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In the realm of collaborative learning, extracting the beliefs shared within a group is a critical capa-
bility to navigate complex tasks. Inherent in this problem is the fact that in naturalistic collaborative
discourse, the same propositional content may be expressed in radically different ways. This difficulty

*This work performed under a CalTech Summer Undergraduate Research Fellowship (SURF) program at Col-
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is exacerbated when speech overlaps and other communicative modalities are used, as would be the case
in a co-situated collaborative task. In this paper, we conduct a comparative methodological analysis
of extraction techniques for task-relevant propositions from natural speech dialogues in a challenging
shared task setting where participants collaboratively determine the weights of five blocks using only
a balance scale. We encode utterances and candidate propositions through language models and com-
pare a cross-encoder method, adapted from coreference research, to a vector similarity baseline. Our
cross-encoder approach outperforms both a cosine similarity baseline and zero-shot inference by both
the GPT-4 and LLaMA 2 language models, and we establish a novel baseline on this challenging task
on two collaborative task datasets—the Weights Task and DeliData—showing the generalizability of our
approach. Furthermore, we explore the use of state of the art large language models for data augmen-
tation to enhance performance, extend our examination to transcripts generated by Google’s Automatic
Speech Recognition system to assess the potential for automating the propositional extraction process
in real-time, and introduce a framework for live propositional extraction from natural speech and multi-
modal signals. This study not only demonstrates the feasibility of detecting collaboration-relevant con-
tent in unstructured interactions but also lays the groundwork for employing AI to enhance collaborative
problem-solving in classrooms, and other collaborative settings, such as the workforce. Our code may be
found at: https://github.com/csu-signal/PropositionExtraction.

Keywords: collaborative problem solving, propositional extraction, natural speech, natural language
processing, dialogue analysis

1. INTRODUCTION

For computer-assisted education, an important capability of automated systems is the ability to
extract the meaning from student sentences or utterances to determine what they know, infer, or
understand in the course of a task, activity, or assignment. In a naturalistic situated dialogue,
like a small group in a classroom, information exchange is likely to consist of overlapping
utterances with references grounded in the situational context, such as to objects in the scene
or actions taken. Therefore, unlike in idealized scenarios such as strict turn-taking dialogues or
written texts, it may be difficult to determine the exact semantic or propositional content that is
being expressed by a single utterance.

An added challenge for educationally-grounded AI tasks such as knowledge tracing (Piech
et al., 2015) is that the same semantics or proposition may be expressed in natural speech in
radically different ways—there are likely to be incomplete sentences, repetition or restatement,
filler words or disfluencies—and extracting relevant meaning despite such noise is crucial if an
automated system is to make correct inferences about what students know or understand about
their activity.

The propositional content that students assert is critical to tracking the collaborative process
as students share their understanding and build consensus or common ground (Sun et al., 2020;
Khebour et al., 2024). For example, an automated agent for collaborative problem solving sup-
port would need to track surfaced propositions as a measure of task progression. Additionally,
students in collaborative settings achieve better learning outcomes when they engage in leading
the discussion, which involves making new claims and not simply reiterating previously-stated
information (Webb et al., 2021). The ability to extract propositional content from dialogue pro-
vides a way for an agent to determine whether a claim was already stated within the group. This
would provide a necessary feature to determine whether a student is helping to lead the task
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Figure 1: Schematic overview of the two methods used for propositional extraction. The process
begins with Raw Data, which undergoes Data Cleaning across three levels to filter out irrelevant
utterances. In the first method, a Cross-Encoder is trained on utterance-proposition pairs, fol-
lowed by Heuristic Pruning for the test set, and outputs the top-5 candidate propositions using
cosine similarity obtained from the trained Cross Encoder. In the second method, Top-k Cosine
Similarity is directly applied to the heuristically pruned candidate propositions. The final Ex-
traction step selects the best proposition using argmax over the similarity scores. Dashed lines
indicate the selection process for the final proposition, while color coding differentiates key com-
ponents of the pipeline.

forward, thereby enabling better prediction of learning outcomes from mined data.
This paper extends the contributions of Venkatesha et al. (2024), which appeared at EDM

2024. We take the transcribed utterances of a shared collaborative task, which are annotated
with ground truth task-relevant propositions that are expressed therein, and use cosine similarity
and cross-encoder methods to extract the propositions from the utterance text. Fig. 1 shows a
schematic overview of our approach. We also extend our methods to utterances automatically
segmented and transcribed by Google Cloud Platform’s Automated Speech Recognition, show-
ing how our propositional extraction methods may be incorporated into an automated system
with a relatively low level of degradation due to automated transcription. Further, we explore the
use of synthetic data augmentation using large language models (LLMs) to improve the robust-
ness of our models and investigate the zero-shot inference capabilities of GPT-4 and LLaMA 2.
Our results show the utility of methods adapted from coreference research in the field of natural
language processing on this challenging task, and we introduce a framework for live proposition
extraction, aiming to enable real-time analysis of collaborative interactions. To guide this work,
we focus on several key research questions: 1) How accurately can task-relevant propositions
be extracted from naturalistic dialogues? 2) How do different extraction methods compare in
performance, and how does automated transcription affect this accuracy? 3) Can synthetic data
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and zero-shot approaches enhance performance? 4) Finally, is real-time extraction feasible in
collaborative settings, and how might multimodal integration improve it?

Our novel contributions are grouped into two key areas:

• Advancing Propositional Extraction Methods: We establish a novel, challenging task
of propositional extraction from natural speech during collaborative interactions. We com-
pare cosine similarity and cross-encoder methods, using multiple language models and
different levels of data cleaning, establishing new baselines and theoretical upper bounds
for this task. Additionally, we explore synthetic data generation techniques to enhance
model performance and assess zero-shot inference capabilities using large language mod-
els such as GPT-4 and LLaMA 2.

• Practical Implementation and Real-Time Feasibility: We assess the impact of auto-
mated speech transcription on extraction performance, demonstrating a relatively low level
of performance degradation compared to manually transcribed utterances. We also intro-
duce a framework for live propositional extraction, aiming to enable real-time analysis of
collaborative interactions with a focus on practical deployment scenarios, and present a
proposal for evaluation.

2. BACKGROUND AND RELATED WORK

Collaborative tasks concern the construction and maintenance of a shared conception of the
problem at hand (Roschelle and Teasley, 1995), involving mutual engagement and coordinated
effort to solve the problem together. Within such a framework, especially one centered around
shared synchronous tasks, quantity of specific propositions discussed has been shown to be a
significant predictor of learning gains (Gijlers and de Jong, 2009). Therefore, propositional
extraction serves an important role in automated analysis of shared task data in an educational
context, or for an automated system to make inferences about construction of shared knowledge
in real time.

PROPOSITIONAL EXTRACTION Prior work on propositional extraction from natural lan-
guage has primarily been conducted from written texts in domains such as question answering,
where early methods relied on approaches such as semantic memory (Dennis, 2004). Classical
machine learning approaches like support vector machines have been applied to opinion mining
to find “propositional opinions,” or sentence fragments that contain the object of an assertion,
incorporating word and feature-level knowledge from resources like WordNet, FrameNet, and
PropBank (Bethard et al., 2004). Linguistic features have even been used to extract “ideas”
from transcribed speech in the clinical domain, as a technique to predict Alzheimer’s disease
and other types of cognitive decline (Chand et al., 2012). These early works not only show the
utility of propositional extraction in various domains, but also demonstrate the relative sparsity
of study on this topic. With the advent of neural network methods for text processing, these have
been applied to NLP problems like propositional extraction from argumentation and rhetoric (Jo
et al., 2019; Jo et al., 2020). These approaches include reported speech, as may appear in docu-
ments such as news articles. To the best of our knowledge, we are the first to attempt a similar
task on transcribed naturalistic speech data from a collaborative task setting reminiscent of small
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group work in classrooms. Successfully extracting the propositional content expressed by an ut-
terance is critical to modeling the epistemic positioning of the speaker toward the proposition.
In a group context, these two components are required to track the shared and divergent be-
liefs of the group as they pertain to a task, as a method of modeling task progress. Khebour
et al. (2024) treats this as a problem of “common ground tracking” and we demonstrate how our
propositional extraction methods fit into a downstream task such as this in Sec. 8.

PAIRWISE REPRESENTATION LEARNING All of the aforementioned approaches frame the
problem as one of establishing a mutual relationship between a piece of text from a dataset and
another piece of text from a library of candidates, be they ideas, opinions, or propositional infor-
mation more generally. Pairwise representational learning techniques have long been popular in
the deep learning community for learning such relationships between two pieces of text. While
some previous works modeled these relationships for text-generation tasks like abstractive docu-
ment summarization (Nallapati et al., 2016), machine-comprehension (Hermann et al., 2015), or
document-reconstruction (Li et al., 2015), others have also explored pairwise learning to com-
pute similarity metrics between pairs of documents (Ahmed et al., 2023; Reimers and Gurevych,
2019; Zhang et al., 2020) as well as for masked language modeling (Devlin et al., 2019). More
recently, for clustering-related tasks like coreference resolution, a “cross-encoding” framework
has been used to learn pairwise features of possible coreferent mentions (Ahmed et al., 2023;
Caciularu et al., 2021; Cattan et al., 2021; Held et al., 2021; Yu et al., 2022; Zeng et al., 2020).
These works, originally inspired by Humeau et al. (2020), learn high-level semantic features
of a mention (e.g., of an entity or event) within a sentence in the context of another mention-
containing sentence and compute the coreference probabilities of such pairs before clustering
mentions that refer to the same entity. We adopt this “cross-encoding” technique for both our
candidate proposition generation procedure, as well as for calculating the probability of a given
utterance referring to a candidate proposition.

CROSS-ENCODERS According to discourse coherence theory, in a dialogue between two or
more participants, the content of the discussion is essentially a subset of the common knowl-
edge, beliefs, and common intention (goal) that each participant has at any given point. As
such, certain processing decisions like identifying referring expressions or detecting common
propositional content between utterances can be made locally within the “attentional state” of
the discourse. Following discourse coherence theory (Gentner, 1978; Grosz and Sidner, 1986),
a human reader of a text or listener of a dialogue will focus attention on only a small subset of
the total possible complement of events and entities. For instance, in a collaborative problem-
solving setting, the words in an utterance that any participant uses to describe a specific sub-task
within the overall task are constrained by “discourse segment purpose” or their common inten-
tion at that specific point in the dialogue. This constraint in the appearance of utterances to
maintain coherence in the collaborative problem-solving dialogue allows us to map an utterance
to a proposition by focusing only on the local elements in the utterance/proposition pairs.

However, since linguistic constraints or rule-based heuristics used to determine this atten-
tional state can be narrow in their scope or domain-specific, most previous works have modeled
the attentional state using neural networks (Chai and Strube, 2022; Held et al., 2021; Jeon and
Strube, 2020). The neural model creates a latent representation or high-dimensional embed-
ding of discourse-relevant entities in context and a variety of similarity methods (such as nearest
neighbors or neural attention mechanisms (Vaswani et al., 2017)) may be used to determine
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which entities are subjects of the current attentional state given a context. These models are
typically built on top of pre-trained transformer-based language models (LMs) (Vaswani et al.,
2017) like RoBERTa or Longformer (Beltagy et al., 2020; Liu et al., 2020) that are known to cap-
ture rich semantic features through their contextualized representations of tokens and sequences.
Apart from computationally modeling the innate structural coherence in a discourse, these ar-
chitectures can also generate potential referents by demarcating the attentional state within a
dialogue, through context.

These works have focused on various natural language understanding tasks, including coref-
erence resolution. Our task is adjacent to coreference resolution since we have to map a set of
utterances to their corresponding propositions in a collaborative dialogue. As such, we take in-
spiration from the pairwise scorer/cross-encoder architecture commonly used as a pairwise rep-
resentation learning framework in cross-document coreference resolution (Ahmed et al., 2023;
Caciularu et al., 2021; Cattan et al., 2021; Nath et al., 2024; Nath et al., 2023; Yu et al., 2022;
Zeng et al., 2020). This method forces a classifier to learn a combined representation of one
mention (represented by a trigger word) in the context of the other, both of which are encoded
within their respective sentences. This learning strategy is an effective way to generate similarity
scores between pairs of event or entity mentions due to the contextualized learning framework.

TOWARD REAL-WORLD USE OF AI As AI performance has increased, more works have be-
gun to investigate how various automated preprocessing methods impact downstream task per-
formance, since imperfect data is inevitable in a real-world application (Castillon et al., 2022).
Some of these efforts intentionally examine performance given imperfectly preprocessed data
(Blanchard et al., 2018) while others have explicitly explored how various preprocessing tech-
niques degrade performance (Terpstra et al., 2023). In particular, various recent works have
explored how imperfect data corresponds with performance in small-group contexts (Donnelly
et al., 2016; Donnelly et al., 2017; Blanchard et al., 2016; Bixler et al., 2015; Bradford et al.,
2022). These works have shown that the influence of automated but imperfect tools, e.g., auto-
matic speech recognition (ASR) for transcription, do degrade performance but not catastrophi-
cally so. In this work, we also examine how data imperfection degrades performance on a novel
task: propositional extraction from natural dialogue during a collaborative group task.

While prior work has successfully applied propositional extraction in domains such as argu-
mentation, and rhetoric, to the best of our knowledge, our study is the first to tackle this task
in the context of naturalistic, collaborative dialogue involving multimodal signals in real-time.
Our approach uniquely focuses on extracting propositions from overlapping, co-situated speech,
demonstrating its applicability to collaborative educational tasks, where tracking shared knowl-
edge is critical. We also extend cross-encoder methodology, commonly applied in coreference
resolution, to propositional extraction in natural speech dialogues.

3. DATASETS

3.1. WEIGHTS TASK DATASET

The Weights Task (Khebour et al., 2024) is a situated collaborative problem-solving (CPS) task
wherein groups of three work together to deduce the weights of differently colored blocks us-
ing a balance scale. There are a total of 10 groups, resulting in approximately three hours of
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Figure 2: Example still from the Weights Task being performed. The utterance associated with
this frame is “i guess green block is like twenty and red block, blue block is like ten and ten”.
This utterance expresses the proposition green = 20 ∧ red = 10 ∧ blue = 10.

audiovisual data. Participants consented to the release of their likenesses for research purposes.
The study protocol and release of A/V data were approved by the Colorado State University
institutional review board.1 In this work we focus on Phase 1 of the task, where the group has
five blocks of different colors (C = {red, yellow, green, blue, purple}) whose weights follow an
instance of the Fibonacci sequence (Wn = {10g, 10g, 20g, 30g, 50g}). At the start of the task,
the group is told that the red block weighs 10 grams.2

The Weights Task Dataset (WTD) contains speech transcribed manually by humans (here-
after referred to as “Oracle” transcriptions) as well as speech transcribed automatically by
Google Cloud Platform’s Automatic Speech Recognizer (Google ASR). The Oracle and Google
transcription processes also segmented the speech into utterances—a single person’s continuous
speech, delimited by silence. In the dataset, there are a total of 2,140 utterances that contain tran-
scribed speech according to Oracle segmentation, and 1,500 utterances containing transcribed
speech according to Google segmentation. Fig. 2 shows still frame of a group performing the
task. Due to the overlapping nature of speech in this setting, utterance segmentation leads to
many sentence fragments and overlaps, as well as mistranscription by the automated system,
which leads to challenges in extracting the intended meaning behind any given utterance. An
additional challenge to meaningful information extraction from the linguistic channel is that
due to the multimodal nature of the task, a complete interpretation of an utterance may require
recourse to another modality. For example, someone may say “this one” while pointing to a spe-
cific block. The pointing makes it clear which block is being referred to but without access to the
video showing where the person is pointing, the language alone is ambiguous. The above factors
enumerate just some of the challenges to extracting propositions expressed through dialogue in
this setting.

The propositions themselves are annotated in the context of the common ground that evolves
between group members as the task proceeds, that is, the set of propositions Φ each individual
comes to believe as factual and that the group must agree upon, implicitly or explicitly, to arrive
at the goal (Pacuit, 2017). In the case of the Weights Task, the participants must all arrive at the

1The dataset and consent documents associated with the original study protocol are publicly available at
https://zenodo.org/records/10252341.

2Although a gram is a unit of mass, the colloquial dialogue in the dataset uses “mass” and “weight” interchange-
ably.
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Figure 3: This figure illustrates the frequency of all 47 unique propositions expressed in the
Weights Task Dataset. The horizontal axis lists the common ground propositions, such as weight
assignments (e.g., yellow = 50), while the vertical axis represents their frequency across the
dataset. The proposition yellow = 50 is the most frequently expressed, appearing 17 times, fol-
lowed by other key propositions such as purple = 30 and green = 20. Less frequent propositions
include combinations of weights and logical relations. This distribution highlights the diver-
sity and repetition of propositions as participants collaboratively deduce the weights of colored
blocks.

correct assignments of weight w ∈ W to color c ∈ C to solve the task. The WTD is annotated
with the propositions that are asserted, evidenced, or agreed upon as the task unfolds, based
upon the multiple modal channels and prior context. Our goal is to recover those propositions
from the transcribed speech.

Within the dataset, there are 127 utterances which describe 46 unique propositions that were
expressed during the task, with yellow = 50 as the most frequent, appearing 17 times. The av-
erage frequency of each unique value is approximately 2.76. Proposition breakdowns show 107
instances containing a single proposition, 13 instances with two propositions, and 7 instances
with more than two propositions. Among the operators, “=” is used exclusively in 95 instances,
while “̸=” does not appear exclusively. Additional comparisons include “>” (14 instances) and
“<” (12 instances), with 6 cases involving multiple operators. Notably, the top propositions oc-
curring in the task are yellow = 50, purple = 30, red = 10, green = 20, red = blue, and blue
= 10. These represent the correct weight assignments for each block, with other propositions
involving various comparisons to derive the correct solution. A visualization of the distribution
is provided in Fig. 3.

3.2. DELIDATA

DeliData (Karadzhov et al., 2023) is a dataset designed for examining group deliberation in
multi-party problem-solving tasks, using the Wason card selection task as the focal activity.
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Figure 4: Abridged conversation from DeliData, illustrating the collaborative reasoning process
of three participants solving the Wason card selection task. The task involves determining which
cards to flip to test the rule that “All cards with vowels on one side have an even number on the
other.” Dialogue excerpts showcase how participants propose, evaluate, and revise their answers
during the task. Reproduced from Karadzhov et al. (2023).

The Wason card selection task is a well-established task used in psychology research to explore
reasoning processes (Evans, 2016). In this task, participants are presented with four cards, each
with a number on one side and a letter on the other. The task is to determine which cards need
to be turned over to test a rule, such as “All cards with vowels on one side have an even number
on the other.” This task is designed to reveal common reasoning errors, such as confirmation
bias, where individuals might select cards that could confirm the rule rather than those that could
potentially disprove it. Fig. 4 shows an example conversation.

This dataset comprises 500 group dialogues, totaling approximately 14,000 utterances. The
corpus is annotated with deliberation cues, focusing on how participants propose, evaluate, and
revise solutions in a collaborative setting. The groups consist of up to five participants, and the
dialogues occur in an online chat format.

4. METHODS

In this section, we outline the data preprocessing steps, followed by a detailed description of the
methodologies employed for extracting propositional content from the datasets.

4.1. PROPOSITION ENUMERATION

WEIGHTS TASK Propositional content in the Weights Task takes the form of a relation be-
tween a block and a weight value (e.g., red = 10), between two blocks (e.g., red = blue),
or between one block and a combination of other blocks (e.g., red < blue + green). To
generate all possible candidate propositions in the domain, we employed a systematic process
that combined the five block colors (red, blue, green, purple, yellow), five potential weights
(10, 20, 30, 40, and50), and four relations (=, ̸=, <, >) into all possible combinations that fit the
aforementioned formats. “Conjunctive” propositions (e.g., green > 20 and yellow < 50) were
also allowed, up to a length of three conjuncts (the maximum that ever appeared in the actual
dataset). We normalized all candidate propositions for the symmetric property of equality (e.g.,
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so that red = blue is the same as blue = red), and dropped the resulting duplicates. The result
was 5,005 total candidate propositions that could be expressed in the Weights Task domain.

Any given proposition might be expressed in multiple ways. For instance, in the data “purple
block’s thirty,” “purple one thirty,” “let’s go thirty purple block’s thirty,” and “teeter teeter purple
block’s less forty greater twenty purple block’s likely thirty” all appear as ways of expressing the
proposition purple = 30, despite the fact that they may contain extra words or even mentions
of additional blocks or weights not contained within the proposition actually expressed. We
therefore modeled propositional extraction as a type of coreference problem, where the goal is
not to determine whether two entity mentions refer to the same thing (Lappin and Leass, 1994),
but rather to determine if two utterances mention both the same entity (block) and the same
property (weight or relation).

DELIDATA Propositional content in DeliData takes the form of a structured set-member or
attributive relation between a card and a property (e.g., is(E, V owel) for “[the] E [card] is a
[member of set] Vowel”), or between a card and a hypothetical property on the hidden side (e.g.,
has(E,Even) for “E has an Even number [on the other side]”). To generate all possible candi-
date propositions in the domain, we systematically combined the possible cards (A–Z and 1–9),
the relevant properties (Even, Odd, V owel, Consonant), and the defined relations (“is”, “is
not”, “has”, “does not have”) into all possible combinations that align with the Wason selection
task’s structure. These propositions were normalized to account for symmetric properties and re-
dundancies, resulting in a comprehensive set of propositions that could potentially be expressed
in the dataset.

Given that any single proposition might be expressed in multiple ways within the dialogue,
as in the WTD, we formalized the proposition in a similar manner. For example, different
participants might express the same idea using varying phrases such as “E could have Even,”
“E would show Even,” or “E must have an Even.” Despite differences in phrasing or additional
words, these expressions all map to the same underlying proposition has(E,Even).

Unlike the WTD, which has the propositions incorporated into its common ground anno-
tations, DeliData does not contain explicit annotations of propositions expressed. Therefore,
we had 2 annotators perform this task, following a strict guideline to ensure consistency across
the dataset. Utterances were annotated with the proposition expressed (if any) following the
form < card > < relation > < property >, and the annotations were made with a focus on
distinguishing between visible aspects of the card (e.g., “is Vowel”) and speculative or hypothe-
sized aspects (e.g., “has Even”). This structured annotation allowed us to capture the reasoning
process of the participants. Cohen’s κ for this task was 0.955, indicating high annotator agree-
ment (Cohen, 1960), for a total of 255 utterances annotated over 100 groups. Utterances that
described the multiple properties of the same card were removed since it expressed ambiguity
and did not have an assertion. Examples of these include the utterance “I see, yeah, it doesn’t
matter if 4 is a vowel or not” expresses both has(4, V owel) and ¬has(4, V owel). Within those
100 groups, the occurrences of each operator are as follows: is appears 85 times, is not occurs
23 times, has appears 158 times, and does not have occurs 21 times. Proposition breakdowns
show 197 instances with singular propositions and 57 instances with double propositions. These
statistics cover 100 groups within the dataset that is being used for this task.

To generate the set of candidate propositions, first, we defined the allowable properties for
each card type (letters and digits) based on the relation being asserted and according to the rules
governing what can be on opposite sides of a card. For example, when the relation is “is” or “is
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not,” a card showing a letter can only have the properties V owel or Consonant, while a card
showing a digit can only have the properties Even or Odd. Conversely, when the relation is
“has” or “does not have,” the properties apply to the hidden side of the card, with digits having
V owel or Consonant as properties and letters having Even or Odd.

To avoid generating contradictory or redundant propositions, we ensured that each card was
mentioned only once in any given set of propositions, which prevented conflicting assertions
about the same card.

The final step involved generating all valid combinations of one or two propositions that
adhered to the defined rules and consistency checks. This process produced a comprehensive
set of candidate propositions that could theoretically be expressed during the Wason task. The
result was a total of 38,362 propositions that could be used in the DeliData domain.

4.2. ANNOTATION AND PREPROCESSING OF THE WEIGHTS TASK

Because of the multimodal nature of the Weights Task and the prevalent use of demonstratives,
we enriched the transcribed utterances using a “dense paraphrasing” method inspired by Tu et al.
(2022; 2023), that rewrites a textual expression to reduce ambiguity and make explicit the under-
lying semantics. We isolated the utterances containing at least one pronoun from a predefined
set of {“it”, “they”, “them”, “this”, “that”, “these”, “those”}, performed a partial assignment
of blocks referenced by those pronouns based on actions that overlapped the utterances, and
had annotators identify the blocks denoted by the remaining pronouns, if any, while referring
to the video (see Fig. 5). This annotation was performed separately for the Oracle and Google
transcriptions. Utterances were dually annotated, resulting in an average Cohen’s κ = 0.89 over
the Oracle transcriptions and κ = 0.87 over the Google transcriptions. A gold standard was
then generated through adjudication by an expert. The original utterances were then replaced
with the dense paraphrased versions. High agreement scores and accuracy metrics demonstrate
the reliability and effectiveness of the annotation process. This procedure decontextualizes the
utterances from their multimodal dependencies, allowing us to evaluate the utterance as though
it were text only.

4.2.1. Data Cleaning of the Weights Task

Filtration of the WTD is motivated by the fact that many utterances, even after dense paraphras-
ing, still do not mention a specific object or weight, meaning that extracting an object-weight
or object-object relation from the utterance alone is infeasible. Our filtration steps follow steps
used in existing coreference research (Ahmed et al., 2023). The decision to follow this method-
ology was made at the outset before any experimental results were available. We adopted three
levels of data cleaning for WTD.

Level 1: The first level of cleaning consisted of removing all instances where neither color
nor weight was mentioned in the transcript. An example of an utterance removed at this step
would be “i mean it’s not gonna go anywhere i guess it’s just oh.”

Level 2: The second level of cleaning involved removing all utterances where the mentioned
colors and weights did not match the annotated proposition. For example, in an utterance “yeah
red block, blue block should be twenty as well”, “yeah” is actually an acceptance of a previously
asserted proposition (in this case green = 20), and red + blue = 20, the mention of which is
in the utterance, is not a valid propositional form in the task domain as the left hand side must
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Figure 5: The image depicts participants in the Weights Task discussing potential solutions while
interacting with the blocks and the balance scale. This setup emphasizes the importance of
multimodal context (e.g., gestures and object interactions) in interpreting verbal utterances. For
example, the original utterance is “we can replace one of [these] with the twenty.” With reference
to the video, an annotator can see the rightmost participant reaching for the red and blue blocks,
so the dense paraphrased utterance is “we can replace one of red block, blue block with the
twenty.”

be a single block (in this case, the truth of red + blue = 20 is implicit in two other (valid)
propositions red = 10 and blue = 10).

Level 3: The final level of cleaning removed all instances that do not mention a color, but
only a weight. For instance, the utterance “well the top is a ten” is annotated as blue = 10, but
with only the text, even a human would struggle to identify the correct proposition. The dataset
annotators, meanwhile, had access to the video and could see that the top block referred to is
blue, but as we focus only on transcriptions of natural speech, this information is not available
to our method. By removing such ambiguous utterances, Level 3 cleaning results in a cleaner
dataset where all remaining utterances explicitly mention both a color and a weight, making it
easier for an automated system to extract propositions accurately.

Since the DeliData task does not include a multimodal component with the task, and has
been already pre-processed, references to cards are already unambiguous, and so no additional
cleaning was done on this dataset.

4.2.2. Data Augmentation of the Weights Task

The propositional extractor from Venkatesha et al. (2024) was limited by the sparsity of the
utterances that actually expressed a proposition, totaling 47 unique propositions compared to the
5,005 possible propositions in the domain. For example, while yellow+purple+green > red is
a possible proposition according to the combinatorial process described in Sec. 4.1, it is unlikely
to actually be expressed during task performance, as the combination of yellow, purple, and
green blocks so clearly outweighs the red block that groups typically do not attempt it. In
contrast, green + purple = yellow is much more likely but may appear only once within a
group, if at all.

To address this sparsity and improve generalization of the cross-encoder method, we ex-
plored a data-augmentation procedure inspired by prior work (Kulhánek et al., 2021; Pellicer
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et al., 2023; Ravi et al., 2023; Nath et al., 2024). Specifically, we prompted GPT-4 to generate
10 additional utterances for each of the 47 unique propositions present in the actual data, re-
sulting in 470 new instances. These were combined with the 127 existing proposition instances,
bringing the total coverage to 597 instances. Each generated utterance was subsequently human-
validated for correctness before model training. The augmented data was used for training pur-
poses only. The prompt used for GPT-4 is given in Fig. 6, followed by the specific proposition
for which supplementary utterances were generated in the example case.

Figure 6: Synthetic data generation prompt used to augment the dataset for the Weights Task. The
system defines the task context and possible relations, while the user prompt specifies generating
10 unique utterances expressing a target proposition (e.g., red = 10). This approach expands the
dataset while maintaining linguistic diversity and task relevance.

While we performed data augmentation on the WTD for reasons of sparsity, with 100 of
the 500 DeliData groups, we accumulated sufficient training data for the cross-encoder and no
additional data was required for training purposes.

4.3. CROSS-ENCODER

Above, and in Sec. 2, we motivated propositional extraction as a type of coreference prob-
lem. Therefore, we use a cross-encoder neural network that is common in natural lanugage
processing (NLP) approaches to coreference. The cross-encoder learns a paired “contextual-
ized” representation for an utterance proposition pair. Unlike previous coreference approaches
mentioned in Sec. 2, which focus on the specific trigger word within a sentence, we encode
the entire utterance in the context of the proposition to generate a combined representation for
an utterance/proposition pair. This is for two reasons. Firstly, in our framework both the tran-
script and the candidate proposition can contain more than one color mention, which serves as
a trigger indicating a block. For instance, consider “so purple block, blue block should be forty
right there” (utterance) and purple+ blue = 40 (candidate proposition). Encoding the utterance
once for each specific color-trigger using a language model could drastically increase compu-
tational cost without any additional benefits of contextualization. This could also likely break
down higher-level semantic signals that can otherwise be encoded with a wider context-window
or the entire sentence. Secondly, under certain lenient pruning strategies, some transcripts may
not contain any color at all. E.g., “... so you know twenty plus ten thirty probably ...” with a

13
195 Journal of Educational Data Mining, Volume 17, No 1, 2025



candidate proposition red = 10 ∧ green = 20 ∧ purple = 30. In such cases, full sentential
context may capture more subtle semantic signals that are crucial for this task.

We encoded processed utterances as vector representations in two language models: BERT-
base-uncased (Devlin et al., 2019), and RoBERTa-base (Liu et al., 2020). Before encod-
ing, each dataset entailed slightly different preprocessing of the text. For WTD, stop words were
filtered out according to a standard list augmented with words that occurred in five or fewer bi-
grams over all the transcriptions, and are not number words, color words, or (in)equality relation
words. For DeliData, stop words were filtered out according to a standard list, with the exception
of the set {‘a’, ‘d’, ‘i’, ‘m’, ‘o’, ‘s’, ‘t’, ‘y’, ‘not’, ‘is’, ‘has’, ‘on’}. These characters or words
were crucial to the context of the DeliData task, because they could refer to individual cards or
relations between elements of a card. To retrieve the encoded vectors, we summed over the last
four encoder layers of each model and took the average of the [CLS] (classification token, used
to aggregate information from the entire sequence) or <bos> (beginning-of-sequence token,
used for sequence initialization) token vector and all individual token vectors in the utterance.
These vectors were used for propositional extraction by comparison using cosine similarity, and
for training the cross-encoder architecture.

For an utterance/proposition pair (ui, pj), we construct an overall representation of the pair
using the language model encoder. This representation consists of four individual parts, fol-
lowing modern standard practice in coreference established by Caciularu et al. (2021). We first
surround ui and pj individually with special tokens <m> and </m> that are added to the language
model tokenizer vocabulary and acquire learned representations during the training process. The
first part of this overall representation is VCLS , the pooled representation ([CLS]/<bos>) to-
ken of the last encoder hidden state. This representation is often used as a classification token in
NLP tasks. Then, we encode ui and pj individually in the context of each other (that is, ui when
preceding pj and pj when following ui)3. These comprise the second and the third components
of the overall representation: Vui

and Vpj . We then encode the element-wise, or Hadamard,
product of these two representations (Vui

⊙ Vpj ) to provide further cross-attention based sig-
nals. These four individual representations are then concatenated into a unified representation
([VCLS, Vui

, Vpj , Vui
⊙ Vpj ]), which is fed into a multi-layer perceptron (MLP) to get similarity

scores between the utterance and proposition (Eq. 1). The MLP is a two-layer neural network
(768 and 128 neurons) that takes in the concatenated representation (768×4 = 3072 dimensions)
and outputs a scalar, or after a sigmoid operation, the probability of an utterance referring to a
proposition.

Score(ui, pj) = MLP ([VCLS, Vui
, Vpj , Vui

⊙ Vpj ]) (1)

The candidate proposition with the highest score is retrieved, or the scores can be used to
compute a ranking of candidate propositions, for metrics like top-k accuracy. Fig. 7 shows a
schematic overview of the cross-encoder architecture.

4.3.1. Cross-Encoder Training

The parameters of the MLP are learned along with the parameters of the pretrained language
model. Motivated by Ahmed et al. (2023), we use a symmetric cross-encoding framework that

3The positional encoder of transformer models cause the resulting representations to be different despite the
input order being the same. This avoids positional bias observed in transformer models and allows for a more
unbiased loss computation.
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Figure 7: Schematic overview of the cross-encoder architecture, using example Weights Task
data.

minimizes the mean of the Binary Cross Entropy (BCE). More specifically, an utterance (ui) and
a proposition (pj) are encoded bidirectionally, by interchanging their sequential positions in the
input text ((ui, pj) and (pj, ui)), to avoid positional bias affecting loss computation observed in
transformer-based models (Hofstätter et al., 2021). This results in a different unified representa-
tion in each direction and we minimize the average of the BCE loss over the encodings in both
directions. Mathematically,

LBCE(θ,ϕ) = − 1

m

m∑

i=1

(yi · log ŷi + (1− yi) · log (1− ŷi)) (2)

where y and ŷ are the true and predicted probabilities for an utterance-proposition encoding in one of the
directions in a sample batch of size m. θ and ϕ are the parameters of the MLP and the pretrained LM,
respectively. We train using a batch size of 20 for 12 epochs, with a learning rate of 1e − 6 on the LM
parameters and 1e− 4 on the MLP pairwise scorer. With augmented data, the same training procedure is
followed but the augmented data is added to the training set for each group-wise fold.

4.4. EXPERIMENTS

We investigated two methods for extracting propositional content from utterances: a cosine similarity
baseline, and a cross-encoder adapted from entity and event coreference research in the field of NLP.
These were both evaluated over the Oracle transcriptions of utterances, and the Google automatic tran-
scriptions, and using various levels of data cleaning to explore performance of the different methods
in settings that range from more idealized to more realistic. Below we describe the methodology for
cleaning the data and training the cross-encoder.

4.4.1. Cross-Encoder

HEURISTIC PRUNING OF CANDIDATE PROPOSITIONS As mentioned, our data suffers from an
imbalance between negative and positive samples, in that the vast majority of candidate propositions are
not matches for a given utterance. This phenomenon is also present in common event coreference datasets,
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which results in a training dataset that is severely imbalanced toward negative pairs if not handled (Ahmed
et al., 2023). In our case, it is usually quite obvious when a candidate proposition is not a possible match
for an utterance because the candidate does not contain the object or weight value mentioned in the
utterance. Therefore, we employ a heuristic pruning strategy on both datasets.

For the Weights Task Dataset, heuristic pruning operates at two levels. 1) We compare all propositions
that include both the color and weight mentioned in the utterance (e.g., candidate matches for an utterance
containing “red” and “ten” would include red = 10, red ̸= 10, red < 10, etc.) 2) If the list of candidates
is still empty, as might be the case for utterances such as, e.g., “it’s fifty!”, we then enlarge the search
space by getting all the propositions that contain any of the colors or weights mentioned in the utterance.
This process is similar to the lemma-based heuristic pruning used for training a cross-encoder for cross-
document event coreference by Ahmed et al. (2023).

DeliData has a similar negative-positive imbalance in the training data. We therefore employ a similar
two-step pruning here. 1) We compare all propositions that include the same Card and the Property
mentioned in the utterance (e.g., candidate matches for an utterance containing “Z” and “Odd” would
include has(Z,Odd) and ¬has(Z,Odd)). This essentially involves extracting a set of entities from the
utterance and retaining only candidate propositions which contain the equivalent set. 2) If this list is
empty, it might be that the utterance is expressing multiple propositions, e.g., “I thought the 2 needed
to be turned over since it did not say that all even number cards only have vowels” is expressing the
proposition is(2, Even). However, the utterance contains the set of entities {2, Even, V owel} and no
propositions contain all of these elements. In this case, in this pruning step, all individual propositions that
can be expressed using elements of the utterance are retained as candidates. In this example, is(2, Even),
¬is(2, Even), has(2, V owel), ¬has(2, V owel), would be considered candidates.

TRAINING DATA CONSTRUCTION After filtering the candidate propositions with heuristic pruning,
to create the training dataset for the cross-encoder, we pair an utterance with its annotated correct propo-
sition as a positive pair and choose four random propositions from the filtered candidate propositions and
pair them with the utterance as negative pairs. For example, the WTD utterance “ok so the red has ten”
would be a positive match with red = 10 and a negative match with only three other candidates gener-
ated after pruning. This results in a more balanced ratio of negative to positive candidate propositions for
a given utterance, which is beneficial for training. The random selection from the filtered propositions
ensures a diverse and robust set of negative samples. We pick only four random negative samples because
a significant number of annotated propositions are of the form appropriate for the dataset, e.g., <color,
relation, weight>, which means that after the first level of heuristic pruning, certain transcripts would
have only four possible candidate propositions, viz. < color > {=, ̸=, <,>} < weight >.

TESTING METHODOLOGY We perform a rotating leave-one-group-out experiment where cross-
encoder training is performed over 9 of 10 groups in the WTD, and 99 of 100 groups in DeliData, with
the remaining group reserved for the test set. The test group is then rotated through.

For testing, we use the same pruning methodology as described above for each dataset, but where
necessary, further prune the candidate utterance-proposition pairs from the test set using a top-k pruning
strategy, for which we use the previously trained cross-encoder. Specifically, we compute the cosine
similarities between the embeddings of an utterance and the remaining candidate propositions, while
interchanging their mutual positions. For instance, if (ui, pj) represents an utterance-proposition pair, we
encode both [Vui , Vpj ] and [Vpj , Vui] to retain their positional information. Since the cross-encoder has
been trained to minimize the mean of the bidirectional BCE loss, the latent representations of positive
pairs likely point in similar directions in the embedding space vis-à-vis the negative pairs. As such, a top-
k pruning strategy allows us to generate the most similar candidate propositions for a particular utterance
and remove mismatches which are more obvious. This helps the system’s precision by minimizing the
loss of pairs during pruning. We use k = 5 to ensure approximate consistency with the training set,
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which has a 1:4 ratio of positive to negative samples. We then score these leftover pairs using our trained
cross-encoder. For each utterance, we consider the extracted proposition to be the one with the highest
score as given by the cross-encoder since need a ranking system to choose a proposition for the evaluation
metrics.

4.4.2. Cosine Similarity

For a given utterance’s vector representation, we compute the cosine similarities between the embed-
dings of all candidate propositions and the utterance embeddings. We then sort these cosine similarities,
retrieving the proposition(s) with the most similar embeddings to the utterance embedding. We use the
same pruning strategies mentioned in Sec. 4.3 to be consistent. Because cosine similarity calculations
only require the utterances to be encoded through a pre-trained model, and no training of a separate
model, we simply compare the encodings of utterances to those of propositions without the need for a
leave-one-group-out split.

4.4.3. Zero-Shot Baselines

In addition to the cross-encoder and cosine similarity methods, we also establish zero-shot baselines
using GPT-4 and LLaMA2-13B, inspired by prior works (Yang et al., 2022). The goal of these baselines
is to assess the feasibility of extracting propositions directly from utterances without any explicit training
or fine-tuning. The zero-shot approach involves prompting the language models with an utterance and
instructing them to identify the underlying proposition. The prompt structure is designed to provide the
models with context about the task and the expected format of the output. The model is also asked to
produce a rationale for its decision, we leads the model to perform chain-of-thought -style reasoning,
which has been shown to elicit improved reasoning in LLMs and guard against erroneous outputs (Wei
et al., 2022; Nath et al., 2024; Nath et al., 2024). The use of this technique provides extra guidance
to the LLM, resulting in zero-shot baselines that are not artificially low. The specific prompts used for
GPT-4 and LLaMA2-13B are shown in Fig. 8. We do not report LLaMA 2-13B zero-shot performance
on DeliData, as the model was unable to extract any coherent, properly-formed propositions from the
provided utterances given the prompt.

Figure 8: Prompt used to establish zero-shot baselines for propositional extraction. The system
prompt specifies the task context and defines the structure of propositional content, while the
user prompt provides an utterance (e.g., “tell red cube top 10 grams”) for which the system must
extract the corresponding proposition and rationale. This approach evaluates the model’s ability
to generalize without prior task-specific training.
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4.5. METRICS

To evaluate our system’s performance, we use 3 common metrics for retreival tasks: Intersection Over
Union (IOU), top-1 accuracy, top-3 accuracy.

IOU measures how well we extract components of propositions, even if the entire proposition is
not retrieved perfectly. It calculates the overlap between predicted and true proposition. For example,
if the true proposition is red = 10 ∧ blue = 20 ∧ green = 10 and we extract proposition red =
10 ∧ blue = 30, we consider the cardinality of the intersection of the two sets ({red = 10}) over their
union ({red = 10, blue = 20, green = 10, blue = 30}). This assesses partial matches where some, but
not all, of the correct propositional content is retrieved. In the example, the IOU score would be 1

4 or
0.25. This is because only one element (red = 10) matches out of a total of four unique elements across
both propositions.

Top-1 accuracy is stricter; it only counts if we extract the exact proposition. For example, if the true
proposition is red = 10, the only way to attain a score of 1 is if the prediction is also red = 10.

Top-3 accuracy also requires an exact match, but it counts if the correct proposition is among the
top three extractions. For instance, if the true proposition is red = 10, a set of top three predictions
red ̸= 10, red > 10, and red = 10, would get a top-3 accuracy score of 1 since the correct proposition is
present within the top 3. Top-3 accuracy is not reported for zero-shot baselines since GPT-4 and LLaMA
2 extract only one proposition from each utterance.

5. RESULTS

For the Weights Task Dataset, we report all results across the three different levels of data cleaning
discussed in Sec. 4.2.1. Results include the cross-encoder with and without augmented training, the
cosine similarity method, and zero shot.4 First, we established the performance of our methods on a
“best case” baseline. Then, we explored how performance was modulated by the level of data cleaning
and automatic speech recognition (ASR). Across these data variants, our cross-encoder outperformed the
other methods. We then explored how these methods, specifically the cross-encoder, the cosine similarity,
and zero shot methods, generalized to a new domain: the DeliData dataset. All results are presented in
Tables 1 - 7 while detailing extraction method, and the performance metrics. ‘-aug’ refers to the cross
encoder model trained on augmented data.

BEST-CASE CROSS-ENCODER First, we evaluated our methods on Level 3 (the most rigorous
level of data cleaning) with Oracle transcriptions (Table 1). The performance on this data establishes a
“best-case” baseline for propositional extraction on the Weight Task, where the transcriptions are man-
ually transcribed and optimally cleaned, removing utterances that contain no color but only a weight
value.

IMPACT OF DATA CLEANING In Tables 2–6, we evaluated our methods on increasingly challenging
data conditions. Specifically, we first reduced how clean the data was (as detailed in Sec. 4.2.1) to Levels
2 (Table 3) and Level 1 (Table 5), where Level 1 is the most difficult condition.

IMPACT OF AUTOMATIC SPEECH RECOGNITION Then, we explored how ASR transcriptions
impacted performance across Level 3 (Table 2), Level 2 (Table 4), and Level 1 (Table 6). As expected,
all methods exhibited a drop in performance as data became more realistic (and thus more difficult);
however, our cross-encoder-based method consistently outperformed the other methods.

4We do not reproduce the Longformer results reported in Venkatesha et al. (2024) because the Longformer-
based cross-encoder substantially underperformed the cross-encoders using BERT and RoBERTa, so we focus on
those other models here.
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GENERALIZATION TO DELIDATA Finally, we present the DeliData results in Table 7. Unlike the
WTD, DeliData preprocessing does not involve varying levels of cleaning or different transcription meth-
ods. Instead it provides a more straightforward evaluation scenario where the dialogue is solely in text
form and inherently cleaner, making it approximately comparable of the WTD results in the condition
reported in Table 1, with maximal cleaning and Oracle transcription.

Table 1: Propositional extraction performance
on the Weights Task dataset with Level 3
cleaning using Oracle transcriptions. The
columns represent IOU (Intersection Over
Union), Acc. (Top-1 Accuracy), and Top-3
Accuracy. Bolded values indicate the best per-
formance for each metric

IOU Acc. Top-3

BERT 0.664 0.640 0.773
BERT-aug 0.771 0.762 0.905
RoBERTa 0.683 0.671 0.829
RoBERTa-aug 0.753 0.747 0.867

BERT-cosine 0.570 0.547 0.747
RoBERTa-cosine 0.337 0.307 0.520

GPT-4 0.659 0.546 –
LLaMA 2 0.643 0.513 –

Table 2: Propositional extraction perfor-
mance on the Weights Task dataset with
Level 3 cleaning using automatic transcrip-
tions. Columns include IOU (Intersection
Over Union), Acc. (Top-1 Accuracy), and
Top-3 Accuracy. Bolded values indicate the
best performance for each metric.

IOU Acc. Top-3

BERT 0.635 0.607 0.787
BERT-aug 0.651 0.633 0.817
RoBERTa 0.645 0.607 0.738
RoBERTa-aug 0.648 0.617 0.800

BERT-cosine 0.281 0.262 0.344
RoBERTa-cosine 0.057 0.049 0.147

GPT-4 0.483 0.417 –
LLAMA 2 0.463 0.416 –

6. MODEL SELECTION AND STATISTICAL ANALYSIS

We selected Oracle Level 3 RoBERTa as the best-performing model on the Weights Task Dataset (WTD)
based on its superior results across the tested conditions, assuming no data augmentation as augmenting
data on the WTD did not significantly impact performance. To validate this selection, we performed
paired t-tests, comparing Oracle Level 3 RoBERTa IOU scores with each other condition. For each
group, the IOU scores were calculated and compared across all models and configurations. The results,
as shown in Table 8, reveal that data cleaning significantly impacts model performance, with Level 3
cleaning yielding significantly better results than Levels 1 and 2 (Table 8). This supports the conclusion
that data cleaning at this level enhances the model’s effectiveness. The cross-encoder demonstrates statis-
tically significant improvements over the cosine-based approaches, as seen in the comparisons between
RoBERTa Level 3 cross encoder model and and Cosine RoBERTa/BERT.

Furthermore, there is no statistically significant difference between Google and Oracle transcription
systems, as demonstrated in the non-significant comparisons (Table 8). Similarly, training with aug-
mented data did not result in statistically significant improvements over standard training. Both findings
suggest that additional complexities, such as alternative transcription systems or data augmentation, do
not meaningfully impact performance for this task. We also observed that our model’s performance did
not exhibit statistically significant differences compared to GPT and LLAMA 2-13B. Given that these
models are state of the art models and trained on vast datasets, achieving comparable results without
significant performance differences is a promising indication that our cross-encoder approach is an effec-
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Table 3: Propositional extraction perfor-
mance on the Weights Task dataset with
Level 2 cleaning using Oracle transcrip-
tions. Columns include IOU (Intersection
Over Union), Acc. (Top-1 Accuracy), and
Top-3 Accuracy. Bolded values indicate the
best performance for each metric.

IOU Acc. Top-3

BERT 0.596 0.562 0.730
BERT-aug 0.639 0.607 0.831
RoBERTa 0.585 0.573 0.789
RoBERTa-aug 0.599 0.573 0.753

BERT-cosine 0.505 0.472 0.651
RoBERTa-cosine 0.284 0.258 0.461

GPT-4 0.599 0.472 –
LLaMA 2 0.520 0.460 –

Table 4: Propositional extraction perfor-
mance on the Weights Task dataset with
Level 2 cleaning using automatic transcrip-
tions. Columns include IOU (Intersection
Over Union), Acc. (Top-1 Accuracy), and
Top-3 Accuracy. Bolded values indicate the
best performance for each metric.

IOU Acc. Top-3

BERT 0.537 0.526 0.737
BERT-aug 0.563 0.547 0.747
RoBERTa 0.530 0.500 0.697
RoBERTa-aug 0.498 0.480 0.680

BERT-cosine 0.232 0.210 0.276
RoBERTa-cosine 0.052 0.039 0.118

GPT-4 0.391 0.333 –
LLaMA 2 0.418 0.373 –

Table 5: Propositional extraction performance
on the Weights Task dataset with Level 1
cleaning using Oracle transcriptions. Columns
include IOU (Intersection Over Union), Acc.
(Accuracy), and Top-3 Accuracy. Bolded val-
ues indicate the best performance for each
metric.

IOU Acc. Top-3

BERT 0.526 0.496 0.609
BERT-aug 0.561 0.539 0.678
RoBERTa 0.448 0.426 0.557
RoBERTa-aug 0.501 0.474 0.649

BERT-cosine 0.229 0.200 0.356
RoBERTa-cosine 0.419 0.347 0.514

GPT-4 0.453 0.374 –
LLaMA 2 0.336 0.304 –

Table 6: Propositional extraction perfor-
mance on the Weights Task dataset with
Level 1 cleaning using automatic transcrip-
tions. Columns include IOU (Intersection
Over Union), Acc. (Accuracy), and Top-3 Ac-
curacy. Bolded values indicate the best perfor-
mance for each metric.

IOU Acc. Top-3

BERT 0.353 0.309 0.427
BERT-aug 0.389 0.345 0.527
RoBERTa 0.383 0.336 0.464
RoBERTa-aug 0.422 0.373 0.473

BERT-cosine 0.036 0.027 0.081
RoBERTa-cosine 0.164 0.114 0.198

GPT-4 0.298 0.261 –
LLaMA 2 0.336 0.304 –

tive alternative with far fewer parameters. This suggests that our method holds substantial potential in
practical applications, providing competitive accuracy without the need for large generative models.
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Table 7: Propositional extraction performance on the DeliData dataset. Columns include IOU
(Intersection Over Union), Acc. (Top-1 Accuracy), and Top-3 Accuracy. Bolded values indicate
the best performance for each metric.

IOU Acc. Top-3

BERT 0.707 0.634 0.773
RoBERTa 0.675 0.605 0.773

BERT-cosine (+ pruning) 0.499 0.436 0.668
BERT-cosine (− pruning) 0.175 0.102 0.130
RoBERTa-cosine (+ pruning) 0.413 0.344 0.680
RoBERTa-cosine (− pruning) 0.228 0.090 0.165

GPT-4 0.545 0.433 –

Table 8: Paired t-test results (Significant, p < 0.05) comparing Oracle Level 3 RoBERTa with
other models

Comparison t-statistic p-value

Oracle Level 2 RoBERTA 2.35 0.043∗

Oracle Level 1 RoBERTA 6.22 <0.001∗

Oracle Level 3 BERT-cosine -1.14 0.027∗

Oracle Level 3 RoBERTa-cosine -1.14 <0.001∗

Oracle Level 3 RoBERTa-aug -1.14 0.285
Google Level 3 RoBERTa 1.01 0.337
GPT-4 0.07 0.941
LLaMA 2 0.06 0.948

∗ Indicates statistical significance at p < 0.05.

7. DISCUSSION

COMPARISON OF DATA CLEANING STRATEGIES As expected, with increased levels of data
cleaning on the Weight Task, we see a trend of improving performance across all extraction strategies,
language models, and transcription methods. The progressive removal of noise, such as incomplete or
ambiguous utterances as discussed in Sec. 4.2.1, directly enhances the accuracy and IOU of propositional
extraction. This trend is consistent across different language models (BERT, RoBERTa) and holds true
whether using manually segmented Oracle transcriptions or automatically generated ASR transcriptions.
However, it is important to note that this increase in performance comes at a trade-off. As we apply more
rigorous cleaning criteria, the number of usable utterances decreases significantly. With fewer samples to
evaluate, the models may become overly tuned to the cleaner dataset. Furthermore, in real-world applica-
tions where such extensive cleaning might not be feasible, the performance gains seen under these ideal
conditions might not fully translate.

COMPARISON OF EXTRACTION METHODS The cross-encoder consistently outperforms all other
baselines across all three metrics. Comparing the extraction methods across Tables 1– 6 shows that
the cross-encoder outperforms the cosine baseline by at least 0.2 IOU on average. On the other hand,
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with a metric that does not reward partial selection, like traditional or Top-1 accuracy, the cross-encoder
outperforms the cosine baseline by at least 40%, on average, although the absolute scores are typically
lower than the more lenient IOU metric.

COMPARISON OF TRANSCRIPTION METHODS As expected, using automatic transcriptions of
the speech leads to a consistent degradation in performance, as automated segmentation and transcription
may incorrectly conflate two overlapping utterances from different people, or as annotators leave out or
insert words, where such errors are expected to be minimized by a careful human transcriber. However,
this degradation can sometimes be quite small, especially at higher levels of data cleaning, when using
the cross-encoder, and the BERT or RoBERTa models. For instance, when using the cross-encoder,
the accuracy using BERT embeddings of Google automated transcriptions increases from 30.9% at data
cleaning Level 1 (least stringent) to 60.7% at data cleaning Level 3 (most stringent), while when using
cosine similarity with pruning, accuracy only increases from 14.4% to 26.2%.

COMPARISON OF LANGUAGE MODELS Using embeddings from BERT typically achieves the best
performance, but the performance gap with RoBERTa embeddings is usually quite small especially for
the cross-encoder. RoBERTa sometimes performs better than BERT on less clean data, which may reflect
the larger and more diverse training data of RoBERTa. Both of these models significantly outperform the
Longformer model from Venkatesha et al. (2024).

COMPARISON OF AUGMENTED VS. RAW TRAINING DATA Training with augmented data re-
sults in a small increase in the performance across all metrics on the WTD. The lack of a significant
performance jump can be attributed to the fact that the multimodal nature of the Weights Task. A sen-
tence like “10 10 20” is annotated as green = 20. This is because the participant is pointing at the green
block at the time, which the human annotators can see, but the utterance does not explicitly convey that
green weighs 20g. Thus, GPT-4 does not have the capacity to generate a sentence that is both similar to
“10 10 20” and makes clear that the intended meaning is green = 20. While GPT-4 is capable of generat-
ing clean, syntactically correct utterances that can enrich the dataset, it struggles to replicate the nuanced,
context-dependent nature of the original utterances. In the case of “10 10 20,” the crucial information—
namely, the association of the utterance with the green block—is derived from visual context, something
that GPT-4 cannot infer or incorporate when generating new data. This limitation suggests that while data
augmentation can help increase the quantity of training data and may offer some performance benefits,
it does not necessarily equip the model to better handle the complexities introduced by the multimodal
nature of the task. The model’s improved performance with augmented data is therefore marginal, as it
still struggles to interpret or generalize from utterances where the meaning heavily relies on non-verbal
cues, such as gestures or object references.

We initially hypothesized that the limited availability of annotated multi-modal WTD data was a
primary factor limiting model performance. However, the lack of significant gains from this augmentation
points to nuances and intricacies involved in proposition expression that go beyond mere data quantity.

COMPARISON OF ZERO-SHOT BASELINES Zero-shot LLM performance reflects the complexity
of the task. The utterances are often not clean or complete, and therefore LLaMA 2-13B and GPT-4 are
often unable to extract propositions from them. However, zero-shot baselines still follow the same pattern
of the cross-encoder and the cosine baselines, where a cleaner dataset results in a better performance. This
is expected, as with cleaner data the large language models are provided with coherent sentences with
explicit mentions of the blocks and the weights. Level 3 cleaning on the WTD results in a zero-shot IOU
comparable to that of the cross-encoder. Zero-shot results on DeliData further confirm the pattern that
Deli is most similar to clean versions of the WTD, and that the cleaner utterances hold explicit semantic
meaning and convey the relationship between the task-relevant elements.
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Our results demonstrate that a fine-tuned cross-encoder model is comparable to baselines from pow-
erful LLMs like GPT-4 and LLaMA 2-13B in the task of propositional extraction from dialogue. While
these large language models offer impressive capabilities, their deployment in real-world scenarios, es-
pecially within educational contexts, presents significant challenges. Particularly, GPT-4 employs a pay-
per-use model, making it financially unsustainable for large-scale or continuous applications. Similarly,
even though LLaMA 2 is an open-weight model, running a 13-billion parameter model necessitates access
to substantial computation resources including high-end GPUs, which might be prohibitively expensive
or unavailable for many communities. Moreover, directly sending transcribed student utterances or other
private information to external LLMs, even for zero-shot inference, could pose significant privacy risks
and compliance issues.

As noted in Sec. 4.4.3, LLaMA 2-13B failed to extract any coherent propositions from DeliData,
highlighting the complex nature of the task and ways in which propositions may be expressed. For in-
stance, when given the utterance, “It’s asking you to test the rule. Would it not prove that the rule is tested
if the 2 turns up a vowel?”, which expresses the proposition has(2, V owel), LLaMA 2-13B returned the
proposition, “A is even, B is odd, C is vowel, D is consonant,” which is completely unanchored from the
entities and card properties actually contained in the utterance.

COMPARISON OF DATASETS The performance of the best cross-encoder on the DeliData dataset
(0.707 IOU, using BERT) falls between the best cross-encoder’s performance on WTD with Level 2
(0.639 IOU, using BERT-sug) and Level 3 (0.771 IOU, using BERT-aug) cleaning. This is in part due
to the unimodal (language-only) nature of the DeliData task and the tendency of the participants to be
explicit about the elements of the cards and their properties. This may also be an effect of the text-
chat nature of the dialogue, where participants explain themselves more fully to avoid ambiguity and
misinterpretation by their task partners. The more explicit nature of DeliData utterances is also reflected
in the zero-shot performance, which has a much higher baseline on DeliData than on all but the most
rigorously cleaned version of the Weights Task data; our cross encoder method is more uniquely suited
to handling the ambiguities that arise in a multimodal task like the Weights Task.

7.1. GROUP-WISE ANALYSIS

Figs. 9 shows IOU and 10 shows top-3 accuracy results from the test samples of each group, at Level
1 (most lenient) data cleaning, using BERT embeddings. The plots compare performance using Oracle
(left charts) vs. Google (right charts) utterances and compare the cross-encoder to cosine similarity with
heuristic candidate pruning.

We can see that cross-encoder performance on Group 7 is nearly identical regardless of which tran-
scription method was used. This is likely because Group 7’s utterances used mainly simple propositions
of the form <color><relation><weight>. These instances are easy to extract from the transcripts, and
the automated transcripts are likely of high-fidelity.

We can see in Fig. 9 that Group 4’s IOU drops significantly when comparing cosine similarity’s
performance over Oracle transcriptions vs. over Google transcriptions. While exploring the samples
from this group, several issues were noted. We found eight utterances in the Oracle data and only seven
in the Google data, meaning that one of the utterances was completely missed by Google ASR. This
utterance happened to be very straightforward and easy for the cosine method to classify. The Oracle
transcript is simply “blue ten.” Another issue, again due to the segmentation, is Google ASR may merge
two utterances. This highlights a limitation of ASR models, where some additional context may needed
to know when a speaker has moved to another sentence. Obviously, the main difference between using
the different transcription methods is the transcripts themselves. One instance from Group 4 states “easy
green block twenty cause ...” whereas Google ASR transcribed the utterance as “okay e green block
red block 10 ...”. These results highlight certain issues that should be considered when deploying such
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an information extraction system over the outputs of an ASR system, as may be required in classroom
environments.

Figure 9: Group-wise Intersection over Union (IOU) comparison at Level 1 data cleaning using
BERT embeddings. The left chart shows performance with Oracle transcriptions, while the right
chart reflects performance with Google ASR transcriptions. Blue bars represent Cosine Similarity
with Pruning, and orange bars represent the Cross-Encoder method across all groups.

Figure 10: Group-wise Top-3 Accuracy comparison at Level 1 data cleaning using BERT em-
beddings. The left chart displays performance with Oracle transcriptions, and the right chart
shows performance with Google ASR transcriptions. Blue bars represent Cosine Similarity with
Pruning, and orange bars represent the Cross-Encoder method across groups.

7.2. ERROR ANALYSIS

As the cross-encoder is consistently the best-performing extraction method, examining samples it gets
wrong is informative. One such example is the utterance “green block one probably twenty ten ten
twenty”. The correct proposition is blue = 10 ∧ green = 20 ∧ red = 10. The annotators have access to
the video and can see that when saying “ten ten twenty,” the speaker is actually pointing to the blue block,
then the red block, then the green block. This information is not available through the textual medium
alone.

The nature of the DeliData task leads to some errors, mostly pertaining to misinterpreting letters. For
example, the utterance “makes sense flip 6 check a vowel” mentions only the card ‘6’. However, since the
word ‘a’ could also represent a card (“A”), propositions with the cards 6 and A are retained as candidates,
leading to mis-retrieval errors. The same occurs with the card “I”.

24
206 Journal of Educational Data Mining, Volume 17, No 1, 2025



ASR transcription errors appear to play a role in zero-shot extraction errors. For example, zero-shot
LLMs are unable to extract a proposition from the automatically transcribed utterance “blue block seems
done” (actual utterance “blue block seems 10”), because the word “done” does not provide any context to
the weight of the blue block. The cross-encoder models successfully retrieve the proposition blue = 10
from the utterance, even with the transcription error, because it is trained with task context that links the
blue block and weight 10g.

TOP-k ERRORS In order to compare our two extraction methods, we carried out a detailed analysis
of candidate propositions that were ranked similarly, based on their cross-encoder scores or cosine sim-
ilarities. On average, at Level 1 (most lenient) data cleaning, the cross-encoder performs comparatively
better at ranking the correct propositions in the top 5. For instance, the cross-encoder ranks 8 and 21 cor-
rect propositions higher than the cosine similarity method, for Google and Oracle transcripts respectively.
The cosine similarity method ranks 1 (Google) and 11 (Oracle) correct propositions higher.

On the other hand, there were at least 14 Google utterance transcripts and 37 Oracle utterance tran-
scripts where both the extraction methods performed equivalently.

QUALITATIVE ANALYSIS On average, simpler utterances that contain a reference to only one color
and/or weight are correctly retrieved by both the cross-encoder and cosine similarity. For instance, “I
tell red cube ten grams” (correct proposition red = 10) and “green twenty” (green = 20). More
interestingly, the cross-encoder seems to retrieve utterances with ambiguous context without a direct
reference to color or with multiple colors more effectively than the cosine similarity method. For example,
“Fifty I” (yellow = 50) and “green block twenty red block, blue block ten ten” (blue = 10∧green = 20∧
red = 10). This is likely due to the cross-encoder’s cross-attention based signals that are being sourced
from the entire utterance in the context of the candidate proposition. This was previously observed in
(Caciularu et al., 2021) where modeling global signals in parallel with local features led to an overall
increase in coreference resolution performance. Since in the actual task data “yellow” was expressed
most frequently in the context of “50” and relation =, when only “Fifty” is expressed in an utterance,
yellow = 50 gets the highest score. This is not possible with the cosine similarity since it is not trained
on the data and there is no particular relationship between “yellow” and “fifty” in general language.

8. TRANSITION PATH TO REAL-TIME DEPLOYMENT

The feasibility of extracting propositions in an offline setting, as demonstrated in the preceding sections,
lays the groundwork for using real-time propositional extraction in classroom-like interactions. The abil-
ity to identify and track propositions as they emerge in a live dialogue opens up possibilities for immediate
analysis and potential interventions in scenarios such as collaborative problem solving. As an example
scenario, we use the common ground tracking task presented in Khebour et al. (2024). As mentioned
in Sec. 2, the two core modules for common ground tracking are an epistemic positioning classifier (the
focus of Khebour et al. (2024)) that operates over the outputs of a propositional extractor. We implement
this task in a real-time multimodal context that processes live video and speech signals to determine the
beliefs shared by the group as they engage in the Weights Task, and replace the cosine similarity-based
propositional extraction method used in Khebour et al. (2024) with our cross-encoder-based method.
Fig. 11 shows two stills from a live demonstration prototype. In this section we describe the components
of such a system, which adapts insights from VanderHoeven et al. (2024) about multimodal agent design
to this scenario.

REAL-TIME TRANSCRIPTION AND SEGMENTATION For live deployment, a robust ASR system,
such as FasterWhisper, is essential for transcribing and segmenting speech with minimal latency. Our
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Figure 11: Frames from a live instance of propositional extraction in the Weights Task.
Automatically-detected objects are outlined in red or green. Pointing directions are shown in
orange (with a pointing cone or “frustum” shown in light blue). Gaze directions are shown in
purple. In the left-hand frame, the participant on the left points at the purple and blue blocks and
says “so purple is 30 and blue is 10” which the participant on the right affirms. The right-hand
frame shows that the propositions blue = 10 and purple = 30 are successfully extracted (shown
by the numbers, signifying weight values, in colored squares symbolizing the blocks), and shown
to be accepted as factual by the group.

results indicate that ASR-induced degradation in the propositional extractor’s performance is minimal
compared to using manual transcriptions.

MULTIMODAL INTEGRATION Nonverbal cues like gestures and gaze are vital for disambiguating
references in collaborative tasks. Our approach incorporates depth cameras (e.g., Azure Kinect) for 3D
body tracking and uses a FasterRCNN model for object detection. Pointing gestures are identified through
a MediaPipe-based method, while gaze direction is approximated using nose orientation extracted via
body rigs.

MULTIMODAL DENSE PARAPHRASING Real-time paraphrasing resolves ambiguous references
by integrating gesture and object detection. For instance, “this one is 10” accompanied by a pointing
gesture toward a blue block is paraphrased as “blue block is 10.” This process enriches utterances for
more accurate propositional extraction.

PROPOSITIONAL EXTRACTION MODEL The enriched utterances serve as input for a lightweight
cross-encoder model trained on annotated task data. By fusing speech with multimodal cues, the model
enables efficient real-time operation, making it suitable for use in environments like classrooms where
responsiveness is critical.

PLANNED EVALUATION Formal validation can be conducted of the system prototype in real-time
multimodal dialogue contexts. Planned evaluations include:

• Substitution studies: To assess the impact of live performance of each module (e.g., gesture, gaze,
ASR) by replacing automated features with ground truth

• Component interaction analysis: To understand how modules influence one another

• Group variability testing: To evaluate adaptability across different group dynamics and task struc-
tures
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PRELIMINARY METRICS AND EXPECTATIONS Primary evaluation metrics will include the Dice
Similarity Coefficient, a statistical measure of similarity used to evaluate the overlap between predicted
and ground truth sets, for alignment between predictions and ground truth. Both live and controlled
settings will be used, where controlled settings involve predefined, static test cases, while live settings
introduce real-time variability, to ensure accuracy and responsiveness, helping refine the system’s scala-
bility in dynamic environments.

9. LIMITATIONS

DATASET SIZE AND LOSS DUE TO CLEANING The data preparation and cleaning procedures
inevitably result in the loss of several utterances. This leads to small datasets, with the Weights Task
Dataset (WTD) ranging from dozens to slightly over 100 utterances, depending on the level of data
cleaning, and 255 utterances for DeliData. The reduced dataset size can impact the robustness of the
analysis and limit the generalizability of the results.

IMPACT OF AUTOMATED TRANSCRIPTION ERRORS Errors in automated transcripts can ad-
versely affect the efficacy of the candidate pruning process. For example, Google transcribes an utterance
as “blue block’s obviously time,” when the transcribed word “time” was actually uttered as “10.” Such
transcription errors disrupt the pruning process for candidate propositions, as it incorrectly limits the
search space to propositions mentioning “blue” without “10,” thereby affecting performance.

DEPENDENCE ON HEURISTIC PRUNING Heuristic pruning of candidate propositions signifi-
cantly affects performance, as seen in the results of cosine similarity with and without pruning. Pruning
not only reduces the search space but also helps maintain a balanced sample distribution for training and
aligns test data with the distribution of the training data. However, the pruning methodologies are task-
specific and must be adapted to the nature of the propositions in each scenario, limiting the automatic
generalizability of the method.

TASK DEFINITION DEPENDENCY The system assumes a well-defined task structure with a finite
set of propositions that can be expressed. This reliance on predefined proposition templates means the
approach is inherently limited to scenarios where possible outcomes are known a priori. Consequently,
the method cannot be readily applied to tasks with open-ended goals or undefined propositional spaces.

RELIANCE ON ANNOTATED TRAINING DATA The system requires access to annotated training
data for the cross-encoder model. While synthetic data augmentation using GPT-4 helps mitigate the
scarcity of training samples, the generated utterances may fail to capture the nuanced linguistic variations
present in collaborative settings. As a result, the quality of augmented data does not fully replicate the
richness of real-world dialogues, limiting the system’s ability to generalize.

NEED FOR DOMAIN EXPERTISE The approach necessitates domain expertise to define relevant
propositions and validate their relevance to the task. Subject matter experts play a crucial role in ensuring
that extracted propositions are meaningful and aligned with task requirements. However, this dependence
on manual oversight hinders the scalability of the system to new tasks or domains without significant
investment in expert resources.

PRIVACY CONCERNS IN REAL-WORLD DEPLOYMENT Participants in the Weights Task Dataset
consented to the recording and analysis of their data using third-party tools such as Google ASR for re-
search purposes. However, in real-world classroom implementations, using cloud-based services like
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Google ASR raises ethical concerns regarding student privacy. To address this, local custom models
would need to be developed and deployed to ensure data privacy and compliance with ethical standards.

10. CONCLUSIONS

In this paper, we have defined and explored the complex problem of automatically identifying propo-
sitional content from transcriptions of natural speech in a collaborative task. Automated propositional
extraction from speech serves a number of important educational purposes. For example, tracking the
assertion of propositions over time indicates how students are or are not discussing key concepts relevant
to the task, which in turn indicates the construction of shared knowledge (Roschelle and Teasley, 1995).

The Weights Task data presents many challenges, from overlapping speech to incomplete sentences,
and we have evaluated a suite of transformer-based language models based on two different methodolog-
ical frameworks: a cosine similarity baseline vs. a cross-encoder. Our experiments present a feasible
method for performing the extraction of task-relevant propositions by building upon publicly-available
language models and pairwise representation learning techniques. The successful implementation of the
same task on DeliData, a dataset with an entirely different domain, shows the generalizability of our
methods given only an inventory of task-relevant propositions, which can be enumerated deterministi-
cally. While ground-truth annotation is needed for cross-encoder training, our success on a small amount
of data demonstrates the small amount of needed annotation. We have also shown that this task is not
a trivial one to be disposed of with off-the-shelf LLMs, as demonstrated by the inferior performance of
GPT-4 and LLaMA 2-13B when compared to our own methods.

Our best performing methods, particularly the cross-encoding framework, show a narrow perfor-
mance gap when operating over automated transcriptions when compared to human transcriptions, sug-
gesting a feasible path forward toward fully automating such a system in a live environment. A clear
application in a classroom is in a system that models the shared knowledge of a group toward the task
goal, and might be a component of an AI agent who assists small groups in collaborative problem solv-
ing (CPS) (Graesser et al., 2018). In Sec. 8 we outlined how we can use our propositional extraction
methods in conjunction with live processing of multimodal inputs. We use the example task of common
ground tracking as a relevant use case, but due to the modular nature of the present live extraction frame-
work, propositional extraction from real-time dialogue could also be used as a component of other similar
inference task, such as multimodal CPS facet classification (Bradford et al., 2023).
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USE OF GENERATIVE AI SOFTWARE TOOLS

In this study, we utilized generative AI tools for specific purposes. Zero-shot inference was conducted
using GPT-4 and LLaMA 2 to establish baseline comparisons for propositional extraction from collabo-
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rative dialogues. Additionally, GPT-4 was employed for data augmentation to address data sparsity in the
Weights Task Dataset. Specifically, GPT-4 generated supplementary utterances for each unique propo-
sition in the dataset, which were subsequently validated by human annotators to ensure correctness and
relevance.

These AI tools were used to enhance methodological rigor and expand the dataset while maintaining
alignment with the goals of the study. All other processes, analyses, and interpretations were conducted
independently of these tools to preserve the integrity and originality of the research.
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