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Experimental research on perception and cognition has shown that inherent and manipulated visual features 
of mathematics problems impact individuals’ problem-solving behavior and performance. In a recent study, 
we manipulated the spacing between symbols in arithmetic expressions to examine its effect on 174 
undergraduate students’ arithmetic performance but found results that were contradictory to most of the 
literature (Closser et al., 2023). Here, we applied educational data mining (EDM) methods to that dataset at 
the problem level to investigate whether inherent features of the 32 experimental problems (i.e., problem 
composition, problem order) may have caused unintended effects on students’ performance. We found that 
students were consistently faster to correctly simplify expressions with the higher-order operator on the left, 
rather than right, side of the expression. Furthermore, average response times varied based on the symbol 
spacing of the current and preceding problems, suggesting that problem sequencing matters. However, 
including or excluding problem identifiers in analyses changed the interpretation of results, suggesting that 
the effect of sequencing may be impacted by other, undefined problem-level factors. These results advance 
cognitive theories on perceptual learning and provide implications for educational researchers: online 
experiments designed to investigate students’ performance on mathematics problems should include a variety 
of problems, systematically examine the effects of problem order, and consider applying different analytical 
approaches to detect effects of inherent problem features. Moreover, EDM methods can be a tool to identify 
nuanced effects on behavior and performance as observed through data from online platforms. 
Keywords: experimental design, causal inference, bootstrapping, arithmetic, perceptual learning 
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1. INTRODUCTION 
Experimental work in cognitive science has informed theories, tool designs, and practice in 
education (e.g., Booth et al., 2017; Butler et al., 2014; Higgins et al., 2019). Notably, 
experimental research on perception and cognition related to Gestalt principles of grouping over 
the past decade has shown that changes to the visual presentation of mathematics problems 
impacts individuals’ behavior and performance on problem solving. The effects of Gestalt 
principles of grouping have been tested using color as a highlighter (e.g., 3 + 4 + 5 = 3 + __ 
where the equals sign is highlighted in red font; Alibali et al., 2018), superfluous brackets (e.g., 
7 + (6 * 3) – 2; Ngo et al., 2023), and spacing between symbols (e.g. 6*3  +  7 –  2 vs. 6  *  3+7–
2; Landy and Goldstone, 2007, 2010; Harrison et al., 2020). Collectively, this body of research 
has contributed to theories of perceptual learning (e.g., Gibson, 1969; Gibson, 1970; Goldstone 
et al., 2017; see Szokolszky et al., 2019 for a review) and the creation of tools and technologies 
that leverage perceptual cues to support mathematics learning (e.g., Graspable Math: Ottmar et 
al., 2015; Mathematics Imagery Trainer: Abrahamson and Trninic, 2015). In turn, these 
research-based technological tools provide fine-grain process data for researchers to examine 
student cognition and learning in online contexts through methods of educational data mining 
(EDM).  

The effects of spacing within mathematics notation on students’ performance has largely 
been replicated across institutions, age groups, and contexts. In general, students’ performance 
improves when viewing arithmetic problems with spacing that is congruent to the order of 
operations (e.g., 7*7 – 4) and decreases when viewing problems with incongruent spacing (e.g., 
7  *  7+4). For example, Landy and Goldstone (2007, 2010) found that participants were most 
accurate and quickest when viewing congruent spacing and least accurate when viewing 
incongruent spacing. This finding has been observed in school-aged children (e.g., Braithwaite 
et al., 2016; Harrison et al., 2020) as well as college students (Landy and Goldstone, 2007, 2010; 
Rivera and Garrigan, 2016). Like the original studies by Landy and Goldstone (2007, 2010), we 
conducted a computer-based, within-subjects experiment with undergraduates to test the effects 
of spacing within mathematical expressions on problem-solving performance. However, our 
conceptual replication and extension of these studies in an online experiment revealed no effect 
of spacing on college students’ overall accuracy and median response time simplifying order-
of-operations problems (Closser et al., 2023). Those findings prompted the current study to 
examine why the discrepancy between these experiments might have occurred from a 
methodological perspective and how differences in experimental design and data analysis affect 
interpretation. 

Consequently, this project highlights a methodological gap that is critical to fill in order to 
draw accurate conclusions and use perceptual learning to inform designs of educational tools, 
assessments, and practice. We posit that EDM can help fill this methodological gap with data 
analytic techniques that identify subtle, unintended effects within the context of online education 
experiments or datasets. By analyzing how instructional materials and study design decisions 
impact student performance, we will be able to identify potential factors that influence study 
outcomes, inform future research that considers these factors in their design and data analysis, 
and build upon theories of perceptual learning to advance research, leading to translational 
science and implications for classroom practice.  

Here, we use EDM methods to analyze the data from Closser et al. (2023) at the problem 
level to identify unintended effects on student performance at a granular level. Specifically, we 
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examine whether and how the problem features (i.e., higher-order operator position) and study 
design choices (i.e., interleaving problem types) impacted students’ response times. These 
findings contribute to perceptual learning theory and provide guidelines for interdisciplinary 
research in online educational contexts. 

1.1. PERCEPTUAL LEARNING IN MATHEMATICS 

Theories of perceptual learning posit that the ways in which individuals process sensory 
information (i.e., visual, auditory, olfactory, tactile) changes as they accrue experience and 
develop expertise in a given area (Gibson, 1969). For example, compared to novices, chess 
masters can quickly memorize and recreate valid board set ups because they are able to leverage 
structural patterns in the board to interpret the arrangement as a given time point in a game 
(Chase and Simon, 1973). How do experts develop this keen ability to recognize patterns in 
sensory information? Demonstrated in Gestalt principles of grouping, we tend to visually 
perceive whole objects or groups rather than individual items when possible, especially when 
items are close in spatial proximity or share a similar color or size (Wagemans et al., 2012; 
Wertheimer, 1938).  

Much of the research in mathematics learning has shown the connection between perception 
and reasoning using a variety of visual cues based on the Gestalt principles of grouping (e.g., 
spacing, color, symbol choice and arrangement; see Closser et al., 2022, for a summary). These 
cues primarily alter the appearance, but not the meaning, of mathematics notation to tease apart 
whether and how the presentation of instructional materials impacts student outcomes. For 
example, using color to highlight salient mathematics structures has been shown to improve 
equation-solving strategies (e.g., equal sign in equations; Alibali et al., 2018). Adherence to such 
Gestalt principles of grouping has been seen across multiple topics in mathematics such as 
arithmetic (e.g., Harrison et al., 2020), algebra (e.g., Lee et al., 2022b), and geometry (e.g., Chan 
et al., 2019). Together, the variety of perceptual cues and their effects on students across 
mathematics subjects demonstrate the potential breadth of implications for using perceptual cues 
for teaching and learning mathematics. 

In addition to the effects of perceptual features that only alter the problem appearance (e.g., 
color, spacing, superfluous brackets), students are also impacted by perceptual features of 
mathematics notation that are inherent to the problems themselves. For example, Chinese 
students differed in problem-solving speed depending on whether addition problems were 
presented with Arabic or Chinese numbers (Xinlin and Qi, 2003). Similarly, U.S. students used 
different strategies to solve algebraic problems that shared the same structure but presented in 
either variables (x + y – x) or numerals (4 + 6 – 4; Chan et al., 2022b). Liu and Braithwaite 
(2023) found that undergraduate students were more accurate on addition problems presented 
in decimals rather than fractions, but more accurate on multiplication problems when presented 
in fractions rather than decimals. Furthermore, undergraduate students (who demonstrated at 
least 80% accuracy on arithmetic problems) fixated sooner and longer on multiplication 
operators, as opposed to addition operators, in notation, suggesting that they might use 
multiplication operators as a signpost for where to start problem solving (Landy et al., 2008). 
Acknowledging that the perceptual features of mathematics content might affect student 
behavior and performance on tasks is necessary for interdisciplinary research on mathematics 
learning. Furthermore, as mastery in algebra may depend on the ability to quickly detect 
hierarchical structures of equations (e.g., higher order operators in order-of-operations 
problems; Marghetis et al., 2016), it is crucial to examine the factors that influence students’ 
ability to detect structures within problems. 
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1.1.1. Effects of Multiplication Operator Position 

Problem composition, such as the position of higher-order operators in arithmetic and algebraic 
expressions, impacts students’ performance. Specifically, when the mathematical content 
remains the same, students in the U.S. simplify expressions more accurately and efficiently 
when they can apply a left-to-right solving strategy (e.g., 7 * 7 + 4) than when they cannot (e.g., 
7 + 7 * 4; Bye et al., 2022; Ngo et al., 2023). For example, middle school students playing an 
online mathematics game were six times more likely to make an error on their first action when 
the problem structure did not allow for a left-to-right solving strategy (Bye et al., 2022). These 
findings support previous research showing middle school students’ tendency to solve problems 
from left to right, even at the risk of violating procedural rules like the order of operations (e.g., 
Kieran, 1979; Linchevski and Livneh, 1999; Norton and Cooper, 2001). Furthermore, they 
demonstrate students’ ingrained tendency to habitually read and solve problems from left to 
right without recognizing the hierarchical structures within problems (Chan et al., 2022b; Givvin 
et al., 2019), evidencing how students’ impulse to calculate follows the arrangement of the 
operators. 

Taken together, this work shows that students’ performance on arithmetic problems may be, 
at least partially, explained by the presentation of problems rather than solely dependent on 
problem difficulty and/or student knowledge. Furthermore, the presentation of problems extends 
beyond perceptual cues (e.g., spacing) to include the left-to-right arrangement of symbols (e.g., 
higher-order operator position). Even though prior studies have counterbalanced the operator 
position when testing the effects of symbol spacing (e.g., Landy and Goldstone, 2007), to our 
knowledge, no studies have directly examined the effects of spacing and operator position 
simultaneously to test their relative independent influences on problem-solving performance. 
Using data from Closser et al. (2023), which revealed findings inconsistent with the literature, 
we aim to test the effects of symbol spacing and operator position simultaneously as an attempt 
to unpack this inconsistency. Specifically, going beyond prior research using average 
performance across problems in an activity, we use the problem-level data to delineate the 
effects of two perceptual cues—symbol spacing and operator position—on students’ problem-
solving performance.  

1.2.  EFFECTS OF PROBLEM SEQUENCE AND NEGATIVE PRIMING 

In addition to perceptual features within problems, the sequential order of problems influences 
students’ mathematics performance and learning. It is well-established that interleaving, rather 
than blocking, information over time improves learning and memory (Ebbinghaus, 1913; 
Proctor, 1980). More specifically, findings from computational modeling suggest that blocking 
and interleaving each have a time and place in educational practice: blocked practice may be 
more effective for learning a skill whereas interleaving may be more effective for learning when 
to apply the skill (Li et al., 2013). However, the order in which problems are presented to 
students within educational research settings will likely depend on the study design (or design 
of the digital learning platform) and can contribute insights to the benefits of blocked vs. 
interleaving practice. For example, blocking arithmetic problems by equivalent sums (e.g., 2 + 
3 = 5, 1 + 4 = 5) rather than the addend (e.g., 2 + 3 = 5, 2 + 4 = 6) seems to support second and 
third graders’ understanding of mathematical equivalence (McNeil et al., 2012), as blocking 
draws attention to the similarities between problems (i.e., equal sum vs. same addend) whereas 
interleaving draws students’ attention to the differences between problems (Carvalho and 
Goldstone, 2014). 
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Many of the experimental studies examining the effects of spacing as a perceptual cue on 
students’ order-of-operations performance used a between-subjects design to compare the 
effects of congruent (6*3  +  7) vs. incongruent spacing (6  *  3+7; Braithwaite et al., 2016; 
Harrison et al., 2020; Jiang et al., 2014). This study design choice (i.e., blocking problems by 
participants) allows researchers to systematically test the effects of spacing cues, but prevents 
them from exploring any potential effects of problem sequencing on students’ problem-solving 
performance. The sequence of problems may impact students’ performance due to other 
problem-level features. For example, in (Harrison et al. 2020), we used a between-subjects 
design to test the effects of congruent, incongruent, neutral, and mixed spacing on 5th-12th 
grade students’ problem-solving performance. We found that students who solved problems 
with congruent or neutral spacing were significantly more accurate than students who solved 
incongruent problems. Interestingly enough, students in the mixed condition, who solved 
problems that varied between congruent, neutral, and incongruent spacing, displayed 
significantly lower accuracy than students in the congruent condition but descriptively higher 
accuracy than those in the incongruent condition. We interpret this to mean that measuring 
students’ average performance might not have accurately accounted for problem-level variance 
and might have washed out the effects of viewing different spacing conditions on students’ 
problem-level performance.  

In particular, the spacing effect may be impacted by how problems are sequentially presented 
to students and the influence of negative priming between problems. If an individual views a 
stimulus that is to be ignored in a task, followed by a stimulus that is not to be ignored, their 
accuracy and response time may suffer on the latter task (Neill, 1977; see (Frings et al., 2015) 
for a review). For example, when individuals are told to identify the center letter on screen, if 
they view “DSD” followed by “FDF”, they may be slower to respond to the second stimulus 
(Neill, 1997). This phenomenon is known as the negative priming effect. In order-of-operations 
problems, the perceptual cues in each problem may prime students’ attention and performance 
on the following problem. In particular, when students transition from solving problems with 
perceptual cues to ignore (i.e., incongruent spacing) to problems with perceptual cues to 
leverage (i.e., congruent spacing), their problem-solving performance may decrease. Students 
may be primed by the first problem to ignore the spacing on the second problem, then realize 
that the congruent spacing on the second problem indeed supports problem solving. This process 
of inhibiting the spacing cues then suppressing the initial inhibition may potentially slow down 
students’ response time on the second problem.    

We posit that the negative priming effect may explain our previous finding (Closser et al., 
2023) that, when order-of-operations problems with congruent vs. incongruent spacing were 
presented in a randomized order, college students were, on average, slower to correctly answer 
problems with congruent than incongruent spacing. In the previously reported analyses, we 
focused on conceptually replicating the spacing effects and exploring the role of inhibitory skills 
on students’ overall task performance; however, we did not explore the potential effects of 
multiplication operator position or problem sequence on students’ performance at the problem 
level. We consider the possibility that negative priming may contribute to the unexpected 
finding of longer response times on congruent vs. incongruent problems (Closser et al., 2023). 
Notably, effects of problem sequence have not been investigated in similar work on the spacing 
effect (e.g., Landy and Goldstone, 2007, 2010) and might identify conditions of the spacing 
effect. Leveraging EDM methodologies to uncover potential explanations for discrepancies in 
findings among the prior studies will yield guidelines for research that is necessary to inform 
instructional practice regarding how perceptual learning can facilitate problem-solving 
performance and learning. 
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1.3. DECODING PATTERNS IN MATHEMATICS PROBLEM-SOLVING USING 
EDUCATIONAL DATA MINING 

In exploring the application of EDM methods to the analysis of student performance in 
mathematics, we align with a growing body of research that underscores the potential of EDM 
in educational settings. Prior research has demonstrated how data-driven methods can help in 
deciphering patterns in student performance (e.g. Kumar, 2021) and aligning those patterns with 
cognitive and behavioral constructs (e.g. Botelho et al., 2019, 2022; Lee et al., 2022a).  

Research in digital learning platforms has resulted in numerous studies focused on the use of 
data to understand the processes of learning in addition to how they map onto learning outcomes. 
Baker et al. (2012), for example, explored how students’ interactions with arithmetic problems 
correlated with students’ depth of learning about math concepts. Koedinger et al. (2010) have 
similarly leveraged data-driven methodologies to understand students’ learning behaviors. More 
recent work by Gurung et al. (2021) specifically examined how students’ response time can 
provide insights into students’ cognitive engagement and consideration before approaching 
problem-solving tasks. Beyond this, additional studies in digital learning platforms have further 
explored the relation between problem presentation and student performance (Ostrow and 
Heffernan, 2014) as well as the importance of problem sequencing on student performance in 
mathematics (Beck and Mostow, 2008). 

Studies employing the use of data mining methodologies have additionally focused on 
aspects of students’ perceptual fluency. For example, Rau, Mason, and Nowak (2016) utilized 
a machine learning approach to predict student performance on visual representation tasks. 
Related work from Sen et al. (2018) examined sequence effects on students’ perceptual fluency 
using machine learning- and human expert-generated visual sequences in the context of 
chemistry. Few works, however, have investigated similar aspects of perceptual learning 
through the lens of data-driven methods. These related projects demonstrate the value and 
growing practice of leveraging EDM to derive insights into student learning, prompting the 
application of EDM to gain insights as to how study design choices influence student cognition 
when problem solving in online contexts. 

1.4. CURRENT STUDY 

Here, we examine whether the multiplication operator position affects students’ performance 
and whether there are any problem sequencing effects with symbol spacing during an online 
experiment. Together, these findings will help us tease apart when the effects of perceptual cues 
on students’ reasoning occur and provide methodological insights on how to design educational 
tools that effectively leverage these cues to impact learning. Going beyond prior work on 
student-level analyses, we use a multilevel approach to analyze the problem-level data from 
Closser et al. (2023) to answer the following questions: 

1. How does the position of the multiplication operator, in addition to symbol spacing, impact 
students’ problem-solving response time on order-of-operations problems? Given that students 
tend to demonstrate a left-to-right solving strategy, we hypothesize that students will 
demonstrate quicker response times on problems where the higher-order operator (i.e., 
multiplication) is on the left-hand side. These problems are conducive to a left-to-right solving 
strategy (e.g., 3 * 7 + 7) whereas problems with the multiplication on the right-hand side cannot 
be solved with a left-to-right solving strategy (e.g., 8 + 4 * 4). Given the literature on Gestalt 
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principles of grouping, we statistically control for spacing condition in order to more accurately 
estimate the operator position effects.  

2. How does the sequence of congruent vs. incongruent symbol spacing impact students’ 
problem-solving response time on order-of-operations problems? We hypothesize that students 
may demonstrate the quickest response times when they transition between problems with the 
same type of symbol spacing (i.e., from congruent spacing to congruent spacing or from 
incongruent spacing to incongruent spacing). Accordingly, we predict that students’ response 
times may be slower when they transition from congruent to incongruent problems, and the 
slowest when they transition from incongruent to congruent problems. We reason that if students 
were attending to perceptual cues throughout the experimental problems, and realized that some 
problems contained incongruent spacing, they may have engaged in a one- or two-step process 
to inhibit their impulse to calculate by following the spacing cues before correctly simplifying 
the expression. For example, if students were attending to the spacing cues in an incongruent 
problem, they would just need to suppress their initial instinct of performing operations 
following the incongruent spacing. If they subsequently viewed a congruent problem, they may 
have been primed to suppress their initial impulse to follow the spacing cue then realized that 
their initial impulse was correct, potentially taking longer to solve the problem. 

2. METHODS 
Plans for the online experiment were approved by our University’s Institutional Review Board. 
The experiment details and primary findings are reported in a separate OSF pre-registration and 
manuscript (Closser et al., 2023). The current analysis plan and our rationale are pre-registered 
on the Open Science Framework (https://osf.io/pcsyj). The cleaned data, code, and output are 
also shared on the project page (https://osf.io/uc5m9).  

2.1. PARTICIPANTS 

We recruited undergraduate students enrolled in one or more psychology courses at a private 
university in the northeastern U.S. through the university’s online participant pool for 
psychology experiments. Students were compensated for their time with partial course credit. A 
total of 233 students started the experiment and 195 completed the entire study. Of the 195 
students, 174 were included in the current research analysis, consistent with the prior report 
(Closser et al., 2023); the remaining students were excluded due to outlier performance (n = 16) 
or data logging errors (n = 5). Outlier performance was determined as three or more standard 
deviations above or below the mean on any experimental task (i.e., Stroop task and/or the 
experimental problems). 

Of the 174 students, 173 students reported their age (M = 19.48 years, SD = 1.50, Min = 17, 
Max = 27) and 172 students reported their year in school. A total of 57 (33%) students reported 
being in their first year at the university, 43 (25%) in their second year, 34 (20%) in their third 
year, 32 (19%) in their fourth year, and two (1%) students in their fifth year. One student 
reported being in high school and three students reported “other”. Additionally, 171 students 
shared their gender: the sample included 95 (56%) females, 68 (40%) males, seven (4%) non-
binary participants, and one agender participant. 

90 Journal of Educational Data Mining, Volume 16, No 1, 2024



 

2.2. EXPERIMENTAL DESIGN AND PROCEDURE 

The experiment was programmed using Psychopy and administered through Pavlovia, an online 
platform for behavioral data collection. After logging into SONA (a study and participant 
management system), students clicked a URL link to complete the study in a web browser on 
their personal devices. In the 30-minute experiment, students first completed a version of the 
Stroop task designed to assess inhibitory control. Following that task, students completed a total 
of 48 order-of-operations problems, presented individually with a text box below the problem 
for students to enter their answer. Students were instructed to find the answer and type their 
response into the text box as quickly and accurately as possible, then click “Next” to advance to 
the next problem without receiving correctness feedback. The first 16 order-of-operations 
problems were presented with neutral spacing (e.g., 4 * 3 − 10), serving as a baseline measure 
of students’ arithmetic performance. Next, students completed 32 experimental problems that 
were presented with congruent spacing (16 problems; e.g., 4*3   −  10) or incongruent spacing 
(16 problems; e.g., 4  *  3−10) in a predetermined, randomized order. At the end of the session, 
students were asked to report their age and gender. Aligned with our current research questions, 
we only examined students’ performance on the 32 experimental problems, as described below 
(see detailed description of the full study in Closser et al., 2023).  

We carefully designed the 32 experimental problems using the following rules. Each problem 
included two operators: multiplication and either addition or subtraction. For half of the 
problems within each type (congruent or incongruent spacing), multiplication was positioned 
on the left side of the expression, and addition (e.g., 3 * 5 + 7; four problems) or subtraction 
(e.g., 6 * 2 − 8; four problems) was positioned on the right side of the expression. For the other 
half of the problems, multiplication was positioned on the right side of the expression, and 
addition (e.g., 3 + 5 * 7; four problems) or subtraction (e.g., 6 − 2 * 8; four problems) on the left 
side of the expression. The numbers in each problem include one small (1, 2, or 3), medium (4, 
5, or 6) and large (7, 8, or 9) one-digit value; each value was systematically varied in their 
position from the left to right (e.g., 2 * 4 + 7). The correct answer on all problems were integers 
ranging from −53 to 50. None of the problems were identical so students would not be able to 
recall an answer from a previous problem within the study (see Appendix A for the full list of 
problems). 

We interleaved, rather than blocked, the congruent and incongruent problems to avoid the 
possibility that the participants might form a rule for using or ignoring the symbol spacing for 
the entire block of problems. Our rationale for using a predetermined, rather than a fully 
randomized, problem order were to (a) ensure that the same problem type (e.g., left 
multiplication operator position, incongruent spacing) did not appear consecutively for more 
than two trials, and (b) minimize potential between-subject variability as we addressed the 
primary goal of the original study—effects of spacing and inhibitory control on students’ 
arithmetic performance.  

2.3.  APPROACH TO ANALYSIS 

Our approach to analysis was informed by prior findings from the experiment demonstrating 
students’ high performance across problems (Closser et al., 2023). In the initial analyses, we 
found that students’ accuracy for congruent (M = .94, SD = .08) and incongruent (M = .94, SD 
= .07) problems was consistently high with low variance. Furthermore, students took an average 
of 5.52 seconds to answer each problem, suggesting that they followed the instructions to 
quickly solve the problems. They took slightly longer to provide a correct response to congruent 
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(M = 5.63 seconds, SD = 1.35) vs. incongruent problems (M = 5.41 seconds, SD = 1.48). To 
further explore the potential effect of operator positions and the unexpected spacing effect 
contrary to the existing research, we observed students’ problem-solving response time as our 
focal variable in the current analysis. Although the previously reported findings focused on 
outcomes at the student level (i.e., average accuracy, median response time), here we used 
problem-level outcomes (i.e., problem response time) to detect any potential nuanced effects of 
study stimuli and design choices on students’ performance.  

It is important to acknowledge that the distribution of response time data often follows an 
exponential decay curve (e.g., most response times are low with a small number of larger 
response times creating a tail in the distribution). As this may violate normality assumptions of 
traditional linear regression models, we examined these distributions in a preprocessing step to 
test for normality. The response time measures were found to violate normality assumptions for 
inclusion in linear regression models, so we applied a log transform to these measures before 
standardizing them using z-scoring for all reported analyses. 

The approach to analysis for Research Question 1 and Research Question 2 follow our pre-
registration with the exception of excluding an intercept in the analyses to aid interpretation (see 
Appendix B for the preregistered analyses including an intercept). Additionally, the results from 
the analysis for Research Question 2 prompted us to conduct an exploratory analysis that was 
not pre-registered and is described below.  

2.3.1. Research Question 1: Effects of Higher-Order Operator Position 

To address Research Question 1, we conducted a regression analysis in conjunction with a 
bootstrap-sampling method. The regression analysis observed the response time of the sampled 
problem for each student as the dependent variable. As independent variables, we observed the 
position of the multiplication operator (left or right) while also accounting for the specific 
problem that was sampled (the problem identifier) as a dummy-coded categorical variable, 
included as a fixed effect. Because the problems systematically varied in congruent vs. 
incongruent spacing and previous research has demonstrated the spacing effect on students’ 
performance, we included the spacing type of the current problem represented as a dummy-
coded variable. Since we included problem identifiers as a fixed effect, we ran our regression 
analysis without calculating an intercept (i.e. Eisenhauer, 2003); the positive problem indicator 
took the place of the intercept for each sample, allowing us to examine the coefficients of each 
of our variables of interest relative to each other rather than to a reference category. Given that 
prior research has shown minimal difference in results interpretation when incorporating group-
level variables as fixed effects versus random intercepts, provided that group-level variance is 
adequately addressed through one of these methods (Closser et al., 2024), our choice to account 
for problem-level effects through fixed effects is further justified. 

We implemented a bootstrap-sampling method (i.e., a method of repeating a sampling-with-
replacement process and then averaging results over all iterations) because students in the study 
experienced all of the problems in the same order and the order of the problems may interact 
with shared variance at the student level when observing problem-level covariates. Accounting 
for such effects across all problems completed by all participants within a regression analysis 
would be difficult due to the confounding nature of student- and problem-level measures; 
alternative approaches, such as a repeated measures analysis using a multi-level model, may 
help account for some of these confounders but also imposes distributional assumptions over 
the variables and relationships that are not necessary when using bootstrapping (Lunneborg and 
Tousignant, 1985). For this reason, we used bootstrapping to account for sequence-based 
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confounders by randomly sampling a single problem for each student to conduct a regression 
analysis. The process was then repeated, sampling with replacement, such that we replicated our 
analysis 1,000 times where each individual analysis observed only one problem per student. For 
each sample, each student problem had equal likelihood of being selected for inclusion in the 
respective regression, then the sampled data was filtered down to include only problems that 
were answered correctly. We focused on the problems to which students responded correctly 
and excluded the problems to which students responded incorrectly (average 6% of problems 
across students) in order to accurately capture the effects of operator position on students’ 
problem-solving response time. Averaging the results of this regression analysis over all 1,000 
iterations provided mean estimates of coefficients for our independent variables of interest as 
well as confidence bounds for such estimates (for hypothesis testing, as per any traditional 
regression analysis). By incorporating randomization into this sampling method, the impact of 
the problem order was removed without necessitating more complex model structures or 
additional modeling assumptions. 

2.3.2. Research Question 2: Sequence Effects 

To address Research Question 2, we observed random problem pairs from each student. We 
observed response time on the second problem in the sampled pair as our dependent variable 
and the spacing sequence represented as a dummy-coded categorical variable. For example, if 
the first problem in the pair was an incongruent (IC) spacing problem and the second was 
congruent (C), this sequence was represented as “IC-C”, with all other combinations represented 
following the same convention (C-C (congruent problem followed by congruent problem; n=5), 
IC-IC (incongruent problem followed by incongruent problem; n=6), C-IC (congruent problem 
followed by incongruent problem; n=10), IC-C (incongruent problem followed by congruent 
problem; n=10)). We also controlled for the response time on the first problem in the pair and 
the specific problem pair as a fixed effect (e.g., for the pair of Problems 2 and 3, the pairing of 
2-3 was represented as a dummy-coded categorical variable and included in the model as a fixed 
effect). As the focus of the analysis, we observed how the response time on the latter problem 
in the pair varied across the four different spacing sequence categories (i.e., IC-C, C-C, C-IC, 
IC-IC).  

We followed a similar regression- and bootstrapping-based approach as in Research Question 
1, but sampled pairs of problems, rather than individual problems, for each student. For each 
bootstrapping sample, each pair of problems within each student had equal likelihood of being 
selected for inclusion in the respective regression, then the sampled data were filtered down to 
include only those selected pairs where both problems were answered correctly. We again fit 
the regression model without an intercept to make more direct and interpretable comparisons 
between our variables of interest. 

2.3.3. Exploratory Analysis 

In addition to our pre-registered analysis plan, we conducted a set of exploratory analyses to 
examine whether the inclusion or exclusion of problem and problem pair identifiers as a fixed 
effect in the models affected the coefficient estimates and interpretation of results. We 
rationalized that there may be unique aspects of each problem that could interact with, or 
confound, our variables of interest in unexpected ways. As there are a relatively small number 
of problems in the study and all students viewed the problems in the same order, we initially 
decided to include the problem identifiers as fixed effects rather than attempt to estimate 
clustered variance at a problem-level using random effects. For the exploratory analysis, we 
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used a stepwise regression approach and re-introduced an intercept into each of the regression 
models but removed the problem and problem pair identifiers corresponding with the analyses 
for RQ1 and RQ2, respectively. If we were to find notable differences in the results after 
removing problem and problem pair identifiers, this would suggest that the results may be 
partially dependent on problem-level attributes beyond those that are accounted for by the 
higher-order operator position and sequence of spacing congruency.  

3. RESULTS 
The results of each analysis are described in alignment to each of our research questions. 
Although our choice to use log and z-score transformations on our dependent response time 
variables should be considered when interpreting the reported regression coefficients, we also 
present a format of our results that apply an inverse transformation to allow for comparisons of 
estimates in seconds. 
 

3.1.  RESEARCH QUESTION 1: EFFECTS OF OPERATOR POSITION 

Table 1: The bootstrapped regression results observing transformed response time as the 
dependent variable and multiplication placement and spacing congruency as independent 
variables. 

 𝛽 95% CI Inverse 
Transform  
𝛽 (s) 

Adjusted 
95%  
CI (s) 

Multiplication Left -0.205 [-0.233, -0.178] 4.94 [4.87, 5.00] 

Multiplication Right 0.157 [0.124, 0.189] 5.91 [5.81, 6.00] 

Incongruent 
Spacing 

-0.21 [-0.245, -0.174] 4.92 [4.84, 5.01] 

Congruent Spacing 0.21 [0.174, 0.245] 6.06 [5.96, 6.17] 
Note: CI: confidence interval. (s): seconds. The right-most columns provide an inverse 
transformation of the coefficient estimates as a measure of seconds to contrast the standardized 
coefficients reported in the left-most columns. Problem identifiers were also included as 
covariates in the regression but were excluded from this table to maintain the conciseness of the 
table. 

 
Table 1 reports the results of the bootstrapped regression analysis to address our first research 
question regarding operator position. From this table, we see that all variables were found to be 
statistically significant predictors of response time. Lower values of response time indicate a 
faster response and the reported coefficients are standardized in the left of Table 1; the right side 
of the table reports the same coefficients and 95% confidence intervals for each variable with 
an inverse set of transforms applied so as to compare each in measures of seconds.  

The results indicate that when multiplication was on the left side of the expression, students 
exhibited faster response times than when the multiplication was on the right. The coefficient 
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of -0.205 equates to response times that were approximately 0.97 seconds faster than when 
multiplication was on the right side of the expression (i.e., comparing 4.94 seconds when 
multiplication is on the left to 5.91 seconds when on the right). Similarly, when controlling for 
multiplication operator position, students were faster when the problem presented incongruent 
as opposed to congruent spacing, replicating the prior results (Closser et al., 2023).  

Although not the focus of this study, we acknowledge that the regression model issued 
convergence warnings in estimating the incongruent and congruent spacing variables due to 
issues of identifiability while controlling for all other factors. Although we are able to conclude 
that students exhibited faster response times on problems with incongruent versus congruent 
spacing, we cannot make strong claims in regard to the magnitude of this difference.  

3.2. RESEARCH QUESTION 2: EFFECTS OF PROBLEM SEQUENCING 

Table 2: The result of the bootstrapped regression observing pairs of problems with transformed 
response time as the dependent variable, spacing congruency within the problem pair as 
independent variables, and response time on the prior problem as a covariate. 

 𝛽 95% CI Inverse 
Transform 𝛽 (s) 

Adjusted 
95% CI (s) 

Prior Response Time 
(Transformed) 

0.332 [0.326, 0.337] — — 

Congruent to Incongruent -0.397 [-0.420, -0.374] 4.49 [4.44, 4.54] 

Incongruent to Congruent -0.078 [-0.102, -0.053] 5.26 [5.20, 5.32] 

Incongruent to Incongruent 0.244 [0.215, 0.273] 6.17 [6.08, 6.26] 

Congruent to Congruent 0.346 [0.315, 0.376] 6.49 [6.39, 6.59] 

Note: CI: confidence interval. (s): seconds. The right-most columns provide an inverse 
transformation of the coefficient estimates as a measure of seconds to contrast the standardized 
coefficients reported in the left-most columns. Problem pair identifiers were also included in the 
regression but were excluded from this table. 
 
Table 2 reports the results of the bootstrapped regression analysis to address our second research 
question regarding sequencing effects. With the removal of an intercept, statistical significance 
(at p < .05) can be determined by non-overlapping 95% confidence intervals. All of the variables 
emerged as statistically significant predictors of student response time. As to be expected, 
students with slower response times on the first problem of the sampled problem pair exhibited 
slower response times on the subsequent problem. In observing the four categories describing 
the spacing sequence over the pair, transitioning from congruent to incongruent (C-I) spacing 
correlated with the fastest response times. Conversely, students exhibited the slowest response 
times when exposed to congruent-to-congruent (C-C) problem sequencing. The comparison of 
these response times across each of the spacing sequence categories is illustrated in Figure 1a. 
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Figure 1: The comparison of response times with respect to the four spacing congruency 
categories in alignment with the analysis conducted to address our second research question (a), 
as well as the comparison resulting from our exploratory analysis (b). Note: The y-axis has been 
shifted to allow for more direct comparisons across each plot. 

3.3. EXPLORATORY ANALYSIS RESULTS 

Removing the problem identifiers and re-introducing an intercept to the regression analysis to 
address our first research question led to similar results and interpretations as the original 
analysis. When the multiplication operator was on the left, students exhibited faster response 
times as compared to when the operator was on the right. Additionally, the same effects of 
congruent spacing emerged in this analysis as those reported above: students exhibited faster 
response times on problems with incongruent, as compared to those with congruent, spacing. 
These similarities indicate that the inclusion or exclusion of problem identifiers as fixed effects 
had a low impact on the results and no impact on our interpretation (see details in Appendix C). 

However, in the exploratory analysis addressing our second research question, there were 
notable differences when removing the problem pair identifiers and re-introducing an intercept 
to the regression; this is illustrated in Figure 1b. Although, rather unsurprisingly, prior response 
time maintained the same positive relation with response time on the second problem in the pair, 
the effects of congruency sequence did change. When the problem identifiers were removed, 
the incongruent-to-incongruent (IC-IC) spacing sequence category was associated with the 
fastest response times. Conversely, the incongruent-to-congruent (IC-C) category exhibited the 
slowest response times. 

Given that there were seven congruent problems in the first half of the task and nine 
congruent problems in the second half of the task, the slower response time observed on 
congruent problems might have been associated with student fatigue over time and the problem 
order within the task. This speculation was not supported by Figure 2 which visualizes the 
average response time per problem. Contrary to the speculation, there is a slight trend toward 
faster response times on later trials, but this trend is not statistically significant, suggesting that 
problem order could not explain the pattern of results on symbol spacing. 
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Figure 2: The mean response time in seconds by problem number for all students. 

4. DISCUSSION 
Although a large body of evidence has suggested that children and adults alike are susceptible 
to the influence of perceptual cues created by altering the space between symbols in mathematics 
notation (Braithwaite et al., 2016; Harrison et al., 2020; Landy and Goldstone, 2007a; 2010; 
Rivera and Garrigan, 2016), our previous finding on undergraduates’ problem-solving accuracy 
and average response time did not replicate the effects of spacing cues (Closser et al., 2023). 
That discrepancy prompted us to explore the data from Closser et al. (2023) at the problem level 
to analyze how the (a) higher-order operator position, and (b) sequential order of experimental 
problems, might have impacted students’ performance. Three main findings emerged. First, 
undergraduates displayed faster response times on problems that showed the multiplication 
operator on the left, rather than right, side of the expression. Second, students varied in average 
response times based on the spacing sequence between two problems, suggesting that 
sequencing mattered. Third, accounting for or excluding problem pair identifiers in analyses 
changed the interpretation of results, suggesting that the effect of sequencing might be impacted 
by other problem-level factors. Together, these results suggest that aspects of the materials and 
study design had nuanced effects on undergraduates’ performance. In the following sections, 
we discuss plausible explanations for these findings, their contributions to research on 
perception, cognition, and learning, and their implications for education research conducted 
with mathematics content.  

4.1.  EFFECTS OF OPERATOR LOCATION: SOLVING FROM LEFT TO RIGHT 

Consistent across all analyses, undergraduate students demonstrated significantly faster 
response times when simplifying expressions with the multiplication operator in the left-, rather 
than right-hand, position. On average, participants were approximately a second quicker to 
simplify expressions with the multiplication operator positioned on the left vs. on the right. 
Relative to the average response time around five seconds, the results suggest that there is a 
16% reduction in students’ problem-solving time when exposed to problems with the higher-
order operator positioned on the left versus right. This finding supported our hypothesis as well 
as prior work (e.g., Bye et al., 2022; Kieran, 1979; Linchevski and Livneh, 1999; Ngo et al., 
2023; Norton and Cooper, 2001). Furthermore, these findings are well-aligned with a body of 
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evidence showing that students tend to start performing arithmetic calculations from left to right 
in childhood and continue using this strategy even when it may be invalid or inefficient down 
the road in arithmetic or algebra. 

This behavior (simplifying from left to right) displayed at the undergraduate level may be 
partially attributed to students’ early experiences in mathematics education. Although 
unintended, facets of early mathematics education in the U.S. incidentally promote the 
misconception that mathematics is a series of calculations to be performed from left to right 
(like reading in English), culminating when students reach the equals sign as their cue to 
“calculate” or “total” the terms (e.g., 5 + 2 = __; McNeil et al., 2006). Consequently, these 
operational routines become ingrained in students’ understanding of mathematics early on and 
make students more resistant to changing their problem-solving strategies and interpretation of 
concepts like the equals sign (McNeil, 2008). McNeil and Alibali (2005) demonstrated this 
connection between students’ problem-solving behavior and knowledge in elementary school 
as well as at the undergraduate level. Specifically, they found that elementary students’ with a 
stronger adherence to operational patterns of solving arithmetic problems (e.g., performing all 
operations on all numbers within an equation) were less likely to learn from a lesson on 
equations. To take this a step further, they then manipulated whether undergraduates’ 
knowledge of these operational patterns was activated. They found that those whose knowledge 
of the operational patterns was activated were less likely to use correct equation-solving 
strategies, demonstrating the hindrance of operational patterns of problem solving. In sum, this 
body of work demonstrates how students’ performance on basic arithmetic equations can be 
influenced by, and reflect, their knowledge of incorrect strategies that were likely accrued in 
elementary school.  

Here, we posit that one plausible explanation for students’ tendency to solve problems 
quicker when they could perform calculations from left to right is that this strategy is entrenched 
in students’ problem-solving routines from years of experience. This finding is particularly 
interesting given the sample and mathematics content: college students’ problem-solving speed 
was impacted by operator position even though they were facing content taught in elementary 
and middle school. This result suggests that the left-to-right solving strategy may persist into 
adulthood even for learned skills in mathematics (i.e., simplifying order of operations 
expressions). Given that repeated practice opportunities in online settings increase students’ 
problem-solving accuracy (Koedinger et al., 2023), these findings with college students suggest 
that online instructional content should include a variety of problem formats with different 
higher-order operator position so that students receive sufficient practice and feedback beyond 
the left-to-right calculation format.  

There may also be some sort of interaction between students’ tendency to simplify 
expressions from left to right and their tendency to use the higher-order operator as a perceptual 
cue to direct their attention when simplifying expressions. Landy et al. (2008) have found, 
through an eye-tracking study, that undergraduate students fixated sooner and longer on 
multiplication operators than addition operators, suggesting students’ tendency to attend to the 
higher-order operator. Furthermore, Egorova et al. (in press) found that undergraduates were 
quicker to fixate on the higher-order operator when it was on the left side, instead of center or 
right side, of expressions, suggesting the influence of the position of the higher-order operator. 
Their participants were also more accurate and quicker to respond on these items, consistent 
with our finding that participants were faster to correctly respond to problems with the 
multiplication operator on the left, instead of right, side of the expression. Together, these 
findings support the theory that students use the higher-order operator as a perceptual cue to 
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guide their attention in expressions, and their performance benefits from viewing expressions 
with the higher-order operator positioned on the left.  

These findings have implications for educational researchers to take into consideration when 
designing experimental or instructional arithmetic problem sets for students. In particular, 
materials should include expressions or equations that strategically vary the position of the 
higher-order operator. Researchers should also account for the validity of left-to-right 
calculations in data analysis. Furthermore, these findings directly prompt future educational 
research. If undergraduates display rigid problem-solving strategies that may have emerged 
earlier in their formal education experience (such as performing calculations from left to right), 
future studies should employ a developmental approach to investigate whether and how 
students’ problem-solving strategies shift across age and contexts, and the role of perceptual 
problem features over time. Learning technologies may be able to provide large-scale cross-
sectional data to compare student performance on online activities with varied problem features 
across different ages and/or grade levels.  

4.2.  EFFECTS OF SEQUENCING AND NUANCED PROBLEM FEATURES 

Compared to the robust and consistent effect of operator position, the priming effects of symbol 
spacing as examined through the problem sequence was less clear. To determine whether the 
sequential order of problems impacted students’ performance, we investigated how response 
times varied when students transitioned between problems with congruent and/or incongruent 
spacing. Our primary results (including problem identifiers as a fixed effect) show that students 
displayed the fastest response times when transitioning from congruent to incongruent (C-IC) 
spacing problems. Conversely, students displayed the slowest response times when transitioning 
from congruent to congruent (C-C) spacing problems. However, in our exploratory analysis 
(excluding the problem identifiers), we found that students displayed the fastest response times 
when transitioning from problems with incongruent to incongruent (IC-IC) spacing, and the 
slowest response times when transitioning from problems with incongruent to congruent (IC-C) 
spacing.  

The exploratory finding somewhat aligns with our initial hypotheses grounded in the negative 
priming literature (Frings et al., 2015; Neill, 1997): students’ response times may be the slowest 
when solving congruent problems immediately after solving incongruent problems and the 
quickest when they transition between problems with the same type of perceptual cues. These 
sequencing effects, however, do not persist when we include the problem identifier in our 
primary analysis, suggesting that these effects may not be robust and other problem factors may 
be at play. Given the inconsistent findings, we are reluctant to conclude that the sequence of 
problems may explain the unexpected results of slower response time on problems with 
congruent vs. incongruent spacing reported by Closser et al. (2023). Nevertheless, the current 
findings offer some practical considerations for research. 

As we found no differences in interpretation for our first research question when including 
(primary analysis) vs. excluding problem identifier (exploratory analysis), it is unlikely that 
content-related confounders alone impacted the results. Instead, we see differences between our 
primary and exploratory results only regarding those analyses addressing our second research 
question on sequencing effects. As there were slightly more congruent problems in the second 
half of the task (nine problems) compared to the first half (seven problems), student fatigue is 
one potential explanation for the slower response times when transitioning to congruent 
problems. However, plotting the overall mean response times by problem showed that response 
times varied by problem with no evidence of fatigue across the duration of the experiment. 
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Instead, there was a slight overall trend toward faster response times from start to finish of the 
task. Such a trend may conversely indicate learning, offering another potential explanation for 
the difference between our pre-registered and exploratory results. However, this trend is not 
statistically significant so there is insufficient evidence to conclude that either fatigue or 
unmeasured learning are attributable to our findings. 

The findings suggest that aspects of the problem (that are not measured here) impact the 
relations between the spacing sequences and student response times. These unmeasured aspects 
may include, for example, differences in problem difficulty or interactions between the 
magnitude, position, or combination of numbers within each problem. In this study, it is difficult 
to tease apart the impact of these factors as all students experienced the same problems in the 
same order and the study included a limited number of problems for analysis. Therefore, it is 
unclear whether these results would replicate in other contexts with a different set or ordering 
of problems. However, it is clear that research on perceptual learning in mathematics, and other 
interdisciplinary research on mathematics problem solving, should consider the affordances and 
challenges of using a within-subjects study design. Furthermore, whether using experimental or 
naturalistic data from online settings, researchers should consider analysis choices that account 
for unintended effects of mathematics content such as the problem features and ordering.  

Critically, if the primary results reported in Closser et al. (2023) had aligned with related 
work and our hypotheses, we likely would not have thought to investigate nuanced effects of 
problem features at the problem level. The current results highlight the necessity of being wary 
of drawing conclusions from relatively small datasets, particularly when minute, unmeasured 
factors might influence the results. In sharing this narrative, we demonstrate how applying EDM 
approaches to experimental datasets can supplement primary analyses and delineate potential 
effects of study design choices to draw more accurate conclusions about student behavior, 
performance, and learning. Especially since EDM is commonly applied to data from naturalistic 
settings, not necessarily experimental data, this study serves as an interdisciplinary example of 
how EDM methods can help researchers in related fields probe vast amounts of data to 
investigate causal effects, or limitations of causal inference, beyond traditional quantitative 
analyses.  

4.3.  LIMITATIONS 

This study had two main limitations that may guide decisions in future research. First, the study 
only included 32 experimental problems completed by a relatively narrow sample of students. 
The small sample size at the problem level limited our ability to reliably estimate the effects in 
the current analyses. Similarly, the students included in the sample were all high performing, 
with little variance in accuracy and response time. It is unsurprising that there was little variance 
in undergraduates’ performance on arithmetic content as that content is likely to be covered in 
elementary and middle school mathematics education. The original intention of the experiment 
was to detect spacing effects that were not contingent on the problem difficulty; however, the 
limited variance in performance restricted our ability to detect effects of problem features. We 
also note that using the participant pool of students from a private university limits the 
generalizability of these results. However, using such samples is typical in psychological 
research. This project demonstrates how educational data mining methods, such as 
bootstrapping, can supplement data analysis for online experiments and, conversely, how 
experimental data can inform analysis decisions with educational data from similar contexts.  

Second, all participants saw the predetermined randomized sequence of problems in the same 
order, which is a common practice in classrooms and some research studies. However, as 
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opposed to presenting problems in a completely randomized order unique to each student, this 
approach might have created some bias in our study (Čechák and Pelánek, 2019). As shown 
through the series of analyses including vs. excluding problem pair identifiers as a fixed effect, 
the particular problems and their order within the study likely influenced the pattern of results. 
In designing the experiment, we had intentionally counterbalanced the multiplication position 
across problems, the use of addition vs. subtraction operators, and the magnitude of each one-
digit number used in the problems. Although we specifically accounted for problem identity and 
order in the current analysis, using a predetermined problem sequence limits the conclusions we 
are able to draw. It is possible that these or other problem features not examined or modeled in 
the current analyses explain the pattern of results we observed. With only a small number of 
experimental problems, we were not able to account for all of the possible effects of problem 
features and ordering. The outcomes of this study design do align with simulated experiments 
demonstrating item ordering biases (Čechák and Pelánek, 2019) and provide an example of item 
ordering biases using real student data from an online experiment. 

4.4.  IMPLICATIONS FOR FUTURE RESEARCH AND EDUCATION 

Based on these limitations, future studies aimed at investigating the effects of perceptual features 
within mathematics problems should include more problems with a variety of structure (e.g., 
problems varying in number magnitude and composition) and fully randomize the problem 
order for each participant. Additionally, modifying the study stimuli or diversifying the study 
sample so that participants are more challenged by the mathematics content should provide more 
variance in the data. Doing so will provide additional insights into whether, when, and how 
much these seemingly irrelevant features impact students’ performance on mathematics 
problems.  

The current study does not directly provide implications for educational practice but does 
provide methodological guidelines on how to design and test online instructional materials for 
K-12 mathematics education. Here, we measured participants’ response times on a single-
session experiment with no intention of seeing improvement since participants never received 
any instructional support or performance feedback. The results show that nuanced problem 
features do impact students’ response times; therefore, such features should at least be controlled 
for when designing and testing educational materials in online settings to appropriately support 
causal inference related to student performance. 

As more education research is conducted in online learning platforms, performance metrics 
such as response times can serve as proxies for constructs that go beyond correctness to capture 
performance across different time scales (e.g., Chan et al., 2022a), such as procedural fluency, 
a major goal in national mathematics education in the U.S. (Swafford and Kilpatrick, 2002; 
Loewenberg, 2003). Looking ahead, these results will inform our methodology to develop and 
test online mathematics materials for K-12 education that use perceptual cues in worked 
examples as a form of scaffolding to support math learning in earlier grades. More broadly, 
educational researchers investigating students’ behavior, mathematics performance, or learning 
from online log files should consider using design and analysis choices that acknowledge the 
effects of operator position, problem sequencing, and other nuanced features that might not be 
the focus of research but could impact results and interpretation. 

Finally, as the field pushes towards creating solutions for education that leverage artificial 
intelligence, this project exemplifies how students’ online problem-solving performance is 
driven by interactions that are interpretable by human researchers but remain too complex for 
artificial intelligence systems that are unable to connect educational data with students’ 
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sensorimotor experiences and sociocultural contexts (Nathan, 2023). Echoing Nathan (2023), it 
is critical to augment automated and artificial intelligence solutions for education with human 
interpretation, necessitating interdisciplinary approaches that intertwine human sense-making 
and computational advances to understand student behavior. For example, the EDM methods 
here allow us to bootstrap the sample and model the dataset in various ways fairly quickly; 
however, human judgments are needed to determine appropriate analytical methods and 
interpret results based on theory and an understanding of the context in which the study is 
situated. 

5. CONCLUSION 
This manuscript describes a pre-registered analysis plan that leveraged EDM techniques, 
specifically a bootstrapping sampling method with regression analysis, to investigate the effects 
of problem-level features that may explain undergraduate students’ performance simplifying 
arithmetic expressions in an online experiment. We found that students were consistently 
quicker to correctly simplify expressions when they could perform calculations from left to 
right, conceptually replicating prior research demonstrating students’ left-to-right solving bias 
in mathematics. Furthermore, the order in which students viewed problems affected their 
performance, and other problem features unaccounted for in the current analyses might have 
also impacted performance. These findings indicate that research on problem solving and 
perceptual learning in mathematics should deliberately balance, and control for, features of 
study stimuli that could inadvertently affect outcome variables. These features may include the 
operator positions within problems and the sequential order of problems across an experiment. 
Namely, we recommend that future related research (a) includes problems that vary in 
composition and other characteristics, as well as (b) randomizes the problem order or leverages 
study design and data analysis approaches to systematically investigate these variables. 
Following these guidelines, researchers should also apply similar approaches with existing data 
in online platforms to inform mathematics education research and the development of tools that 
effectively improve students’ mathematics problem solving. 
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7. APPENDICES 

7.1.  APPENDIX A: EXPERIMENTAL PROBLEMS 

Table A1: Experimental problems and features. 

Order Problem Answer 
Multiplication 
Position 

Spacing 
Congruency 

Spacing 
Sequence 

Mean Response 
Time (seconds) 

1. 1*4 + 7 11 Left Congruent N/A 4.73 
2. 7 - 3*5 -8 Right Congruent C-C 6.88 
3. 6 * 8+2 50 Left Incongruent C-IC 7.98 
4. 3-4 * 7 -25 Right Incongruent IC-IC 8.10 
5. 6 - 2*9 -12 Right Congruent IC-C 6.73 
6. 9+6 * 3 27 Right Incongruent C-IC 7.84 
7. 1 * 8-4 4 Left Incongruent IC-IC 4.46 
8. 6*2 - 7 5 Left Congruent IC-C 6.27 
9. 9 * 1+4 13 Left Incongruent C-IC 4.56 
10. 4 * 7-3 25 Left Incongruent IC-IC 6.13 
11. 3+9 * 6 57 Right Incongruent IC-IC 7.53 
12. 2*8 + 6 22 Left Congruent IC-C 6.50 
13. 7 * 6-1 41 Left Incongruent C-IC 8.15 
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Order Problem Answer 
Multiplication 
Position 

Spacing 
Congruency 

Spacing 
Sequence 

Mean Response 
Time (seconds) 

14. 5 - 9*3 -22 Right Congruent IC-C 7.56 
15. 9 + 3*6 27 Right Congruent C-C 7.14 
16. 7+2 * 5 17 Right Incongruent C-IC 4.48 
17. 3 - 5*8 -37 Right Congruent IC-C 7.42 
18. 4-1 * 9 -5 Right Incongruent C-IC 4.98 
19. 7*6 - 3 39 Left Congruent IC-C 7.37 
20. 4 + 3*9 31 Right Congruent C-C 6.89 
21. 5+3 * 8 29 Right Incongruent C-IC 7.41 
22. 4*7 + 1 29 Left Congruent IC-C 5.37 
23. 2 * 9+5 23 Left Incongruent C-IC 5.94 
24. 5 * 2-9 1 Left Incongruent IC-IC 3.98 
25. 8*1 + 5 13 Left Congruent IC-C 4.78 
26. 8-3 * 6 -10 Right Incongruent C-IC 6.46 
27. 6-7 * 2 -8 Right Incongruent IC-IC 7.06 
28. 3*9 - 4 23 Left Congruent IC-C 6.31 
29. 1 * 5+8 13 Left Incongruent C-IC 4.86 
30. 5*8 - 1 39 Left Congruent IC-C 5.32 
31. 2 + 7*4 30 Right Congruent C-C 5.94 
32. 8 + 4*2 16 Right Congruent C-C 4.60 
Note: Spacing Congruency denotes whether the problem spacing is either congruent or 
incongruent to the order of operations. Spacing Sequence refers to the transition from the 
previous problem type to the current problem type.  

7.2.  APPENDIX B: PREREGISTERED RESULTS 

This section presents the results of our preregistered analyses. The results reported in the 
manuscript follow the same analysis procedure but exclude the intercept from each regression 
model to allow for more direct comparisons between our variables of interest rather than with 
respect to a reference category. These results examine whether the modeling choice to remove 
the intercepts from the regression analyses has any impact on the interpretation of our results. 
As problem identifiers and problem-pair identifiers are included in each of the analyses within 
this section, the exclusion of an intercept should have no meaningful impact on our results. The 
results reported in this Appendix confirm this claim. 

7.2.1. Research Question 1: Effects of Operator Position 

Table B1: The bootstrapped regression results observing transformed response time as the 
dependent variable and multiplication placement and spacing congruency as independent 
variables. 
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 𝛽 95% CI Inverse Transform  
𝛽 (s) 

Adjusted 95% CI (s) 

Intercept 0.157 [0.124, 0.189] 5.91 [5.81, 6.00] 

Multiplication 
Left 

-0.362 [-0.405, -0.319] 4.94 [4.87, 5.00] 

Incongruent 
Spacing 

-0.21 [-0.245, -0.174] 5.32 [5.20, 5.46] 

Note: (CI): confidence interval. (s): seconds. The right-most columns provide an inverse 
transformation of the coefficient estimates as a measure of seconds to contrast the standardized 
coefficients reported in the left-most columns. Problem identifiers were also included in the 
regression but were excluded from this table. 
 
Table B1 reports the results of the bootstrapped regression analysis to address our first research 
question. All variables were found to be statistically significant predictors of response time. As 
a reminder for this analysis, lower values of response indicate a faster response and the reported 
coefficients are standardized. It is also important to acknowledge, for interpretation, that the 
response time dependent variable was adjusted using a log transform before z-scoring. When 
multiplication was on the left side of the expression, students exhibited faster response times. 
When controlling for multiplication placement, students were also faster when the problem 
contained incongruent spacing as opposed to congruent spacing. These findings are consistent 
with the reported primary analysis, confirming that the exclusion of an intercept has no impact 
on the results or our interpretation. 

7.2.2. Research Question 2: Effects of Sequencing 

Table B2: The result of the bootstrapped regression observing pairs of problems with 
transformed response time as the dependent variable while controlling for response time on the 
prior problem and spacing congruency across the problem pair as independent variables. 

 𝛽 95% CI Inverse 
Transform 𝛽 (s) 

Adjusted 95% 
CI (s) 

Intercept 0.244 [0.215, 0.273] 6.17 [6.08, 6.26] 

Prior Response Time 
(Transformed) 

0.332 [0.326, 0.337] — — 

Congruent to Incongruent -0.640 [-0.677, -0.604] 4.49 [4.44, 5.54] 

Incongruent to Congruent -0.321 [-0.360, -0.283] 5.26 [5.20, 5.32] 

Congruent to Congruent 0.102 [0.061, 0.143] 6.49 [6.39, 6.59] 

Note: (CI): confidence interval. (s): seconds. The right-most columns provide an inverse 
transformation of the coefficient estimates as a measure of seconds to contrast the standardized 
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coefficients reported in the left-most columns. Problem pair identifiers were also included in the 
regression but were excluded from this table. 

 
The result of the bootstrapped regression analysis to address our second research question is 
reported in Table B2. All variables emerged as significant predictors of response time. 
Unsurprisingly, there was a positive relation between response time on the first problem and 
response time on the second problem within the pair. We find that students exhibited the slowest 
response times when working on a congruent problem that was preceded by a congruent 
problem. Conversely, students exhibited the fastest response times on an incongruent problem 
that was preceded by a congruent problem. These findings are consistent with the reported 
primary analysis, confirming that the exclusion of an intercept has no impact on our results. 

7.3.  APPENDIX C: EXPLORATORY RESULTS 

Our exploratory analysis examines whether the exclusion of problem and problem pair 
identifiers from each of our regression models impacts the interpretation of our results. As 
students in the study were given the same limited set of problems in the same order, this analysis 
helps identify whether our analyses may be sensitive to the specific content and ordering used 
in the study. 

7.3.1. Research Question 1: Effects of Operator Position 

Table C1: The bootstrapped regression results observing transformed response time as the 
dependent variable and multiplication placement and spacing congruency as independent 
variables, excluding problem identifiers as fixed effects and re-introducing an intercept. 

 𝛽 95% CI Inverse Transform  
𝛽 (s) 

Adjusted 95% CI (s) 

Intercept 0.148 [0.141, 0.156] 5.88 [5.86, 5.91] 

Multiplication Left -0.274 [-0.283, -0.264] 5.14 [5.11, 5.16] 

Incongruent Spacing -0.051 [-0.060, -0.041] 5.74 [5.72, 5.76] 
Note: (CI): confidence interval. (s): seconds. The right-most columns provide an inverse 
transformation of the coefficient estimates as a measure of seconds to contrast the standardized 
coefficients reported in the left-most columns. 
  
Table C1 reports the results of our first exploratory analysis which excludes problem identifiers 
from the regression model and instead re-introduces an intercept. The pattern of results is 
consistent with those reported in Appendix B and in the manuscript. The findings suggest that 
explicitly accounting for problem-level identifiers in the model results in little-to-no impact on 
interpretation for this analysis. 

7.3.2. Research Question 2: Effects of Sequencing 

Table C2 reports the results of our second exploratory analysis aligned with our second research 
question. This analysis excludes problem pair identifiers from the regression and re-introduces 
an intercept to the model. In comparing these results to those of our primary analysis, we find 
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that several differences emerge. Most notably, the incongruent-to-incongruent spacing sequence 
correlates with the fastest response times (as indicated by the positive coefficients for the other 
three sequence categories). Additionally, the incongruent-to-congruent spacing sequence 
exhibited the slowest response times, and was significantly slower than the other three spacing 
sequences. This finding aligns with our initial hypothesis that the response time would be the 
slowest when students transition from incongruent to congruent problems, but differs from the 
findings of our primary analysis addressing this research question. 

Table C2: The result of the bootstrapped regression observing pairs of problems with 
transformed response time as the dependent variable, spacing congruency across the problem 
pair as independent variables, and response time on the prior problem as a covariate. This 
analysis excludes problem pair identifiers as fixed effects and re-introduces an intercept. 

 𝛽 95% CI Inverse 
Transform 𝛽 (s) 

Adjusted 
95% CI (s) 

Intercept -0.076 [-0.086, -0.066] 5.26 [5.24, 5.29] 

Prior Response Time 
(Transformed) 

0.315 [0.310, 0.320] — — 

Congruent to Congruent 0.085 [0.07, 0.101] 5.49 [5.46, 5.52] 

Congruent to Incongruent 0.024 [0.011, 0.038] 5.33 [5.31, 5.35] 

Incongruent to Congruent 0.147 [0.133, 0.160] 5.66 [5.64, 5.69] 
Note: (CI): confidence interval. (s): seconds. The right-most columns provide an inverse 
transformation of the coefficient estimates as a measure of seconds to contrast the standardized 
coefficients reported in the left-most columns. 
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