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Gaming the system is a persistent problem in Computer-Based Learning Platforms. While substantial
progress has been made in identifying and understanding such behaviors, effective interventions remain
scarce. This study uses a method of causal moderation known as Fully Latent Principal Stratification to
explore the impact of two types of interventions – gamification and manipulation of assistance access –
on the learning outcomes of students who tend to game the system. The results indicate that gamifica-
tion does not consistently mitigate these negative behaviors. One gamified condition had a consistently
positive effect on learning regardless of students’ propensity to game the system, whereas the other had a
negative effect on gamers. However, delaying access to hints and feedback may have a positive effect on
the learning outcomes of those gaming the system. This paper also illustrates the potential for integrating
detection and causal methodologies within educational data mining to evaluate effective responses to de-
tected behaviors.
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1. INTRODUCTION

Gaming the system – attempting to progress through a learning activity without learning (Baker
et al., 2008) – is an enduring problem that reduces the efficacy of Computer-Based Learning Plat-
forms (CBLPs). Educational Data Mining (EDM) researchers have made substantial progress in
identifying instances of gaming the system behaviors (Paquette et al., 2014; Paquette and Baker,
2017; Paquette and Baker, 2019; Dang and Koedinger, 2019; Baker et al., 2006), and further
research has explored the antecedents of these behaviors (Baker et al., 2004; Baker et al., 2008;
Baker et al., 2009); however, solutions remain scarce. Although interventions to address gaming
the system have been evaluated (Richey et al., 2021; Walonoski and Heffernan, 2006; Murray
and VanLehn, 2005; Xia et al., 2020; Baker et al., 2006), most focus on dissuading students
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from gaming the system instead of improving learning outcomes. Thus, it is unclear which
interventions help students who tend to game the system engage with and learn from CBLPs.

This paper explores two types of interventions – gamification and manipulations of access
to assistance – which could hypothetically benefit students who tend to game the system. In
general, gamification – the act of infusing game features into a system – is seen as a potential
method of increasing engagement within CBLPs (Garris et al., 2002; Gaston and Cooper, 2017;
Vanacore et al., 2023a). By increasing engagement, gamification could theoretically decrease
gaming the system behaviors and help students benefit from the CBLPs. However, features of
gamification could exacerbate these behaviors by providing more opportunities to game. There-
fore, simpler alternatives may also be effective, such as restricting access to the assistance that
is often abused by gamers1 (Murray and VanLehn, 2005). The current research on gaming the
system interventions has not fully addressed which interventions are most effective for gamers.
Thus, it is unclear what changes in CBLP environments can positively influence these students’
learning behaviors and outcomes.

In this paper, we explore the impact of key differences in learning platforms on students
who tend to game the system. More specifically, this study addresses whether students who
game the system in a traditional CBLP – one that includes various closed-ended and open-
ended questions with immediate hints and feedback – would respond differently to alternative
CBLP environments: two gamified CBLPs and a traditional CBLP in which the access to hints
and feedback were delayed until the end of each activity. We find that gamification does not
consistently mitigate the negative effects of gaming the system on learning, but students who
tend to game the system may benefit from delayed hints and feedback.2

As a secondary objective, we present an example of integrating prediction from detection
models into causal models. We utilize a method of causal moderation – Fully Latent Principal
Stratification (Sales and Pane, 2019)– that can leverage detection model outputs to understand
heterogeneity in treatment effects. The combination of detection and causal models provides
opportunities to go beyond identifying students’ behaviors and/or latent states (e.g., confusion
or knowledge component mastery) to understand how to respond in a way that positively impacts
learning.

2. BACKGROUND

In this section, we provide literature reviews of the relevant aspects of the study. First, we include
a review of the suspected antecedents and outcomes associated with gaming behaviors (Section
2.1). Next, we consider the theoretical and empirical support that immediate assistance features
(Section 2.2) and gamification (Section 2.3) influence students’ learning-related behaviors and
outcomes. Finally, we review research on interventions aimed at mitigating gaming behaviors
(Section 2.4).

1Throughout this paper, we use the term ’gamers’ to mean students who tend to game the system and ‘gaming
behaviors’ as behaviors indicative of gaming the system.

2The finding that delayed hints and feedback are beneficial for students who tend to game the system was first
reported in Vanacore et al. (2024). The current paper extends these analyses to include two other conditions.
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2.1. GAMING THE SYSTEM

Gaming the system is defined as “attempting to succeed in an educational environment by ex-
ploiting properties of the system rather than by learning the material and trying to use that
knowledge to answer correctly” (Baker et al., 2008). This definition is operationalized by two
key behaviors: rapid and repeated requests for help (hint abuse) and submission of answers in
a systemic way (guess-and-check) (Baker et al., 2008; Walonoski and Heffernan, 2006). These
behaviors indicate that a student is trying to submit the answers to problems merely to progress
through the assignment without deploying the effortful engagement required to learn from the
activity.

Therefore, it is not surprising that gaming the system behaviors are correlated with reduced
performance within CBLPs (Baker et al., 2004) and poor learning outcomes (Mihaela and Her-
shkovitz, 2009). Furthermore, gaming is also predictive of low distal outcomes such as state
test performance (Pardos et al., 2014) and college enrollment (Adjei et al., 2021). Thus, gaming
behaviors may be related to students’ broader educational struggles.

However, gaming the system tends to have a stronger association with student frustration
rather than general disengagement (Baker et al., 2008), as it is not correlated with off-task be-
havior (Baker et al., 2004). Specific program features may cause gaming behaviors by fomenting
confusion and frustration (Baker et al., 2009). Research suggests that students move from states
of confusion and frustration towards gaming the system behaviors because the CBLP’s features
do not adequately address their learning needs (Rodrigo et al., 2008; Baker et al., 2009). When
the CBLP’s activities are ambiguous and abstract, students are more likely to game the system
(Baker et al., 2009). Thus, it is plausible that decreasing problem difficulty and adding supports
to mitigate frustration may reduce gaming (Baker et al., 2008). Alternatively, additional assis-
tance features may dissuade students from persistent and effortful engagement with the content
while providing more opportunities to abuse support features.

2.2. ON-DEMAND HINTS AND IMMEDIATE FEEDBACK IN CBLPS

Although abuse of on-demand hints and immediate feedback are the key characteristics of gam-
ing the system, these are also fundamental features of many CBLPs. Substantial research is
dedicated to immediate hints and feedback. Students tend to benefit from timely feedback and
support during learning activities (Butler and Woodward, 2018; Shute, 2008; Lu et al., 2023;
Razzaq et al., 2007; Lu et al., 2021). Multiple studies present evidence that providing feedback
immediately after students respond to or complete problem sets has a positive effect on students’
procedural and conceptual knowledge (Corbett and Anderson, 1994; Dihoff et al., 2003; Phye
and Andre, 1989). In many CBLPs, students may also request assistance, which includes hints
and feedback as students work on problems. These features have varying implementations.
Common hints and feedback methods include presenting general topical information (Aleven
and Koedinger, 2000), worked examples that present a complete solution to a similar problem
(McLaren et al., 2016), providing the complete solution to the given problem (Williams et al.,
2016), being shown similar examples done incorrectly (McLaren et al., 2016; Adams et al.,
2014), providing targeted feedback based on a student’s common wrong answer (Gurung et al.,
2023; Gurung et al., 2023), and being given a series of step-by-step hints (Feng and Heffernan,
2006).

Overall, these features have differing levels of efficacy. For example, tutoring strategies,
which provide problem-specific hints, are effective at improving student performance (Prihar
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et al., 2021; Patikorn and Heffernan, 2020). Williams et al. (2016) found students performed
better when presented with Machine Learning-generated explanations as opposed to only re-
ceiving the answer. Research has also shown that feedback is more effective if provided as the
student is answering questions than if it is delayed until after an activity (Lu et al., 2023), which
supports the argument that assistance should be on-demand and immediate. Yet, there are also
implementations of this assistance that show mixed or no efficacy. For example, McLaren et al.
(2016) found that worked examples did not improve learning outcomes. Aleven and Koedinger
(2000) found that students typically ignored assistance that involved general information aimed
at helping students learn concepts; these students preferred hints that focused on the problem
on which they were working. Another study found that students required support to utilize on-
demand learning assistance but failed to find learning gains even when this support was given
(Aleven et al., 2016). Overall, these findings suggest that students want assistance and feedback
focused on the problem in which they are struggling; they are less engaged with assistance that
provides general information about the concepts they are learning.

In theory, on-demand assistance tutoring strategies in intelligent tutoring systems should
encourage help-seeking behaviors, which can increase students’ autonomy and control of their
learning (Aleven et al., 2006; Aleven et al., 2016). Yet, students can abuse this control, as
exhibited by gaming behaviors. Although there is ample research on the efficacy of hints and
feedback, more is needed to understand who benefits from these resources. Furthermore, the
interactions between access to these learning supports, how students use these supports, and
learning outcomes have not been fully explored.

2.3. GAMIFICATION & ENGAGEMENT

Gamification, adopting features of games into non-game contexts, is a common method of in-
creasing engagement in CBLPs (Landers, 2014; Karagiorgas and Niemann, 2017). Gamification
includes incorporating “design elements, game thinking, and game mechanisms” (Karagiorgas
and Niemann, 2017). In contrast, game-based learning allows students to engage in learning
through a playful activity (Karagiorgas and Niemann, 2017).

According to the Theory of Gamified Learning, gamification impacts students’ learning out-
comes by influencing their behaviors as they learn (Landers, 2014). For example, games can
influence students’ learning behaviors by turning activities that may be exasperating into ones
that are “pleasantly frustrating” (Gee, 2005). This pleasant frustration is often a product of
the balance of success and failures necessary for an engaging game (Juul, 2009). It is plausi-
ble that a frustrating problem that might cause an uptick in gaming behaviors in a traditional
CBLP could produce engagement in a gamified one. As frustration is a likely antecedent of
gaming behaviors, gamification could theoretically reduce instances of gaming the system by
reframing typically frustrating experiences as enjoyable. This idea is supported by evidence
that students respond positively to game-based failure in a gamified learning environment by
exhibiting productive performance (Vanacore et al., 2024). Thus, students who might disengage
with a traditional CBLP by gaming the system would possibly instead engage with a gamified
version of the CBLP; however, the extent to which gamification can produce these “pleasantly
frustrating” experiences associated with games is unclear, as engaging with a gamified CBLP
is not the same as playing a game. Furthermore, which features of a learning engagement are
gamified may be as important as whether a learning experience is gamified at all.

Research on gamification has shown mixed effects on students’ behaviors in learning con-
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texts. Some have found a positive effect of gamified features on student engagement (Gar-
ris et al., 2002; Gaston and Cooper, 2017; Vanacore et al., 2023a), while others have not
(Malkiewich et al., 2016; McKernan et al., 2015). Garris et al. (2002) found that reward-based
systems caused students to take more time and replay problems more frequently. Previous work
has also found that gamified performance-based feedback increases students’ persistence behav-
iors associated with greater impacts on student learning (Vanacore et al., 2023a; Vanacore et al.,
2023b). Alternatively, Malkiewich et al. (2016) found that some gamified features, such as nar-
rative elements, did not positively impact students’ persistence within the game. McKernan et al.
(2015) also found that reward systems improved students’ perceptions of their experiences, but
not their behaviors or outcomes. As gaming the system can be seen as the antithetical behavior
of persistence and engagement, it is plausible that gamification could mitigate these behaviors;
however, the mixed results suggest that more research is necessary to evaluate this hypothesis.

2.4. MITIGATING GAMING THE SYSTEM BEHAVIORS

Interventions for gaming behaviors can be either proactive or reactive. Proactive interventions
involve attempting to curtail the gaming behaviors before students have the opportunity to ex-
hibit said behaviors (Aleven et al., 2006; Murray and VanLehn, 2005; Walonoski and Heffernan,
2006; Xia et al., 2020). Reactive options require targeted interventions after the gaming behavior
has been identified (Baker et al., 2006).

Research suggests that proactively discouraging students from superfluous hint requests may
be an imprecise method of addressing gaming behaviors. Advising students to request hints only
when they truly needed them while delaying hint availability by ten seconds reduced hint usage
and did not impact overall performance (Murray and VanLehn, 2005). However, Murray and
VanLehn (2005) found some evidence that this method may have improved the performance
of students who might have otherwise gamed the system; they found a marginally insignificant
positive effect on the performance of students with low prior knowledge. The lack of statisti-
cal significance may be attributed to the study’s small sample. Thus, the finding suggests that
manipulating access to hints could help students who game the system.

Another proactive method includes presenting students with information about their gaming-
related behaviors. Researchers have theorized that this intervention may influence students in
one of two ways. They make the student aware that the system is logging their behaviors, thus
creating “panopticon-like paranoia” of constant awareness of potential observation (Walonoski
and Heffernan, 2006). Alternatively, visualizing students’ actions may also nudge students to
reflect on their learning behaviors (Xia et al., 2020). Two studies found that providing graph-
ical representations of learning-related behaviors can reduce instances of gaming the system
(Walonoski and Heffernan, 2006; Xia et al., 2020). However, neither of these studies evaluated
this method’s impact on learning. Furthermore, students who are likely to game the system to
progress through learning activities may also game the system to manipulate the outputs of the
visualizations.

As a reactive option, Baker et al. (2006) placed students who had previously gamed on spe-
cific content into an intervention focused on the content that the students had gamed. In this
intervention, students saw an animated dog that displayed emotional responses to their learning-
related behaviors. The animation embodied an exaggerated mimic of a teacher’s emotions in
response to student behavior (e.g., excitement and positivity if a student exerted effort, or frustra-
tion if a student gamed the system). This intervention significantly decreased students’ gaming
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behaviors and positively affected their learning outcomes, as measured by a post-test, compared
to a control group that did not have access to the animated dog.

Overall, there is suggestive evidence that directly dissuading students from gaming behav-
iors like hint abuse may benefit some students, yet it is unclear whether it has adverse effects
on the non-gaming student population. Alternatively, presenting visualizations that represent
students’ actions may reduce instances of gaming; however, the learning impact of this method
has not been explored. Notably, only the study that imposed a direct content-specific interven-
tion showed a significant impact on learning (Baker et al., 2006). Thus, none of these studies
connected the prevention of gaming behaviors with learning outcomes.

One alternative method is to change the learning environment substantially. Richey et al.
(2021) evaluated the impact of a gamified CBLP by comparing it to an equivalent non-gamified
CBLP and found that the gamified version reduced students’ gaming behaviors, thus improv-
ing their learning outcomes. The gamified CBLP included interactive characters that prompted
students with feedback and provided “narrative context for why they are performing various
problem-solving activities.” The reduction in gaming behavior completely mediated the effects
on the posttests, suggesting the gamified elements’ primary mechanism for impacting outcomes
is reducing gaming behaviors.

3. CURRENT STUDY

In the current study, we seek to understand the interplay between gaming the system behaviors,
CBLP instructional design, and student learning by evaluating the following research question:
Do students who tend to game the system in a traditional CBLP with on-demand hints and
immediate feedback (i.e., ’gamers’) benefit from alternative CBLPs?

We address this question using open-source data3 from an efficacy study conducted to eval-
uate the effects of different CBLPs on middle school students’ (U.S. Grade Seven) algebraic
knowledge (Decker-Woodrow et al., 2023). The original study included four conditions (dis-
cussed in detail in Section 4.2) consisting of two traditional CBLP conditions administered
through ASSISTments and two gamified CBLP conditions (From Here to There! and Drag-
onBox Algebra 12+). In one of the ASSISTments conditions, students worked through tradi-
tional problem sets with access to hints and automated immediate feedback (Immediate Con-
dition). In the other ASSISTments condition, access to both hints and feedback was delayed
until after students completed problem sets (Delayed Condition). This question was preregis-
tered4 along with the hypotheses that gamers would benefit from both the Delayed Condition
condition and gamified conditions relative to the Immediate Condition.

The original efficacy study found that both gamified conditions caused higher performance
in algebraic knowledge compared to the delayed condition, but the effect of the Immediate Con-
dition was not significant after controlling for student-level covariates (Decker-Woodrow et al.,
2023). The current study is an extension of a previous analysis presented at the 14th Interna-
tional Learning Analytics and Knowledge Conference (Vanacore et al., 2024). In that analysis,
we compared the Immediate and Delayed conditions to understand the impact of feedback de-
livery on learning for students with a higher propensity to game the system in the Immediate

3The data can be accessed on the Open Science Foundation (OSF) repository after filling out a data exchange
agreement: https://osf.io/r3nf2/

4https://osf.io/kfq2s
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Condition. We reported that although students with a low propensity to game the system bene-
fited from the Immediate Condition, those with a high propensity to game the system may have
benefited from the Delayed Condition.

Here, we extend this analysis by including gamified conditions to fully explore how differ-
ences in CBLP institutional design may produce impact differentials for gamers. These gamified
conditions share many key features: dynamic manipulation of equations, performance-based
feedback, multiple paths to solutions, and the ability to replay problems. But they also have key
differences (further described in Section 4.2), including narrative goals and the way puzzles are
used to teach mathematical concepts. The following study does not allow us to understand the
effects of individual gamified features, yet we can better understand how different students inter-
act with gamified systems generally and whether these systems have consistent or inconsistent
patterns of treatment effect heterogeneity.

4. METHOD

4.1. DESIGN

This study consists of a randomized controlled trial conducted in a school district in the South-
eastern United States. The study consisted of 52 teachers in 10 schools. Students were ranked
within classrooms based on their prior state mathematics assessment scores, blocked into sets
of five (i.e., quintets), and then randomly assigned into either the From Here to There (FH2T;
40%), DragonBox (20%), Immediate Feedback (20%), or Delayed Feedback (20%) conditions.
The disproportionate weighting was intended to allow researchers to focus their work on evalu-
ating and understanding FH2T. The implementation of the study included nine weekly half-hour
sessions in which the students worked in their assigned program. A full description of the study
design can be found in Decker-Woodrow et al. (2023), an analysis of the study implementation
is reported in Vanacore et al. (2024), and a description of the data set can be found in Ottmar
et al. (2023).

4.2. CONDITIONS

As explained in Section 3, the study consists of four conditions: two traditional and two gamified
CBLPs. Example problems from each condition are presented in Figure 1. All conditions fo-
cused on teaching procedural ability, conceptional knowledge, and flexibility in algebraic equa-
tion equivalency.
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Figure 1: Example problems from each condition.

Both traditional problem sets’ conditions (Immediate and Delayed Conditions) were admin-
istered through ASSISTments (Heffernan and Heffernan, 2014), an online homework system
that assists students as they solve traditional problem sets. The problem sets in ASSISTments
are adapted from open-source curricula, thus resembling problems students encounter in their
textbooks and homework assignments. ASSISTments presents students with problems one at
a time on their screen. Each condition included 218 problems of the same problems selected
from three curricula – EngageNY, Utah Math, and Illustrative Math – to address specific alge-
bra skills. The problems were divided into nine problem sets and administered throughout nine
half-hour sessions during school hours.
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4.2.1. Immediate Hints and Feedback (Immediate Condition)

In the Immediate Condition, students could request hints while solving problems. They also re-
ceived automatic feedback on whether their answer was correct or incorrect after every submitted
answer. Each problem contained a series of hints with a similar structure. The first hint gave
the students the first step to answering the problem. The second hint gave the student a worked
example of a similar problem. The final hint provided the student with the steps to complete the
problem as well as the problem’s solution. Students could submit as many answers as needed
but could not move on until they had entered the correct answer. This condition was shown to be
effective when implemented as a substitute for paper homework assignments (Roschelle et al.,
2016). However, this condition provides both of the features that enable gaming behaviors: a
sequence of hints that eventually provide the answer, which students can use for hit abuse, and
immediate feedback, which allows for guess-and-check approaches to submitting responses.

4.2.2. Post-Assignment Hints and Feedback (Delayed Condition)

The Delayed Condition provided post-assignment assistance rather than on-demand hints and
immediate feedback. In this condition, problem sets were administered in “test mode,” so stu-
dents did not receive any feedback or hints while submitting answers in each problem set. They
could only submit one answer and progressed through the problem set without any feedback on
their performance. Students received a report with feedback on their accuracy at the end of each
problem set, and they could review their responses, revisit problems, and request hints. This
condition was used as an active control in the original study, but we re-conceptualize it here as
an intervention for gamers.

4.2.3. From Here to There! (FH2T)

From Here to There! (FH2T) takes a nontraditional approach to algebra instruction by applying
aspects of perceptual learning (Goldstone et al., 2010) and embodied cognition (Abrahamson
et al., 2020). Instead of presenting students with traditional algebra equations and expressions
that students solve or simplify, FH2T gives students access to a starting expression (start state)
that they must dynamically transform into a mathematically equivalent expression (goal state).
Students can manipulate the expression by dragging numbers and symbols from one position
to another on the screen or using a keypad when expanding terms. Only mathematically valid
manipulations are accepted. Each valid manipulation counts as a step, which is logged and used
to evaluate how efficiently the student transforms the expression from the start to the goal state.
FH2T has 252 problems that are presented sequentially by mathematical content and complexity.
Students must complete one problem in the sequence before advancing to the next problem.

4.2.4. DragonBox Algebra 12+ (DragonBox)

DragonBox Algebra 12+ 5 (DragonBox) is an educational game that provides instruction in al-
gebraic concepts to secondary school students (ages 12-17). For each problem, students are
asked to isolate a box containing a dragon—equivalent to solving an equation for x. This design
incorporates research-based pedagogical methods, including discovery-based learning, embed-
ded gestures, diverse representations of concepts, immediate feedback, and adaptive difficulty
(Cayton-Hodges et al., 2015; Torres et al., 2016). The game’s key innovation is that students

5https://dragonbox.com/products/algebra-12
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learn the rules of algebra without using or manipulating numbers or traditional algebraic sym-
bols. Thus, students engage with the algebraic concepts as if they are puzzles. Numbers and
traditional algebraic symbols are introduced gradually, presumably after the student has learned
the underlying concepts. Furthermore, DragonBox applies a narrative goal to the learning: stu-
dents must allow the dragon to come out of the box by isolating it in the equation. Previous
analyses found that DragonBox positively affects engagement and attitudes toward math, but
findings are mixed in regard to its efficacy in improving learning outcomes (Siew et al., 2016;
Dolonen and Kluge, 2015).

4.3. ANALYSIS PLAN

Our goal is to assess whether the students who gamed the system in a traditional CBLP would
have benefited from a different CBLP. This poses a methodological difficulty because estimating
the effect of randomizing gamers to the Immediate condition requires us to contrast their post-
test scores with scores from comparable students in the other conditions; however, we only
observe gaming behavior in the Immediate condition. Even if we did observe gaming in another
condition, we cannot know if a student who gamed the system in one condition would also game
in another. In fact, we hypothesize that students who would game the system in the Immediate
Condition would not engage in similar behaviors in the other conditions and benefit from the
learning therein.

To address this methodological problem, we propose that students have a baseline propen-
sity to game the system in the Immediate Condition that exists before randomization, regardless
of whether it can manifest itself after treatment assignment. Because it is considered a base-
line covariate, similar to students’ pretest knowledge, it is independent of the random treatment
assignment and can serve as a moderating variable. However, unlike pretest knowledge, only
students in the Immediate Condition have the opportunity to display the behavior; therefore, its
value in the other conditions is unknown. Nevertheless, once this latent propensity to game the
system is estimated, we can evaluate whether it moderates the effects of the various interven-
tions.

Our analysis requires two key steps, which are described in depth below. First, we use a
gaming the system detector to identify instances where students are gaming the system within
the Immediate Condition. Next, we use the causal method of Fully Latent Principal Stratification
(FLPS, (Sales and Pane, 2019)), which will allow us to estimate the effect heterogeneity of each
program based on students’ latent propensity to game the system in the Immediate condition.
Each of these methods is delineated in the sections below.

4.3.1. Implementation of Gaming The System Detector

This paper employs the rule-based gaming detectors originally created by Paquette et al. (2015)
to identify gaming behavior among students working on algebraic problems. To the best of
the authors’ knowledge, the Cognitive Model developed by Paquette et al. (2015) was the first
detector that was transferable across intelligent tutoring systems, from Cognitive Tutor Algebra
(CTA) to ASSISTments. The original rule-based detector was engineered to detect gaming
in CTA (Baker et al., 2008). Paquette et al. (2014) further developed the rule-based gaming
detector by relying on human judgments through text replays of logged learner actions (Baker
et al., 2010). The insights gained from human judgments were used to develop gaming detectors
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for CTA. Subsequently, the transferability of this rule-based gaming detector was validated in
ASSISTments.

We elected to use the rule-based Cognitive Model for identifying gaming behavior as rule-
based models mitigate key challenges to more complex detectors: model generalizability and
detector rot. Unlike other system-specific gaming detectors, the rule-based model demonstrated
cross-system generalizability, underscoring its adaptability and reliability in contexts beyond
the original training data set (Paquette et al., 2015). More complex models are also susceptible
to detector rot, a phenomenon that refers to the gradual decline in a model’s performance over
time. Prior studies have reported that more complex models, using more advanced ML and DL
algorithms, are more prone to this phenomenon than their simpler counterparts (Lee et al., 2023;
Levin et al., 2022). Given that many gaming the system models were developed years before
our study, they are at a higher risk of experiencing detector rot. Consequently, we implemented
the rule-based detector, in light of its potential for sustained generalizability and resistance to
detector rot.

To implement the rule-based detector for identifying gaming behavior among students, logged
student actions are first aggregated into twenty-second clips. These clips are then analyzed
alongside additional information to contextualize the actions into more meaningful categories,
as outlined in Table 1. This process allows for the identification of specific sequences of action
patterns considered indicative of gaming behavior, with a total of 13 patterns detailed in Table 2.
For example, analyzing the first pattern, “incorrect → [guess] & [same answer/diff. context]
& incorrect” indicates a scenario where the student entered an incorrect answer and re-entered
the same incorrect answer within 5 seconds of making the first attempt. For the students in the
Immediate Condition in this study, the rule-based detector employs this structured approach,
leveraging log-file data compiled in twenty-second intervals (as described in Section 4.4.1) to
determine gaming instances during each clip. These determinations are then integrated into the
FLPS model, enhancing its ability to accurately reflect student engagement and behavior.

4.3.2. Estimating Effects Using Fully Latent Principal Stratification

FLPS is a variant of Principal Stratification, a causal inference method used in randomized con-
trolled trials for estimating the intervention effects on subgroups that emerge after the treatment
has begun (Frangakis and Rubin, 2002; Page et al., 2015). Generally, to estimate subgroup ef-
fects, the subgroups must be defined prior to the intervention and be independent of treatment
assignment. For example, to test whether an effect varies based on pretest knowledge, inter-
acting the treatment with the pretest knowledge score estimates how the treatment effect differs
across different subgroups of students with similar prior knowledge. However, subgroups iden-
tified based on students’ interactions with a treatment program cannot be observed at baseline.
Furthermore, they may only be observed for students randomized in some conditions (in the
present case, the Immediate Condition). Even if they could be observed in multiple conditions,
the student’s behavior is confounded by their condition (i.e., some students may game the system
in one condition but would not in another condition). FLPS provides a solution to this method-
ological problem by modeling these behaviors as manifestations of latent student characteristics,
which are not observed for students randomized to some conditions but must be estimated.

Often, a student’s interactions with programs are categorized by a complex series of behav-
iors. This fact is particularly true in CBLPs, where students may display an array of behaviors
during the program, such as meeting implementation goals (Dieter et al., 2020; Vanacore et al.,
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Table 1: List of contextually interpretable actions that are utilized to develop the rules for identi-
fying gaming the system behavior.

Identifier Description
[did not think before help request] Pause smaller or equal to 5 seconds before a help request
[thought before help request] Pause greater or equal to 6 seconds before a help request
[read help messages] Pause greater or equal to 9 seconds per help message after a help request
[scanning help messages] Pause between 4 and 8 seconds per help message after a help request
[searching for bottom-out hint] Pause smaller or equal to 3 seconds per help message after a help request
[thought before attempt] Pause greater or equal to 6 seconds before step attempt
[planned ahead] Last action was a correct step attempt with a pause greater or equal to 11 seconds
[guess] Pause smaller or equal to 5 seconds before step attempt
[unsuccessful but sincere attempt] Pause greater than or equal to 6 seconds before a bug
[guessing with values from problem] Pause smaller than or equal to 5 seconds before a bug
[read error message] Pause greater than or equal to 9 seconds after a bug
[did not read error message] Pause smaller than or equal to 8 seconds after a bug
[thought about error] Pause greater than or equal to 6 seconds after an incorrect step attempt
[same answer/diff. context] Answer was the same as the previous action, but in a different context
[similar answer] Answer was similar to the previous action (Levenshtein distance of 1 or 2)
[switched context before right] Context of the current action is not the same as the context for the previous

(incorrect) action
[same context] Context of the current action is the same as the previous action
[repeated step] Answer and context are the same as the previous action
[diff. answer AND/OR diff. context] Answer or context is not the same as the previous action

2024), productive persistence (Vanacore et al., 2023a), mastering knowledge components in
mastery learning (Sales and Pane, 2019), and gaming-the-system behaviors that may be viewed
as indicators of latent student characteristics (i.e., high fidelity users, persistent learners, mastery
users, gamers). Understanding which latent behavioral characteristics are associated with effect
heterogeneity can help provide a better understanding of how CBLPs impact students.

However, these latent behavioral characteristics are likely context-dependent (e.g., a student
may persist in one CBLP and not another). These behaviors are unobserved for the students
randomized to conditions where they do not have the same opportunity to display the relevant
behaviors as they did not interact with the same CBLP. For example, some students might re-
quest hints in a condition that provides them. However, other conditions may not provide the
opportunity to request hints, so we cannot observe whether students in this condition would have
requested them. Furthermore, when the relevant behaviors are observable, they are confounded
by the students’ assigned conditions, which presumably influence their behaviors. For example,
suppose students are randomized between receiving optional hints or explanations. In that case,
students who prefer hints may be unlikely to request help when they are randomized to expla-
nations and vice versa. Therefore, their underlying latent student characteristics that define the
subgroups in the FLPS can be interpreted as explaining students’ behaviors if randomized to a
specific condition.

Sales and Pane (2019) used this method to determine whether the effect of Cognitive Tutor
Algebra I on students varies based on whether students were likely to master knowledge compo-
nents in Cognitive Tutor by estimating the likelihood of mastering knowledge components for
the treatment group as a latent variable. In the current study, we evaluate whether the effect of
each alternative condition (Delayed Condition, FH2T, DrangonBox) differs based on students’
latent propensity to game the system had they been assigned to Immediate Condition. This
propensity to game the system in the Immediate Condition is independent of students’ treatment
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Table 2: List of contextually interpretable actions that are utilized to develop the rules for identi-
fying gaming the system behavior.

Action patterns considered gaming behavior.
incorrect → [guess] & [same answer/diff. context] & incorrect
incorrect → [similar answer] [same context] & incorrect → [similar answer] & [same context] & attempt
incorrect → [similar answer] & incorrect → [same answer/diff. context] & attempt
[guess] & incorrect → [guess] & [diff. answer AND/OR diff. context] & incorrect → [guess] & [diff. answer AND/OR

diff. context & attempt
incorrect → [similar answer] & incorrect → [guess] & attempt
help & [searching for bottom-out hint] → incorrect → [similar answer] & incorrect
incorrect → [same answer/diff. context] & incorrect → [switched context before correct] & attempt/help
bug → [same answer/diff. context] & correct → bug
incorrect → [similar answer] & incorrect → [switched context before correct] & incorrect
incorrect → [switched context before correct] & incorrect → [similar answer] & incorrect
incorrect → [similar answer] & incorrect → [did not think before help] & help → incorrect (with first or second answer

similar to the last one)
help → incorrect → incorrect → incorrect (with at least one similar answer between steps)
incorrect → incorrect → incorrect → [did not think before help request] & help (at least one similar answer between steps)

assignment, as it exists prior to any treatment and regardless of whether it has the opportunity to
manifest.

Since students’ gaming behavior was detected in the Immediate Condition, our goal is to
know how students with a high propensity to game the system in the immediate condition would
fare if placed in each of the other conditions: the Delayed Condition, FH2T, or DragonBox. For
simplicity, we refer to the Immediate Condition as the control and each of the other conditions as
treatments. We present the following model as if there is only one treatment for simplicity, but
the model estimated in this paper includes multiple treatment conditions, and therefore, multiple
main and moderating effects.

Let τi be subject i’s individual treatment effect: the difference between i’s posttest score if
i were randomized to treatment and their score if randomized to control. Let T and C be the
samples of students randomized to treatment and control, respectively. Let αci be i’s propensity
to game the system if randomized to the control condition. αci is defined for i ∈ T , as students
in the treatment conditions still had a potential to game the system had they been randomized
to control, even if this potential was never realized. Therefore, αci is estimated from gaming
the system behavior for C and αci is imputed for each T . This propensity to game the system is
condition-specific and represents an estimate of whether students would have gamed the system
if randomized to the control condition (i.e., Immediate Condition).

The principal effect is the treatment effect for the subgroup of students with a particular
value for αc:

τ(α) = E[τ |at = α] (1)

To estimate the function τ(α), we (1) estimate αc for C as a function of pre-treatment covari-
ates observed in both groups, (2) use that model to impute αC for each T , (3) estimate τ(α) by
including a treatment interaction in a linear regression model. The models are estimated using
iterations through these steps in a Bayesian principal stratification model with a continuous vari-
able consisting of measurement and outcome submodels, as outlined by (Jin and Rubin, 2008)
and (Page, 2012).
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Measurement Submodel: First, we estimate αc by running a multilevel logistic submodel
predicting whether the gaming detector identified the students in the treatment condition to have
gamed the system on each twenty-second time clip as delineated in the equation 2. Let Gcji be
a binary indicator of whether student i gamed the system during time-clip c when working on
problem j. Let Pki be covariate predictor k of K student-level predictors, which are measured
at baseline for both T and C (described in section 4.4.2). Let the random intercepts be µj for
problems, µi for students, µt for teachers, and µs schools, each modeled as independent and
with normal distributions with means of zero and standard deviations estimated from the data.

logit(Gcji) = γ0 +
K∑

k=1

γkPki + µj + µi + µt + µs (2)

Using the parameters from Equation 2, students’ propensity to game the system in the im-
mediate condition is defined as:

αi =
K∑

k=1

γkPki + µi + µt + µs (3)

We impute αi for T with random draws from a normal distribution with mean
∑

k γkPki +
µt[i] + µs[i], where µt[i] and µs[i] are the random intercepts for student i’s teacher and school,
respectively, and standard deviation equal to the estimated standard deviation of µi. Note that
randomization occurred at the student level (i.e., teachers had students in the treatment and
control conditions in their classes). Therefore, we include the random intercepts for schools
and teachers from submodel 2 in valuation for αci for students in the control. However, µi is
unknown for T , but we can assume its distribution is the same in the two conditions because of
the randomization.

Prior to the simultaneous estimation of the FLPS sub-models, we estimated the measure-
ment submodel separately using the stan glmer function from the rstanarm package (Goodrich
et al., 2020) with different combinations and transformations of the pretest predictors and de-
mographic variables to find a suitable model for the analysis. To build the measurement model,
we randomly split the data into training (80%) and testing (20%) data sets.

Outcomes Submodel: To estimate the treatment effect for students with differing propen-
sities to game the system, we run a multilevel linear regression predicting student’s post-test
algebraic knowledge (Yi). The submodel includes interaction between αci—estimated for C and
randomly imputed for T —and each Zi indicator of being in the treatment condition. In practice
there is one Zi indicator for each treatment condition. Let the random effects for teacher be νt
and for school be νs.

Yi = β0 + β1Zi + β2αci + β3αciZi +
K∑

k=1

λkPki + νt + νs + ϵi (4)

Using the parameters from the submodel 4, the treatment effect for students with a particular
propensity to game the system is modeled as

τ(α) = β1 + β3α (5)
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Once again, there is one τ(α) for each treatment condition, as β1 and β3 are estimated for
each treatment condition. Submodels 2 and 4 together formed a FLPS model, which we fit
using the Stan Markov Chain Monte Carlo software through STAN (Arezooji, 2020). We ran
10,000 iterations of FLPS models using Markov chain Monte Carlo chains calling Stan through
rstan (Carpenter et al., 2017) in R; code is posted on GitHub6. We evaluated convergence using
trace plots and checking whether the R̂, which measures convergence by comparing between
and within chain estimates of each parameter, was below the recommended threshold of 1.05
(Vehtari et al., 2021). The maximum R̂ for the model parameters was 1.04.

4.4. DATA & VARIABLES

The data for this study exists at two different levels: student and time clip. The student-level
variables include the student pretest data, demographics, roster, and learning outcomes. Alter-
natively, the data used in gaming the system detector and the detector’s output is aggregated in
twenty-second clips of the students’ usage of the program. Only time-clip data from the Im-
mediate Condition is used, as we are estimating students’ propensity to game the system in that
condition.

Notably, the study was conducted during the COVID-19 pandemic and involved considerable
attrition. An attrition analysis based on United States Institute of Educational Sciences standards
found that attrition did not bias the effect estimates of the conditions (Decker-Woodrow et al.,
2023). The sample for the current study consists of 1976 students: 402 in the Immediate Condi-
tion, 385 in the Delayed Condition, 372 in the DragonBox, and 817 in FH2T. The students were
taught by 36 teachers in 10 schools.

4.4.1. Gaming the System Detector Inputs and Output

Gaming labels were generated by adopting the methodology described by Paquette et al. (2015)
to produce action clips for the gaming detector as described in Section 4.3.1. These clips capture
actions taken by students in ASSISTments. Each clip contains unique identifiers: the student,
the problem being worked on at the clip’s start, the skill associated with that problem, and the
problem type. If the clip spanned multiple problems, the problem the student ended on was also
documented. Additionally, the clips detail the start and end times of actions, their total duration,
and, for attempts, the action’s correctness and the student’s answer. Supplementary data within
the clips include indicators for hint requests, the number of hints requested during the clip, the
total hints available for the problem, the use of a ‘bottom-out’ hint, and the total attempts by the
student. Gaming labels were generated based on instances where the student’s actions in the clip
met one or more rules indicative of gaming system behavior.

4.4.2. Pretreatment Predictors

To estimate students’ propensity to game the system, we used data from assessments adminis-
tered prior to their use of their assigned condition. Pretest scores were collected by the original
studies’ researchers: prior algebraic knowledge, math anxiety, and perceptual processing skills.
Pretest algebraic knowledge was a variant of the learning outcome described below. The math
anxiety assessment was adapted from the Math Anxiety Scale for Young Children-Revised (Chiu

6https://github.com/kirkvanacore/FLPS_GamingTheSystem/tree/main/code/JEDM_
code
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and Henry, 1990), which assessed negative reactions towards math, numeric inconfidence, and
math-related worrying (Cronbach’s α=.87; see the items on OSF7). Five items were adapted
from the Academic Efficacy Subscale of the Patterns of Adaptive Learning Scale to assess math
self-efficacy (Midgley et al. (2000); Cronbach’s α = .82; see items on OSF8). The perceptual pro-
cessing assessment evaluates students’ ability to detect mathematically equivalent and nonequiv-
alent expressions as quickly as possible (see item on OSF9). The district also provided metadata
on the students, including their demographics and most recent standardized state test scores in
math. Demographic data included race/ethnicity, individualized education plan status (IEP), and
English as a second or foreign language (ESOL) status. Race/ethnicity was dummy-coded, with
white students as the reference category because they were the majority population.

We standardized (z-score) all continuous scores to improve model fit and ease interpretation.
Log forms of assessment test times were also included in the models. We include polyno-
mials of the pretest scores when they improved model fit. Missing data were imputed using
single-imputation with the Random Forest routine implemented by the missForest package in R
(Stekhoven and Buehlmann, 2012; R Core Team, 2016). The number of missing data for each
student was included as a predictor in each submodel.

4.4.3. Learning Outcome

The learning outcome for the study is students’ algebraic knowledge, which was assessed using
ten multiple-choice items from a previously validated measure of algebra understanding (Star
et al. (2015); Cronbach’s α = .89; see the items on OSF10). Four of the items evaluated con-
ceptual understanding of algebraic equation-solving (e.g., the meaning of an equal sign), three
evaluated procedural skills of equation-solving (e.g., solving for a variable), and three evaluated
flexibility of equation-solving strategies (e.g., evaluating different equation-solving strategies).
Together, these ten items assessed students’ knowledge in algebraic equation-solving, the im-
provement of which was the goal of the interventions. The learning outcome was assessed before
and after the interventions. Students’ scores were standardized (z-score) to ease model fit and
interpretation.

5. RESULTS

5.1. GAMING DETECTOR OUTPUTS

The students in the Immediate Condition produced 89,960 twenty-second clips of data. The
gaming detector indicated that students gamed the system during 4.62% of the total clips. Most
students (94.18%) were detected to have gamed the system at least once. Figure 2 displays a
density and boxplot of the percentage of clips in which each student gamed the system during
the study. Overall, students were detected to have gamed the system during approximately 5%
of clips (mean = 5.10%, median = 4.71%, SD =3.64%,). However, this distribution has a positive
skew. Almost a tenth (9.00%) of students were detected to have gamed during at least 10% of
the clips. This suggests that while most students engage in some gaming, there is wide variation

7https://osf.io/rq9d8
8https://osf.io/rq9d8
9https://osf.io/r47ev

10https://osf.io/uenvg
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in student gaming behavior, and some students likely have a substantially higher propensity to
game than others.

Figure 2: Density and box plots showing the distribution of students’ percentage of clips in which
the detector indicated gaming behavior.

In almost three-quarters of the problems (74.35%), the detector did not detect any gaming.
Notably, there was a small significant negative correlation between the gaming rate on each
problem and the average accuracy on the problem (r = -0.21, p < 0.001). Furthermore, some
problem types had significantly higher rates of gaming behaviors than others (F[5,244] = 6.403
p < 0.001). Students were more likely to game the system on ‘check all that apply’ problems
compared with problems for which they had to submit a number (p < 0.001), variable (p =
0.016), algebraic expression (p = 0.020), or open response (p < 0.016). Furthermore, students
were more likely to game the system on a multiple choice question than problems in which they
had to submit a numeric answer (p = 0.015). Because the problems without gaming behavior
would not be informative for assessing students gaming the system, we did not include these
problems when estimating the measurement submodel.

5.2. FULLY LATENT PRINCIPAL STRATIFICATION

Table 3 provides parameter estimates and relevant statistics for the measurement and outcome
submodels.

5.2.1. Measurement Submodel

As described in section 4.3.2, before running the full FLPS model, we tested covariate combi-
nations and transformations and validated the model using training and testing data sets. The
model performed best when pretest sub-scores from the tests were included. Math anxiety had
a non-linear relation to gaming behavior, so a polynomial transformation was included in the
model. Our final model produced an adequate AUC of 0.87 on the testing data set.
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Table 3: Fully latent principal stratification model parameter estimates.

Measurement Submodel Outcomes Submodel
Predictors Estimate SD P(>0) P(<0) Estimate SD P(>0) P(<0)
α -0.51 0.13 0.01 0.99
ZDelayedCondition -0.10 0.05 0.02 0.98
α ∗ ZDelayedCondition 0.10 0.07 0.90 0.10
ZFH2T 0.01 0.04 0.63 0.37
α ∗ ZFH2T -0.08 0.06 0.09 0.91
ZDragonBox 0.08 0.05 0.96 0.04
α ∗ ZDragonBox 0.04 0.07 0.71 0.29
Algebraic Procedural Knowledge -0.06 0.04 0.09 0.91 -0.01 0.03 0.44 0.56
Algebraic Conceptual Knowledge -0.10 0.06 0.04 0.96 0.15 0.04 0.01 0.99
Algebraic Flexibility Knowledge -0.05 0.04 0.14 0.86 0.01 0.03 0.58 0.42
Algebraic Knowledge Items Complete -0.00 0.08 0.49 0.51 0.04 0.05 0.79 0.21
Algebraic Knowledge Time (Log) -0.08 0.06 0.10 0.90 -0.04 0.04 0.15 0.85
Math Anxiety -0.18 0.12 0.06 0.94 -0.04 0.08 0.28 0.72
Math Anxiety (Squared) -0.05 0.03 0.05 0.95 -0.01 0.02 0.24 0.76
Math Negative Reaction 0.16 0.08 0.98 0.02 0.01 0.06 0.59 0.41
Math Numerical Confidence 0.11 0.07 0.93 0.07 0.04 0.05 0.77 0.23
Math Self Efficacy -0.04 0.04 0.21 0.79 0.03 0.03 0.81 0.20
Perceptual Sensitivity Score Part 1 -0.06 0.04 0.08 0.92 -0.00 0.03 0.48 0.52
Perceptual Sensitivity Time Part 1 (Log) -0.10 0.06 0.04 0.96 -0.01 0.04 0.42 0.58
Perceptual Sensitivity Score Part 2 0.03 0.04 0.71 0.29 0.08 0.03 0.01 0.99
Perceptual Sensitivity Time Part 2 (Log) -0.05 0.05 0.16 0.84 -0.03 0.03 0.13 0.87
Perceptual Sensitivity Score Part 3 0.01 0.05 0.60 0.40 0.00 0.04 0.52 0.48
Perceptual Sensitivity Time Part 4 (Log) -0.06 0.06 0.13 0.87 0.04 0.04 0.86 0.14
State Test Score -0.32 0.05 0.01 0.99 0.01 0.06 0.57 0.43
Female -0.03 0.04 0.21 0.79 0.04 0.03 0.92 0.08
Hispanic 0.09 0.13 0.75 0.25 0.16 0.09 0.98 0.02
Asian/Pacific Islander -0.17 0.12 0.08 0.92 0.18 0.08 0.98 0.02
Black 0.31 0.20 0.93 0.07 0.16 0.13 0.88 0.12
IEP -0.02 0.04 0.26 0.74 0.02 0.02 0.76 0.24
EIP 0.01 0.04 0.62 0.38 0.01 0.02 0.68 0.33
ESOL -0.00 0.05 0.47 0.53 -0.03 0.03 0.19 0.81
Gifted -0.01 0.04 0.43 0.57 0.08 0.03 0.99 0.01
In-person Instruction 0.04 0.13 0.60 0.40 -0.10 0.07 0.06 0.94
Missing Data 0.03 0.09 0.63 0.37 0.02 0.05 0.63 0.37

The measurement submodel’s coefficients provide insight into which student characteristics
predict gaming behavior in the Immediate Condition. Generally, lower-performing students
tended to game the system more frequently. Students with lower scores on the math section of
their state test were more likely to game the system (γ17 = -0.32, P (< 0) = .99). This association
was consistent with the albeit smaller associations between the algebraic knowledge sub-scores
and the gaming behavior. Furthermore, there was a nonlinear association between math anxiety
and gaming behavior. Students with higher math anxiety were also less likely to game the system
(γ6 = -0.18, P (< 0) = .94) than those with low math anxiety. This association was even greater
for students with highest levels of math anxiety, as shown by the coefficient for math anxiety
squared (γ7 = -0.05, P (< 0) = .95). Students with a higher negative reaction toward math (γ8
= 0.16, P (> 0) = .98) and with higher numeric confidence (γ9 = 0.11, P (> 0) = .93) were
more likely to game the system. Time spent on the algebraic knowledge test and the perceptual
sensitivity learning sub-tests were all predictive of gaming behavior; students who took less time
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on these tests were more likely to game the system.

5.2.2. Outcomes Submodel

The outcomes submodel provides the parameter estimates that address whether students likely
to game the system in the Immediate Condition would benefit from an alternative learning en-
vironment. As expected, students’ propensity to game the system (α) was negatively associated
with the outcome (β2 = -0.51, P (< 0) = 0.99). However, the interactions between α and the
conditions varied widely.

First, the Delayed Condition had a negative main effect but a positive interaction. For stu-
dents who had an average propensity to game the system in the Immediate Condition (α = 0),
the effect of the Delayed Condition was likely negative (β1−Delayed = -0.10, P (< 0) = 0.98).
The interaction between students’ propensity to game the system and the Delayed Condition
was likely positive (β3−Delayed = 0.10, P (> 0) = 0.90). Although the positive effect of the in-
teraction balanced out the negative effect of the Delayed Condition, it did not mitigate the lower
performance associated with students’ propensity to game the system. That is to say, the negative
effect for the Delayed Condition was equivalent in magnitude to the positive effect of the other
interaction; thus, a student with a high propensity to game the system (α = 1) would have the
same benefit from the Delayed Condition as a student with a low propensity to game the system
(α = 0) would from the Immediate Condition. However, the magnitude of the positive effect for
students who game the system in the Delayed Condition does not outweigh the overall negative
association of propensity to gaming the system on the student’s post-test scores. Therefore, the
Delayed Condition likely does not mitigate the gaming behavior. These were consistent with
our findings in (Vanacore et al., 2024), thus reproducing those results with a slightly different
model.

Second, the results showed varied effects of gamification and the interactions between gam-
ified programs and students’ propensity to game the system. The estimated effect of FH2T on
students who have an average propensity to game the system in the Immediate Conidtion (α = 0)
was small, and we have low confidence that it is greater than zero (β1−FH2T = 0.01, P (> 0) =
0.63). Yet, the interaction between FH2T and propensity to game the system was likely negative
(β3−FH2T = -0.08, P (< 0) = 0.91). Thus, contrary to our hypotheses, gamers would likely have
been better off in the Immediate Feedback condition than in FH2T; however, these results were
not consistent for DragonBox, which had a likely positive main effect (β1−DragonBox = 0.08,
P (> 0) = 0.96), yet there is little evidence of an interaction with students’ propensity to game
the system in the Immediate Condition (β3−DragonBox = 0.04, P (> 0) = 0.71).

Figure 3 provides a visual representation of the interactions between α and Z by plotting
the effect sizes (τ ) for different levels of students’ propensity to game the system problem in
the Immediate Condition (α). Note that the mean of α is zero and since all the covariates were
standardized with means of zero, where the lines cross α = 0 can be interpreted as the estimated
effect for the average student with average gaming behavior (i.e., the main effect).

We have little evidence that the slope for the Dragon Box is different than zero. Therefore,
it is most likely that students benefited from Dragon Box regardless of their propensity to game
the system. However, we have higher confidence that the slopes for the Delayed Condition
and FH2T are not zero. The Delayed Condition had an estimated negative impact on students
with low or average gaming propensities, but those with very high propensities to game the
system in the Immediate Condition may have experienced a positive effect. Note that only 5%
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Figure 3: Plot of effect sizes (τ ) by propensity to game the system in the Immediate Condition
(α).

of the student population had propensities to game the system this high (α > 1), so this effect
is only relevant for the most ardent gamers. For FH2T, we see the opposite trend: students
with the lowest propensity to game the system experience the greatest effects, and those with an
average or high propensity to game the system likely experience no effect or negative effects,
respectively.

6. DISCUSSION

The results suggest that students who tend to game the system respond differently to various
CBLPs, but not in the way we hypothesized. Although the two gamified conditions produced
different heterogeneity patterns for students who tend to game the system, neither of these condi-
tions fully mitigated the negative association between gaming the system behaviors and learning.
Similarly, delaying access to hints and feedback likely has a positive effect on students who tend
to game the system, yet not enough to fully outweigh the potential negative effects of gaming
behavior. Although we found evidence that some learning environments may provide marginal
benefits to students who tend to game the system, overall, more targeted interventions may be
necessary to reengage these students in the learning process so that they fully benefit from the
CBLPs’ content.

6.1. EFFECTS OF GAMIFICATION ON STUDENTS WHO GAME THE SYSTEM

Although neither gamified condition had positive effect differentials on students with a high
propensity to game the system, the interactions do provide some insight into how gamers tend to
respond to different gamified environments. The effect was likely consistent for one of the gam-
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ified conditions (DragonBox), regardless of students’ propensity to game the system, whereas
gamers in the other gamified condition (FH2T) experienced negative effects. This suggests that
gamification alone is not the only factor influencing students’ behaviors and outcomes. Previous
research on the relationship between gaming the system and gamification found that a gamified
version of a CBLP did mitigate the gaming behavior and positively impacted student outcomes
(Richey et al., 2021). In our study, the differences in heterogeneity patterns across platforms that
shared many features of gamification (e.g., performance-based feedback, multiple paths to solu-
tions, the ability to replay problems, and dynamic manipulation of equations) highlight that even
slight variations in how a program is gamified may be more important than whether a program
is gamified at all in terms of impacting students’ behavior and learning.

It is possible that FH2T did not benefit gamers because the goals are more abstract than tradi-
tional problems. Students needed to find the most efficient path to the solution by manipulating
the expressions and equations on the screen as opposed to submitting answers to traditional
problems. Furthermore, the evaluation system in the game is not delineated prior to playing and
is meant to be intuited by the students as they play. As previous research suggests that abstract-
ness and ambiguity may induce gaming behaviors (Baker et al., 2009), one possible explanation
is that students who are likely to game the system in the Immediate Condition become even
more frustrated by FH2T, causing them to disengage with the activity to a greater extent than
they would have in a traditional CBLP environment. This may explain in part why FH2T had
the greatest effects on students with the highest pretest scores (Decker-Woodrow et al., 2023),
who were the students who were least likely to game the system.

However, DragonBox had a likely consistent positive effect regardless of students’ propen-
sity to game the system, despite similar gamification features and a similar dynamic approach in
teaching students the concept of equivalency to FH2T. Yet some key differences between these
CBLPs may point to reasons for DragonBox’s effectiveness among gamers. First, DragonBox
allows students to engage with algebraic equivalency without interacting with traditional math
symbols. Second, the activity’s mathematical goal is embedded in a gamified narrative: freeing
the dragon from the box. Finally, students learn the game’s goals through animated interac-
tions before learning the algebraic principles. These elements may have alleviated tendencies
towards unproductive learning behaviors enough so that students benefited regardless of propen-
sity to game the system. More research is necessary to determine exactly why there were stark
differences in the effect trajectories between the two gamified conditions.

6.2. EFFECT OF ASSISTANCE ON STUDENTS WHO GAME THE SYSTEM

The positive interaction between students’ propensity to game the system and the Delayed Con-
dition indicates that the impact of on-demand hints and feedback on student performance in a
CBLP are heterogeneous. The differences in effects are likely attributed to how students use
assistance features. Those who exploit hints excessively or rely on trial-and-error methods to
complete assignments would potentially benefit from restricted or delayed access to immedi-
ate hints and feedback. Nevertheless, although on-demand hints and immediate feedback were
not available in the Delayed Condition, the decrease in performance associated with gaming
behavior was not completely mitigated. Therefore, these results suggest that while removing
on-demand instruction may assist students inclined towards gaming the system, further inter-
vention is likely required to fully alleviate the detrimental effects of such behavior and address
the behavior’s root causes.
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Delaying hints and feedback can be viewed as a proactive intervention targeting gaming the
system behavior. This approach, similar to others employed in previous research (Aleven et al.,
2006; Murray and VanLehn, 2005), uses a uniform approach for all students. The differential
effect observed for delayed condition supports Murray and VanLehn (2005)’s suggestion that
discouraging certain students from using hints may be beneficial for some students despite the
overall negative impact on the student population; however, it is notable that only a small mi-
nority of the most ardent gamers may have benefited from delaying hints and feedback access.

A possible approach to address the varying effects includes withholding instant hints and
feedback when students exhibit gaming behaviors, thus providing a focused corrective measure
to steer their attention back to learning from the task at hand. Such a strategy would preserve
the availability of real-time help for students who use the system appropriately while potentially
benefiting those who exploit the system whenever they engage with it properly. An adaptable
system like this could also lessen the damaging impact of manipulative behaviors by permitting
gamers to reap the benefits of both instant and delayed hints and feedback. Nevertheless, this
is unlikely to mitigate the antecedents of gaming fully without additional remediation. Further-
more, it is crucial to recognize that adopting this method could lead to feelings of frustration and
a loss of engagement in some students, making it important to further explore and validate these
ideas through additional causal research.

6.3. COMBINING DETECTION MODELS WITH FLPS

This study also illustrates the possible benefits of integrating detection and causal methods
within EDM to explore how systems should effectively respond after identifying certain be-
haviors or latent states. Using artificial intelligence for detection purposes in CBLPs often leads
learning experience designers to confront the dilemma of subsequent steps (for example, “Now
that we know a student is frustrated, what do we do?”). FLPS offers a solution by pairing
detector outputs with causal models to determine which program features may uniquely ben-
efit students with particular behavioral patterns. Although rule-based detection methods were
employed in our current investigation, future research could merge AI prediction systems with
FLPS to go beyond assessing student experiences and behaviors in CBLPs to identify optimal
alterations within these programs to boost their educational effectiveness.

7. LIMITATIONS & FUTURE DIRECTIONS

Although our findings suggest that the CBLPs’ impacts differ based on students’ tendencies to
game the system, it is important to acknowledge the limitations of this analysis. There remains
some uncertainty regarding whether the main and interaction effects in the model significantly
differ from zero. Overall, for the estimates we considered likely to be different from zero, there
was at most a 10% posterior probability that the true parameter had the opposite sign compared
to the estimate presented in this paper. Thus, it is important that future research substantiate
these findings to increase the certainty of their veracity.

Furthermore, while this study provides information about how students who game the system
in a traditional CBLP respond to alternative CBLPs, it does not fully illuminate why. The
patterns of effect sizes found here do not provide a simple principle for addressing gaming the
system behaviors. More research is necessary to understand why some interventions work well
for gamers whereas others do not.
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The current study also does not address whether gaming behaviors are consistent across
programs or whether the differential impact of these conditions is a function of changes in gam-
ing behaviors. Future work should consider whether students’ gaming behaviors are consistent
across programs. This could be done using causal mediation analysis to evaluate whether varia-
tion in gaming behavior mediates the relation between conditions and learning outcomes.

Another limitation of this study is that the FLPS results depend on the gaming detector’s
accuracy. If there are systematic errors in the gaming detector, those errors should be consid-
ered while interpreting the FLPS model results. For example, some students may be gaming the
system in principle but still have lower action rates. The Cognitive Model may not detect these
students, and their propensities to game the system may be underestimated. The effect hetero-
geneity does not apply to profiles of gamers who are not detected. Conversely, if students are
systematically misidentified as gaming, they will also be misidentified as part of gaming strata,
which may influence the heterogeneity effects.

Finally, it is important to acknowledge the constraints inherent to the use of FLPS. The
estimated impacts using FLPS heavily depend on the inherent quality of the model itself, and
it remains uncertain how inaccuracies in estimating the model could potentially lead to biased
outcomes. Future research should focus on gaining a more accurate understanding of how to
assess these models to confirm that they furnish impartial appraisals of intervention effects.

8. CONCLUSION

The study indicates that students who are likely to game the system respond differently to various
CBLPs, with none of the tested conditions fully mitigating the adverse effects of gaming the
system. Delayed access to hints and feedback potentially benefits such students; however, the
effect size was not large enough to outweigh the effect of their gaming tendencies on learning
completely. This highlights the need for targeted interventions to help these students fully benefit
from CBLPs’ content.

The studied gamified conditions produced inconsistent heterogeneity patterns—one (Drag-
onBox) showed a consistent effect regardless of gaming tendencies, whereas the other (FH2T)
indicated adverse effects for gamers despite the fact that these programs employed many similar
gamification methods. This emphasizes that how a program is gamified, rather than the mere
presence of gamification, might be key in influencing student behavior. It is possible that FH2T’s
abstract goals caused more student frustration and consequent disengagement for students who
were likely to game. On the other hand, DragonBox exhibited a positive effect independent of
the student’s propensity to game the system, possibly attributable to its emphasis on taking ab-
stract mathematical processes and teaching them through non-mathematical puzzles. However,
understanding the differences in heterogeneity patterns across the gamified conditions warrants
further research.

The promising interaction between students’ gaming tendencies and the Delayed Condition
suggests that restricting immediate hints and feedback for those gaming the system might be
effective at ameliorating some of the effects of gaming behaviors. Nevertheless, such a strategy
could lead to feelings of frustration and decreased engagement in some students. Consequently,
more research is necessary to validate these ideas and investigate further interventions.
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