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Multimodal Learning Analytics (MMLA) has emerged as a powerful approach within the computer-
supported collaborative learning community, offering nuanced insights into learning processes through
diverse data sources. Despite its potential, the prevalent reliance on traditional instruments such as tripod-
mounted digital cameras for video capture often results in suboptimal data quality for facial expressions
and poses captured, which is crucial for understanding collaborative dynamics. This study introduces an
innovative approach to overcome this limitation by employing 360-degree camera technology to capture
students’ facial and body features while collaborating in small working groups. A comparative analysis
of 1.5 hours of video data from both traditional tripod-mounted digital cameras and 360-degree cameras
evaluated the efficacy of these methods in capturing facial action units (AUs) and face and body key-
points. The use of OpenFace revealed that the 360-degree camera captured high-quality facial features
more effectively than the traditional method, significantly enhancing the reliability of facial feature de-
tection. Similarly, OpenPose analysis demonstrated that the 360-degree camera substantially improved
the capture of complete body keypoints compared to the traditional setup. These findings suggest that
integrating 360-degree camera technology in MMLA can provide richer data for analyzing affect and en-
gagement in collaborative learning environments. Future research will focus on refining this technology
to further enhance our understanding of the learning process.

Keywords: facial features, pose estimation, engagement, affect detection, computer-supported collabo-
rative learning, multimodal learning analytics, video recording

1. INTRODUCTION

In recent years, the field of education has witnessed a transformative shift towards leveraging
advanced technologies to enhance our understanding of learning. Among these innovations,
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Multimodal Learning Analytics (MMLA) has emerged as a pivotal approach, offering nuanced
insights into the dynamics of collaborative learning. MMLA expands the scope of traditional
learning analytics by integrating a diverse array of data sources, encompassing not only digital
interactions but also leveraging sophisticated sensory technologies. This approach facilitates a
deeper understanding of the complex interplay between cognitive, affective, and engagement
factors in learning environments. Despite the significant advancements in MMLA, the prac-
tical deployment of these technologies in real-world educational settings presents a myriad of
challenges, ranging from technical hurdles to the intricacies of data interpretation (Martinez-
Maldonado et al., 2023). Moreover, while the affective and engagement dimensions of learning
have gained increasing recognition for their impact on educational outcomes, the methodologies
for capturing high quality affective and engagement features in collaborative settings remain
underexplored.

A critical challenge in MMLA is the effective capture of frontal or near-frontal views of stu-
dents collaborating around a table, which is essential for accurate analysis of facial expressions
and body movement. Traditional side-located cameras often fail to capture these views due to
obstructions and limited angles, resulting in suboptimal data quality. Previous studies have at-
tempted to address this issue using multiple cameras placed at the center of the table (Noël et al.,
2022) or employing fisheye cameras (Lewis et al., 2023). While these approaches have shown
promise, they introduce complexities such as increased equipment, potential obstructions, and
image distortion that complicate data processing.

This study introduces the use of 360-degree camera technology as an alternative solution to
overcome these limitations. By capturing comprehensive, uninterrupted views of all participants
from a single device, 360-degree cameras reduce setup complexity and minimize obstructions
in the collaborative space. Additionally, our exploratory research evaluates the efficacy of 360-
degree camera technology in enhancing video data quality for face-to-face collaborative learning
scenarios. By tackling these challenges, the study seeks to contribute to the ongoing discourse
on improving the accuracy and reliability of multimodal data analysis in educational research
through innovative data collection and processing methods.

This paper builds on our previous conference paper (Rajarathinam et al., 2024) and addi-
tionally presents pose estimation results not included in the earlier work. We also add a more
comprehensive discussion and visualization of results to investigate the impact of 360-degree
cameras on facial and body features estimation.

The remainder of this article is organized as follows. First, we will review the related work.
Then, we introduce our task and present the framework in detail. Next, we introduce the context
and the dataset in Section 3 and report the results in Section 4. Finally, we discuss the results
and the limitations of our work in Section 5 and conclude the paper in Section 6.

2. BACKGROUND

2.1. MMLA IN COLLABORATIVE LEARNING

Collaborative learning is a complex sense-making process in which a group of students works
together to co-construct knowledge via iterative social interactions (Roschelle, 1992). Dur-
ing group collaboration, students present their ideas and explain to their peers how to under-
stand concepts, solve tasks, and justify ideas in response to questions, challenges, and conflicts.
MMLA represents a significant evolution in offering a sophisticated framework for understand-
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ing the intricacies of group learning dynamics in collaborative learning environments. By ex-
tending beyond the traditional analysis of student interactions through digital platforms, which
predominantly utilize input devices like keyboards and mice, MMLA captures the richness of
collaborative interactions. These interactions are characterized by varying degrees of techno-
logical mediation, from fully (Vrzakova et al., 2020) to partly (Schneider et al., 2018), or even
completely unmediated scenarios (Sümer et al., 2023), encompassing interactions not only be-
tween students and teachers (D’Mello et al., 2015) but also within the tangible learning envi-
ronments (Yan et al., 2021). A focal point of MMLA in collaborative settings is the exploration
of learner attributes that are difficult to quantify without advanced sensing technologies. This
includes analyzing emotional states (Ma et al., 2024), cognitive conditions (Prata et al., 2009),
distractions (Liao and Wu, 2022), and stress levels (Ronda-Carracao et al., 2021) within group
contexts. Initially, video and audio recordings served as the principal data sources for MMLA
due to the limitations of available technology. As sensing technologies have advanced, MMLA
has seen a marked evolution, incorporating a broader range of data modalities. The practical
application of MMLA in such environments often involves the use of diverse sensors, including
eye-trackers, positioning systems, wearable microphones, and physiological sensors on wrists or
chests, alongside sophisticated audio and video processing algorithms (Alwahaby et al., 2022).
This technology suite generates a wealth of multimodal data, enabling a comprehensive analysis
of the complex phenomena inherent in collaborative learning.

2.2. AFFECT DETECTION

Learners may experience a variety of cognitive-affective states when they are assigned difficult
tasks to solve, including confusion, frustration, boredom, engagement/flow, curiosity, anxiety,
delight, and surprise (Graesser and D’Mello, 2012). These experiences underscore the complex-
ity of the learning process, where cognitive and affective dimensions intertwine, necessitating a
comprehensive approach to understanding learning dynamics. Building upon cognitive founda-
tions, the realm of MMLA equally delves into the affective dimensions of learning. Central to
this exploration is the Control-Value Theory of Achievement Emotions (CVTAE; Pekrun 2006),
a cornerstone in affective domain research within MMLA. CVTAE’s application across MMLA
studies stems from its pivotal role in bridging the gap between affective computing and intel-
ligent tutoring systems, highlighting the intricate relationship between learners’ affective states
and their learning experiences. The integration of CVTAE within MMLA is further supported
by advanced analytical frameworks and tools, notably the Facial Action Coding System (FACS)
developed by Ekman et al. (2002) and operationalized through technologies like the OpenFace
library (Amos et al., 2016). In the context of MMLA, video data emerges as a critical medium
for capturing non-verbal cues that are essential for understanding collaborative learning dynam-
ics. Video data allows for the analysis of student-student behaviors that are crucial for group
success and individual contributions that facilitate self-assessment and personal growth within
group settings (Zhou and Cukurova, 2023). The sophisticated analysis of video data, including
facial expressions and body movement, offers insights into the multifaceted affective factors that
influence collaborative learning quality.

2.3. ENGAGEMENT DETECTION

Various approaches have emerged to focus on detecting student engagement, particularly through
the analysis of physical body posture and associated behaviors (Baker et al., 2012; Botelho et al.,
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2017; Fahid et al., 2023). Learning engagement, defined as the extent of learners’ devotion to a
learning activity that results in a desired learning outcome (Hu and Kuh, 2002), is positively re-
lated to learning achievement (Li and Baker, 2018) and can significantly predict learning success
(Liu et al., 2022). Given its crucial role in improving learning outcomes, accurately detecting
and understanding engagement is essential. Utilizing computer visual tools (Hur and Bosch,
2022), these methods involve detecting subtle student movements and behaviors, such as lean-
ing towards peers during group discussions, leaning back, crossing arms, or engaging in sharing
and pointing to group materials (Radu et al., 2020). Such behaviors provide valuable insights
into learners’ internal states, including their level of engagement and comfort with collaborators.
In addition, these behaviors play a crucial role in informing teachers when to intervene during
small group work, based on students’ level of engagement in collaborative activities (Taylor,
2016; Radu et al., 2020; Stewart et al., 2021; Hur et al., 2020).

Several tools have been developed to track students’ body positions during paired and small
group work. For instance, Radu et al. (2020) utilized unsupervised machine learning methods
to analyze positional data collected from Microsoft’s Kinect V2. They identified several col-
laborative behaviors, such as turn taking, open to collaboration, closed to collaboration, and
synchronized leaning. These behaviors were identified by extracting key positional data points
from students (keypoints) and analyzing features such as spine similarity, distance between the
participants, eye gaze, and head movements. Another popular method involves algorithms that
detect posture keypoints from images. One such toolkit is called OpenPose, a real-time multi-
person system that detects the human body, hands, facial, and foot keypoints on single images
(Cao et al., 2021). Depending on the model, OpenPose can detect more than 135 keypoints per
person, including 25 for the full-body, 2x21 for the hands, and up to 70 for the face. OpenPose
utilizes Convolutional Pose Machines for accurately predicting human body keypoints and Part
Affinity Fields to connect these keypoints into coherent poses by encoding the spatial relation-
ships between them. By analyzing the positions and movements of these keypoints, researchers
can extract detailed information about how individuals or groups physically interact during col-
laborative tasks, allowing for a more precise analysis of physical engagement and interaction
patterns.

However, despite these advancements, tracking multi-person full-body positional data in nat-
uralistic classroom settings continues to pose challenges, particularly in accurately capturing in-
dividual students’ positional data during small group work. Challenges such as various types of
occlusion—caused by other students, teachers, furniture, laptops, or even self-occlusion—along
with complex body configurations, diverse appearances including clothing, and the complexities
of the environment, such as varying viewing angles, distance from the camera, and truncation of
parts in the camera view, can significantly impede accurate data collection (Mishra et al., 2024).
Consequently, there is a pressing need for novel approaches to mitigate these challenges and
to assess the accuracy of pose estimation tools in tracking students’ engagement during small
group activities in naturalistic classroom environments.

2.4. REAL CLASSROOM IMPLEMENTATION

Traditional camera setups for MMLA often rely on single-camera configurations paired with
machine learning algorithms to analyze student interactions (Chejara et al., 2023; Zhou et al.,
2023). In controlled lab environments, these approaches have yielded promising results for
tracking specific behavioral features. For example, Andrade (2017) employed front-facing we-
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bcams to track eye gaze and hand positioning, examining relationships to embodied cognition
and learning performance. Although the study showed that such features could serve as indica-
tors of engagement, its small sample size and controlled setting limited the generalizability to
real-world classrooms.

Other researchers have used multi-camera setups in controlled contexts to capture richer be-
havioral data. Spikol et al. (2017) combined front-facing and top-down cameras to measure
metrics such as ‘Faces Looking at the Screen,’ ‘Distance Between Hands,’ and ‘Hand Motion
Speed’ during collaborative tasks. These features quantified attention and physical proximity
among group members but encountered significant occlusion issues, with 55–65% blockage in
face and hand tracking. Similarly, Oviatt et al. (2021) deployed five synchronized cameras,
including close-up, wide-angle, and top-down views, to track hand gestures and group inter-
actions. Their findings revealed that increased use of iconic gestures during complex tasks
associated with higher collaboration quality. However, manual pre-processing demands and the
limited granularity of tools like OpenPose constrained scalability.

When MMLA tools transition from controlled studies to naturalistic classroom settings, ad-
ditional challenges emerge. Variability in camera placement, physical constraints, and ambient
noise can degrade data quality. For instance, Dai et al. (2023) applied OpenFace to teacher-
recorded classroom videos to detect negative facial expressions. Partially visible faces due to
suboptimal camera angles led to missed detections and reduced reliability. Similarly, Chejara
et al. (2023) used CoTrack and Etherpad to analyze facial action units, head poses, and speech
overlap, successfully highlighting the importance of expressions and head orientation for gaug-
ing engagement. Yet, the use of front-facing webcams alone limited the capture of other crucial
features, such as body positioning and hand movements.

To capture broader classroom dynamics, some researchers have built or customized devices.
Lewis et al. (2023) integrated a wide-angle lens (220-degree field of view) with a 4-microphone
array, placing the system at the center of each group. This wider vantage point captured seating
arrangements, proximal gestures, and speech patterns across 79 students, offering richer insights
into collaboration. Nevertheless, occlusion from face masks (as this study was conducted during
COVID-19 precautions) and limited classroom space still led to degraded data quality.

These studies show that traditional and multi-camera approaches can provide detailed infor-
mation on student behaviors. However, they also reveal significant limitations in crowded or
dynamic classroom environments. Building on this prior work, our study offers practical guid-
ance for optimizing data collection and improving reliability when deploying MMLA tools in
authentic classroom settings. As we address the benefits and limitations of various camera con-
figurations, it is crucial to remain aware of persistent challenges. These challenges range from
classroom size and device setup to noise and limited algorithmic robustness for facial and body
detection.

2.5. 360-DEGREE CAMERA IN EDUCATION

The advent of 360-degree camera technology introduces a promising avenue for capturing com-
prehensive classroom footage from a single vantage point. Unlike traditional or multi-camera
setups that require multiple devices and careful synchronization, 360-degree cameras use omni-
directional or multi-lens systems to record footage from every angle simultaneously and stitch
it into a spherical view. This approach enables viewers to explore the captured environment in
any direction, offering a panoramic perspective that can facilitate richer analyses of teaching and
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learning (Mallavarapu et al., 2022; Evens et al., 2023; Noël et al., 2022).
Researchers have leveraged such cameras to create immersive learning experiences (Tedre

et al., 2021), develop computer vision programs for robotics, and study collaborative learn-
ing. Once recorded, 360-degree video can be accessed via various devices—from smartphones
and computers (non-immersive) to head-mounted displays (immersive)—allowing flexibility in
how data is reviewed (Snelson and Hsu, 2020). This versatility also enables diverse perspec-
tives,including student facial views and partial top-down views for hand tracking (Oviatt et al.,
2021; Spikol et al., 2017).

Despite these benefits, the application of 360-degree cameras within MMLA remains lim-
ited. For example, Noël et al. (2022) used machine learning techniques (Multilayer Perceptron
(MLP) and Convolutional Neural Network (CNN)) with multidirectional microphones and USB
cameras placed at the center of a small group to analyze collaborative behaviors, including spo-
ken interaction distribution and joint gestures. Although the study successfully detected cogni-
tive, metacognitive, and affective learning behaviors, scaling this approach to multiple groups in
a typical classroom remains challenging due to the number of cameras required and the associ-
ated processing demands.

To address this gap, our study leverages a 360-degree camera for capturing richer, uninter-
rupted views of small-group collaboration. Positioned at the group’s center, this setup mini-
mizes complexity and potentially reduces occlusion issues. Although 360-degree cameras re-
quire maintaining clear space around the camera to avoid distortion, this minor limitation is
offset by their ability to provide a more holistic and scalable approach to analyzing face-to-face
collaborative behaviors in realistic classroom environments. Integrating this spherical video
capture into MMLA research thus represents an important methodological step forward, allow-
ing for deeper insights into the complexities of collaborative learning in authentic educational
contexts.

2.6. RESEARCH QUESTIONS

To assess the effectiveness of this technological intervention, the research is guided by three
critical research questions (RQs):

(RQ 1) How does the effectiveness of utilizing a 360-degree camera compare to traditional
video capture methods in detecting facial and body features within small group interactions in
the classroom?

(RQ 2) How effectively does OpenFace, a facial recognition toolkit, extract facial features
from all students simultaneously during small group work in the classroom when using 360-
degree cameras versus traditional cameras?

(RQ 3) How effectively does OpenPose, a posture estimation toolkit, extract body features
from all students simultaneously during small group work in the classroom when using 360-
degree cameras versus traditional cameras?

3. METHODS

3.1. CONTEXT

The dataset comprises classroom observations from a group activity during the discussion ses-
sion of an introductory digital learning environment course at a Midwestern University. The
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objective of the activity was to engage students with a web-based immersive science learn-
ing environment, HoloOrbits (Figure 1). HoloOrbits was initially developed for the Microsoft
HoloLens2 on Universal Windows Platform within Unity. A new version of HoloOrbits was de-
veloped for laptops using WebGL via Unity to make the simulation more accessible to students
in classrooms. The direct goal of the simulation is to help students learn about planetary motion
and Kepler’s laws. The simulation immerses students in the factual and conceptual understand-
ing of the elliptical orbits within a newly discovered exoplanetary system. HoloOrbits offers
tools enabling students to simulate abstract components of the planetary system and collect data
(e.g., distances between celestial objects) necessary for understanding the orbital system and
Kepler’s laws. The main learning goal is to create experiences that support students in grasping
scientific concepts and foster agency by empowering them to conduct their own scientific inves-
tigations. Following this main activity, the students worked in groups to reflect on the task and
the design of the simulation. The entire activity lasted approximately 1 hour and 30 minutes,
with the students taking a 10-minute break between the interaction and reflection phases of the
activity.

Figure 1: HoloOrbits: A web-based immersive science learning simulation

3.2. PARTICIPANTS

The dataset collected consisted of two different classroom observations. A total of 24 out of the
39 students consented to participate in the research. The participants worked in groups of 2 to
4 students. Ethical approval was obtained from the institutional review board of the authors’
institution. We collected the demographics of the participants. Local devices were used for
storing and processing participants’ data. We used open-source tools, de-identified the data,
and used pseudonyms after processing it via OpenFace. This preliminary study focused on two
groups within the same classroom observation. One group contained four students whose video
was captured using a GoPro 360-degree Max camera (Yellow Group) and another group with
three students whose video was captured using a tripod and (traditional, non-360) GoPro Hero10
camera (Red Group) (see Figure 2). These two groups were ideal as each student had their own
devices to work on the stimulation. Both groups were positioned in the corners of the classroom,
however, the red group benefited from a more controlled viewing angle, as the traditional camera
was pointed towards a corner of the classroom (out of the view of other students).
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Figure 2: Schematic of the classroom for data collection

3.3. PRE-PROCESSING

The 360-degree camera generated .360 files, which were converted using .H264 encoder with
equilateral projection into .mp4 files (ProRES files) using GoPro’s proprietary software (GoPro
Player). These videos were stitched together as GoPro capture video in chunks of 20 mins.
Adobe Premiere Pro v24.1 was used to convert ProRES .mp4 files to create the Top-Down
view (TDV) as well as Face view (FV) (see Figure 3). FV was setup as a means to isolate
and maximize the exposure of individuals’ faces to the camera lens, while TDV was set up
as a means to isolate and maximize the exposure of the groups’ physical interactivity to the
camera lens. Both views were intended to capture peer-to-peer collaborative interactions. We
used an Adobe plugin for GoPro 360-degree footage to modify the direction of the cameras to
get both views. For the tripod setup, the output .mp4 files were stitched using Adobe Premiere
v24.1 to obtain the traditional view (TV). The final videos were 24 fps with 1080p resolution in
.mp4 format. The students were tagged as S1, S2, S3, and S4 starting from the top-left going
clockwise for both FV and TDV.

OpenFace v2.2.0 facial behavior analysis toolkit (Baltrusaitis et al., 2018) was used to extract
facial features. The multiple faces mode was used to extract the following three categories of
facial features: (1) eye gaze direction, (2) head pose, and (3) facial action units (AUs) (see
Figure 4). OpenFace v2.2.0 provides confidence of the predicted values for each frame which
range from 0 to 1. Any frame with confidence greater than or equal to 0.75 has a success variable
(binary) equal to 1. These frames contain facial action units (AUs) which are instrumental in
detecting affect of students who are being detected in the group.

OpenPose v1.7.0 pose estimation toolkit (Cao et al., 2021) was used to extract body position
features (See Figure 5). The body25 model was used to extract 25 body keypoints. In our
analysis, we focused on the 13 upper body keypoints, specifically the Nose (0), Neck (1), Right
Shoulder (2), Right Elbow (3), Right Wrist (4), Left Shoulder (5), Left Elbow (6), Left Wrist
(7), and Mid Hip (8) because the students were mostly seated in their chairs and interactions
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Figure 3: Video capture views: Face View (FV, top-left), Top-Down view (TDV, top-right), and
Traditional View (TV, bottom). FV and TDV are from a 360-degree camera, while TV is from
tripod setup.

Figure 4: OpenFace facial feature capture: Face View (FV, top-left), Top-Down View (TDV, top-
right), and Traditional View (TV, bottom). FV and TDV are from a 360-degree camera, and TV
is from a tripod setup.
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were using their hands. Additionally, we also considered the Right Eye (15), Left Eye (16),
Right Ear (17), and Left Ear (18) to measure head pose. OpenPose v1.7.0 provides confidence
scores for the predicted keypoints’ coordinates (x, y) in each frame, where ‘x’ represents the
horizontal position and ‘y’ represents the vertical position within the frame, with scores ranging
from 0 to 1. Any frame with a confidence score greater than 0 was considered to have an initial
detected keypoint. We then applied a tracking algorithm that assigned ids to students in the
video and then manually coded the students of interest. Through this process, we identified
that a confidence score of 0.2 or higher was optimal for accurately tracking keypoints (Hur and
Bosch, 2022). It is worth noting that this threshold differs from the confidence score threshold
used for OpenFace (0.75). The rationale for this difference, including the implications for facial
recognition and pose estimation accuracy, is further discussed in Section 3.4.1.

Figure 5: OpenPose body keypoint estimation: Face View (FV, top-left), Top-Down View (TDV,
top-right), and Traditional View (TV, bottom). FV and TDV are from a 360-degree camera, while
TV is from a tripod setup.

3.4. ANALYSIS

In this study, we investigated the effectiveness of 3 different camera viewing angles in the class-
room. To capture the dynamic interactions within small groups, 360-degree cameras were em-
ployed to derive two specialized views: a Top-Down View (TDV) and a Face View (FV), de-
signed to provide comprehensive angles for facial feature and body keypoint estimation. Addi-
tionally, a Traditional View (TV) was obtained from a conventional video capture setup using a
tripod and GoPro Hero10. Additionally, we used a single session to remove external variables
like session duration, intervention types, and instructor-student interaction.

To address Research Question 1 (RQ 1), the relative efficacy of 360-degree cameras is com-
pared against traditional video capture methods in detecting facial action units and body position
keypoints, aiming to understand their effectiveness in a classroom setting. This is done by con-
ducting statistical analysis using a non-parametric test, the Kruskal-Wallis test, followed by

10
166 Journal of Educational Data Mining, Volume 17, No 1, 2025



Dunn’s post-hoc test with Bonferroni correction.
To address Research Question 2 (RQ 2), the generation of time series data for TDV, FV, and

TV, alongside statistical analysis for high-quality facial feature capture (described in the sec-
tion 3.4.1) or the three views, enables a rigorous evaluation of OpenFace—a facial recognition
toolkit—in accurately extracting facial features from all students simultaneously within small
group interactions.

To address Research Question 3 (RQ 3), we generated time series data for the three views:
TDV, FV, and TV, alongside statistical analysis to assess high completeness body keypoint es-
timation (described in the section 3.4.1) in each view. This analysis focused on evaluating
OpenPose—a body posture estimation toolkit—in its ability to detect a complete set of upper
body keypoints from all students simultaneously during small group work.

R version 4.1 was utilized for comprehensive statistical analysis, encompassing both descrip-
tive statistics and inferential tests such as the Kruskal-Wallis test for non-normally distributed
data, followed by Dunn’s post-hoc test with Bonferroni correction.

3.4.1. Evaluation criteria

To compare the effectiveness of detection by both OpenFace and OpenPose, we described two
evaluation criteria. These criteria serve as metrics to compare the different views being analyzed.

OPENFACE EVALUATION CRITERIA

To evaluate OpenFace’s performance on all three views, a Group-wide High quality facial fea-
ture detection criteria was established based on two conditions: (1) when OpenFace has a con-
fidence level of 0.75 or higher for each frame captured (Success = 1), and (2) all students in
the group are simultaneously detected. Frames that adhere to this criteria will be referred to
as high quality frames in this paper. A confidence threshold of 0.75 was set as a prerequisite
for detecting facial action units by OpenFace. This stringent selection ensures the reliability of
future affect detection in collaborative learning environments, highlighting the significance of
AUs captured for all group members.

OPENPOSE EVALUATION CRITERIA

To evaluate OpenPose’s performance on all three views, a Group-wide High completeness de-
tection criteria was established based on 3 conditions: (1) OpenPose must detect at least 10
keypoints (keypoints 0-8, and at least 1 keypoint from 15-18) with a confidence score of 0.2 or
higher, and (2) all students in the group must be simultaneously detected. Frames that adhere
to these criteria will be later referred to as high completeness frames in this paper. Keypoints
0-8 were selected because they identify important positional data such as chest, shoulders, mid-
body, and arms posture. A more relaxed criteria was selected for a keypoint between 15-18 (left
and right ear; left and right eye) because any one of those keypoints would be sufficient enough
to determine head axial rotation. Lastly, the confidence threshold of 0.2 was set as a minimum
requirement based on the accuracy of keypoint detection from our manual annotation process
for student tracking, which aligns with findings in prior research(Hur and Bosch, 2022).
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4. RESULTS

4.1. RESEARCH QUESTION 1

How does the effectiveness of utilizing a 360-degree camera compare to traditional video cap-
ture methods in detecting facial and body features within small group interactions in the class-
room?

Table 1 presents the descriptive statistics of video data from the traditional view (TV) and
the two 360-degree camera views (FV and TDV), along with the frames detected using Open-
Face and OpenPose. It is important to note that the TV data was collected from one group,
while the FV and TDV data were collected from a different group. This distinction introduces
potential variability in factors such as group size and individual facial recognition differences,
which should be considered when interpreting results. Detection using OpenFace in each view
indicates that a face was tracked with a confidence value greater than zero. Similarly, for Open-
Pose, detection indicates that a body keypoint was tracked with confidence greater than zero.
The results revealed significant variations in the efficiency of face and body keypoint capture.
The TV and FV angles demonstrated superior detection efficiency with OpenFace, with unique
frame counts exceeding those of the TDV angle, suggesting potential detection limitations. In
contrast, OpenPose showed much better detection efficiency across all three views for body key-
points. In Table 1, “unique frame detected” refers to any frame where at least one student was
successfully tracked by the detection tool (either through face detection by OpenFace or body
keypoint detection by OpenPose). This indicates that even if only one student out of the entire
group is detected in a given frame, that frame is counted as a unique detection.

Table 1: Descriptive statistics of video frames and frames detected by OpenPose and OpenFace
by views

Total Unique Unique Frames Unique Unique Frames
View Angles Frames Frames Percentage (%) Frames Percentage (%)

(OpenFace) (OpenFace) (OpenPose) (OpenPose)
TV 120,504 115,509 95.85 118863 98.64
FV 117,648 116,535 99.05 117482 99.86

TDV 117,648 106,266 90.31 117433 99.82
TV - Traditional View, FV - Face View, TDV - Top-Down View.

The histograms in Figure 6 revealed a non-normal distribution of the confidence levels cap-
tured by OpenFace for the frames across the three different viewing angles. For this reason,
non-parametric tests were used for testing significant differences between the view angles. The
visualizations revealed the differences descriptively, but to confirm the differences statistically,
the Kruskal-Wallis test and the Dunn’s post-hoc analysis with Bonferroni correction were used.

Figure 7 also revealed a non-normal distribution of the completeness levels of keypoints
captured by OpenPose for all the frames across the three different viewing angles. Thus, we
used the non-parametric tests, including the Kruskal-Wallis test and Dunn’s post-hoc analysis
with Bonferroni correction, to determine the differences statistically.

The Kruskal-Wallis test on OpenFace data indicated that there was significant difference
in the median confidence values across the three camera views (FV, TDV, and TV) (χ2 =
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Figure 6: Histograms displaying the distribution of OpenFace confidence levels with frame fre-
quency across three views
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Figure 7: Histograms displaying the distribution of OpenPose completeness levels with frame
frequency across three views
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82273.378, df = 2, p = 0) with a small to medium effect size(η2) of 0.054 (For η2, small ef-
fect ≈ 0.01; Medium effect ≈ 0.06). The Dunn’s post-hoc analysis with Bonferroni correction,
as shown in Table 2, confirms that each pair of camera views significantly differs in median con-
fidence values. The negative Z-value for the TDV-TV comparison suggests that the rank sum
(and thus the median confidence) for TDV is lower than for TV, while positive Z-values for the
FV-TDV and FV-TV comparisons suggest higher rank sums (and higher median confidence) for
FV compared to TDV and TV, respectively. The significance across all comparisons suggests
that the camera views have statistically significant impacts on the confidence values, with FV
potentially having the highest median confidence values, followed by TV and then TDV, based
on the direction indicated by the Z-values.

Table 2: Summary of Kruskal-Wallis and Dunn’s Post-hoc test results for detecting unique frames
using OpenFace for the three views

Pairwise Z-value p-value Adjusted Cohen’s r
Comparison p-value

(OpenFace) (OpenFace) (OpenFace) (OpenFace)
FV vs. TDV 242.35 < .0001* < .0001* 0.25
FV vs. TV 238.34 < .0001* < .0001* 0.25

TDV vs. TV -18.99 < .0001* < .0001* -0.02
* indicates statistical significance.
TV - Traditional View, FV - Face View, TDV - Top-Down View.
Cohen’s r: Small effect: r ≈ 0.1, Medium effect: r ≈ 0.3; Large effect: r ≈ 0.5

Another Kruskal-Wallis test on OpenPose data indicated that there was significant difference
in the median completeness values across the three camera views (FV, TDV, and TV) (χ2 =
63644.54, df = 2, p = 0) with a medium to large effect size (η2) of 0.089 (For η2, medium effect
≈ 0.06; large effect ≈ 0.14). The Dunn’s post-hoc analysis with Bonferroni correction, as shown
in Table 3, further supports these findings by revealing significant differences between each pair
of the camera views. The positive Z-values for the FV-TDV and FV-TV comparisons suggest
that the rank sum, and consequently the median completeness, is higher for FV compared to
both TDV and TV. Conversely, the negative Z-value for the TDV-TV comparison indicates that
the rank sum (and median completeness) for TDV is lower than for TV. These results suggest
that, similar to the OpenFace analysis, the camera views significantly influence the completeness
values measured by OpenPose, with FV likely yielding the highest median completeness values,
followed by TV, and TDV showing the lowest median completeness values, as inferred from the
direction of the Z-values.

4.2. RESEARCH QUESTION 2

How effectively does OpenFace, a facial recognition toolkit, extract facial features from all stu-
dents simultaneously during small group work in the classroom when using 360-degree cameras
versus traditional cameras?

Table 4 shows a notable disparity in the detection of high-quality frames detected using
OpenFace among the three view angles: TV, TDV, and FV. The FV demonstrates a significantly
higher efficacy in yielding high-quality frames, with 39,026 frames, which constitutes 33.17%
of the total frames detected. Conversely, the TDV angle shows a markedly lower success rate,
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Table 3: Summary of Kruskal-Wallis and Dunn’s Post-hoc test results for detecting unique frames
using OpenPose for the three views

Pairwise Z-value p-value Adjusted Cohen’s r
Comparison p-value

(OpenPose) (OpenPose) (OpenPose) (OpenPose)
FV vs. TDV 246.03 < .0001* < .0001* 0.23
FV vs. TV 155.14 < .0001* < .0001* 0.14

TDV vs. TV -83.79 < .0001* < .0001* -0.08
* indicates statistical significance.
TV - Traditional View, FV - Face View, TDV - Top-Down View.
Cohen’s r: Small effect: r ≈ 0.1, Medium effect: r ≈ 0.3; Large effect: r ≈ 0.5

with only 533 high-quality frames detected, amounting to a mere 0.45% of the total frames. The
TV angle, while better than TDV, still yields a relatively low number of high-quality frames at
6,215, representing 5.16% of the total frames.

Table 4: Number of frames with high quality facial feature detection and their percentage of total
frames

High quality Percentage High completeness Percentage
View angles frames frames (%) frames frames (%)

(OpenFace) (OpenFace) (OpenPose) (OpenPose)
TV 6,215 5.16 219 0.18
FV 39,026 33.17 16,762 14.25

TDV 533 0.45 474 0.40
TV - Traditional View, FV - Face View, TDV - Top-Down View.

The time series plots in Figure 8 showcase the capture of high quality facial features across
the duration of the class session by OpenFace for the three views. The visualizations revealed
that high quality facial features were captured for FV at a relatively consistently rate across time
when compared to the other views.

Figure 9 includes time series plots, illustrating the detection of facial features over time for
each student from two views: FV and TDV, both of which were captured using 360-degree
footage. However, there are noticeable differences in performance between FV and TDV. For
example, for student 1 (S1), FV S1 and TDV S1 showcase differences in the amount of facial
features of the frames captured. These facial features have a confidence level of greater than
0.75. FV captured more frames with facial features than TDV. Particularly, within TDV, facial
features captured for S3 and S4 are much worse when compared to S1 and S2. This discrepancy
is likely due to the inverted orientation of S3 and S4 in the 360-degree footage, which affected
the accuracy of OpenFace’s detection. Further elaboration on this challenge is provided in the
discussion section.
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Figure 8: Time series of high quality facial feature detection from all three views

4.3. RESEARCH QUESTION 3

How effectively does OpenPose, a posture estimation toolkit, extract body features from all stu-
dents simultaneously during small group work in the classroom when using 360-degree cameras
versus traditional cameras?

Table 4 highlights a notable disparity in the detection of high-completeness frames detected
using OpenPose among the three view angles: TV, TDV, and FV. The FV condition again demon-
strates a significantly higher efficacy, yielding 16762 high-completeness frames, which consti-
tutes 14.25% of the total frames detected. Conversely, both TDV and TV showed markedly
lower success rates, with only 474 high-completeness frames detected for TDV, amounting to a
mere 0.40% of the total frames and 219 high-completeness frames detected for TV, representing
0.18% of the total frames.

The time series plots in Figure 10 showcase the detection of high-completeness body key-
points by OpenPose over the duration of the class session for the three views. The visualizations
reveal that although sparse, high-completeness body keypoints were detected for FV at a rela-
tively consistent rate over time when compared to the other views.

Figure 11 presents time series plots illustrating the detection of high-completeness frames
for each student across two views: FV and TDV, both captured using 360-degree footage. The
color coding differentiates frames with high completeness (blue) from those with low complete-
ness (red), while classroom break is indicated in gray. FV captures more high-completeness
frames than TDV across all students. However, the performance of TDV varies significantly
between students. For instance, S1 and S2 maintain relatively consistent high-completeness
frames across both views, whereas S3 and S4 show a noticeable decline in TDV. In particular,
TDV S3 and TDV S4 exhibit frequent instances of low completeness and tracking breaks, sug-
gesting difficulties in detecting body keypoints. This discrepancy is likely due to the inverted
orientation of S3 and S4 in the 360-degree footage, which caused keypoint merging and inver-
sion issues during OpenPose’s detection. Further elaboration on these challenges is provided in
the discussion section.
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Figure 9: Time series of successful detection of facial features of each student in FV vs TDV

5. DISCUSSION

This exploratory study examined the application of 360-degree camera technology in Multi-
modal Learning Analytics (MMLA) to enhance the capture and analysis of facial features and
body pose estimation in collaborative learning settings. Recognizing the limitations inherent
in traditional video capture methods, particularly tripod-mounted video cameras, this research
sought to address the challenges posed by these conventional techniques in accurately capturing
facial features and body keypoints, which are foundational for building and analyzing collabo-
rative behaviors.

We analyzed three views—Face View (FV), Top-Down View (TDV), and Traditional View
(TV)—and assessed their efficiency in detecting facial features and body pose estimations using
the OpenFace and OpenPose toolkits. Notably, FV consistently outperformed the other views in
terms of efficiency, demonstrating better mean confidence and completeness metrics (see Tables
2 and 3). The alignment of students’ faces and bodies toward the 360-degree camera, centrally
placed at the table where group interactions occurred, made the FV particularly effective for
facial feature and body pose detection. The relatively high percentage of high-quality frames for
facial feature detection, coupled with the high-completeness frames that captured all students
simultaneously, proved essential for gauging both individual and group-level behaviors (see Ta-
ble 4). Additionally, FV outperformed the other views in consistently capturing high-quality
and high-confidence frames over time (see Figures 8 and 10), which is crucial for developing
real-time feedback systems that rely on data quality. These insights are valuable for educa-
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Figure 10: Time series of high-completeness body keypoints detection from all three views

tional researchers seeking to obtain higher-quality datasets to detect meaningful collaborative
interaction behaviors within small groups.

However, FV is not without limitations. It encountered issues with the merging of body
points across different students near the borders of each student’s frame (See Figure 12), as
reported in the literature (Cao et al., 2021; Mishra et al., 2024). This issue could potentially be
mitigated by utilizing a panoramic view of the 360-degree footage, which provides a wider and
more comprehensive view of the classroom. However, even with a panoramic view, there are
challenges to address. Specifically, the system needs to ensure that keypoints from students in
the background or from other groups, as well as from teachers, are not mistakenly merged with
those of the students being tracked (Hur and Bosch, 2022).

The TDV, despite the initial expectation that it would provide a unique bird’s-eye view of the
group table, capturing inter-student interactions and enabling easy detection of students looking
at each other, did not perform to its full potential. TDV struggled to compete with FV in terms of
the overall capture of high-quality and high-completeness frames and was less consistent across
the duration of the session. This under-performance could be attributed to the significant warp-
ing inherent in the bird’s-eye perspective. The fact that the OpenFace and OpenPose toolkits
had not been trained on fisheye perspective videos likely contributed to the reduced detection
accuracy. TDV also encountered issues with the merging of body points across student and back-
ground student/instructor (See Figure 12). Additionally, the inverted orientation of students S3
and S4 further complicated the detection process. OpenFace, trained on datasets featuring nor-
mally oriented faces, incorrectly applied normally oriented keypoints to the inverted faces (see
Figure 13, right). Similarly, OpenPose, trained on datasets with normally oriented bodies (head
up and feet down), sometimes flipped shoulder and arm keypoints (Gu et al., 2020; Mishra et al.,
2024)(see Figure 13, left). These issues highlight the need for improved algorithms or methods
specifically tailored to 360-degree camera perspectives. Despite these challenges, TDV could
still be beneficial for analyzing tasks that involve the physical manipulation of materials on the
group table, potentially complementing the information obtained from other views.

The TV was the least effective among the three views. The perspective of TV was prone
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Figure 11: Time series of high-completeness frames for each student in FV vs TDV

to occlusion between students within the group, leading to mis-tracking of facial features and
merging of body keypoints (see Figure 12). Occlusion also hindered the tracking of students’
bodies on the side opposite the camera’s location. As a result, TV’s performance was particularly
poor for body keypoint detection compared to the other views (see Table 4) as highlighted by
researchers (Tsai et al., 2020; Mishra et al., 2024).

A consistent challenge across all perspectives was the management of missing data in time
series analysis, a critical factor in ensuring reliable longitudinal analyses. The variability in high-
quality, high-completeness frame data necessitates effective strategies for handling missing or
incomplete data to ensure the reliability of longitudinal analyses. Approaches such as assigning
placeholder values or employing imputation techniques can mitigate the impact of missing data.
Recent studies have explored various imputation methods, ranging from statistical techniques
like linear interpolation to advanced deep learning-based approaches such as DeepMVI (Bansal
et al., 2021) and MultiLayer Perceptron models for filling long continuous gaps (Park et al.,
2022). Selecting an appropriate method is context-dependent and should consider data patterns,
analysis goals, and computational resources. While our study did not directly address the scal-
ability challenges of applying these techniques across multiple groups in a classroom setting,
future work will explore methods to optimize data processing.

As MMLA advances toward the automatic detection of complex latent constructs, such as
confusion (Ma et al., 2024), within collaborative learning, it becomes apparent that traditional
classroom data collection methodologies must evolve. Integrating high-quality data capture
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Figure 12: Occlusion and merging issues in all three views when using OpenPose: Merging of
S4 with background (FV, top-left), occlusion of S1 and merging of S3 with background (TDV,
top-right), and merging students on the left (TV, bottom).

Figure 13: Inversion issues in TDV: OpenPose - S3 (left) and OpenFace - S3 and S4 (right).

tools is paramount for accurately capturing the nuanced behaviors indicative of these constructs.
In this light, our study advocates for the use of 360-degree cameras, especially those capable
of capturing a 360-degree panoramic view, in face-to-face collaborative activities, particularly
those involving groups of three or four students. These devices facilitate comprehensive capture
of student-student interactions and enable the extraction of high-quality facial features using
toolkits like OpenFace, which provides facial action units (AUs) such as Brow Lowering (AU4),
Eyelid Tightening (AU7), and Lip Tightener (AU23)—all essential for affect detection (D’Mello
et al., 2009; Padrón-Rivera et al., 2016; Ma et al., 2022). They also enable the capture of
high-completeness body keypoints, providing features such as spine similarity, distance between
students, and head movement, which are used to identify collaborative behaviors such as turn
taking, open to collaboration, closed to collaboration, and synchronized learning (Radu et al.,
2020).

However, the adoption of 360-degree cameras is not without challenges. The high cost and
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substantial pre-processing requirements pose significant barriers to widespread implementation.
Moreover, issues such as keypoint merging and the need for manual tracking highlight techno-
logical limitations that need to be addressed. Future developments should focus on refining both
hardware and software solutions to overcome these obstacles, potentially making this technol-
ogy more accessible for large-scale, real-time classroom applications.

6. LIMITATIONS

While this study offers valuable insights into enhancing data capture for collaborative learning
analytics, several limitations must be acknowledged. First, the study was conducted with a lim-
ited dataset from a specific group and interaction context, which may limit the generalizability
of the findings. Variations in classroom settings, group dynamics, and instructional activities
could influence the effectiveness of the camera views and detection toolkits. Future research
should involve a larger and more diverse sample to validate and extend the applicability of the
results.

Second, this study focused primarily on the technical aspects of data capture and analysis
using OpenFace and OpenPose toolkits. However, the claims regarding the utility of 360-degree
cameras for improving the detection of collaborative behaviors, such as engagement and group
interaction patterns, were not empirically validated against a collaborative learning construct.
Conducting a follow-up MMLA study specifically targeting a collaborative construct, such as
group cohesion or shared understanding, would be necessary to substantiate the proposed bene-
fits of using 360-degree camera technology in educational research.

Third, the limitations associated with the technology itself, including the issues with key-
point merging and the challenges posed by fisheye perspectives, highlight the need for further
refinement in both the hardware and software used for such studies.

Finally, the need for manual tracking and the generation of facial view manually needs to be
automated to be able to scale this tool for large scale real-time classroom implementation. While
360-degree cameras offer a promising avenue for comprehensive data capture, the high cost and
intensive pre-processing requirements remain significant barriers to widespread adoption.

7. FUTURE WORK

Building on the findings of this study, future research will focus on employing 360-degree cam-
eras to explore the affective states and engagement levels of student groups in greater depth. By
leveraging facial action units (AUs), head and body posture estimations, and gesture interac-
tions, we aim to analyze these elements in the context of various collaborative constructs, such
as group cohesion, shared understanding, and conflict resolution. This will provide a more nu-
anced understanding of how students interact and collaborate in real-time, contributing to the
development of more responsive and adaptive educational tools.

In addressing the challenges of missing data, future studies will explore and compare dif-
ferent imputation methods to determine the most effective approaches for handling incomplete
datasets in MMLA contexts. Understanding the minimum data requirements for accurate detec-
tion of engagement and affective states, especially in real-time scenarios, will be a key focus.

With the rapid advancement of end-to-end multimodal models, future studies will investigate
their performance compared to traditional toolkits like OpenPose and OpenFace in analyzing
360-degree camera footage. Such comparisons will be crucial for determining the efficacy and
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potential advantages of adopting newer, integrated approaches within MMLA. These evalua-
tions will focus on aspects such as accuracy, processing efficiency, and ease of use. Incorporat-
ing models specifically trained on fisheye and inverted perspectives could address some of the
detection issues identified.

Automation of student tracking and isolation of target groups within 360-degree footage is
another critical area for future work. Utilizing state-of-the-art tracking tools like the Segment
Anything Model (SAM) by Meta AI, which allows for object identification through prompting,
could facilitate effective tracking of specific students across videos (Ravi et al., 2024). Tracking
students of interest and ignoring background students and teachers is an ongoing issue in the im-
plementation of such tools. Also, SAM’s capability to handle partial and temporary occlusions
makes it a promising solution for overcoming current limitations.

8. CONCLUSION

The exploration of 360-degree camera technology in the context of Multimodal Learning Ana-
lytics (MMLA) marks a significant advancement in the methodologies used for analyzing col-
laborative learning processes. This study has shown that 360-degree cameras offer substantial
improvements over traditional tripod-mounted cameras, particularly in capturing high-quality
facial expressions and high-completeness body postures, which are critical for understanding
group dynamics and individual participation within collaborative settings. However, the research
also brought to light certain challenges, especially with the Top-Down View (TDV) perspective.
The detection of inverted faces and the difficulties in accurately recognizing body keypoints un-
derscore the need for further refinement in both the technology and the algorithms used for facial
and pose recognition across different camera views. These findings highlight the necessity of
continuing to enhance the tools and approaches used in MMLA to better capture and interpret
the complex behaviors that occur during collaborative learning. In addition, the amount of high-
quality frames captured suggests the need for researching how to handling missing data while
using these tools.

As MMLA continues to evolve, this research underscores the importance of integrating ad-
vanced video capture technologies to more accurately assess and interpret the subtle and intricate
aspects of collaborative interactions. At the same time, it is essential to acknowledge the practi-
cal challenges associated with the adoption of 360-degree cameras, including their cost and the
substantial computational resources required for data processing. Addressing these challenges
will be crucial for the broader implementation of such technologies in educational research and
practice, ultimately contributing to the development of more effective and responsive learning
environments.
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