s speech using the
National Center for Research on Early Childhood Education Pre-Kindergarten Dataset (NCRECE)
(Pianta and Burchinal, 2016; Pianta et al., 2017). This dataset is widely used in preschool class-
room analysis (Whitehill and LoCasale-Crouch, 2023; Yang et al., 2023).

Unlike the Sensor Immersion Dataset, NCRECE primarily captures interactions in early
childhood classrooms, focusing on a younger age group with children aged around 4 years old.
Consequently, teachers are the primary speakers in these classrooms, accounting for over 75%
of the speech. Moreover, students in this age group often have low awareness of rules and
exhibit more problematic behaviors, such as suddenly shouting or engaging in other disruptive
actions (Luczynski and Hanley, 2013). As a result, the audios are noisy, containing significant
background noise and instances of overlapping speech from multiple people.

3.3.1. Annotation

We randomly selected a subset of the NCRECE dataset and annotated based on text and audio
respectively.

Text-based Annotation: We first generated transcripts using Whisper large-v2, and then
split them into individual sentences. Annotators determined whether each sentence originated
from a teacher or a student based solely on the textual information of the sentence, without
listening to the audio or considering the surrounding context.

Audio-based Annotation: Following the initial step in Text-based Annotation, we utilized
Whisper to generate transcripts and obtained the corresponding timestamps for each sentence.
Then we extracted the audio clips of these sentences from the original audios. Finally, annotators
listened to each clip and labeled the speaker’s role (teacher or student) without any access to
textual information. If multiple speakers were talking simultaneously, the annotators assigned
the label based on the dominant speaker.

7
104 Journal of Educational Data Mining, Volume 17, No 1, 2025



Speech 
Embeddings

Student B Student A Student BPredictions Non-target 
Speech

Non-target 
Speech

Non-target 
Speech

Non-target 
Speech

Enrollments (Optional)

“Hi, this is my voice.” “Hello, this is me talking!”

Student A Student B

Input 
Audio

Speech 
Segments

Embedding Network Embedding Network

Voice Activity Detection System

Speech Segmenter… …

… …

…

…

Speaker Assignment

Voice Activity Detection System (Optional)

…

…

Figure 2: Speaker diarization framework

4. SPEAKER DIARIZATION FRAMEWORK

In our previous work, we outlined the general framework used to perform speaker diarization,
including various design variants we explored (Wang et al., 2024). The inputs to our speaker
diarization system are consistently (1) a single short audio “enrollment” clip (e.g., “Hi, my name
is [name] and this is my voice.”) from each student and (2) a test audio that the user wishes to
diarize. Our diarization system then proceeds through several phases (see Figure 2), as described
in the following subsections.

4.1. SPEECH ENHANCEMENT

Unconstrained audio recordings from table-top microphones in school classrooms, where multi-
ple simultaneous discussions among different student groups occur, can be highly noisy. Hence,
as an optional initial step, non-speech noise can be filtered out using a speech enhancement
system, for example, the SpeechBrain WaveformEnhancement, to improve speech quality (Ra-
vanelli et al., 2021).

For enrollments, we applied the enhancer directly to the original enrollment audios. For
test audio, we applied it only to the active speech segments obtained from the Voice Activity
Detection (VAD) system as described in the next section.

4.2. VOICE ACTIVITY DETECTION SYSTEM

Many automatic speech applications use Voice Activity Detection (VAD) to identify segments of
input audio that contain speech. In our diarization system, segments identified as not containing
speech by the VAD system were excluded from further processing and immediately classified as
“no speech” in our diarization system. Inevitably, some errors occur where segments with speech
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were incorrectly identified as “no speech”. These errors were reflected in the DER calculation
as missed detections.

We applied the VAD system differently to enrollments and test audio, as described below.

4.2.1. Enrollments

The enrollment audios in our study were often very noisy and included segments without speech.
To enhance the quality of the enrollment audio, we explored applying a VAD system to select the
most useful parts. Specifically, we used the SpeechBrain Convolutional Recurrent Deep Neural
Network (CRDNN) VAD model (Ravanelli et al., 2024) to identify speech segments with the
highest probability of containing speech.

4.2.2. Test audio

For processing the test audio, we explored three different methods to detect non-target speech:
Whisper ASR, non-target speech enrollments, and a secondary VAD system (either SpeechBrain
CRDNN or Silero (Silero Team, 2024)). We also tested combinations of these approaches, as
described below.

Whisper: In pilot experiments, we found that Whisper (Radford et al., 2023), an automatic
speech recognition system, could effectively serve as a VAD method. Whisper generated a list
of start and end timestamps for spoken sentences in any input audio, along with the estimated
transcript. These timestamps generally corresponded well to periods of speech throughout the
entire test audio. For our application, we ignored the transcript and utilized only the timestamps.
Using Whisper in this way was often beneficial for various downstream applications (e.g., in-
ferring who said what in a discussion group). Throughout this paper, Whisper large-v2 is used
unless a different version is specified.

Non-target speech enrollments: As an additional way to detect non-target speech moments
in the test audio, we compared extracted speech embeddings to an embedded audio of back-
ground noise. For each audio, we extracted a segment (≥ 5 seconds) containing no speech and
only background noise. This segment served as the “non-target speech enrollment”. Subse-
quently, this enrollment was treated on par with the enrollments of candidate speakers. Hence,
when using this approach, the enrollment set for each test audio comprised enrollments of all
speakers present as well as the non-target speech enrollment.

Secondary VAD method: We experimented with combining Whisper ASR as a first-stage
VAD method with a secondary VAD model (either SpeechBrain CRDNN or Silero). For each
test audio, we first applied Whisper for initial VAD, yielding intervals containing at least one
speaker. Subsequently, based on the start and end times of these intervals, we extracted cor-
responding segments from the test audio, referred to as Whisper-segments. These Whisper-
segments then served as inputs for the secondary VAD model (either SpeechBrain CRDNN or
Silero). In the second stage, the secondary VAD model processed the Whisper-segments and
computed the probability of speech for each segment, denoted as predspeech. If predspeech ex-
ceeded a predefined threshold, the segment was identified as containing at least one speaker,
and its corresponding intervals were saved for further embedding calculations. Conversely, if
predspeech fell below the threshold, the segment was immediately classified as “no speech”.

VAD threshold: For most experiments, we set the SpeechBrain CRDNN threshold to 0.8798,
selected through the following process. We calculated the averaged speech probability for seg-
ments contain at least one speaker, referred to as probact, and the average probability for seg-
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ments without any speaker, referred to as probde. The threshold for CRDNN was then defined
as the average of probact and probde.

When utilizing CRDNN for VAD in the test audio, CRDNN output a frame-level probability
for each audio chunk. We employed two approaches for using the VAD threshold. On the one
hand, we calculated the average probability across all frames in a segment and compared this
value to the threshold to determine if the segment contained speech. On the other hand, instead
of applying only one threshold, we applied two to detect the start and end times of speech,
named active threshold and inactive threshold. When the probability at a certain timestamp
exceeded the active threshold, speech was considered to have started. Subsequent probabilities
only needed to exceed the inactive threshold to maintain the detection of speech. If at any point,
the probability dropped below the inactive threshold, speech was considered to have ended.

Combination of VAD model and non-target speech enrollments: When employing both
VAD model(s) and non-target speech enrollments, we first utilized VAD model(s) to identify
intervals containing at least one speaker. Subsequently, these resulting intervals were then used
to extract the corresponding audio segments and obtain embeddings. For each embedding, we
calculated the cosine similarity not only with embeddings of all candidate speakers’ enrollments
but also with the embedding of a non-target speech enrollment. If the cosine similarity with
the non-target speech enrollment embedding was the highest, the segment was labeled as “no
speech”.

4.3. SPEECH SEGMENTER

For the detected speech sentences (represented in blue in Figure 2), we might either process
each sentence as a whole or divide them into fixed-length frames. When splitting into frames,
we used a frame width of 2 seconds and a step size of 0.75 seconds.

4.4. EMBEDDING NETWORK

The essence of any speaker diarization system is a function that maps a segment of speech
into an embedding space, where embeddings from the same speaker are close together and
embeddings from different speakers are far apart. For our model architecture, we used the
Emphasized Channel Attention, Propagation and Aggregation in Time Delay Neural Network
(ECAPA-TDNN) model (Desplanques et al., 2020), which, as of 2024, is state-of-the-art. We
used either an off-the-shelf (pre-trained) or a fine-tuned version of ECAPA-TDNN (see below)
to extract embeddings. ECAPA-TDNN can accept variable-length audio segments as input,
allowing it to be applied to either an entire Whisper-segment or individual frames extracted
from within a Whisper-segment. In addition to processing each segment of the test audio, we
also computed embeddings for each enrollment audio clip. Although we initially considered
using WavLM, pilot experiments showed its performance was inferior, so we did not pursue this
approach further.

For fine-tuning ECAPA-TDNN, we used a variety of public datasets containing children’s
speech, specifically the CUKids (Hagen et al., 2003) (118 hours from 1354 speakers), CSLUKids
(Shobaki, Khaldoun et al., 2007) (98 hours from 1118 speakers), and MyST (Pradhan et al.,
2023) (435 hours from 1300 speakers) datasets. Jointly, these datasets covered students aged 5-
16 and included both scripted and spontaneous speech. We fine-tuned the off-the-shelf ECAPA-
TDNN for 10 epochs at a learning rate of 0.0001.
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4.5. SPEAKER ASSIGNMENT

Given the embeddings extracted from each processed segment of input audio, the next step was
to assign speakers to these embeddings. Enrollments were optional in this process. When avail-
able, they allowed us to match embeddings to specific speakers and identify who they were;
otherwise, speakers were labeled generically, such as Speakeri. In the group discussions in
our dataset, multiple students occasionally spoke simultaneously. However, since these cases
occurred rarely (< 2% of the time), we ignored such possibilities and always assigned a speech
segment to a single speaker. There were two design questions for this process: when enroll-
ments were available, whether to assign embeddings to speakers using a “nearest enrollment”
vs. clustering; and the level of granularity at which the assignment was made.

4.5.1. Nearest Enrollment vs. Clustering

A common approach in speaker diarization is to calculate the cosine similarity between the
embedding of each test segment and each enrollment embedding, assigning the segment to the
speaker with the highest similarity score. Alternatively, since we are diarizing the entire input
audio offline, we can use a clustering approach. In contrast to the nearest enrollment methods,
clustering algorithms can sometimes harness the entire trajectory (over a classroom audio) of
embeddings to find a better centroid to represent each speaker (rather than just using the enroll-
ment as the centroid). Moreover, some algorithms, such as Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), can partition the embedding space into speaker groups
more flexibly than nearest-neighbors algorithms. In addition, speaker enrollments may not al-
ways be available. In such cases, clustering the embeddings, rather than assigning them based on
nearest enrollment, is essential. Therefore, we explored various clustering methods, including
k-means, agglomerative clustering, mean shift clustering and DBSCAN.

Clustering methods fall into two categories: those that require specifying the target number
of clusters (in our case, k-means and agglomerative clustering) and those that can estimate the
number of clusters automatically (in our case, mean shift clustering and DBSCAN). Given that
we know the number of students in each discussion group, we can set the number of clusters
equal to the number of speakers. In contrast, for the latter two clustering methods, we do not
initialize the target number of clusters prior to the experiment. After clustering, the Hungarian
algorithm is used to find the optimal matching between clusters and speakers. The embeddings
within the same cluster are assigned the same label.

4.5.2. Granularity of Assignment

The level of granularity at which we assign segments to speakers depends on the speech seg-
mentation method that was used (Section 4.3). If the audio is originally split into frames, we can
either assign each frame to a speaker, or (if using Whisper as VAD model) aggregate the frames
within each sentence to assign a single speaker to each sentence through one of several possible
voting mechanisms. Alternatively, we can compute an embedding for each entire sentence as
segmented by Whisper and directly assign each sentence to a speaker. Embedding each frame
has the possible advantage of capturing “purer” speech segments, as the likelihood of includ-
ing speech from multiple speakers is reduced. On the other hand, analyzing each sentence as
a whole leverages longer speech segments and the linguistic structure recognized by Whisper
(since it performs speech recognition).
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To aggregate the frames within each sentence, we have the following three voting mecha-
nisms.

Majority Vote: Given a sentence of speech comprising frames f1, . . . , fn, the embedding
model computes embeddings e1, . . . , en for each frame. Then, the cosine similarity between
each embedding i and the enrollment embedding of each candidate speaker is calculated; the
speaker with the highest cosine similarity si is selected as the predicted speaker pi for that
frame. Across all n frames within a sentence, we tally the occurrences of each speaker in the
predictions, and the speaker with the highest frequency is chosen as the final prediction for the
sentence.

When applying the Majority Vote method, we observed instances where certain frames had
the same prediction, but their corresponding cosine similarities with the candidate speakers var-
ied significantly. To better leverage these cosine similarity values, we developed the following
two methods.

Weighted Vote: This method utilizes all cosine similarity values s1, . . . , sn. After obtaining
the cosine similarity between each frame and each candidate speaker, we calculate the sum of the
cosine similarities for each candidate speaker across all frames. The speaker with the maximum
summed similarity is chosen as the prediction for the entire sentence. Here, the weight of each
frame is the product of its cosine similarity and frame length, allowing individual frames to
contribute variably to the final prediction.

Argmax Vote: This method focuses on the maximum cosine similarity value. After obtain-
ing the cosine similarity between each frame and each candidate speaker, we select the speaker
corresponding to pi∗ where i∗ = argmaxi si.

5. SPEAKER DIARIZATION FRAMEWORK: EXPERIMENT & RESULTS

We conducted experiments on different design configurations of the speaker diarization frame-
work presented in Section 4 to determine which works the best. The experiments in this section
used the Sensor Immersion Dataset.

5.1. EVALUATION METRIC

In this work, we employ the diarization error rate (DER) and the Spearman’s Rank Correlation
Coefficient (SCC) to guide the architecture and configurations search of the framework.

5.1.1. Diarization Error Rate

We evaluate accuracy using diarization error rate (DER) (Bredin, 2017), which measures the
fraction of the total audio length in which the set of speakers (as multiple people may speak
simultaneously) was incorrectly inferred by the model. This is computed as:

DER =
false alarm + missed detection + speaker confusion

total length of the audio

where false alarm represents the length of the duration where no one was speaking but the
model believed someone was, missed detection is the opposite, and speaker confusion means
that the inferred set of people was incorrect. Note that the inferred set must exactly match the
ground-truth set; otherwise, it is marked as a speaker confusion. For example, if speakers A
and B were talking, but the model identified only speaker A, this segment would be considered
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a speaker confusion. Since our speaker diarization framework always assigns speech segments
to individual speakers, it will always be penalized in DER for any segment where ground-truth
involves multiple speakers.

To compute DER over our entire dataset, we calculate DER for each test audio individually,
then take the weighted average of the DERs across all test audio with weights based on the
length of each test audio. For significance testing between different diarization methods, we use
paired t-tests across the 32 test audio.

The DER of the baseline model is 0.7575. The configurations of the baseline model include:
without speech enhancement, frame-based segmentation, pre-trained ECAPA-TDNN, CRDNN
for VAD, and nearest enrollment for speaker assignment.

5.1.2. Correlation Coefficients

We employ Pearson Correlation Coefficient (PCC) and Spearman’s Rank Correlation Coeffi-
cient (SCC) to measure the relationship between each speaker’s predicted speech proportion
and human annotations for estimating how much each student speaks (Section 7).

5.2. SPEECH ENHANCEMENT

We compared DER obtained with vs. without applying speech enhancement, as described in Sec-
tion 4.1. Configurations: whole enrollments; Whisper, Speechbrain CRDNN, and non-target
speech enrollments for VAD; sentence embedding; pre-trained ECAPA-TDNN; and nearest en-
rollment. Results: The model without speech enhancement achieved a DER of 0.3937, which
is statistically significantly better (p =0.0319) than the model with speech enhancement, which
had a DER of 0.4262.

5.3. SUBSELECTING ENROLLMENT AUDIO WITH VAD MODEL

We compared using the whole enrollment audio to compute the enrollment embedding for each
speaker with using only a fixed-length portion of each enrollment audio. The intuition is that
we might obtain a higher-quality embedding by computing it only on the “best” part of the en-
rollment audio, since pauses and volume variations may occur when recording, meaning the
original enrollment may not contain speech in every frame. Therefore, we aimed to select the
proportion of the original enrollment that had the highest probability of containing speech to
better reflect the speaker’s voice features. In particular, we selected the “best” fixed-length seg-
ment (2, 4, 8, 16, or 32 seconds) within each enrollment audio, based on the speech probability
output by the SpeechBrain CRDNN. First, we used the CRDNN to obtain the frame-level poste-
rior probabilities for the original enrollment audio, where a higher probability indicated a higher
likelihood of speech presence. We selected the maximum probability and recorded its corre-
sponding timestamp as Tpeak. Centered on Tpeak, we extracted a segment of specified length
as the “best” part of the enrollment. Finally, we extracted an enrollment embedding based on
only this portion of the enrollment audio. Configurations: without speech enhancement; Whis-
per, SpeechBrain CRDNN, and non-target speech enrollments for VAD; sentence embedding;
pre-trained ECAPA-TDNN; and nearest enrollment. Results: Using 4-second segmented en-
rollments achieved a DER of 0.3745 which is statistically significantly better (p =0.0073) than
the model using whole enrollments, which had a DER of 0.3937.
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5.4. DIFFERENT VAD METHODS

We compared different VAD methods and combinations. Specifically, we compared Speech-
Brain CRDNN with vs. without non-target speech enrollments. We also evaluated a two-stage
VAD system that used either Silero or CRDNN (with threshold of 0.9), in combination with
Whisper. Configurations: without speech enhancement; whole enrollments; sentence embed-
ding; pre-trained ECAPA-TDNN; and nearest enrollment. Results: CRDNN with non-target
speech enrollments was statistically significantly more accurate (DER 0.3937; p =7.3020 ×
10−9) compared to without them (DER 0.4792). This trend held across various VAD thresholds.
Additionally, when comparing Silero and CRDNN (each combined with Whisper as the VAD
model), Silero achieved a DER of 0.3689, while CRDNN achieved a DER of 0.3876. However,
this difference was not statistically significant (p =0.0989).

5.5. FRAME-BASED VS. SENTENCE-BASED PREDICTION

We compared frame-based assignment with four sentence-based assignment methods: sentence
embedding, Majority Vote, Argmax Vote, and Weighted Vote. Configurations: without speech
enhancement; whole enrollments; Whisper, SpeechBrain CRDNN, and non-target speech en-
rollments for VAD; pre-trained ECAPA-TDNN; and nearest enrollment.

Hyperparameter selection: The frame-based approach requires selecting several hyperpa-
rameters. We employed 5-fold cross validation to select these hyperparameters, which consisted
of windowSize ∈ [0.1, 0.25, 0.5, 1, 2, 3], and stepSize ∈ [0.25, 0.5, 0.75, 1] (i.e., 24 pairs of hy-
perparameters in total). The selection process was as follows: we first divided the 32 test audio
into 5 groups to conduct 5 sub-experiments. For each sub-experiment, we applied the diariza-
tion pipeline to 4 groups of test audio using 24 pairs of hyperparameters and obtained 24 DER
results. We chose the pair of hyperparameters which gave the lowest DER result and then mea-
sured the DER of this hyperparameter on the remaining group of test audio. After completing
the 5 sub-experiments, we obtained 5 pairs of best hyperparameters, all of which were identical:
windowSize=2 and stepSize=0.75. Consequently, we selected this pair of hyperparameters for
all frame-based experiments.

Results: The frame-based predictions and the three voting-based methods all achieved a
DER of 0.3838. Sentence-based embedding resulted in a DER of 0.3937, but this difference
was not statistically significant (p =0.0748). As described in Section 4.5.2, the Majority Vote,
Argmax Vote and Weighted Vote methods are based on frame-based prediction, i.e., embeddings
are extracted at the frame level, and then voting is used to aggregate at the sentence level. Since
these methods have the same DER as frame-based prediction, we deduce that there is no clear
benefit to the voting methods.

Given the small accuracy difference and the relative simplicity of the sentence-embedding
method, we choose to use it for all subsequent experiments.

5.6. PRE-TRAINED VS. FINE-TUNED ECAPA-TDNN

To assess whether fine-tuning the embedding model on children’s speech improved accuracy, we
compared the pre-trained ECAPA-TDNN with its fine-tuned version (see Section 4.4) in terms
of DER. Configurations: without speech enhancement; whole enrollments; Whisper, Speech-
Brain CRDNN, and non-target speech enrollments for VAD; sentence embedding; and nearest
enrollment. Results: The fine-tuned model achieved a DER of 0.3577, which is statistically
significantly better (p =0.0007) than the pre-trained one, which had a DER of 0.3937.
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5.7. NEAREST ENROLLMENT VS. CLUSTERING

In this experiment, we compared the effectiveness of the nearest enrollment method and clus-
tering methods for assigning speakers. Configurations: without speech enhancement; whole
enrollments; Whisper, SpeechBrain CRDNN, and non-target speech enrollments for VAD; sen-
tence embedding; and fine-tuned ECAPA-TDNN. Results: With the nearest enrollment method,
the resulting DER is 0.3577. With k-means, the DER was 0.3446. With agglomerative clus-
tering, the DER was 0.3746. The difference between agglomerative clustering and k-means, as
well as the difference between k-means and the nearest enrollment method, were both statis-
tically significant (p =0.0049 and p =0.0138 respectively). However, the difference between
agglomerative clustering and the nearest enrollment method was not statistically significant
(p =0.0538).

For DBSCAN and mean shift clustering, although initializing the number of clusters is not
mandatory in these methods, other hyperparameters still need to be optimized. We attempted
to identify a hyperparameter that would be universally applicable across all classroom audios
with varying numbers of speakers, but in practice, we could not find such a hyperparameter.
The resulting number of clusters significantly deviated from the actual values, with either only
one cluster being formed or each embedding being isolated into its own cluster. Therefore,
we conclude that clustering methods that automatically estimate the number of clusters are not
suitable for the dataset used in this work.

5.8. RUNNING TIME TEST

We tested the running time of the proposed framework, as well as the running time of its main
components. Additionally, since Whisper is the most time-consuming module within the entire
framework, we compared different versions of the Whisper model in terms of both running time
and DER. The hardware configurations we used were as follows: GPU: NVIDIA A100-PCIE-
40GB, Memory: 39.38 GB, CPU: x86 64, CPU Clock Speed: 3100.00 MHz. The results are
shown in Table 4.

Table 4: Results for Time Test

Whisper Version
Time (hour:minute:second)

DER
Whisper CRDNN Embedding Model Speaker Assignment DER Calculation Total

Medium 0:13:59 0:04:52 0:02:01 0:00:17 0:00:25 0:21:34 0.3519

Large-v2 0:18:29 0:05:25 0:02:12 0:00:30 0:00:54 0:27:30 0.3448

Large-v3 0:18:13 0:04:56 0:01:49 0:00:16 0:00:26 0:25:40 0.3441

5.9. DISCUSSION

All of the DERs reported are arguably high which is not surprising considering the high level
of background noise (from other groups in the same classroom) as well as overlapping speech
(which fundamentally cannot be recognized by our diarization framework). Moreover, the fact
that the teacher – for whom no enrollment audio was available in our dataset – occasionally
spoke to the students resulted in another source of prediction errors.
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Figure 3: Speaker diarization example from our dataset. Dark colors are ground-truth, and light
colors are predictions. Error Types: Pink, blue and green represent false alarm, missed detection
and speaker confusion respectively. The system achieves a DER of 0.26 on this segment.

Our experiments found benefits in using multiple VAD models, non-target speech enroll-
ments (Section 5.4), fine-tuned ECAPA-TDNN (Section 5.6), and subselecting enrollment audio
with a VAD model (Section 5.3). Furthermore, applying Whisper (Section 5.4) facilitates sim-
ple downstream analysis to interpret who-said-what during group collaboration. On the other
hand, the configurations we explored that used speech enhancement (Section 5.2) to preprocess
the audio, and voting mechanisms across the frames within each sentence (Section 5.5), did not
improve the DER.

To understand the differences in prediction results among various methods, particularly fo-
cusing on commonalities and unique errors, we selected the audio that exhibited the maximum
difference in DER between the baseline model and the sentence-based best-performing model
for comparison. The DER of this audio was 0.9638 when applied the baseline model, while it
decreased to 0.1670 when applying the sentence-based best-performing model. By comparing
these two results, we conclude that:

1. Our best model is much more conservative in what it deems to be “speech”.

2. Our model still makes lots of mistakes, but it does have some aggregate sense of “Who is
talking when”.

5.10. BEST-PERFORMING MODELS

Taking into account factors such as accuracy, time consumption and complexity, we selected two
best-performing models for our framework: one frame-based and one sentence-based. The other
configurations of the two models are the same: without speech enhancement; whole enrollments;
Whisper, CRDNN and non-target speech enrollments for VAD; fine-tuned ECAPA-TDNN; and
clustering.

The frame-based best performing model achieved a DER of 0.3412, consisting of false alarm
of 0.0698, missed detection of 0.2246 and speaker confusion of 0.0468; while the sentence-
based best performing model achieved a DER of 0.3446, consisting of false alarm of 0.0596,
missed detection of 0.2434 and speaker confusion of 0.0416. The difference between these two
best models was not statistically significant (p =0.3711).

Figure 3 shows an example of the prediction for a segment of a test audio (applied to the
sentence-based best-performing model). The figure illustrates the ground-truth speech intervals
of the two speakers as well as the diarization system’s predictions for the interval from second
110 to second 150 of one of the test audios. In the figure, the intervals marked in red and
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black represent the ground-truth for speakers Student 031 and Student 040 respectively. The
intervals marked in light red and light gray are the corresponding predictions for each speaker.
The bottom line (“Error Type”) indicates whether a prediction is a false alarm, missed detection,
or speaker confusion. Correct predictions are not marked and appear blank in the “Error Type”
row.

Both models exhibit a significant improvement compared to a baseline diarization method,
which had a DER of 0.7575 (configurations: without speech enhancement; frame-based; pre-
trained ECAPA-TDNN; CRDNN for VAD; and nearest enrollment). The improvements are both
statistically significant (frame-based: p =1.1385× 10−15; sentence-based: p =4.5930× 10−15).
The experimental results of all the other configurations are available in Figure 4 at the end of
this paper.

6. BIAS EVALUATION

When using a speaker diarization system to analyze classroom speech, it is vital that the system
can recognize speech from individuals of different demographics (e.g., gender, race & ethnicity)
with equal accuracy. Therefore, we estimate how much bias there is in our diarization system.
Since the core module of our diarization framework is the speaker embedding model — we use
the ECAPA-TDNN (Desplanques et al., 2020) in particular — we focus our analysis on this
component.

To verify whether the embedding model performs differently across various groups, we in-
vestigate its performance on individuals of different races and genders. The dataset used in this
study is the Casual Conversation Dataset, which is introduced in Section 3.2.

6.1. SKIN TONE BIAS EVALUATION

For each skin tone, we examined whether the distance between embeddings of the same speaker
was smaller than the distance between embeddings of different speakers with the same skin tone.

We used the following procedure: Assume there are n speakers with a skin tone of Type X.
We first obtained the set of active segments for each speaker i using Whisper and CRDNN as
the VAD components to detect the intervals containing speech. From these active segments, we
extracted speaker embeddings using ECAPA-TDNN to yield the embedding set for that speaker.
For each speaker i, we randomly selected 3 embeddings whose intervals were at least 1 second
long from their embedding set. We designated 1 of these 3 embeddings as the main embedding,
denoted Eim, and the other two as comparison embeddings denoted Ei1 and Ei2. We then
selected another speaker with the same skin tone, for example, j, and chose 3 embeddings Ej1,
Ej2 and Ej3 from their embedding set. Next, we calculated the distances between the main
embedding Em and the other five embeddings to obtain Dmi1, Dmi2, Dmj1, Dmj2 and Dmj3.
We then computed the average of Dmi1 and Dmi2 to represent the distance between embeddings
of the same speaker, denoted Dsame. Similarly, we calculated the average of Dmj1, Dmj2 and
Dmj3 to represent the distance between embeddings of different speakers, denoted Ddiff . If
Dsame < Ddiff , we considered that in this pair of speakers, the similarity between embeddings
of the same speaker was higher. Finally, we computed the probability, over all speaker pairs
i ̸= j, that Dsame < Ddiff .

To reduce variance, we repeated this procedure 25 times and computed the average prob-
ability. The results are shown in Table 5 (a). These proportions did not exhibit an increasing
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or decreasing trend based on skin tone, and the proportions were not statistically significantly
different from each other (χ2(5) = 0.7363, p = 0.9809).

Additionally, we selected segments with a minimum length of 5 seconds to conduct the same
experiments as above, and the results are presented in Table 5 (b). Similarly, the proportions
did not display an increasing or decreasing trend with skin tone, and the proportions were not
statistically significantly different from each other (χ2(5) = 0.4435, p = 0.9940).

Table 5: Bias Evaluation for Skin Tone Types

(a) Segment Length = 1 second

Skin Tone Type Average Correct Pairs Total Pairs Accuracy

1 53.12 56 94.86%
2 244.60 272 89.93%
3 260.52 272 95.78%
4 1.52 2 76.00%
5 125.96 132 95.42%
6 424.12 462 91.80%

(b) Segment Length = 5 seconds

Skin Tone Type Average Correct Pairs Total Pairs Accuracy

1 53.44 56 95.43%
2 258.84 272 95.16%
3 261.76 272 96.24%
4 1.60 2 80.00%
5 128.72 132 97.52%
6 427.92 462 92.62%

6.2. GENDER BIAS EVALUATION

In this experiment, we utilized the same process to obtain the embedding set for each speaker.
For each gender, we employed the same strategy to select embeddings, calculate Dsame and
Ddiff , and compute the number of pairs that met the criterion of Dsame < Ddiff . We repeated
the experiment 25 times, calculating the average number of pairs and proportions. We also
conducted two sets of experiments by selecting intervals with at least 1 second in length and
intervals with at least 5 seconds in length. The results are presented in Table 6 (a) and (b)
respectively, and the proportions for male and female speakers were not statistically significantly
different from each other(χ2(1) = 0.2586, p = 0.6111 for segment = 1 second; χ2(1) =
0.0350, p = 0.8516 for segment = 5 seconds).
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Table 6: Bias Evaluation for Genders

(a) Segment Length = 1 second

Gender Average Correct Pairs Total Pairs Accuracy

Female 1774.00 1892 93.76%
Male 1031.28 1122 91.91%

(b) Segment Length = 5 seconds

Gender Average Correct Pairs Total Pairs Accuracy

Female 1788.36 1892 94.52%
Male 1068.24 1122 95.21%

7. APPLICATION: ESTIMATING HOW MUCH EACH STUDENT SPEAKS

Given the two best configurations of the speaker diarization framework identified in the previous
experiments, we explored how they could be applied to real-world classroom group discussion
analysis. For each individual student, the proportion of how much they speak within their group
serves as an important metric for evaluating their participation in the collaboration. Additionally,
for each group, the balance of speech proportions between group members is another important
indicator that teachers can use to assess the discussion patterns of the group, as well as the role
and discourse authority of each member during the discussion.

To assess the capability of the diarization system for this purpose, we calculated, for each
test audio in the Sensor Immersion Dataset, the estimated proportion of speech for each person
relative to the total length of the group discussion in which they appeared. We then calculated
the correlation (both Pearson and Spearman) between the proportions estimated by the proposed
diarization system and the proportions obtained from human annotations. The results are shown
in Table 7.

Table 7: Results of estimating how much each student speaks

Model Name DER PCC SCC
Baseline Model 0.7575 0.2363 0.3091

Frame-based Best-performing Model 0.3412 0.4497 0.5171
Sentence-based Best-performing Model 0.3446 0.5516 0.6208

Based on the experimental results, we observed that the frame-based best-performing model
did not perform as well in terms of SCC in this application compared to the sentence-based
best-performing model. Therefore, to explore the reason for this phenomenon, we investigated
the correlation between DER and SCC. We calculated the SCC between the DER results for
the diarization task and the corresponding SCC results for the application. The result (-0.5756)
indicates that there is only a weak relationship between the DER outcomes of the diarization
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task and the SCC results in this application. Hence, some methods may achieve better DER but
worse SCC.

Additionally, the sentence-based model holds greater potential value in practical applica-
tions. Since it generates one prediction for each sentence, it better preserves the integrity of the
sentences, making it advantageous for subsequent applications, particularly for content-related
analyses, for example, investigating the proportion of questions asked by students.

8. APPLICATION: IDENTIFYING TEACHERS’ AND CHILDREN’S SPEECH

Many studies on classroom teaching patterns rely on obtaining audio recordings of teachers
in the classroom as a research basis. For example, Mahmood (2021) investigated what tone
or intonation teachers should use to enhance communication efficiency with students in online
classrooms, and Bao (2020) analyzed what speaking style teachers should use to help students
better capture essential lecture points in writing. These studies typically require prior knowl-
edge of the segments in which teachers speak, and then they analyze the speaking style of these
segments. Therefore, solving the problem of identifying which segments in classroom audio
correspond to teachers’ speech becomes fundamental to analyzing classroom teaching patterns.
In this section, we investigate whether our diarization framework can segment teachers’ and
children’s speech using a dataset from the NCRECE (see Section 3.3). In particular, we will first
show how to use the proposed framework to solve the problem of distinguishing between teach-
ers’ and children’s speech. Then, we will analyze the core of the speaker diarization framework
– the speaker embedding model – in terms of how well it can distinguish between teachers’ and
children’s speech segments. At the same time, our analysis will highlight how our framework
and speaker embedding model generalize to scenarios with young children (around 4 years old).

8.1. CLUSTERING-BASED APPROACH

The NCRECE dataset does not contain any enrollments of children’s or teachers’ speech. We
thus apply our speaker diarization framework without these enrollments. Therefore, instead of
matching the speaker embedding of each segment to an enrolled person, we must use clustering
to group different speech segments into identities based on the similarity of these embeddings.
The exact number of children who are present at any given moment in the videos in the NCRECE
dataset is not annotated, and in general, it is difficult to determine since sometimes a child
may wander out of the camera’s view or microphone’s detection range. Due to age-related
differences in speech, the distinction between teachers’ and children’s voice is generally greater
than the distinctions between voices of students within the same age group (Harrington et al.,
2007). Therefore, we can treat all students as a single entity, meaning that the audio data will
effectively contain only two speakers: one being the teacher, and the other representing all
students as a collective, i.e., non-teacher. We thus set the target number of clusters as 2, where
the larger cluster (with more assigned speech segments) is assumed to belong to the teacher and
the smaller cluster is assumed to belong to the children.

We applied k-means as the clustering method and used the audio-based labels as the ground
truth. We compared the performance of the pre-trained ECAPA-TDNN model and the fine-tuned
ECAPA-TDNN model. The configurations of the remaining components were: Whisper as the
VAD model, sentence-based, without speech enhancement.

Additionally, we calculated the proportion of speech by teachers and children, and used SCC
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to evaluate the relationship between the predicted proportions and human annotations, following
the method described in Section 7. The SCC results showed a medium relationship between the
predicted proportion and the human annotations, indicating that the model can estimate the
speaking proportions for each individual. The results are shown in Table 8.

Table 8: Clustering Results for All Sentences

Embedding Model DER SCC
Pre-trained 0.3922 0.6911
Fine-tuned 0.3764 0.7155

8.2. ANALYSIS: ACCURACY OF DISTINGUISHING TEACHER FROM STUDENT SEGMENTS
USING SPEECH EMBEDDINGS

Since the core of the speaker diarization framework is the speaker embedding extractor, we
analyzed the accuracy of ECAPA-TDNN in distinguishing between speech segments of teachers
and children.

In our analysis, we first selected embedding groups, each consisting of two embeddings
from the teacher and one embedding from the children. For each group, we calculated the
cosine similarity between embeddings from the same speaker as Ssame and that between different
speakers as Sdiff . We then calculated the proportion of groups for which Ssame > Sdiff . This
proportion served as our accuracy metric for the speaker embedding system.

Using this procedure, we explored two questions: (1) Does the ECAPA-TDNN embedding
model that was fine-tuned on child speakers give higher accuracy than the pre-trained ECAPA-
TDNN? (2) Could obtaining multiple enrollments from the teacher improve the accuracy of
distinguishing the teacher’s speech from that of children? The motivation here is that, due to
changes in background noise, microphone placement, etc., a teacher’s voice might change over
time, and by comparing to a teacher enrollment collected more recently, a diarization system
could potentially achieve higher accuracy.

8.2.1. Nearest Teacher’s Speech VS. Randomly Select Teacher’s Speech

We have two strategies for selecting a teacher’s speech for comparison. The first method involves
randomly selecting two sentences, provided that the speaker is the teacher. These sentences
could originate from any time during the session. The second method selects the two sentences
temporally closest to the current student sentence. Since non-speech noise may fluctuate during
the class, for instance, when the teacher plays a video in class or when an emergency vehicle
passes by with a siren outside, we believe that selecting adjacent sentences helps maintain con-
sistent background noise, aiding the system in distinguishing between the speech of teachers
and children.

The other configurations for this experiment were: applying Whisper large-v2, using text-
based labels. The results are shown in Table 9.

8.2.2. Fine-tuned ECAPA-TDNN VS. Pre-trained ECAPA-TDNN

Similar to the configurations of the proposed framework, we explored the performance of differ-
ent embedding models in this task, including pre-trained ECAPA-TDNN and fine-tuned ECAPA-
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Table 9: Accuracy Results for Different Teacher’s Speech

Teacher’s Speech Embedding Model Accuracy

Randomly
Pre-trained 0.5965
Fine-tuned 0.6015

Nearest
Pre-trained 0.6917
Fine-tuned 0.6736

TDNN. The results indicate that the fine-tuned ECAPA-TDNN does not demonstrate a signifi-
cant advantage in this task and the performance of the pre-trained ECAPA-TDNN even surpasses
that of the fine-tuned ECAPA-TDNN. The results are shown in Table 10.

Table 10: Accuracy Results for Different Embedding Models

Embedding Model Accuracy

Text-based Label Audio-based Label

Pre-trained 0.6917 0.6702
Fine-tuned 0.6736 0.6300

We attribute the phenomenon where the fine-tuned ECAPA-TDNN did not outperform the
pre-trained ECAPA-TDNN, unlike in the previous group discussion task (Section 5.6), to differ-
ences in the scenarios of the two tasks. Although both datasets were collected in classrooms, the
Sensor Immersion Dataset primarily focused on group discussions, with students as the main
speakers and most participants being middle- to high-school students. In contrast, this task
focuses on younger students (around 4 years old), with the teacher as the primary speaker. Ad-
ditionally, the data used to fine-tune the model mainly consisted of students aged 5 to 16, which
differs from this task.

8.3. DISCUSSION

In this experiment, we were also curious whether longer sentences necessarily yield higher ac-
curacy. Thus, for each sub-experiment with different configurations, we also calculated the SCC
between the accuracy and the number of words in the sentence to investigate the relationship be-
tween them. The results indicate that, despite the large variance in SCC obtained from different
experiments, all SCC values are positive, indicating a moderate correlation between accuracy
and sentence length.

During the experiment, we found that the timestamps generated by Whisper large-v2 were
not always precise, especially for long audio segments. Therefore, we tried WhisperX, which
was proposed by Bain et al. (2023) aimed to address this problem. The other configurations
were: audio-based label, nearest teacher’s speech. The results are shown in Table 11. We found
that WhisperX did not outperform Whisper large-v2. One possible explanation is the different
segment lengths recognized by the two models. WhisperX partially corrected for the timestamps
of certain sentences. However, it also tended to split some originally continuous sentences
into individual words, each with its own timestamp. This resulted in WhisperX producing a
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higher number of very short segments. Statistical analysis revealed that in experiments where
we applied the pre-trained ECAPA-TDNN and the audio-based label, segments lasting between
0 and 1 second accounted for approximately 20.22% of the recognized segments in Whisper
large-v2, compared to 29.33% in WhisperX.

Table 11: Accuracy Results for Different Whisper Models

Whisper Version Embedding Model Accuracy

Large-v2
Pre-trained 0.6702
Fine-tuned 0.6300

X
Pre-trained 0.6568
Fine-tuned 0.6307

9. CONCLUSION

With the goal of automatically characterizing group dynamics within classroom collaborative
discussions, we have conducted a systematic comparison of different design configurations of a
speaker diarization framework capable of understanding classroom speech. We assessed DER
on a real-world and “in-the-wild” dataset of group science discussions from middle- and high-
school students. The best system we tried achieved a DER of around 0.34 on our test set and it
did not differ statistically significantly across people of different skin tones or genders. More-
over, the system was able to estimate the proportion of speech by different speakers in the group
with a correlation of up to 0.62 compared to human annotations. Additionally, it was also capa-
ble of distinguishing between the speech of teachers and children with an accuracy of 69.17%.

Limitations: The limitations of this study primarily stem from dataset constraints. For
the Sensor Immersion Dataset, there are only 32 audio recordings, which significantly restrict
the amount of available test data and prevent us from fine-tuning the model with this data.
Additionally, the lack of teachers’ enrollments forces us to treat all teachers’ speech as non-target
speech. Furthermore, the mono-channel nature of the audio recordings limits the applicability of
location-based speaker identification methods like direction of arrival (DOA) estimation (Araki
et al., 2008). Regarding the NCRECE dataset, the absence of speaker enrollments hinders the
use of the nearest enrollment approach in the speaker assignment component of the framework.

Future work: Instead of embedding-based diarization systems such as ECAPA-TDNN, we
can use end-to-end neural models such as (Zhang et al., 2022; Fujita et al., 2019; He et al., 2022).
These models offer the opportunity to capture simultaneous speech from multiple speakers and
might achieve a better DER. With a system capable of identifying simultaneous speech, we
could also detect automatically when one student interrupts another; this could serve as useful
feedback for students, helping to ensure that each person’s contributions are heard. We also plan
to explore multimodal systems (Kang et al., 2020). By incorporating additional video, image,
and text information, we aim to provide more useful data for the task as well as offer greater
possibilities for downstream applications.
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SÜMER, Ö., GOLDBERG, P., D’MELLO, S., GERJETS, P., TRAUTWEIN, U., AND KASNECI, E. 2021.
Multimodal engagement analysis from facial videos in the classroom. IEEE Transactions on Affective
Computing 14, 2, 1012–1027.

THOMAS, D. R., LIN, J., BHUSHAN, S., ABBOUD, R., GATZ, E., GUPTA, S., AND KOEDINGER,
K. R. 2024. Learning and ai evaluation of tutors responding to students engaging in negative self-
talk. In Proceedings of the Eleventh ACM Conference on Learning @ Scale. L@S ’24. Association
for Computing Machinery, New York, NY, USA, 481–485.

WANG, J., DUDY, S., HE, X., WANG, Z., SOUTHWELL, R., AND WHITEHILL, J. 2024. Speaker di-
arization in the classroom: How much does each student speak in group discussions? In Proceedings
of the 17th International Conference on Educational Data Mining, B. PaaÃŸen and C. D. Epp, Eds.
International Educational Data Mining Society, 360–367.

WHITEHILL, J. AND LOCASALE-CROUCH, J. 2023. Automated evaluation of classroom instructional
support with llms and bows: Connecting global predictions to specific feedback. Journal of Educa-
tional Data Mining 16, 1, 34–60.

YANG, Q., ZIMMERMANN, K., BARTHOLOMEW, C. P., PURTELL, K. M., AND ANSARI, A. 2023.
Preschool classroom age composition and physical literacy environment: Influence on children’s
emergent literacy outcomes. Early Education and Development 35, 1–18.

ZHANG, C., SHI, J., WENG, C., YU, M., AND YU, D. 2022. Towards end-to-end speaker diarization
with generalized neural speaker clustering. In ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8372–8376.

APPENDIX

27
124 Journal of Educational Data Mining, Volume 17, No 1, 2025

https://github.com/snakers4/silero-vad


W
h

is
p

er
C

R
D

N
N

(t
h

re
sh

o
ld

)

N
o

n
-t

a
rg

et
 S

p
ee

ch

E
n

ro
ll

m
en

t

S
il

er
o

(t
h

re
sh

o
ld

)

F
ra

m
e-

w
is

e
/

F
in

e-
tu

n
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
√

/
/

en
ti

re
C

lu
st

er
in

g
_

K
-m

ea
n

s
0

.3
4

1
2

0
.4

4
9

7
0

.5
1

7
1

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

F
in

e-
tu

n
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
√

/
/

en
ti

re
C

lu
st

er
in

g
_

K
-m

ea
n

s
0

.3
4

4
6

0
.5

5
1

6
0

.6
2

0
8

S
en

te
n

ce
-w

is
e

A
rg

m
ax

 V
o

te
F

in
e-

tu
n

ed
 E

C
A

P
A

-T
D

N
N

√
0

.8
7

9
8

√
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
5

0
8

0
.4

8
8

7
0

.5
8

5
6

S
en

te
n

ce
-w

is
e

W
ei

g
h

te
d

 V
o

te
F

in
e-

tu
n

ed
 E

C
A

P
A

-T
D

N
N

√
0

.8
7

9
8

√
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
5

0
8

0
.4

8
8

7
0

.5
8

5
6

F
ra

m
e-

w
is

e
/

F
in

e-
tu

n
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
√

/
/

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.3

5
0

8
0

.4
8

8
7

0
.5

8
5

6
S

en
te

n
ce

-w
is

e
M

aj
o

ri
ty

 V
o

te
F

in
e-

tu
n

ed
 E

C
A

P
A

-T
D

N
N

√
0

.8
7

9
8

√
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
5

2
0

0
.4

9
2

7
0

.6
3

7
0

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

F
in

e-
tu

n
ed

 E
C

A
P

A
-T

D
N

N
√

0
.9

√
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
5

6
6

0
.5

0
4

5
0

.6
1

8
3

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

F
in

e-
tu

n
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
√

/
/

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.3

5
7

7
0

.5
1

0
2

0
.6

1
6

5
S

en
te

n
ce

-w
is

e
S

en
te

n
ce

 E
m

b
ed

d
in

g
F

in
e-

tu
n

ed
 E

C
A

P
A

-T
D

N
N

√
0

.9
5

√
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
5

9
3

0
.4

1
7

6
0

.4
8

7
4

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

F
in

e-
tu

n
ed

 E
C

A
P

A
-T

D
N

N
√

/
√

0
.8

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
6

0
2

0
.4

5
6

4
0

.6
1

9
0

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

/
√

0
.9

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
6

8
9

0
.4

4
9

4
0

.4
6

7
2

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

0
.9

5
√

/
/

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.3

6
9

9
0

.4
1

9
0

0
.5

2
7

4
S

en
te

n
ce

-w
is

e
S

en
te

n
ce

 E
m

b
ed

d
in

g
P

re
-t

ra
in

ed
 E

C
A

P
A

-T
D

N
N

√
0

.8
7

9
8

√
/

/
ch

u
n

k
(4

se
c)

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
7

4
5

0
.4

4
5

1
0

.4
4

8
9

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

F
in

e-
tu

n
ed

 E
C

A
P

A
-T

D
N

N
/

/
√

0
.9

5
/

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.3

7
4

6
0

.6
1

3
9

0
.6

8
4

8
S

en
te

n
ce

-w
is

e
S

en
te

n
ce

-e
m

b
ed

d
in

g
F

in
e-

tu
n

ed
 E

C
A

P
A

-T
D

N
N

√
0

.8
7

9
8

√
/

/
en

ti
re

C
lu

st
er

in
g
_

A
g
g
lo

m
er

at
iv

e
0

.3
7

4
6

0
.3

0
8

4
0

.4
8

7
5

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
√

/
/

ch
u

n
k
(8

se
c)

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
7

5
1

0
.5

2
4

4
0

.5
6

1
3

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
√

/
/

ch
u

n
k
(2

se
c)

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
7

7
2

0
.3

3
0

2
0

.3
6

6
3

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
√

/
/

en
ti

re
C

lu
st

er
in

g
_

K
-m

ea
n

s
0

.3
7

9
6

0
.5

4
2

9
0

.5
8

4
3

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
√

/
/

ch
u

n
k
(1

6
se

c)
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.3

7
9

8
0

.5
2

7
1

0
.5

5
2

1
S

en
te

n
ce

-w
is

e
M

aj
o

ri
ty

 V
o

te
P

re
-t

ra
in

ed
 E

C
A

P
A

-T
D

N
N

√
0

.8
7

9
8

√
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
8

3
8

0
.4

9
4

0
0

.5
3

0
3

S
en

te
n

ce
-w

is
e

A
rg

m
ax

 V
o

te
P

re
-t

ra
in

ed
 E

C
A

P
A

-T
D

N
N

√
0

.8
7

9
8

√
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
8

3
8

0
.4

9
4

0
0

.5
3

0
3

S
en

te
n

ce
-w

is
e

W
ei

g
h

te
d

 V
o

te
P

re
-t

ra
in

ed
 E

C
A

P
A

-T
D

N
N

√
0

.8
7

9
8

√
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
8

3
8

0
.4

9
4

0
0

.5
3

0
3

F
ra

m
e-

w
is

e
/

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
√

/
/

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.3

8
3

8
0

.4
9

4
0

0
.5

3
0

3
F

ra
m

e-
w

is
e

/
P

re
-t

ra
in

ed
 E

C
A

P
A

-T
D

N
N

√
0

.8
7

9
8

√
/

/
en

ti
re

C
lu

st
er

in
g
_

K
-m

ea
n

s
0

.3
8

4
5

0
.2

9
5

4
0

.3
5

4
0

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
√

/
/

ch
u

n
k
(3

2
se

c)
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.3

8
6

3
0

.4
9

3
2

0
.5

4
7

4
F

ra
m

e-
w

is
e

/
F

in
e-

tu
n

ed
 E

C
A

P
A

-T
D

N
N

/
/

√
/

/
en

ti
re

N
ea

re
st

E
n

ro
ll

m
en

t
0

.3
8

6
7

0
.5

3
2

3
0

.6
1

8
0

F
ra

m
e-

w
is

e
/

F
in

e-
tu

n
ed

 E
C

A
P

A
-T

D
N

N
/

0
.8

7
9

8
√

/
/

en
ti

re
N

ea
re

st
E

n
ro

ll
m

en
t

0
.3

8
6

7
0

.5
3

2
3

0
.6

1
8

0
S

en
te

n
ce

-w
is

e
S

en
te

n
ce

-e
m

b
ed

d
in

g
F

in
e-

tu
n

ed
 E

C
A

P
A

-T
D

N
N

√
/

√
/

/
en

ti
re

C
lu

st
er

in
g
_

K
-m

ea
n

s
0

.3
8

6
7

0
.4

3
4

5
0

.5
6

6
9

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

0
.9

√
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.3
8

7
6

0
.5

2
0

3
0

.6
0

8
5

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
√

/
/

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.3

9
3

7
0

.5
3

4
3

0
.6

1
3

4
S

en
te

n
ce

-w
is

e
S

en
te

n
ce

 E
m

b
ed

d
in

g
P

re
-t

ra
in

ed
 E

C
A

P
A

-T
D

N
N

/
/

√
0

.9
5

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.4
0

6
5

0
.6

4
1

6
0

.6
4

1
1

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 W
av

L
M

√
0

.8
7

9
8

√
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.4
1

3
2

0
.2

4
7

6
0

.2
9

1
2

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

0
.9

5
/

/
/

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.4

1
3

4
0

.3
1

9
0

0
.3

7
7

1
S

en
te

n
ce

-w
is

e
S

en
te

n
ce

 E
m

b
ed

d
in

g
F

in
e-

tu
n

ed
 E

C
A

P
A

-T
D

N
N

√
0

.9
5

/
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.4
1

5
6

0
.1

9
4

9
0

.3
2

5
5

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
√

/
√

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.4

2
6

2
0

.3
7

2
3

0
.4

2
8

2
S

en
te

n
ce

-w
is

e
S

en
te

n
ce

 E
m

b
ed

d
in

g
P

re
-t

ra
in

ed
 E

C
A

P
A

-T
D

N
N

√
0

.9
/

/
/

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.4

6
4

8
0

.3
9

8
3

0
.4

5
5

4
S

en
te

n
ce

-w
is

e
S

en
te

n
ce

 E
m

b
ed

d
in

g
F

in
e-

tu
n

ed
 E

C
A

P
A

-T
D

N
N

√
0

.9
/

/
/

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.4

6
7

6
0

.2
7

4
4

0
.3

5
8

9
S

en
te

n
ce

-w
is

e
S

en
te

n
ce

 E
m

b
ed

d
in

g
P

re
-t

ra
in

ed
 E

C
A

P
A

-T
D

N
N

√
0

.8
7

9
8

/
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.4
7

9
2

0
.3

8
5

7
0

.4
3

0
6

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

F
in

e-
tu

n
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
/

/
/

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.4

8
1

1
0

.2
5

4
3

0
.3

3
6

7
F

ra
m

e-
w

is
e

/
P

re
-t

ra
in

ed
 E

C
A

P
A

-T
D

N
N

/
/

√
/

/
en

ti
re

N
ea

re
st

E
n

ro
ll

m
en

t
0

.5
2

5
2

0
.4

9
9

1
0

.5
3

4
3

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
/

(0
.9

8
, 

0
.8

)
√

/
/

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.5

3
8

4
0

.3
9

9
6

0
.3

9
7

6
F

ra
m

e-
w

is
e

/
P

re
-t

ra
in

ed
 E

C
A

P
A

-T
D

N
N

/
0

.8
7

9
8

/
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.5
6

8
1

0
.1

2
6

3
0

.0
7

0
5

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
 E

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

/
√

/
/

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.5

7
0

8
0

.5
3

1
7

0
.5

5
1

8
S

en
te

n
ce

-w
is

e
S

en
te

n
ce

 E
m

b
ed

d
in

g
P

re
-t

ra
in

ed
 E

C
A

P
A

-T
D

N
N

/
(0

.5
, 

0
.2

5
)

√
/

/
en

ti
re

N
ea

re
st

 E
n

ro
ll

m
en

t
0

.7
2

4
8

0
.3

3
4

4
0

.3
2

8
0

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
-e

m
b

ed
d

in
g

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
√

/
/

/
/

en
ti

re
N

ea
re

st
E

n
ro

ll
m

en
t

0
.7

3
6

1
0

.3
1

4
2

0
.3

2
6

3
S

en
te

n
ce

-w
is

e
S

en
te

n
ce

-e
m

b
ed

d
in

g
F

in
e-

tu
n

ed
 E

C
A

P
A

-T
D

N
N

√
/

/
/

/
en

ti
re

C
lu

st
er

in
g
_

K
-m

ea
n

s
0

.7
5

0
5

-0
.0

4
1

5
0

.0
6

1
0

F
ra

m
e-

w
is

e
/

P
re

-t
ra

in
ed

 E
C

A
P

A
-T

D
N

N
/

(0
.5

, 
0

.2
5

)
/

/
/

en
ti

re
N

ea
re

st
 E

n
ro

ll
m

en
t

0
.7

5
7

5
0

.2
3

6
3

0
.3

0
9

1
S

en
te

n
ce

-w
is

e
S

en
te

n
ce

-e
m

b
ed

d
in

g
F

in
e-

tu
n

ed
 E

C
A

P
A

-T
D

N
N

√
0

.8
7

9
8

√
/

/
en

ti
re

C
lu

st
er

in
g
_

m
ea

n
_

sh
if

t
/

/
/

S
en

te
n

ce
-w

is
e

S
en

te
n

ce
-e

m
b

ed
d

in
g

F
in

e-
tu

n
ed

 E
C

A
P

A
-T

D
N

N
√

0
.8

7
9

8
√

/
/

en
ti

re
C

lu
st

er
in

g
_

D
B

S
C

A
N

/
/

/

E
n

ro
ll

m
en

t

T
y

p
e

N
ea

re
st

 E
n

ro
ll

m
en

t 
V

S
. 

C
lu

st
er

in
g

D
E

R
P

C
C

S
C

C
P

re
d

ic
ti

o
n

 L
ev

el
A

g
g

re
g

a
ti

o
n

 M
et

h
o

d
E

m
b

ed
d

in
g

 M
o

d
el

V
A

D
 M

et
h

o
d

S
p

ee
ch

E
n

h
a

n
ce

m
en

t

Figure 4: All experimental results
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