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There has been a growing interest in developing simulated learners to enhance learning and teaching
experiences in educational environments. However, existing works have primarily focused on structured
environments relying on meticulously crafted representations of tasks, thereby limiting the learner’s
ability to generalize skills across tasks. In this paper, we aim to enhance simulated learners’ general-
ization capabilities in less-structured text-based learning environments by integrating Reinforcement
Learning (RL) with Large Language Models (LLMs). We investigate three types of agents: (i) RL-based
agents that utilize natural language for state and action representations, (ii) LLM-based agents that
leverage the model’s general knowledge and reasoning through prompting, and (iii) hybrid RL-LLM
agents that combine these two strategies to improve agents’ performance and generalizability. To support
the development of these agents, we introduce PharmaSimText, a novel benchmark developed
with expert-evaluated GPT-4 generations derived from a virtual pharmacy environment designed for
practicing diagnostic conversations. After experimenting with RL-based and LLM-based agents using
GPT-4 and open-source LLMs along with a wide range of strategies for combining them, we find that
RL-based agents are good at completing tasks, but not at asking quality diagnostic questions. Conversely,
LLM-based agents are better at asking diagnostic questions, but not at completing tasks. Finally, specific
variations of hybrid RL-LLM agents enable us to overcome these limitations. Our findings highlight
the potential of combining methods based on RL and LLMs in creating generalizable agents that
have solutions close to human ones with the LLM component, while remaining faithful to controlled
environments with the RL component. The source code and benchmark are available on GitHub.1

Keywords: reinforcement learning, large language models, text-based educational environments,
simulated learners

1https://github.com/epfl-ml4ed/PharmaSimText

1
1 Journal of Educational Data Mining, Volume 17, No 1, 2025

https://github.com/epfl-ml4ed/PharmaSimText


1. INTRODUCTION

Simulated learners are crucial to the advancement of educational technologies, serving as a
versatile tool for enhancing learning and teaching. Simulating student interactions and data
provides a safe and controlled environment for teacher training, allowing educators to refine
their methods without directly affecting real students (Robinson et al., 2018). Simulated learn-
ers also facilitate the development and evaluation of adaptive learning systems or new algo-
rithms (Nazaretsky et al., 2019). Furthermore, they have been applied for testing theories of
learning (MacLellan et al., 2016) and foster collaboration skills in students through interacting
with virtual peers (Pareto, 2014).

Reinforcement learning (RL) offers a promising avenue for developing simulated learners.
Existing works on RL for education have however primarily focused on developing techniques
for curriculum optimization (Whitehill and Movellan, 2018; Ju et al., 2020; Zhou et al., 2019;
Rafferty et al., 2016), providing tailored hints and feedback (Efremov et al., 2020; Barnes and
Stamper, 2008), and generating educational content (Ahmed et al., 2020; Padurean et al., 2024).
Only a limited number of studies have examined the use of RL-based learner agents that effec-
tively operate in online learning environments (MacLellan and Gupta, 2021; Bunel et al., 2018).
However, these RL-based learner agents have been studied for structured tasks with well-defined
rules, such as mathematics and logic puzzles. In such environments, RL’s capabilities are nat-
urally exploited due to the straightforward definition of state and action representations with
engineered features obtained from the existing structure (Singla et al., 2021; McIlroy-Young
et al., 2020; MacLellan and Gupta, 2021). Because of their reliance on hand-crafted features
and engineered state representations, these RL agents can however not be used in unstructured
domains or to generalize to unseen tasks.

Recent advances in generative AI, in particular Large Language Models (LLMs), provide
new opportunities to drastically improve state-of-the-art educational technology (Denny et al.,
2024). LLMs can generate coherent, contextually relevant content, engage in meaningful dia-
logues, and perform linguistic tasks without explicit training (Brown et al., 2020; Bubeck et al.,
2023). So far, in education, LLMs (mostly GPT) have mainly been applied for generating ed-
ucational content (Kumar et al., 2023; Sarsa et al., 2022; Phung et al., 2023a), automating
grading and feedback processes (McNichols et al., 2023; Pankiewicz and Baker, 2023; Bew-
ersdorff et al., 2023; Hirunyasiri et al., 2023; Phung et al., 2024; Pardos and Bhandari, 2023),
and facilitating the development of collaborative systems (Tack and Piech, 2022; Lee et al.,
2023; Schmucker et al., 2023). A few works have also used LLMs for modeling learners in pro-
gramming domains (Nguyen et al., 2024) or for simulating students’ behaviors as a basis for an
interactive tool for teacher training (Markel et al., 2023). Despite their proficiency in linguistic
tasks, LLMs often fail to make feasible decisions within constrained environments, a domain
where RL agents excel (Wang et al., 2022).

Given the strengths and limitations of RL- and LLM-based agents, recent works have investi-
gated the integration of LLMs with RL to design agents that overcome the individual limitations
of these agents. For instance, this integration has been used to substantially improve reward
design and exploration efficiency in various domains (Nottingham et al., 2023; Li et al., 2022;
Du et al., 2023; Kwon et al., 2023). However, most of these approaches have focused on lever-
aging LLMs for assistance during training, which introduces the risk of hybrid agents inheriting
LLMs’ decision-making limitations in constrained environments.

To develop performant RL agents, an enriched benchmark environment is essential. Prior
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work has developed benchmarks for various applications such as Gymnasium (Towers et al.,
2024) to test newly designed RL algorithms, ROBEL (Ahn et al., 2019) for training robotic
agents, SafeBench (Xu et al., 2022) for autonomous vehicles, and Flow (Wu et al., 2017) for
traffic control agents. However, only a few studies have developed benchmarks (e.g., Tutor-
Gym (MacLellan and Gupta, 2021)) for educational applications. These benchmarks only cover
well-structured tasks in math, and no benchmarks have been designed to develop simulated stu-
dents for less-structured text-based learning environments.

In this paper, we investigate the integration of RL and LLMs to create agents with enhanced
generalizability in text-based educational environments, focusing on employing the LLM in the
inference phase. To support our investigations, we present a novel less-structured text-based
simulation benchmark, PharmaSimText, adapted from the PharmaSim virtual pharmacy en-
vironment designed for practicing diagnostic conversations. We developed the benchmark by
generating patient cases and diagnoses using GPT-4 (OpenAI, 2023), which were subsequently
evaluated by a pharmacy expert. We present three types of agents: (i) RL-based agents employ-
ing natural language based representations, (ii) LLM-based agents invoked through prompting,
and (iii) a wide range of hybrid RL-LLM agents where LLMs and RL agents collaborate in the
inference phase using various strategies.

We extensively evaluate all agents based on their ability to engage in effective diagnostic con-
versations and achieve accurate diagnoses on the PharmaSimText benchmark. We employ
a wide range of LLMs (GPT-4, four open-source LLMs, and two medically fine-tuned LLMs)
in our experiments. With our experiments, we aim to address three research questions: Which
agent type demonstrates the best performance in conducting effective diagnostic conversations
and achieving accurate diagnoses (RQ1)? How does the specific LLM (GPT-4 or open-source
LLMs) used in the LLM-involved agents affect agent performance (RQ2)? How does changing
the power balance between the RL and LLM agents by introducing a disagreement mechanism in
the strategy used for combining them influence the performance of the RL-LLM agents (RQ3)?

Our results demonstrate that combining RL and LLMs boosts performance, effectively bal-
ancing accurate diagnosis along with high-quality diagnostic conversations. Furthermore, using
open-source models such as Llama3-70B (Dubey et al., 2024) or medically fine-tuned ones such
as OpenBioLLM-70B (Ankit Pal, 2024) tends to decrease agent performance (see section 5.3 for
discussion). Finally, the strategy used for combining RL and LLM agents has a large impact on
performance. In this work, we contribute the following: (1) integration of RL and LLM agents
for development of generalizable simulated learners in text-based educational environments, (2)
developing PharmaSimText as a less-structured text-based benchmark for developing and
evaluating simulated learner agents by extending the PharmaSim virtual pharmacy environment
using LLM-generated patient scenarios evaluated by a pharmacy expert, and (3) comparative
analysis of RL-based, LLM-based, and RL-LLM Agents and extensive investigation of effect of
different LLMs, integration strategies, and prompting methods.

2. RELATED WORK

Given our focus on integrating RL and LLMs to create generalizable simulated learners, we
review prior work in developing simulated learners, explore the growing field of agents in text-
based interactive games, and finally discuss recent advancements in integrating RL and LLMs.
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2.1. SIMULATED LEARNER AGENTS IN EDUCATIONAL ENVIRONMENTS

There is a large body of research on simulating learners in digital environments. A recent sys-
tematic review (Käser and Alexandron, 2023) has identified three primary methods for simu-
lating learners. Cognitive-based simulations provide rich, but not generalizable learner repre-
sentations, for example by generating cognitive models from problem-solving demonstrations
(e.g., SimStudent (Li et al., 2011)). Probabilistic methods simulate learners based on students’
behavior observed in previously collected data (Corbett and Anderson, 2005; Faucon et al.,
2016). Similarly, data-driven simulations replay real student data to evaluate how changes in the
environment affect learner model parameters (Botelho et al., 2016). While these two methods
produce less detailed representations, they offer better generalizability.

RL is a promising tool to address these limitations. However, in the education domain,
this framework has been primarily applied for pedagogical policy induction (Whitehill and
Movellan, 2018; Ju et al., 2020; Zhou et al., 2019; Rafferty et al., 2016), providing tailored
hints (Barnes and Stamper, 2008; Efremov et al., 2020), generating educational content (Ahmed
et al., 2020; Padurean et al., 2024), assessing interventions in educational platforms (Rafferty
et al., 2019; Mui et al., 2021), and designing tests for evaluating students’ knowledge (He-Yueya
and Singla, 2021). Despite its potential, the exploration of RL-based learner agents for effective
operation in learning environments remains limited (MacLellan and Gupta, 2021; Bunel et al.,
2018). Prior work has for example used proximal policy optimization for designing simulated
learners trying to excel in intelligent tutoring systems (MacLellan and Gupta, 2021) or employed
neural and symbolic program synthesis to create student attempts in a block-based programming
environment (Singla and Theodoropoulos, 2022). In this paper, we develop a series of learner
agents trying to showcase effective strategies in a less-structed text-based environment.

2.2. AGENTS FOR TEXT-BASED INTERACTIVE GAMES

The growing interest in developing agents for text-based interactive games, especially those
mimicking real-world scenarios (Wang et al., 2022; Wang et al., 2024; Pan et al., 2023), has led
to diverse methodologies such as RL (He et al., 2016; Ammanabrolu and Hausknecht, 2020)
and prompting LLMs (Yao et al., 2023; Majumder et al., 2023; Ichter et al., 2022; Shinn et al.,
2023). A well-known example is the game ScienceWorld (Wang et al., 2022), where players
engage in scientific experiments through environment exploration.
RL Methods. Within the RL framework, state-of-the-art research employs Deep Reinforced
Relevance Networks (DRRNs) (He et al., 2016), treating text-based interactions as partially-
observable Markov decision processes and learning distinct text representations for states and
actions to estimate Q-values via a scorer network. In cases with structured relationships be-
tween environment elements, methods such as KG-A2C (Ammanabrolu and Hausknecht, 2020)
create graph-structured state representations along with natural language embedding state rep-
resentations. While effective in certain contexts, these methods can struggle with more complex
interactive environments due to limited reasoning and planning capabilities.
LLM-based Methods. LLM-based methods use prompts at each interaction step for strategic
planning and action selection. While some studies (e.g., Yao et al. 2023) engage in a single
interaction round with the environment, others(e.g., Shinn et al. 2023; Majumder et al. 2023) use
a multi-round approach, facilitating iterative refinement through repeated attempts. Techniques
such as SAYCAN (Ichter et al., 2022), REACT (Yao et al., 2023), and REFLEXION (Shinn
et al., 2023) represent the state-of-the-art approaches in this domain. SAYCAN merges LLM
predictions with a value function to ensure action feasibility, REACT introduces a virtual ‘think’
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Figure 1: ‘Father Inquiry’ scenario in PharmaSim - A simulated pharmacy setting designed
for practicing diagnostic conversational skills, where participants engage with a father seeking
guidance for his infant child’s diarrhea.

action, enabling LLMs to generate subgoals while planning, and REFLEXION builds on this
with a multi-round strategy for refined planning, reflecting on previous trials.
In this paper, we develop a series of agents for a text-based educational environment simulating
real-world scenarios happening in a pharmacy.

2.3. RL AND LLM INTEGRATION

Recently, LLMs have been used to assist RL agents in various tasks, demonstrating notable
advancements in reward design and exploration efficiency. For example, Du et al. (2023) utilized
text corpora to pre-train agents, thereby shaping their exploration by suggesting goals based on
the agents’ current state descriptions. Furthermore, Kwon et al. (2023) proposed an approach
to simplify reward design by employing LLMs to generate reward signals from textual prompts
that describe desired behaviors. In a similar vein, Nottingham et al. (2023) applied few-shot
LLM prompting to hypothesize world models for RL agents, which improves training sample
efficiency and allows agents to correct LLM errors through interaction with the environment.

While these studies highlight the synergistic potential of integrating LLMs with RL tech-
niques to achieve more objective-aligned agent behaviors, directed exploration, and efficient
training processes, the use of LLMs in the training phase bears the risk of carrying over their
limitations in decision-making in constrained environments. A notable gap therefore remains in
using LLMs to assist RL agents during the inference phase, especially in using LLMs to support
RL agents in generalizing to new tasks and environments post training. In this work, we aim to
bridge this gap by focusing on combining LLMs and RL agents’ decisions during generalization
to new settings.

3. PHARMASIMTEXT BENCHMARK

We created PharmaSimText, a text-based educational environment, as a test-bench for
developing agents capable of handling text-based learning tasks and generalizing in them.
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Figure 2: Diagnostic Strategy in the ‘Father Inquiry’ Scenario of PharmaSim, illustrating
the process of identifying the most likely cause of the infant’s diarrhea. Four key questions of
the father is necessary to collect crucial information for determining the most probable cause of
the child’s diarrhea among four potential causes.

PharmaSimText is an interactive text-based environment designed based on PharmaSim, a
scenario-based learning platform. It simulates real-world interactions between a pharmacist
and a patient in a pharmacy setting. PharmaSimText requires students to engage in
guided inquiry by selecting effective questions from an extensive pre-selected list, offering
greater flexibility compared to traditional environments with limited instructor-defined options.
PharmaSimText extends PharmaSim by adding scenarios generated using GPT-4 and
evaluated by a pharmacy expert. The benchmark includes near 40 possible diagnoses in total for
7 different medical conditions with 10 different phrasing versions available for each component
resulting in a rich problem space for developing and evaluating learner agents. This benchmark
covers the contents of Switzerland’s pharmacy assistant training program that can be used for
students’ learning.

3.1. PHARMASIM

PharmaSim is a scenario-based learning environment designed to support the development of di-
agnostic conversational skills in pharmacy assistant students. Currently, two different scenarios
designed with insights from pharmacy experts are available in the game. Fig. 1 shows the ‘Father
Inquiry’ scenario, where a father visits the pharmacy looking for help with his child’s diarrhea.

All scenarios follow the same structure: a patient comes to the pharmacy and asks for help
with a specific problem. The player needs to identify different possible causes of this problem
and mark how probable they are while interacting with the environment. Specifically, there are
six different types of interactions: asking questions of the patient, seeking help from the phar-
macist, searching about different kinds of medicine, looking for the specifications of products
available on the shelf, reading/consulting documentation of medical knowledge and facts, and
offering a solution, which ends the game and moves the player to the post-test phase. In the
post-test phase, players need to list three possible causes, rate their probability, and give an
explanation for each of them.

The determination of the most probable causes along with their likelihoods significantly
depends on a set of questions gathering the essential information, which we henceforth refer to
as key questions. For example, the ‘Father Inquiry’ scenario presents four possible causes for
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Figure 3: Pipeline of PharmaSimText benchmark development. A three-stage develop-
ment process was followed: (1) Transition to text-based environments to facilitate agent training
via interaction and post-test adaptation. (2) LLM-powered scenario generation for extending
existing PharmaSim scenarios and creating new ones based on pharmacy assistant training cur-
ricula. The steps involving an LLM are marked in blue. (3) Pharmacy Expert Evaluation &
Scenario Refinement to ensure the quality of the benchmark.

the child’s condition. The player is required to ask four key questions to the father to gather the
essential information needed to find the most probable cause behind the child’s diarrhea while
considering several causes. The relation between these key questions and the most probable
cause of the child’s diarrhea is illustrated in Fig. 2. For instance, inquiring about the child’s age
enables the player to deduce that teething is an improbable cause due to the child’s young age.

3.2. PHARMASIMTEXT

To develop our benchmark, we followed the three main stages illustrated in Fig. 3. We first
transitioned PharmaSim to a text-based environment, enabling agent interaction and assessment.
We then employed GPT-4 to extend the existing scenarios and to create new ones. Finally, all
scenarios were evaluated by a pharmacy expert and refined based on their feedback.

3.2.1. Transition to text-based environments

To transform PharmaSim into a text-based environment, two modifications were made.
First, we streamlined interactions into two types: ‘‘I want to know about the
{character}’s {topic}’’ for asking the patient questions about various characters, and
‘‘I want to suggest a solution’’ for proceeding to the post-test. Other action
types available in PharmaSim, such as seeking help from the pharmacist, searching for different
medicines, examining product specifications on the shelf, and consulting medical documenta-
tion, were excluded to keep the focus on the diagnostic conversation. Second, we modified the
post-test questions to provide agents with a feasible assessment. To accomplish this, we re-
vised the three-causes question to focus exclusively on the most likely cause. Furthermore, key
questions were used to evaluate the agents’ trajectory after playing the game.

3.2.2. LLM-Powered Scenario Generation

We expanded the two scenarios available in the original environment across three dimensions:
(1) introducing new patients, (2) varying the scenarios to alter the most probable cause of each
patient’s problem, and (3) rephrasing patient responses to provide a broader range of answers.
Given the scale of extension, relying solely on human expertise was impractical. Instead, we
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Table 1: Resulting quality of GPT-4 generated scenarios. Correctness, Realism, Complete-
ness, Conceal, Clarity, and Consistency per scenario as well as mean±standard deviation over all sce-
narios. GPT-4 achieves high values in all measures.

Patient Correctness Realism Completeness Conceal Clarity Consistency

Breastfeeding-
related

0.85 0.85 0.88 1.00 1.00 1.00

Urological 0.95 0.87 0.86 1.00 1.00 1.00
Gynecological 0.77 0.72 0.73 1.00 1.00 1.00

Eye-related 0.94 0.94 0.79 1.00 1.00 1.00
Joint Pain 0.93 0.88 0.9 1.00 1.00 0.50

Sore Throat 0.94 0.92 0.78 1.00 1.00 1.00

Overall 0.90±0.07 0.86±0.08 0.82±0.07 1.00±0.00 1.00±0.00 0.92±0.20

leveraged the generative capabilities of LLMs combined with human insights to develop the
scenarios in PharmaSimText.
Curriculum Alignment. We consulted the pharmacy assistant training curriculum of Switzer-
land to align the expanded and newly generated scenarios with students’ training program as
well as with medical facts. Specifically, we gathered a set of health problems from the curricu-
lum, assigning each to a fictional patient with a specified age and gender. We further identified a
range of illnesses from the curriculum’s textbooks, known to manifest symptoms relevant to the
chosen problems.

Prompting LLMs for scenario creation. The LLM-powered scenario creation process as re-
flected in Fig. 3 involved three steps: (2.1) we prompted the LLM to generate a list of key
questions aimed at diagnosing the most probable cause of the patient’s problem, (2.2) the LLM
was tasked with simulating patient responses to key questions, assuming each illness on the list
as the most probable cause, as well as generating answers to other common patient inquiries
typically addressed by pharmacists, and (2.3) the LLM was employed to diversify existing pa-
tient responses through paraphrasing for enhancing the scenarios’ complexity. We used GPT-4
(OpenAI, 2023) as the LLM for scenario creation; the exact prompts employed can be found
in Appendix 8.1. To further augment the benchmark’s complexity, several fictional characters
were introduced as distractors, enabling players to engage in more nuanced interactions.

3.2.3. Pharmacy Expert Evaluation & Scenario Refinement

To ensure the quality of the generated scenarios, we had them evaluated by a pharmacy expert.
Specifically, we assessed the scenarios along six dimensions: Correctness, Realism, Complete-
ness, Conceal, Clarity, and Consistency, using a rubric developed based on measures for the
evaluation of LLM generations suggested in prior work (Nguyen et al., 2024; Phung et al.,
2023b). Correctness measures whether the provided patient answers align with medical facts.
Realism assesses whether the patient responses mimic real-life interactions. Completeness eval-
uates whether the predefined questions cover all necessary information for an accurate diagnosis.
Conceal checks whether the LLM-generated answer does not directly give away the correct diag-
nosis. Finally, Clarity assesses the readability of the patient answers and Consistency examines
the patient answers for potential contradictions. Three of the measures (Correctness, Realism,
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and Completeness) were directly assessed by the pharmacy expert. The rest of the measures
(Conceal, Clarity, and Consistency) were calculated based on annotations of the pharmacy ex-
pert’s answers by the researchers. To ensure the quality of the annotation, two scenarios were
independently coded by two researchers with expertise in the field of Educational Technology
including a researcher who did not co-author the study, resulting in an inter-rater agreement of
κConceal = 1.0 with 10 samples (number of possible causes), κClarity = 0.81 with 170 sam-
ples (number of question answers), and κConsistency = 1.0 with 10 samples (number of possible
causes). The better agreement in Conceal and Consistency is because they are calculated us-
ing logical arguments. Further implementation details about the rubric is detailed in Table 4 in
Appendix 8.2.

We calculated all measures after one round of LLM generation and pharmacy expert feed-
back. The resulting scores are illustrated in Table 1. While the LLM generations were mostly
medically correct (mean Correctness score of 0.9), we observed fluctuations between the differ-
ent scenarios. Specifically, the LLM performed less well in breastfeeding-related and gyneco-
logical topics, suggesting lower prior knowledge of GPT-4 in these topics. The same trend is
present for Realism. Notably, in the initial steps of prompt design, we observed a tendency of
the LLM to generate responses based on extreme cases of a certain diagnosis, lowering the Re-
alism. This problem was mitigated after adjustments to our prompt. Regarding Completeness,
the initial suggestions from the LLM missed 1-3 key questions necessary to cover all the infor-
mation needed for diagnosis across different patient cases as specified by the pharmacy expert,
leading to a rather low score (Completeness score of 0.82). Hence, while the LLM’s assistance
in designing educational content is beneficial to some extent, there is a need for more human
expert involvement at this step. Furthermore, the LLM did not directly reveal any diagnoses in
the patient answers (perfect Conceal score of 1), as specified in the prompt. Finally, when inves-
tigating Clarity and Consistency, we found that the generations were clear and consistent almost
all the time, with the LLM failing to be consistent only in one case (‘Joint Pain’ scenario). These
results emphasize the capability of LLMs to assist in the generation of educational content.

Following this evaluation, all of the scenarios were refined based on the feedback given by
the pharmacy expert. We performed several rounds of refinement, resulting in perfect scores in
all the 6 dimensions for the final scenarios provided in the benchmark2. The resulting scenarios
cover seven medical problems (e.g., sore throat), including the possible causes and number of
key questions for each, and are detailed in Table 5 in Appendix 8.3. On average, each scenario
presents seven potential causes for the patient’s problem, resulting in a total of 37 scenario
variations. Each scenario further necessitates the identification of an average of 7.8 key questions
by the player. Patient responses in each scenario are articulated in ten diverse phrasings to
enhance the depth and variability. We, therefore, obtain an extensive problem space with many
variations for an agent to train on, providing a rich environment for further studies on agents for
text-based interactive tasks and agents’ generalizability.

4. AGENTS FOR PHARMASIMTEXT

We developed three types of agents for PharmaSimText representing various degrees of RL
and LLM integration as illustrated in Fig. 4: pure RL-based agents, pure LLM-based agents, and
RL-LLM agents.

2https://github.com/epfl-ml4ed/PharmaSimText
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Figure 4: Overview of agents. In the RL-based agent (left), a DRRN evaluates the state-action
embeddings at each step and returns the state-action value for all the available actions. A softmax
probability distribution is then used to determine the next action. The LLM-based agent (right)
prompts an LLM at each step to choose the next best action. This agent is given multiple trials
at solving a task, and reflects on what can be improved between trials. For the RL-LLM agents,
the LLM and RL switch roles, between one of them suggesting a set of actions and the other one
choosing from this set.

4.1. RL-BASED AGENTS

RL agents learn to interact within an environment by taking actions based on their current state
and receiving feedback in the form of rewards or penalties for those actions (Sutton and Barto,
2018). They try to maximize their obtained cumulative reward over time to effectively learn
the best policy for achieving their goal within the environment. One well-known method in
RL involves estimating a metric called Q-value, which represents the expected future rewards
for taking a specific action in a given state. Deep Q-Networks (DQNs)(Mnih et al., 2013) ap-
proximate these Q-values using deep neural networks, enabling the handling of complex, high-
dimensional environments by learning to predict the Q-values directly from the agent’s state.
DQNs are trained through interactions with the environment, using their experience to make
their estimations of Q-values more accurate iteratively.

Following previous work on text-based games (Wang et al., 2022), we utilized the state-
of-the-art method, a DRRN (He et al., 2016) as the RL-based agent for interacting with
PharmaSimText. The DRRN is designed to learn distinct representations for text-based states
and actions by employing two separate networks: a state encoder and an action encoder. A scorer
network then evaluates these representations to estimate their Q-values. At a given step t in the
environment, the current state st and the action taken at are fed into the DRRN. Initially, st
and at are encoded as sequences of word embeddings, which are subsequently processed by a
Recurrent Neural Network (RNN) within both the state and action encoders to obtain respective
embeddings for st and at. Following the RNN layer, a Multi-Layer Perceptron (MLP) in each
encoder refines these embeddings into more concise representations. These representations are
then concatenated and fed into the scorer network’s MLP, which yields an estimation of the
Q-value Q(st, at).

In our case, the valid actions at time step t are interactions available in the environment
presented to the agent as a list of sentences. After taking each action, the agent will receive
a reaction rt from the environment that is formatted as: Interaction type; Selected
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interaction; The patient’s response. For instance, in the scenario related to in-
fant diarrhea, if the agent decides to ask about the infant’s age, the new reaction will be formatted
as: Discuss; I want to know about the infant’s age; He is 5 months
old. Therefore, the agent should consider the full history of received reactions to comprehend
its current state st in the environment.

We introduced two modifications to adapt the original DRRN to our environment. First, we
employed pre-trained sentence embeddings from fastText (Bojanowski et al., 2017) to generate
text representations for both reactions and actions. This choice was motivated by previous work
showing that training the RNNs in the encoders of a DRRN with a loss function solely aligned
with the RL objectives leads to unstable training and suboptimal embeddings (Ammanabrolu
and Hausknecht, 2020). Second, unlike the text-based environments for which DRRNs were
originally proposed, the reaction at a given time step t in PharmaSimText does not suffice
for the agent to obtain a notion of the current state in the environment. Instead, the full reaction
history is needed as a part of the context given to the agent. Therefore, we introduced a unit
called the state updater before the state encoder that takes the previous embedded state emb-
st−1 and the new embedded reaction e(rt) and returns the updated state after the current reaction
emb-st. We experimented with five different methods in the state updater: mean pooling, max
pooling, summation, an LSTM layer, and an LSTM layer with self-attention. After a series of
experiments, we observed that the method based on summation led to the most stable training;
therefore this method was adopted in our state updater. Formally, this method based on the
summation of all the reaction embeddings in the history returns emb-st = emb-st−1 + e(rt) as
the new embedded state emb-st.

4.2. LLM-BASED AGENTS

The agents based on LLMs prompt an LLM at each step of interacting with the environment to
determine the best next action to take. During interaction with the LLM, the agent provides a
prompt that contains the task description, past interactions with the patient (which includes the
questions asked by the agent and responses from the patient), and valid actions available in the
current state to determine the most appropriate next action. Moreover, the task description is
structured as Find the cause behind the patient’s problem, and the interac-
tion history is presented as a dialogue between the patient and the agent. Action texts are labeled
as agent’s questions and environment feedback texts are labeled as patient responses. Each
action type among the valid actions is formatted as a function along with its permissible input
values for the LLM to interpret. This functional formatting is complemented by a description
explaining the action’s purpose. For instance, the interaction “I want to ask about the char-
acter’s (e.g., baby’s) topic (e.g., symptoms)” is presented as ask(character, topic):
Asking a question about the topic related to the character, fol-
lowed by a list of valid subjects and topics. This formatting strategy decreases the likelihood of
the LLM suggesting invalid actions.

Despite efforts to format valid actions to guide the LLM, there are instances where the LLM
still proposes an action that is invalid within the PharmaSimText environment. In such cases,
we implemented a strategy where the LLM was prompted to suggest an alternative action, re-
peating this process for a maximum of n = 3 attempts to control the computational cost of
prompting. Should all suggested actions remain invalid, we selected the valid action that had
the smallest distance in the natural language embedding space to the n-th suggested action. This

11
11 Journal of Educational Data Mining, Volume 17, No 1, 2025



approach ensures that the LLM’s output is effectively grounded in the set of actions that are
feasible within the environment.

Recent advancements in developing LLM-based agents have shown a noticeable improve-
ment in their ability to complete tasks employing a strategy called reflective prompting which
gives the LLM multiple trials to accomplish a task and requires the LLM to reflect between
each trial (Majumder et al., 2023). To improve the LLM-based agent further, we therefore im-
plemented reflective prompting. In the following, we refer to the LLM-based agent described
above, which is given only one trial, as non-reflective, and to the LLM-based agent given multi-
ple trials, as reflective.

The reflective agent employs a prompting strategy akin to that of the non-reflective agent to
determine the optimal subsequent action. The non-reflective agent prompt is augmented with
a segment including learnings from prior interactions with the same patient having the same
diagnosis. After completing each trial, the LLM is asked to reflect on its previous strategy based
on the observed outcomes. Following this, the agent updates its textual memory of previous
learnings, and the updated memory is used for prompting in the next trial. This approach is
inspired by research on self-reflective LLMs, notably the continually learning language agent
CLIN (Majumder et al., 2023). Similar to CLIN, we constructed the learning memory using
causal formats such as “X is necessary for Y” to guide future interactions. As a result, the
reflective agent can dynamically adapt and refine its approach, enhancing its decision-making
process over time.

4.3. RL-LLM AGENTS THAT AGREE&ACCEPT

RL-based agents’ perspective is limited by what they have experienced during training, which
could make them less effective in tasks with unfamiliar elements not encountered during train-
ing (Yao et al., 2021). Furthermore, they find the shortest path to achieving the reward, often
making their solutions very different from human ones (McIlroy-Young et al., 2020). LLMs, on
the other hand, can generalize to new cases in context and provide more human-like solutions;
however, they cannot perform in constrained environments or change some of their prior biases
based on their inputs (Lin et al., 2023). To address each agent’s weaknesses while keeping their
strengths, we combined them in a series of agents known as RL-LLM agents in three versions
that either Agree&Accept, Disagree&Veto, or Disagree&Interact. Here, we introduce the most
fundamental version of RL-LLM Agents that Agree&Accept.

As illustrated in Fig. 5, in these agents, the LLM and RL-based models switch roles between
being a Suggestion-Maker making high-level plans and a Decision-Maker determin-
ing the most optimal action given the constraints of the Suggestion-Maker’s plan, creating
two types of agents: RL-Suggests-LLM-Accepts&Decides (RL→LLMACCEPT) and LLM-Suggests-
RL-Accepts&Decides (LLM→RLACCEPT).

4.3.1. RL-Suggests-LLM-Accepts&Decides (RL→LLMACCEPT):

At a time step t, we collect the top-k actions RL-Suggestedt based on the RL-based agent’s
policy. The LLM is then prompted to choose the best action from RL-Suggestedt. The prompt
contains the task description, history of interactions, prior experience with the patient, and ac-
tions in RL-Suggestedt (see Fig.5 (left)). Since there are different numbers of actions avail-
able at the interaction and post-test steps, we set kinteraction = 5 and kpost-test = 2 to ensure the
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Figure 5: RL-LLM agents that Agree&Accept. The LLM and RL agents alternate roles: one
suggests actions, the other selects from them. In the RL-Suggests-LLM-Accepts&Decides (RL→
LLMACCEPT) agent (left), the LLM selects an action from suggestions provided by the RL agent.
In the LLM-Suggests-RL-Accepts&Decides (LLM→RLACCEPT) agent (right), the LLM suggests
several actions at each step for the RL agent to choose from.

suggestions cover optimal actions from Suggestion-Maker’s perspective while allowing
Decision-Maker enough freedom of choice.

4.3.2. LLM-Suggests-RL-Accepts&Decides (LLM→RLACCEPT):

At a given time step t, the LLM is prompted to suggest a list of k best actions to be taken
at that state called LLM-Suggestedt. The RL-based agent calculates Q-values for each action
in LLM-Suggestedt, and the next action is sampled from the soft-max distribution of the Q-
values. The prompt for the LLM (see Fig.5 (right)) contains the task description, the history of
interactions, prior experience with the patient, and valid actions for the current state. We again
set kinteraction = 5 for the interaction steps and kpost-test = 2 for the post-test steps.
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Figure 6: Disagreement Mechanism in agents with different Decision-Makers and Dis-
agreement Handling: In agents with LLM Decision-Maker, after receiving the RL sug-
gestions, the LLM is prompted to choose from them or disagree with them. Depending on
Disagreement Handling with veto or interaction, the LLM vetos with choosing the next action
from all the valid actions or interacts with suggesting actions back to the RL (left). In agents
with RL Decision-Maker, the RL chooses an action from the LLM’s suggestions, if at least
one of them is among the top θ% of its own action ranking and disagrees otherwise. In Dis-
agreement Handling, the RL either vetos with selecting the next action from all the valid actions
or interacts with re-prompting the LLM for new suggestions until they agree(right).

4.4. RL-LLM AGENTS THAT DISAGREE&VETO

In some occasions, the suggestions made by the Suggestion-Maker component might not
correspond with the optimal actions determined by the other component leading to a Disagree-
ment between them. The performance of RL-LLM Agents that Agree&Accept, as discussed in
Section 4.3, may be influenced by potential shortcomings in the suggestions, given that they
always adhere to the constraints set by the Suggestion-Maker.

We hence implemented a Disagreement Mechanism with Veto inside the agents called
RL-LLM Agents that Disagree&Veto, enabling the Decision-Maker component to refuse
choosing an action from the list proposed by the Suggestion-Maker and to take full con-
trol of decisions. The Disagreement Mechanism running at every step of interaction has two
stages: Disagreement Indication and Disagreement Handling. During Disagreement Indication,
the Suggestion-Maker’s partner indicates whether it disagrees or not. If it does not dis-
agree, it will go ahead and choose among the suggestions of the Suggestion-Maker. In
case of Disagreement, the agent moves to the next stage, Disagreement Handling, where the
Decision-Maker takes full control and chooses from all available actions. Again, in these
agents, the LLM-based and RL-based models switch roles between being a Decision-Maker
that Disagree&Veto and a Suggestion-Maker to create two types of agents, RL-Suggests-
LLM-Decides/Vetos (RL→LLMVETO) and LLM-Suggests-RL-Decides/Vetos (LLM→RLVETO).
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4.4.1. RL-Suggests-LLM-Decides/Vetos (RL→LLMVETO).

As shown in Fig. 6 (left), for Disagreement Indication in these agents, we modified the prompt
to inform the LLM about the option of Disagreement with RL suggestions. In case the LLM
disagrees, it is handled by letting the LLM take full control in that step and choose among all
available actions. This is done by prompting the LLM to choose from all valid actions, similar
to the LLM-based agent.

4.4.2. LLM-Suggests-RL-Decides/Vetos (LLM→RLVETO).

As shown in Fig. 6 (right), a Disagreement is indicated in these agents if no action in LLM
suggestions is among the top θ% of actions in terms of their Q-values in RL model’s perspec-
tive. θ is a hyper-parameter that needs to be optimized. Similar to the RL→LLMVETOagent, a
Disagreement is handled by letting the RL-based agent take full control in that step and choose
among all available actions based on its Q-values.

4.5. RL-LLM AGENTS THAT DISAGREE&INTERACT

As previously discussed, each of the RL-based and LLM-based agents comes with its
own shortcomings. As a result, even though Disagreement with vetoing can miti-
gate the Suggestion-Maker’s shortcomings, it might exacerbate shortcomings of the
Decision-Maker. Therefore, we introduce a new Disagreement Mechanism with interaction
in the last version of agents, RL-LLM agents that Disagree&Interact, in which if a Disagreement
happens the models can communicate new insights designed based on their strengths through
interaction. This mechanism happens in the two stages of Disagreement Indication and Dis-
agreement Handling.

Similar to RL-LLM agents that Disagree&Veto in Section 4.4, during Disagreement Indi-
cation, the Suggestion-Maker’s partner indicates whether it disagrees or not. If it does
not disagree, it chooses among the suggestions of the Suggestion-Maker. In case of Dis-
agreement, the agent moves to the next stage, Disagreement Handling, where this time both
models communicate new insights designed based on their strengths through interaction. The
Disagreement Handling methods based on interaction are designed to ensure more human-like
solutions by taking the LLM-based agent’s suggestions and excelling in constrained environ-
ments by the RL-based agent taking the final decisions. Again, in these agents, the LLM-based
and RL-based agents switch between being a Decision-Maker that Disagree&Interact and
a Suggestion-Maker creating two types of agents, RL-Suggests-LLM-Decides/Interacts
(RL→LLMINTERACT) and LLM-Suggests-RL-Decides/Interacts (LLM→RLINTERACT).

4.5.1. RL-Suggests-LLM-Decides/Interacts (RL→LLMINTERACT)

As shown in Fig. 6 (left), Disagreement Indication in these agents happens by modifying LLM’s
prompt similar to RL→LLMVETOagents in Section 4.4. In case the LLM disagrees, it is handled
by the LLM suggesting back several actions to the RL-based agent to choose from, leading
to a reversal of the LLM and RL agent roles at this interaction step. For this, the LLM is
prompted to suggest actions to the RL-based agent to choose from, similar to when it took the
Suggestion-Maker role in the LLM→RLACCEPTagent.
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4.5.2. LLM-Suggests-RL-Decides/Interacts (LLM→RLINTERACT)

As shown in Fig. 6 (right), a Disagreement is indicated in these agents by comparing LLM Sug-
gestions to RL model’s top picks similar to LLM→RLVETOagents in Section 4.4. A Disagreement
is handled by the RL-based agent re-prompting the LLM for new suggestions. For this, the LLM
is prompted to suggest actions to the RL-based agent to choose from, similar to when it took the
Suggestion-Maker role in the LLM→RLACCEPTagent. This process is done by re-prompting
the LLM to suggest different actions from its previous suggestion for a maximum of five times
or until an agreement is reached, i.e., at least one suggested action is in the top θ% in terms of
Q-values. If the maximum number of re-prompting does not lead to an agreement, the RL-based
agent fully takes over for that step.

5. EXPERIMENTAL EVALUATION

We evaluated our agents on PharmaSimText to assess what type of agent performs best at
conducting effective diagnostic conversations and correctly diagnosing patients (RQ1)? how
does the specific LLM (GPT-4 or open-source LLMs) used in the LLM-involved agents affect
agent performance (RQ2)? how does changing the power balance between the RL and LLM
agents by introducing a disagreement mechanism in the strategy used for combining them influ-
ence the performance of the RL-LLM agents (RQ3)?. The different agent types based on GPT-4
without a disagreement mechanism and their resulting performance on PharmaSimText have
been published in (Radmehr et al., 2024). Here, we restate and extend these results as a basis
for our extension to open-source LLMs and new RL-LLM agents.

5.1. EXPERIMENTAL SETUP

Our evaluation focused on the agents’ generalization capabilities, particularly their ability to
navigate tasks with elements they had not encountered before.

5.1.1. Generalization Assessment

We assessed the agents based on their ability to generalize across rephrased versions of already
encountered scenarios, to determine how much they relied on the precise wording of those sce-
narios. Figure 7 illustrates our evaluation methodology for generalization through an example
of rephrased answer options creating diversity.

In PharmaSimText, an agent’s success in a subtask is based on two factors: identifying the
main cause of the patient’s problem and asking key questions during the diagnostic conversation.
Here, a subtask denotes the combination of a cause and a wording. Accordingly, we defined
three metrics:

• Diagnostic Accuracy Score: Binary indicator of correct diagnosis of the patient’s condition.
This metric assesses how well an agent can identify the most probable cause of a patient’s
problem.

• Conversational Completeness Score: The percentage of key questions asked by the agent. This
metric assesses how well an agent conversation with the patient covers all the key information
needed for diagnosis.
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Figure 7: Generalization task, requiring the agent to generalize to a never-seen-before wording
of a scenario.

• Combined Score: The multiplication of the Diagnostic Accuracy Score and Conversational
Completeness Score metric. This metric combines both of the above elements.

5.1.2. Agent Training and Evaluation

We developed and trained all agents separately for each patient. As part of the process, different
wordings of subtasks leading to the same diagnosis were randomly split into training, validation,
and test sets. Therefore, all diagnoses applicable to a patient were included in the training,
validation, and test sets in distinct wordings. As a result, the agents saw all diagnoses during
training and validation, but not all wordings. We used 80% of the available wordings for each
diagnosis for training, 10% for validation, and 10% for testing.

During training, every time the RL-based agent interacted with the environment, it was given
a random task from the designated training set. At each time step t, the RL-based agent took
an action sampled from a softmax policy derived from all available actions’ Q-values. In the
training process, a temperature decaying linearly from 1 to 0.001 controlled the randomness of
the softmax policy. In each interaction, the agent was rewarded using a reward function that
awarded it a positive reward of +1 when it succeeded in the posttest and penalized it with a
negative reward of -1 when it failed. The agent also received a small negative penalty of −0.01
for each interaction it made.

The LLM-based agent types were trained and evaluated with the exact same train-validation-
test split. These agents gain experience through interactions with the training subtasks,
which they can then leverage on the test subtasks. For the RL-LLM agents with LLM
Decision-Maker with disagreement mechanisms, the threshold θ was optimized based on
the best Combined Score on the validation set. For the agent types involving LLMs, we exper-
imented with seven different LLMs: GPT-4 (OpenAI, 2023); open-source models Llama3-70B
(Dubey et al., 2024), Llama3-8B (Dubey et al., 2024), Gemma2-9B-it (Team, 2024), and Mix-
tral8x7B (Jiang et al., 2024); and medically fine-tuned open source models OpenBioLLM-70B
(Ankit Pal, 2024) and OpenBioLLM-8B (Ankit Pal, 2024). In the following, we will replace the
term LLM with the name of the specific LLM used in the RL-LLM and LLM-based agents.

5.2. RQ1: EFFICACY OF DIFFERENT AGENT TYPES BASED ON GPT-4

In the first analysis, we assessed agents’ Diagnostic Accuracy Score and Conversational Com-
pleteness Score. Figure 8 illustrates the Diagnostic Accuracy Score, Conversational Complete-
ness Score, and Combined Score of the RL-based, RL→GPT-4ACCEPT, GPT-4→RLACCEPT, and
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Figure 8: RQ1: Agent Performance on PharmaSimText. Diagnostic Accuracy Score (left),
Conversational Completeness Score (middle), and Combined Score (right) of the RL-based,
RL→GPT-4ACCEPT, GPT-4→RLACCEPT, and GPT-4-based agents. In the RL→GPT-4ACCEPTagent,
GPT-4 selects an action from the top-k choices provided by the RL-based agent. In the GPT-4→
RLACCEPTagent, GPT-4 suggests k actions at each step for the RL-based agent to choose from.
Scores are averaged across all patients in PharmaSimText.

GPT-4-based agents aggregated over all patients.
We observed that the RL-based agent achieved a high Diagnostic Accuracy Score (0.99),

indicating its ability to learn the correct diagnoses for different scenarios. However, this agent’s
approach often lacked the depth and nuance of a meaningful diagnostic conversation, reflected
in its low Conversational Completeness Score (0.29). This observation is probably due to its
lack of background knowledge and common sense reasoning. In contrast, the GPT-4-based
agent exhibited a superior ability for engaging in meaningful diagnostic dialogues, reflected in a
higher Conversational Completeness Score (0.67). However, the GPT-4-based agent exhibited
a lower Diagnostic Accuracy Score (0.84) than the RL-based agent, indicating that its ability to
consistently reach the correct diagnosis was inferior compared to the RL-based agent.

Both RL-LLM agents surpassed the GPT-4-based agent in Diagnostic Accuracy Score, in-
dicating that integrating LLMs with RL generally improves the diagnostic precision of pure
LLM-based agents. Notably, the GPT-4→RLACCEPTagent exhibited superior Diagnostic Accu-
racy Score (0.98) closely mirroring that of the RL-based agent. The RL→GPT-4ACCEPT’s relative
under-performance (Diagnostic Accuracy Score of 0.93) might be due to its longer trajectories
compared to the RL-based agent, leading to unfamiliar states, where the DRRN struggled to pro-
vide accurate diagnoses. Furthermore, in terms of engaging in quality diagnostic dialogues, the
GPT-4→RLACCEPTagent (0.82) outperformed the RL→GPT-4ACCEPTagent (0.52). This observation
is likely due to the RL framework’s preference for shorter, more direct solutions, reducing the
action quality suggested by the RL-based agent in prolonged interactions.

The GPT-4→RLACCEPTagent further outperformed all other agents in terms of Combined
Score. It demonstrated both a high Conversational Completeness Score and Diagnostic Accu-
racy Score. This achievement highlights the GPT-4→RLACCEPTagent’s unique capacity to capture
the strengths of both RL-based and LLM-based agents through the addition of suggestion-based
assistance from LLMs to the RL agents’ decision-making process.

To further investigate the results, we performed additional statistical tests. A Kruskal-Wallis
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test indicated significant differences between the agents for the Conversational Completeness
Score and Combined Score (pConversational Completeness < .0001 and pCombined < .001) and a trend
to significance for the Diagnostic Accuracy Score (pDiagnostic Accuracy = .052). Pairwise post-
hoc comparisons using Mann-Whitney U tests with a Benjamini-Hochberg correction for the
Combined Score indicate significant differences between five out of six pairs of agents, with the
only non-significant comparison being between the GPT-4-based and RL→GPT-4ACCEPTagent.
For the Conversational Completeness Score, 4 out of 6 pairwise comparisons were significant,
with non-significant comparisons being between the GPT-4-based and RL→GPT-4ACCEPTagent
as well as GPT-4-based and GPT-4→RLACCEPTagent.

RL-based agents achieve a high diagnostic accuracy, but demonstrate limited Conversational
Completeness Score. LLM-based agents excel in conducting high-quality conversations, but
show less accuracy in diagnosing. RL-LLM agents combine the best of both worlds as demon-
strated by the LLM→RLACCEPTagent achieving the highest Combined Score.

5.3. RQ2: PERFORMANCE OF BASE OR MEDICALLY FINE-TUNED OPEN-SOURCE
LLMS

In our second analysis, we investigated the impact of the specific LLM used on the performance
of the RL-LLM and LLM-based agents. We only report the performance of GPT-4, and the best
open-source general (Llama3-70B) and medically fine-tuned LLM (OpenBioLLM-70B). The
results of all other models can be found in Tables 7, 8, and 9 in the Appendix 8.6.1. Figure 9
illustrates the Diagnostic Accuracy Score and Conversational Completeness Score for the RL-
based agents as well as the RL-LLM, and LLM-based agents using different LLMs.

Not unexpectedly, for the LLM-based agents, GPT-4-based agent demonstrated a higher Di-
agnostic Accuracy Score than the open-source models (GPT-4-based: 0.84, Llama3-70B-based:
0.7, OpenBioLLM-70B-based: 0.65). These differences are indeed significant (p = 0.02∗)3. In
terms of Conversational Completeness Score, the GPT-4-based and Llama3-70B-based agents
show similar performance (GPT-4-based: 0.67, Llama3-70B-based: 0.65). Notably, the med-
ically fine-tuned OpenBioLLM-70B, which we expected to capture more key questions due to
its medical knowledge, performs significantly worse (0.4, p = .02∗). However, upon closer in-
spection, we noticed that the OpenBioLLM-70B-based agent tended to repeat the questions that
were already asked despite the prompt stating that repeating questions would not lead to new
information.

Among the RL-Suggests-LLM-Accepts&Decides (RL → LLMACCEPT) agents, both of the
RL→Llama3ACCEPTand RL→OpenBioACCEPTagents exhibit an almost perfect Diagnostic Accuracy
Score (RL→GPT-4ACCEPT: 1.0, RL→Llama3ACCEPT: 0.98), with the RL→GPT-4ACCEPTshowing
a slightly lower score (0.93). These differences are significant (p = .04∗). For the Conver-
sational Completeness Score, we found similar results as for the LLM-based agents, with the
RL→OpenBioACCEPTagent performing significantly worse than the two other agents (GPT-4:
0.52, Llama3: 0.49, OpenBio: 0.3, p = .01∗). This observation might be due to the tendency of
OpenBioLLM-70B to choose the first suggestion offered by the RL-based agent resulting in a
similar diagnostic conversation to the RL-based agent’s conversation.

For the LLM-Suggests-RL-Accepts&Decides (LLM → RLACCEPT) agents, the GPT-4 →
RLACCEPTagent outperforms the other agents both in terms of Diagnostic Accuracy Score (GPT-

3In the following, all reported p-values are indicated by Kruskal-Wallis tests.
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Figure 9: RQ2: Comparison of agents’ performance using different LLMs. Diagnostic
Accuracy Score (top) and Conversational Completeness Score (bottom) of the RL-based, as well
as the RL→LLMACCEPT, the LLM→RLACCEPT, and the LLM-based agents using Llama3-70B,
OpenBioLLM-70B, or GPT-4. Scores are averaged across all patients in PharmaSimText.

4: 0.98, Llama3: 0.81, OpenBio: 0.82) and Conversational Completeness Score (GPT-4: 0.82,
Llama3: 0.7, OpenBio: 0.48). For Diagnostic Accuracy Score the differences are not sig-
nificant (p = .14) despite the GPT-4 → RLACCEPToutperforming the Llama3 → RLACCEPTand
OpenBio→RLACCEPT. In contrast, we find significant differences between the agents for Con-
versational Completeness Score, with the OpenBio→RLACCEPTperforming significantly worse in
this regard (p = .007∗). For the Llama3→RLACCEPTagent, a detailed inspection revealed that, al-
though the Llama3-70B-based agent did include moving to the post-test among its suggestions,
when the RL-based agent decided to choose that action, the Llama3-70B-based agent persisted
in suggesting asking the patient more questions, leading to random suggestions for the RL-based
agent to choose from.

Although the open-source models Llama3-70B and OpenBioLLM-70B can compete in some
aspects with GPT-4 when used as the LLM component of the RL→LLMACCEPTand LLM-based
agents, they cannot reach the performance of the GPT-4→RLACCEPTagent. Further studies are
needed to ease the use of open-source models for developing high performing agents.

5.4. RQ3: EFFECT OF DISAGREEMENT MECHANISM

In a final analysis, we examined effect of different disagreement mechanisms on agents’ per-
formance. We again only report the performance of GPT-4, and the best open-source gen-
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Table 2: RQ3: Performance of agents with LLM Decision-Maker with different dis-
agreement mechanisms. Diagnostic Accuracy Score and Conversational Completeness Score
of RL→LLMACCEPT, RL→LLMVETO, and RL→LLMINTERACTagents using GPT-4, Llama3-70B, or
OpenBioLLM-70B. In disagreement with veto the LLM decides itself on the next action from
all the valid actions and in disagreement with interaction the LLM suggests actions back to the
RL to choose from. Results are mean±standard deviation across all patients in the PharmaSimText.

Agent
Diagnostic Accuracy Score Conversational Completeness Score

Llama3 OpenBio GPT-4 Llama3 OpenBio GPT-4
RL→LLMACCEPT 0.98±0.04 1.00±0.00 0.93±0.10 0.47±0.14 0.30±0.12 0.52±0.11

RL→LLMVETO 0.91±0.13 0.97±0.09 0.96±0.09 0.46±0.14 0.33±0.17 0.59±0.19

RL→LLMINTERACT 0.92±0.18 0.85±0.20 0.92±0.11 0.52±0.23 0.61±0.20 0.68±0.17

Table 3: RQ3: Performance of agents with RL Decision-Maker with different dis-
agreement mechanisms Diagnostic Accuracy Score and Conversational Completeness Score
of LLM→RLACCEPT, LLM→RLVETO, and LLM→RLINTERACTagents using GPT-4, Llama3-70B, or
OpenBioLLM-70B. In disagreement with veto the RL decides itself on the next action from all
the valid actions and in disagreement with interaction the RL-based agent re-prompts the LLM
for new suggestions until they agree. Results are mean±standard deviation across all patients in the
PharmaSimText.

Agent
Diagnostic Accuracy Score Conversational Completeness Score

Llama3 OpenBio GPT-4 Llama3 OpenBio GPT-4
LLM→RLACCEPT 0.59±0.29 0.86±0.26 0.98±0.04 0.67±0.16 0.42±0.16 0.82±0.13

LLM→RLVETO 0.94±0.12 0.95±0.08 0.96±0.07 0.67±0.18 0.39±0.17 0.71±0.13

LLM→RLINTERACT 0.93±0.10 0.99±0.03 0.99±0.04 0.75±0.14 0.59±0.14 0.76±0.09

eral (Llama3-70B) and medically fine-tuned LLM (OpenBioLLM-70B). The results of all other
models can be found in Tables 10 and 11 in the Appendix 8.6.2.
Agents with LLM Decision-Maker. Table 2 shows the Diagnostic Accuracy Score
and Conversational Completeness Score for the RL-Suggests-LLM-Accepts&Decides (RL →
LLMACCEPT), RL-Suggests-LLM-Decides/Vetos (RL → LLMVETO), and RL-Suggests-LLM-
Decides/Interacts (RL→LLMINTERACT) agents. As expected, the RL→LLMINTERACTagent with
the interaction-based disagreement mechanism has the highest Conversational Completeness
Score for all different LLM types while preserving the Diagnostic Accuracy Score. As detailed
in Section 5.3, the RL→LLMACCEPTagent demonstrated a high Diagnostic Accuracy Score, but a
low Conversational Completeness Score without a disagreement mechanism. Therefore, giving
all the power to the RL-based agent in the RL→LLMVETOagent does not improve Conversa-
tional Completeness Score. Combining the strengths of RL-based and LLM-based agents in the
disagreement mechanism based on interaction improved Conversational Completeness Score
without degrading Diagnostic Accuracy Score, leading to a better Combined Score. A Kruskal-
Wallis test indicated significant differences between the agents using OpenBioLLM-70B with
different disagreement mechanisms for Diagnostic Accuracy Score and Conversational Com-
pleteness Score (GPT-4: p = .82, Llama3-70B: p = .52, OpenBioLLM-70B: p = .045∗ for
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Diagnostic Accuracy Score, and GPT-4: p = .21, Llama3-70B: p = .93, OpenBioLLM-70B:
p = .022∗ for Conversational Completeness Score).
Agents with RL Decision-Maker. Table 3 includes the Diagnostic Accuracy Score
and Conversational Completeness Score for the LLM-Suggests-RL-Accepts&Decides (LLM→
RLACCEPT), LLM-Suggests-RL-Decides/Vetos (LLM → RLVETO), and LLM-Suggests-RL-
Decides/Interacts (LLM→RLINTERACT) agents. Although none of the disagreement mechanisms
improved the performance of agents with GPT-4, the disagreement mechanism with interaction
substantially improved the Diagnostic Accuracy Score and Conversational Completeness Score
of Llama3→RLINTERACTand OpenBio→RLINTERACTagents compared to Llama3→RLACCEPTand
OpenBio→RLACCEPTagents. As detailed in Section 5.3, the Llama3→RLACCEPTand OpenBio→
RLACCEPTagents struggled with both the Diagnostic Accuracy Score and the Conversational Com-
pleteness Score. Disagreement with interaction not only lets the RL-based agent guide the LLM
in the post-test, leading to a higher Diagnostic Accuracy Score, but also improves the Con-
versational Completeness Score by allowing the LLM to reflect on its suggestions in the case
of disagreement. Interestingly, the optimal threshold θ for triggering a disagreement is lower
for the OpenBio→RLACCEPTagent compared to the other two agents, implying less trust from
the RL-based agent to suggestions of this LLM (θOpenBio−best = 0.36, θLlama3−best = 0.56,
and θGPT−4−best = 0.56). A Kruskal-Wallis test indicated significant differences in Diagnostic
Accuracy Score between agents with Llama3-70B and in Conversational Completeness Score
between agents with OpenBioLLM-70B (For Diagnostic Accuracy Score, GPT-4: p = .72,
Llama3-70B: p = .01∗, OpenBioLLM-70B: p = .34 and for Conversational Completeness
Score, GPT-4: p = .21, Llama3-70B: p = .44, OpenBioLLM-70B: p = .03∗).

While none of the disagreement mechanisms improved the performance of GPT-4-based RL-
LLM agents, the disagreement mechanism based on interaction helped the performance of
the agents based on open-source LLMs the most. This shows the potential offered by a well-
designed disagreement mechanism for further improvement of agents based on open-source
LLMs.

6. DISCUSSION AND CONCLUSION

In this paper, we explored the integration of RL and LLMs to improve simulated learners in ed-
ucational technologies. We developed generalizable agents for text-based educational settings,
including RL-based, LLM-based, and a wide range of RL-LLM agents. We evaluated them using
our novel benchmark PharmaSimText.

We were interested in answering the following three research questions: What type of agent
performs best at conducting effective diagnostic conversations and correctly diagnosing patients
(RQ1)? How does the specific LLM (GPT-4 or open-source LLMs) used in the LLM-involved
agents affect agent performance (RQ2)? How does changing the power balance between the RL
and LLM agents by introducing a disagreement mechanism in the strategy used for combining
them influence the performance of the RL-LLM agents (RQ3)?

To address our first research question, we assessed four agents: an RL-based agent, an LLM-
based agent based on GPT-4, and two RL-LLM agents integrating GPT-4 with RL. The RL-based
agent excelled in finding the correct diagnosis, but struggled in comprehensive diagnostic dia-
logues due to its limited knowledge. The LLM-based agent was adept in high-quality diagnostic
conversations, but tended to misdiagnose patients. The RL-LLM agents were able to address
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these limitations, with the GPT-4→RLACCEPTagent achieving the best combination of Diagnostic
Accuracy Score and Conversational Completeness Score.

To answer our second research question, we compared performance of agent types using
GPT-4, a general-purpose open-source LLM (Llama3-70B) and a medically fine-tuned LLM
(OpenBioLLM-70B). While Llama3-70B and OpenBioLLM-70B showed potential in RL-LLM
agents, they could not match GPT-4→RLACCEPT’s performance. Further research is needed to
facilitate the use of open-source models for the development of high-performing agents.

To address the last research question, we compared RL-LLM agents using different dis-
agreement mechanisms. We tested three versions of RL-LLM agents that either agree with ac-
cepting, disagree with vetoing, or disagree with interacting. Our results showed that the dis-
agreement mechanism’s effectiveness depends on the handling mechanism and the LLM. While
disagreement did not improve the performance of GPT-4-based RL-LLM agents, disagreement
with interaction improved the performance of RL→OpenBioACCEPT, OpenBio→RLACCEPT, and
Llama3→RLACCEPTagents. This shows the potential of the disagreement mechanism for further
improvement of agents based on open-source LLMs.

One of the limitations of this work is the focus on generalization at a single level of rephrased
versions of the scenarios. Further research should be done within different generalization levels
of PharmaSimText: generalizing to a new diagnosis of a known patient (subtask generaliza-
tion) and to a new patient (task generalization). In generalizing to new subtasks, the agent should
ideally transfer already known information about the patient in the seen subtasks and identify
the contrasting information inside the new subtask that leads to a new diagnosis. However,
during our initial experiments in generalization to new subtasks, we observed that the RL-based
agent shows a bias towards the already-seen diagnoses which is in agreement with prior research
(e.g., Nikishin et al. 2022). This observation implies that at this level, promising methods may
include considering the out-of-distribution detection of the RL-based agent in the integration
strategy to achieve zero-shot generalization and developing a novel LLM-guided meta Rein-
forcement Learning method for few-shot generalization. As for generalization to new tasks, the
inquiry skills learned for the seen patient should be used for the new patient. Possibly the most
promising direction for this end is to let the LLM guide an RL-based agent that masters different
skills rather than just one reward at this highest level of generalization.

The presented agents involving an LLM component are prone to carry LLM biases in their
solutions including the inquiry strategy and diagnosis. Although combination with RL-based
agents in RL-LLM agents mitigated this to some extent, it still cannot be overlooked. To ensure
fairness in utilizing them as simulated learners, future research should assess how closely these
agents’ behaviors mirror that of various human students’ strategies in order to determine their
suitability as a basis for interventions. Additionally, as these agents are designed to be successful
learners, further research is required to further align their behavior with struggling students for
a more fair representation of a student population. For broader applications, an additional step
for studying of biases in LLM decisions is essential. Even though the presented hybrid agents
require much less computational costs compared to fine-tuning LLMs for the task at hand, in the
long run considering finetuning the RL agent with the new insights or using small LMs is more
sustainable.

Our proposed LLM integration approach represents a promising step towards generalizable
agents not only in less-structured text-based educational environments but also in settings re-
quiring a more human-like approach within certain constraints. A wide range of such settings
exist in the real world, from the development of agents that assist humans in playing games to
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autonomous driving or rescue teams. The pairing of an RL agent trained inside a constrained
environment with an LLM offers a new perspective on grounding LLMs in constraints. More-
over, our novel benchmark further facilitates research regarding developing generalizable agents
for text-based educational environments and beyond.
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8. APPENDICES

In this section, we present prompts for generation of PharmaSimText scenarios, architecture
of the RL-based agent, and extended results for more open-source LLMs.

8.1. PROMPTS FOR SCENARIO GENERATION

An example of the prompts used in the three steps of scenario generation as detailed in Sec. 3
for the Uroligical problems scenario.

8.1.1. Step1: Key Questions Generation

As seen in the following prompt, in this step the LLM is prompted to generated a list of key
questions.

Prompt example in Step 1 for the Urological problems scenario

System: You are a pharmacist consulting me in designing an educational game for stu-
dents studying to become a pharmacist. In this game they practice finding probable causes
of patients problem by conducting diagnostic conversations. I’m creating new scenarios
for the game where an imaginary patient walks into the pharmacy with a problem. I’ll
also give you a list of possible illnesses that can be relevant to that problem and their key
symptoms.
Prompt: I want to add a scenario with a 56-year-old male patient who has urological
problems. List of illnesses and their symptoms:
1. Prostate Hyperplasia:
- Urinary frequency
- Urinary urgency
- Trouble starting a urine stream
- Weak or interrupted urine stream
- Dribbling at the end of urination
- Nocturia (frequent urination during sleep)
- Urinary retention
- Urinary incontinence
- Pain after ejaculation or during urination
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- Unusual color or smell of urine

2. Cystitis (Bladder Infection):
- Frequent urination
- Strong urge to urinate (urgency)
- Burning or tingling sensation during or after urination (dysuria)
- Low-grade fever
- Cloudy urine with a strong odor
- Blood in urine (hematuria)
- Trouble urinating, especially if you have a problem with your prostate

3. Urge Incontinence:
- Urgent, uncontrollable need to urinate
- Possible urine leakage
- Frequent urination (more than eight times a day)
- Nocturia (peeing more than twice at night)
- Leaking urine before reaching the bathroom or just after urination
- Wetting the bed (enuresis) at night

4. Stress Incontinence:
- Urinary leakage during physical stress (e.g., coughing, sneezing)
- Increased intra-abdominal pressure
- Weak pelvic floor muscles

Similarity in symptoms:
- Frequent urination is a common symptom in Prostate Hyperplasia, Cystitis, and Urge
Incontinence.
- Urinary urgency is present in Prostate Hyperplasia and Urge Incontinence.
- Trouble urinating is a symptom in Prostate Hyperplasia and may occur in cases of
Cystitis.
- Urinary incontinence is seen in Prostate Hyperplasia and Urge Incontinence.

Task: What are the key questions that the students need to ask to find out the cause behind
the patient’s problem?
Keep this list as short as possible but at the same time, one question should not be too
general. Choose a title that reflects the content of the question well.

8.1.2. Step2: Simulation of patient’s response to questions

As seen in the following prompts, this step is done in two parts. The LLM answers Key
Questions in the first prompt and some common inquiries are answered using the next prompt.
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Prompt example in Step 2.1 for the Urological problems scenario

# This prompt is appended to the previous prompt and its answer
Task: Assume a patient has each of the illnesses on the list, how would they answer these
questions?
Phrase it with wordings that a patient uses. If two different problems can lead to the same
answer please use the same answer. Give a separate answer for a patient experiencing one
of the illnesses on the list. Don’t use the illness name in the answer. You should include
an answer for all of the illnesses don’t miss any.
Your answer should follow this template:
The response will be two .csv files. The first file is a table with two columns, “re-
sponse id” and “response text”. The response id should be a number. Each row is a
unique response. The second table has one column for each illness and one row for each
question. The first column has the title of the questions. The content of each cell is the re-
sponse ID for the response to the column illness if the patient was asked the row question.
Each cell in the second table should have exactly one response ID, however, multiple cells
in a row can (and should, when applicable) have the same response ID. There must be at
least 2 repetitive response ids in a row. Provide the csvs in a csv text file format.

Prompt example in Step 2.2 for the Urological problems scenario

# This prompt is appended to the previous prompt and its answer
Task: Assume a patient has each of the illnesses on the list, how would they answer these
questions?
Phrase it with wordings that a patient uses. If two different problems can lead to the same
answer please use the same answer.Give a separate answer for a patient experiencing one
of the illnesses on the list. Don’t use the illness name in the answer. You should include
an answer for all of the illnesses don’t miss any.
Your answer should follow this template:
The response will be two .csv files. The first file is a table with two columns, ”re-
sponse id” and ”response text”. The response id should be a number. Each row is a
unique response. The second table has one column for each illness and one row for each
question. The first column has the title of the questions. The content of each cell is
the response ID for the response to the column illness if the patient was asked the row
question. Each cell in the second table should have exactly one response ID, however,
multiple cells in a row can (and should, when applicable) have the same response ID.
There must be at least 2 repetitive response ids in a row. Provide the csvs in a csv text file
format.
Questions: Symptoms Localization: “Where are you feeling these symptoms specifi-
cally?”
Symptoms Intensity: “how severe is your symptoms?”
Duration of Symptoms: “How long have you been experiencing these symptoms?”
Medication History: “Have you taken any medications recently for these or other issues?”
Allergies: “Do you have any known allergies, especially to medications?”
Underlying Medical Conditions: “Do you have any ongoing health conditions?”
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Current Medications: “What medications are you currently taking?”
Surgical History: “Have you had any surgeries in the past?”
Pregnancy and Breastfeeding: “Are you currently pregnant or breastfeeding?”
Age: “Can you tell me how old you are?”
Sleep: “How has your sleep been lately?”
Diet: “Could you describe your usual diet?”
Exercise: “What does your typical exercise routine look like?”
Teeth: “Have you had any recent issues with your teeth or dental health?”

8.1.3. Step3: Rephrasing responses

As seen in the following prompt, in this step all of the sentences generated in the last step is
rephrased in 10 different ways.

Prompt example in Step 3 for the Urological problems scenario

# For more details, please refer to the rewrite sentence function in the scenario helper.py
file.
System: You are a customer consulting with a pharmacist about your urological problems.
User: Task: try to articulate the sentences I give you in 9 different ways. Make sure you
are using this template:[“s1”,“s2”,“s3”,“s4”,“s5”,“s6”,“s7”,“s8”,“s9”]
Sentence: “I’ve been going to the bathroom a lot more than usual, both during the day
and at night. Sometimes, I feel like I need to go urgently, but then I have trouble starting.”
Assistant: [“I’ve noticed an increased frequency of bathroom visits, both in the daytime
and at night. Occasionally, I experience a strong urge to go, but initiating the process
becomes challenging.”,
“Lately, I’ve been using the restroom more frequently, not only during the day but also at
night. There are moments when I feel a sudden need to go, yet I encounter difficulties in
commencing the process.”,
“I’ve found myself visiting the bathroom more often than usual, both in the daytime and
throughout the night. On occasion, I experience a sense of urgency, but initiating the
process becomes troublesome.”,
“My bathroom trips have become more frequent recently, occurring not only during the
day but also during the night. Sometimes, I feel an urgent need to go, but initiating the
process becomes problematic.”,
“I’ve been making more trips to the bathroom than usual, both during the day and at
night. There are instances when I feel an immediate need to go, but initiating the process
becomes troublesome.”,
“Recently, I’ve had to use the restroom more often, both during the day and at night. There
are moments when I feel an urgent need to go, but commencing the process becomes
challenging.”,
“I’ve observed a heightened frequency of bathroom visits, both during the day and at
night. Occasionally, I experience a strong urge to go, but initiating the process becomes
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Table 4: Rubric for scenario evaluation. The indicated metrics measure the correctness of the
medical facts, the diagnosis, as well as the quality of the generated text.

Dimension Range Description

Correctness [0, 1] Ratio of medically correct answers to all answers of a scenario. The correctness of each answer is
indicated by a yes/no answer from the pharmacy expert.

Realism [0, 1] Ratio of realistic patient answers to all answers of a scenario. The realism of each answer is
indicated by a yes/no answer from the pharmacy expert.

Completeness [0, 1] Ratio of LLM-suggested questions to all required questions. The number of required questions
is the sum of missing questions (indicated by the pharmacy expert) for an accurate diagnosis and
LLM-suggested questions.

Conceal [0, 1] Ratio of causes for which the diagnosis is not directly written in any patient answers. Binary
annotation per cause, where 1 indicates correctly concealed.

Clarity [0, 1] Ratio of comprehensible answers to all patient answers. The comprehensibility of each answer is
coded with a binary annotation, where 1 indicates an answer is easy to read and not wordy.

Consistency [0, 1] Ratio of causes for which all answers are consistent to all causes. Binary annotation per cause,
where 1 indicates no contradiction.

Table 5: Statistics of PharmaSimText Scenarios. The obtained benchmark contains seven
distinct scenarios, each centered on a unique health problem, which could stem from various
causes.

Problem # of Possible Causes Possible Causes # of Key Questions

Infant Diarrhea 4 Change of diet, Teething, Current medication of the mother,
Viral Infection

4

Breastfeeding-
related

6 Engorgement, Plugged Ducts, Cracked Nipples, Mastitis,
Thrush, Low Milk Supply

7

Urological 4 Prostate Hyperplasia, Cystitis, Urge Incontinence, Stress
Incontinence

6

Eye-related 5 Dry Eyes, Allergic Conjunctivitis, Pink Eye, Eye Strain, Stye 11
Gynecological 8 UTI, Cystitis, Kidney Stones, Overactive Bladder, Pregnancy,

STI, Stress Incontinence, Fungal Infection
8

Joint Pain 5 Osteoarthritis, Muscle Sprains, Tendonitis, Bursitis, Gout 9
Sore Throat 5 Common Cold, Influenza, Sinusitis, Pharyngitis, Bronchitis 7

difficult.”,
“Lately, I’ve been visiting the bathroom more frequently, not only during the day but
also at night. There are times when I feel a sudden need to go, but initiating the process
becomes problematic.”,
“My restroom trips have become more frequent recently, taking place not only during the
day but also at night. Sometimes, I feel an immediate need to go, but starting the process
becomes challenging.” ]
User: “Sentence: new sentence”

8.2. EVALUATION RUBRIC FOR LLM-GENERATED SCENARIOS

Implementation details of the rubric for evaluating LLM-generated scenarios can be found in
Table 4.

8.3. STATISTICS ON PHARMASIMTEXT SCENARIOS

Details about PharmaSimText scenarios can be found in Table 5.
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8.4. THE RL-based AGENT ARCHITECTURE

Details of the architecture used in the DRRN of the RL-based agent can be found in Table 6.

Table 6: Parameters of DRRN in the RL-based agent

Name Value
num layers action 1
num layers state 1

num layers scorer 1
hidden dim action 64
hidden dim state 512

hidden dim scorer 512
γ 0.9

batch size 256
gradient clip 100

8.5. EFFECT OF REFLECTIVE PROMPTING

In an extended analysis, we explored the impact of reflective prompting on the performance of
the RL-LLM and LLM-based agents. Again, we only report the performance of GPT-4, and the
best open-source general (Llama3-70B) and medically fine-tuned LLM (OpenBioLLM-70B).
The results of all other models can be found in Tables 7, 8, and 9 in the Appendix 8.6.3.

As described in Section 4, none-reflective agents were limited to a single attempt, whereas
reflective agents were given three attempts per subtask with opportunities for reflection between
attempts. Figure 10 illustrates the Diagnostic Accuracy Score and Conversational Complete-
ness Score for none-reflective and reflective RL-LLM and LLM-based agents when choosing
eitherGPT-4, Llama3-70B, or OpenBioLLM-70B as their LLM component.

We observed a nuanced impact of reflective prompting on agents’ performance for different
LLMs and agent types. For the LLM-based agents, reflective prompting did not significantly
impact the Diagnostic Accuracy Score (pLlama3−70B = .87, pGPT−4 = .96) and Conversational
Completeness Score (pLlama3−70B = .71, pGPT−4 = .67) of the GPT-4-based and Llama3-
70B-based agents. For these agents, reflection led to shorter diagnostic conversations by elim-
inating what the agent considered redundant questions. However, this streamlining resulted in
poorer conversation quality without significantly improving diagnosis accuracy. In contrast,
the reflection significantly improved the Diagnostic Accuracy Score (pOpenBioLLM−70B = .04∗)
without significantly changing Conversational Completeness Score (pOpenBioLLM−70B = .46) of
OpenBioLLM-70B.

For the RL → LLMACCEPTagents, reflection increased the Diagnostic Accuracy Score of
all agents. However, differences were not significant (pLlama3 = .14, pGPT−4 = .56,
pOpenBio = .06). Reflection also increased the Conversational Completeness Score for the
RL → Llama3ACCEPT(pLlama3 = .67) and RL → GPT-4ACCEPT(pGPT−4 = .63) agents. How-
ever, the Conversational Completeness Score slightly dropped for the RL→OpenBioACCEPTagent
(pOpenBio = 0.53) due to shorter trajectories of the reflective version.
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Figure 10: Performance of none-reflective and reflective agents using different LLMs. Di-
agnostic Accuracy Score and Conversational Completeness Score of the none-reflective (hashed
bar) and reflective (filled bar) versions of the RL→LLMACCEPT, LLM→RLACCEPT, and LLM-based
agents using Llama3-70B, OpenBioLLM-70B, or GPT-4. Scores are averaged across all patients
in PharmaSimText.

For the LLM→RLACCEPTagents, reflection increased the Diagnostic Accuracy Score of all
agents. However, differences were significant for GPT-4→RLACCEPT(pGPT−4 = .03) and not sig-
nificant for OpenBio→RLACCEPTand Llama3→RLACCEPT(pLlama3−70B = .7, , pOpenBioLLM−70B =
.7). In terms of Conversational Completeness Score, reflection increased the performance of
the GPT-4→RLACCEPTagent (pGPT−4 = .8), but decreased the performance of the Llama3→
RLACCEPT(pLlama3−70B = .56) and OpenBio→RLACCEPTagents (pOpenBioLLM−70B = .07∗). Upon
further inspection, we observed that reflective prompting further narrowed the Llama3-70B and
OpenBioLLM-70B suggestions leading to the decreased Conversational Completeness Score.

The effectiveness of reflective prompting depends on the LLM and agent type. While re-
flection led to a significant increase in Diagnostic Accuracy Score for OpenBioLLM-70B-
based and GPT-4→RLACCEPTagents, it lowered Conversational Completeness Score for the
OpenBio→RLACCEPTwith a trend to a significant difference. Moreover, reflection improved
Diagnostic Accuracy Score for all the OpenBioLLM-70B-based agents with an almost signif-
icant difference.

8.6. RESULTS FOR OTHER OPEN-SOURCE LLMS

In this section, we extend the results reported for RQ2 and RQ3 for Llama3-70B and
OpenBioLLM-70B in Section 5 to open-source models LLaMa3-8B (Dubey et al., 2024),
Gemma2-9B-it (Team, 2024), and Mixtral8x7B (Jiang et al., 2024), and medically fine-tuned
open source model including OpenBioLLM-8B (Ankit Pal, 2024).
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8.6.1. Extended results for RQ2: Performance of base or medically fine-tuned Open-
Source LLMs

Tables 7, 8, and 9 include the results of Diagnostic Accuracy Score, Conversational Complete-
ness Score, and Combined Score for seven variations of RL→LLMACCEPT, LLM→RLACCEPT, and
LLM-based agents with different LLMs. Hereby, extending the results presented in Figure 9.

We also did initial experiments with Socially Intelligent Language Agent, SOTOPIA (Wang
et al., 2024), acting as a LLM-based agent for three of the patients in PharmaSimText.
However, for all of the patients SOTOPIA-based agent performed far worse than the RL-based
agent in Diagnostic Accuracy Score (0.47) and Conversational Completeness Score (0.23) tak-
ing repetitive actions most of the time. Further adaptation of utilized prompts also did not
significantly improve its performance. RL-LLM agents were designed to combine strengths of
RL/LLM agents, therefore we believe combining RL and SOTOPIA agents will not boost per-
formance as SOTOPIA-based agent is not better than the RL-based agent in any aspects.

8.6.2. Extended results for RQ3: Effect of Disagreement Mechanism

Tables 10 and 11 extend the results in Tables 2 and 3 for more LLMs. The optimal thresholds
chosen for RL-LLM agents with RL Decision-Maker with Disagreement Mechanism are
reported in Table 12

8.6.3. Extended results: Effect of Reflective Prompting

Tables 7, 8, and 9 include the results of Diagnostic Accuracy Score, Conversational Complete-
ness Score, and Combined Score for none-reflective and reflective versions of seven variations
of RL→LLMACCEPT, LLM→RLACCEPT, and LLM-based agents with different LLMs. Hereby,
extending the results presented in Figure 10.

Table 7: Performance of RL-Suggests-LLM-Accepts&Decides agents with different LLMs.
mean±standard deviation of Diagnostic Accuracy Score, Conversational Completeness Score, and
Combined Score for none-reflective (left) and reflective (right) version of seven variations of
RL→LLMACCEPTagents with different LLMs.

LLM
RL→LLMACCEPT

Diagnostic Accuracy Score Conversational Completeness Score Combined Score
GPT-4 0.89±0.15,0.93±0.10 0.50±0.11,0.52±0.11 0.43±0.08,0.49±0.10

Llama3-70b-8192 0.97±0.05,0.98±0.04 0.46±0.12,0.47±0.14 0.45±0.13,0.46±0.15

Llama3-8b-8192 0.99±0.03,1.00±0.00 0.38±0.09,0.36±0.12 0.37±0.10,0.36±0.12

Gemma2-9b-it 0.97±0.05,0.99±0.04 0.44±0.12,0.34±0.13 0.44±0.12,0.34±0.13

Mixtral-8x7b-32768 0.89±0.18,1.00±0.00 0.41±0.14,0.34±0.14 0.37±0.17,0.34±0.14

Llama3-OpenBioLLM-70B 0.93±0.10,1.00±0.00 0.35±0.10,0.30±0.12 0.31±0.11,0.30±0.12

Llama3-OpenBioLLM-8B 0.99±0.04,0.99±0.04 0.30±0.12,0.30±0.12 0.30±0.13,0.30±0.13
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Table 8: Performance of LLM-Suggests-RL-Accepts&Decides agents with different LLMs.
mean±standard deviation of Diagnostic Accuracy Score, Conversational Completeness Score, and
Combined Score for none-reflective (left) and reflective (right) versions of seven variations of
LLM→RLACCEPTagents with different LLMs.

LLM
LLM→RLACCEPT

Diagnostic Accuracy Score Conversational Completeness Score Combined Score
GPT-4 0.89±0.1,0.98±0.04 0.79±0.15,0.82±0.13 0.71±0.17,0.81±0.14

Llama3-70b-8192 0.67±0.24,0.59±0.29 0.77±0.18,0.67±0.16 0.54±0.27,0.42±0.26

Llama3-8b-8192 0.42±0.21,0.76±0.18 0.36±0.11,0.32±0.13 0.16±0.07,0.25±0.14

Gemma2-9b-it 0.68±0.14,0.81±0.13 0.65±0.16,0.49±0.13 0.46±0.18,0.39±0.13

Mixtral-8x7b-32768 0.46±0.27,0.87±0.19 0.34±0.11,0.40±0.15 0.15±0.12,0.35±0.18

Llama3-OpenBioLLM-70B 0.72±0.26,0.86±0.26 0.46±0.19,0.42±0.16 0.37±0.20,0.38±0.20

Llama3-OpenBioLLM-8B 0.19±0.12,0.21±0.09 0.04±0.07,0.05±0.07 0.02±0.04,0.01±0.02

Table 9: Performance of LLM-based agents with different LLMs. mean±standard deviation of
Diagnostic Accuracy Score, Conversational Completeness Score, and Combined Score for none-
reflective (left) and reflective (right) versions of seven variations of LLM-based agents with
different LLMs.

LLM
LLM-based

Diagnostic Accuracy Score Conversational Completeness Score Combined Score
GPT-4 0.82±0.08,0.84±0.15 0.71±0.18,0.67±0.18 0.59±0.20,0.58±0.20

Llama3-70b-8192 0.55±0.24,0.7±0.25 0.66±0.14,0.66±0.18 0.35±0.18,0.49±0.24

Llama3-8b-8192 0.28±0.15,0.40±0.20 0.19±0.10,0.24±0.11 0.05±0.04,0.12±0.08

Gemma2-9b-it 0.49±0.19,0.39±0.22 0.46±0.15,0.26±0.17 0.22±0.11,0.13±0.1

Mixtral-8x7b-32768 0.31±0.24,0.54±0.25 0.23±0.22,0.44±0.26 0.10±0.14,0.27±0.25

Llama3-OpenBioLLM-70B 0.37±0.26,0.65±0.17 0.28±0.28,0.40±0.12 0.15±0.19,0.29±0.11

Llama3-OpenBioLLM-8B 0.18±0.06,0.27±0.15 0.00±0.00,0.03±0.05 0.00±0.00,0.03±0.05

Table 10: Combined Score of RL-LLM agents with LLM Decision-Maker with differ-
ent Disagreement Mechanisms with different LLMs. Combined Score variation of RL-LLM
agents with LLM Decision-Maker with seven different LLMs.

LLM
RL-LLM Agents with LLM Decision-Maker

RL→LLMACCEPT RL→LLMVETO RL→LLMINTERACT

GPT-4 0.49±0.1 0.56±0.17 0.61±0.15

Llama3-70b-8192 0.46±0.15 0.42±0.15 0.49±0.25

Llama3-8b-8192 0.36±0.12 0.3±0.08 0.31±0.12

Gemma2-9b-it 0.34±0.13 0.44±0.14 0.46±0.21

Mixtral-8x7b-32768 0.34±0.14 0.35±0.14 0.27±0.13

Llama3-OpenBioLLM-70B 0.30±0.12 0.32±0.15 0.56±0.25

Llama3-OpenBioLLM-8B 0.30±0.13 0.30±0.13 0.03±0.03
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Table 11: Combined Score of RL-LLM agents with RL Decision-Maker with different
LLMs. Combined Score of agents with RL Decision-Maker with seven different LLMs and
different Disagreement Mechanisms.

LLM
RL-LLM agents with RL Decision-Maker

LLM→RLACCEPT LLM→RLVETO LLM→RLINTERACT

GPT-4 0.81±0.14 0.68±0.12 0.75±0.11

Llama3-70b-8192 0.42±0.26 0.64±0.21 0.72±0.17

Llama3-8b-8192 0.25±0.14 0.26±0.14 0.22±0.17

Gemma2-9b-it 0.39±0.13 0.44±0.11 0.45±0.16

Mixtral-8x7b-32768 0.35±0.18 0.29±0.12 0.33±0.14

Llama3-OpenBioLLM-70B 0.38±0.20 0.38±0.17 0.59±0.15

Llama3-OpenBioLLM-8B 0.01±0.02 0.34±0.11 0.31±0.10

Table 12: Optimal thresholds for RL-LLM agents with RL Decision-Maker
with disagreement mechanism. Thresholds used for disagreement in agents with RL
Decision-Maker for different LLMs. The results are averaged over all the available sce-
narios in PharmaSimText.

LLM
Agents with RL Decision-Maker (Thresholds)
LLM→RLVETO LLM→RLINTERACT

GPT-4 0.50 0.55
Llama3-70b-8192 0.60 0.80
Llama3-8b-8192 0.25 0.42
Gemma2-9b-it 0.25 0.62

Mixtral-8x7b-32768 0.23 0.20
Llama3-OpenBioLLM-70B 0.30 0.50
Llama3-OpenBioLLM-8B 0.12 0.15

8.7. EXAMPLE OF AGENTS’ CONVERSATION

Given the inferior performance of the RL-based agent in the Conversational Completeness
Score, we examined the dialogues generated by the RL-based agent and the GPT-4 →
RLACCEPTagent within an identical scenario that resulted in a correct diagnosis, as illustrated in
Fig. 11. This comparison reveals a pronounced contrast in the conversational dynamics of these
two agents. The dialogue led by the GPT-4→RLACCEPTagent exhibits a flow that is markedly
more reminiscent of human-like interaction, in contrast to the RL-based agent’s brief conversa-
tion. Notably, the RL-based agent’s approach is characterized by posing a single key question
before directly drawing a conclusion. In comparison, the GPT-4→RLACCEPTagent engages in a
more thorough inquiry, covering a broader spectrum of key questions in a logically sequential
manner.
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Figure 11: Example diagnostic conversations conducted by the RL-based (left) and GPT-4→
RLACCEPTagents (right) with the patient with joint pains in a test subtask with Osteoarthritis as
the most probable cause.
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E., ANANDKUMAR, A., ANDREAS, J., MORDATCH, I., TORRALBA, A., AND ZHU, Y. 2022. Pre-
Trained Language Models for Interactive Decision-Making. In Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurIPS). Neural Information Processing Systems Foun-
dation.

LIN, B. Y., FU, Y., YANG, K., BRAHMAN, F., HUANG, S., BHAGAVATULA, C., AMMANABROLU, P.,
CHOI, Y., AND REN, X. 2023. Swiftsage: A generative agent with fast and slow thinking for complex
interactive tasks. In Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds.

MACLELLAN, C. J. AND GUPTA, A. 2021. Learning Expert Models for Educationally Relevant Tasks
using Reinforcement Learning. In Proceedings of the International Conference on Educational Data
Mining (EDM). International Educational Data Mining Society, Online.

MACLELLAN, C. J., HARPSTEAD, E., PATEL, R., AND KOEDINGER, K. R. 2016. The Apprentice
Learner Architecture: Closing the Loop between Learning Theory and Educational Data. In Proceed-
ings of the International Conference on Educational Data Mining (EDM). International Educational
Data Mining Society (IEDMS), 151–158.

MAJUMDER, B. P., MISHRA, B. D., JANSEN, P. A., TAFJORD, O., TANDON, N., ZHANG, L.,
CALLISON-BURCH, C., AND CLARK, P. 2023. Clin: A continually learning language agent for
rapid task adaptation and generalization. CoRR abs/2310.10134.

MARKEL, J. M., OPFERMAN, S. G., LANDAY, J. A., AND PIECH, C. 2023. GPTeach: Interactive TA
Training with GPT-based Students. In Proceedings of the Conference on Learning @ Scale (L@S).
ACM, 226–236.

MCILROY-YOUNG, R., SEN, S., KLEINBERG, J. M., AND ANDERSON, A. 2020. Aligning superhuman
AI with human behavior: Chess as a model system. In KDD ’20: The 26th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, R. Gupta,
Y. Liu, J. Tang, and B. A. Prakash, Eds. ACM, 1677–1687.

MCNICHOLS, H., FENG, W., LEE, J., SCARLATOS, A., SMITH, D., WOODHEAD, S., AND LAN, A.
2023. Automated Distractor and Feedback Generation for Math Multiple-choice Questions via In-
context Learning. NeurIPS’23 Workshop on Generative AI for Education (GAIED).

MNIH, V., KAVUKCUOGLU, K., SILVER, D., GRAVES, A., ANTONOGLOU, I., WIERSTRA, D., AND

RIEDMILLER, M. A. 2013. Playing Atari with Deep Reinforcement Learning. CoRR abs/1312.5602.

MUI, J., LIN, F., AND DEWAN, M. A. A. 2021. Multi-Armed Bandit Algorithms for Adaptive Learning:
A Survey. In Proceedings of the International Conference on Artificial Intelligence in Education
(AIED). Lecture Notes in Computer Science, vol. 12748. Springer, 273–278.

NAZARETSKY, T., HERSHKOVITZ, S., AND ALEXANDRON, G. 2019. Kappa Learning: A New Item-
Similarity Method for Clustering Educational Items from Response Data. In Proceedings of the In-
ternational Conference on Educational Data Mining (EDM). International Educational Data Mining
Society (IEDMS).

NGUYEN, M. H., TSCHIATSCHEK, S., AND SINGLA, A. 2024. Large language models for in-context
student modeling: Synthesizing student’s behavior in visual programming. In Proceedings of the
17th International Conference on Educational Data Mining, EDM 2024, Atlanta, Georgia, USA, July

37
37 Journal of Educational Data Mining, Volume 17, No 1, 2025



14-17, 2024, D. A. Joyner, B. Paaßen, and C. D. Epp, Eds. International Educational Data Mining
Society.

NIKISHIN, E., SCHWARZER, M., D’ORO, P., BACON, P., AND COURVILLE, A. C. 2022. The primacy
bias in deep reinforcement learning. In International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári,
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S., TAI, J. J., TAN, H., AND YOUNIS, O. G. 2024. Gymnasium: A standard interface for reinforce-
ment learning environments. Advance online publication. abs/2407.17032.
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