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The rapid advancement of technology necessitates innovative educational tools and curricula that em-
power learners to acquire and apply new knowledge and skills, particularly for complex, real-world
problem-solving. Digital Game-Based Learning (DGBL) has emerged as a promising approach to en-
gage students in meaningful learning experiences. However, one major challenge for DGBL adoption in
formal education is the effective assessment of learners’ performance aligned with specific educational
standards, such as the Next Generation Science Standards (NGSS). This study addresses this challenge by
proposing and evaluating a novel stealth assessment (SA) pipeline that leverages educational data mining
techniques to enhance the generalizability and scalability of learning assessments across various DGBL
contexts, while maintaining model interpretability and improving the flexibility of model selection. Our
proposed analytical pipeline integrates both machine-learned and expert-crafted features to predict multi-
ple learning outcomes, content knowledge, and scientific argumentation skills. The pipeline offers several
innovations: (1) it captures intricate in-game behaviors and decision-making strategies; (2) it employs a
three-layered unsupervised learning approach to reduce dimensionality and identify critical features; and
(3) it provides a flexible framework by combining both in-game and learning progress data. We vali-
date this pipeline within a 3D narrative DGBL environment, Mission HydroSci (MHS), demonstrating its
utility in accurately assessing learning outcomes across multiple game contexts (units). Moreover, by em-
ploying Accumulated Local Effects (ALE) plots, this study interprets the black-box models’ results, offer-
ing actionable insights into game design and pedagogical arrangements. Our findings reveal unexpected
relationships between in-game performance and post-game learning outcomes, leading to recommenda-
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tions for future DGBL design improvements. This study advances educational data mining by providing
a scalable, flexible and interpretable framework for embedding SA into DGBL environments, thus ex-
tending the reach of data-driven learning assessments in educational game contexts. Future research will
further explore the applicability and limitations of this pipeline across diverse educational settings. Codes
and sample datasets can be found at https://github.com/augurlabs/2025-Lu-Et-Al

Keywords: stealth assessment, digital game-based learning, evidence-centered design, educational data
mining, machine learning, learning analytics, unsupervised learning, dimension reduction, latent variable
learning, ensemble learning, accumulated local effects plots

1. INTRODUCTION

As technology advances rapidly, the importance of individuals being able to quickly acquire
new knowledge and skills, especially those related to complex real-world problem solving, is
increasingly crucial (Bahrami et al., 2023). This demand necessitates cutting-edge curricula
and instructional tools that equip students with the necessary competencies, particularly the
capability for sustainable learning, to confront the uncertainties of present and future society.
As stated in the quote, “If we teach today as we taught yesterday, we are destroying the future
of our children” (Dewey, 1974), the need for educational innovations to help individuals keep
pace with a constantly evolving world cannot be overstated.

Educators highlight the importance of advancing learning technologies that help motivate
and engage learners in applying their newly acquired knowledge and skills in new situations
(Gaikwad, 2022; Steinemann, 2003). digital game-based learning (DGBL) aligns well with
these requirements, given its inherent features and potential to engage (Eseryel et al., 2014;
Yang, 2012). Its scaffolded task design and captivating storylines motivate learners to explore
and solve problems at their own pace (Sun et al., 2011; Rowe et al., 2010). Additionally, learners
can form emotional connections with their in-game characters, which increases engagement
(Plass et al., 2020). Simulations of real-world game environments provide rich opportunities for
learners to acquire and apply the knowledge they can transfer to real-world situations (Barab
et al., 2010). Games hold the potential to offer real-time formative feedback and assessment
based on learners’ in-game behaviors, helping them adjust their learning strategies (Leonardou
et al., 2020).

Previous research has demonstrated the efficacy of DGBL in teaching STEM subjects (Wang
et al., 2022), problem-solving skills (Miladinovic et al., 2023; Liu and Israel, 2022), computa-
tional thinking (Lu et al., 2023), creativity (Nie et al., 2014), and language acquisition as well
as social development (Darvenkumar and Devi, 2022). Despite these positive outcomes, the
widespread adoption of DGBL as an instructional tool in educational settings continues to face
challenges. One of the most significant challenges is that in-game assessments are aligned pri-
marily with a particular game’s content, complicating accurate measurement of learners’ per-
formance related to the targeted learning outcomes, and making it harder to measure whether
learners meet established educational standards, such as the Next Generation Science Standards
(NGSS) (Sanchez and Lee, 2022; Nguyen et al., 2020).

To address DGBL assessment challenge, researchers have proposed utilizing external assess-
ments, such as pre-and post-tests, to evaluate the targeted learning objectives independent of the
progress made by learners during gameplay (Caballero-Hernández et al., 2024). Furthermore,
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conducting assessments for each learning objective within the game is recommended using for-
mats such as pop-up text boxes with multiple-choice options. However, when not well-designed,
these methods can significantly hinder learners’ gaming immersion and engagement because of
sudden interruption and test anxiety (Steinmaurer et al., 2021; Frommel et al., 2015; Bellotti
et al., 2013).

1.1. STEALTH ASSESSMENT

To address DGBL assessment needs, stealth assessment (SA), which is seamlessly integrated
into the game design, unobtrusively measures the performance and learning outcomes of learn-
ers at various game stages based on data-driven approaches (Shute et al., 2009). Motivated
by the potential advantages of SA in DGBL, numerous studies demonstrate promising research
outcomes using this method (Shute et al., 2021; Henderson et al., 2020; Min et al., 2019; Yang
et al., 2021; Gris and Bengtson, 2021). One framework is implementing SA as part of an
evidence-centered design (ECD) approach, which is a systematic way for embedding assess-
ments to evaluate learning objectives based on evidence from learners’ behaviors within DGBL
(Mislevy et al., 2003; Shute et al., 2009). Building on ECD, Shute and colleagues implement
SAs in various DGBL environments to demonstrate their effectiveness in measuring problem-
solving (Shute et al., 2016), mathematics (Smith et al., 2019), conscientiousness (Moore and
Shute, 2017), and creativity (Shute and Rahimi, 2021) using Bayesian networks (BN). BN, a
“white-box” machine learning model, presents a clear tree-based visualization of the relationship
between predictors (features) and learning outcomes. By analyzing the BN structure, researchers
can determine the optimal combination of feature values to achieve the best learning outcome.
However, constructing a robust BN is labor-intensive and time-consuming. Training requires a
lot of data, leading to potential overfitting issues and difficulties in applying models generated in
one DGBL environment within another DGBL environment (Georgiadis et al., 2019). Addition-
ally, the validation of BN predictions against external peer-reviewed assessments is not always
guaranteed. For example, Shute et al. (2016) used two external assessments - Raven’s Pro-
gressive Matrices and MicroDYN - to validate their BN predictions for problem-solving skills.
While external assessments validated the BN’s estimates for overall problem-solving skills and
some facets, certain facets were not fully aligned with the external assessments. This is primar-
ily due to the limitations in capturing complex, non-linear relationships and the context-specific
nature of BN-based competency models.

Recent studies in SA within DGBL environments have explored integrating machine learn-
ing algorithms to streamline feature engineering, address sparse data challenges, and predict
learning outcomes (Gupta et al., 2021; Min et al., 2019; Henderson et al., 2022). For instance,
the DeepStealth framework, based on the ECD approach, leverages raw game logs and deep-
learning techniques to reduce reliance on manual feature engineering and expand applicability
across diverse contexts (Min et al., 2019). While these advancements offer promise, challenges
such as model interpretability and generalizability to complex game mechanics remain (Akram
et al., 2018). This underscores the need for further research into scalable and interpretable SA
frameworks.

1.2. SEEKING MULTI-GAME UTILITY FROM STEALTH ASSESSMENT

In pursuit of a more generalizable approach to SA within DGBL contexts, Georgiadis et al.
(2019) proposed a design concept model. Using a Realising Applied Gaming Ecosystem (RAGE)
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architecture of client-side applied gaming components, they developed their SA prototype to
make it useful in any DGBL context. They verified their SA prototype’s technical feasibility
by generating simulation data sets with different conditions, such as sample size, data type, and
probability distribution based on the xAPI standard (Georgiadis et al., 2020). Then, they trained
machine learning models to predict competency achievement using different combinations of
data facets. While the prediction accuracy of their models reached 90% accuracy in all consid-
ered conditions, they note the need for extensive empirical evaluation of their SA approach for
DGBL to verify its feasibility for use across DGBLs.

The research presented in this paper describes and evaluates an SA educational data mining
pipeline that advances knowledge in the field toward generalizability. It addresses the follow-
ing deficits: 1) Scalability problems. We operationalize our pipeline for different segments or
contexts (each unit and the whole game) of a complex DGBL environment, which allows stu-
dents to explore freely and solve problems mimicking those in real-world’s. 2) Manual feature
generation processes are labor-intensive, time-consuming, tied to a specific DGBL context, and
challenging to transfer to other DGBLs. The pipeline described is more automated than others
previously presented and transferrable to other DGBL environments. 3) Predicting only one
aspect of learning subject matter. Our proposed SA measures a player’s competency in not only
content knowledge (in this case, water science), but scientific argumentation skills as well. 4)
Limited flexibility in model selection. Our proposed pipeline facilitates greater flexibility in
contrast to conventional approaches that primarily rely on BNs. While BNs are inherently in-
terpretable, they often constrain the flexibility needed for diverse assessment contexts. By inte-
grating both machine-learned and expert-crafted features, our pipeline maintains interpretability
by using methods like accumulated local effects (ALE) plots, which provide actionable insights
into model predictions. This approach enables educators and designers to better understand the
relationships between in-game behaviors and learning outcomes, thereby supporting informed
decision-making in pedagogical practices and game design refinements.

The resulting analytical pipeline provides a complete assessment framework for DGBLs, in-
cluding complex game mechanics, dynamic game worlds to interact with, and ill-defined prob-
lems for learners to solve without binding SA to specific in-game action formats (e.g., selecting
a choice within a dialogue). In this paper, we advance prior work that, using extensive empirical
data from a DGBL system, provides a framework for systematically making SA a component
of DGBL construction practice. We extend our previous studies and propose a novel analytical
pipeline using SA in Mission HydroSci (MHS) (Laffey et al., 2019; Laffey et al., 2019). This
10-hour first-person 3D narrative adventure teaches middle school students water science and
scientific argumentation in ways that fit the NGSS, which is central to our content knowledge
assessments.

1.3. RESEARCH QUESTIONS

Specifically, this paper investigates three research questions to systematically contribute a more
generalizable approach to SA in DGBL:

1. Research Question 1 (RQ1): What distinct elements are encapsulated within the overar-
ching analytic pipeline?

2. Research Question 2 (RQ2): How effective is this pipeline across various contexts? Specif-
ically:
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(a) How accurate is the assessment across different MHS units?

(b) What is the overall assessment accuracy when considering MHS as a whole?

(c) How does assessment accuracy vary across distinct subjects within MHS?

3. Research Question 3 (RQ3): What methods can help interpret the black-box computa-
tional models, and what insights can be drawn from their results?

2. RELATED WORK

2.1. MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE APPLICATION IN DIGITAL
GAME-BASED LEARNING

Incorporating artificial intelligence (AI) and machine learning techniques in educational do-
mains has attracted significant interest among researchers and practitioners. Innovative findings
indicate that AI-driven applications and platforms can considerably boost both the effective-
ness and efficiency of learning and teaching processes, attributed to their capabilities for precise
performance measurement, timely formative feedback, and personalized learning experiences.
These advancements span a range of domains, such as learning technology and platform design
(Mousavinasab et al., 2021; Luckin and Cukurova, 2019; Alam, 2021), assessment and eval-
uation (Hooshyar et al., 2016; Aluthman, 2016), competence and skill development (Lin and
Chen, 2020; Sakulkueakulsuk et al., 2018; Ciolacu et al., 2018; Chopade et al., 2019), learning
analytics and student behavior measurement (Blikstein and Worsley, 2016; Sharma et al., 2019;
Yang et al., 2021; Doleck et al., 2020), and instructional design and optimization (Conati et al.,
2018; Rosé et al., 2019; Eliseyev and Aksenova, 2019; Peng et al., 2022).

In particular, the fusion of AI and machine learning technologies with DGBL environments
has also generated substantial interest. DGBL contexts offer captivating settings and immersive
narratives stimulating interest-driven motivation and cognitive curiosity (Jackson et al., 2018;
Naul and Liu, 2020). Moreover, these environments provide multifaceted interactivity, intri-
cate reward systems, safe spaces to learn from failures, and opportunities to develop optimized
problem-solving strategies. Customizable content and formative feedback based on user per-
formance contribute to individualized learning experiences, highlighting the immense potential
of games in education (Ishak et al., 2023). To further capitalize on this potential, researchers
employ AI and machine learning technologies to enhance the design and development of both
games and their corresponding instructional materials (Sunarya, 2022).

Although DGBL has proven effective in education, it requires further development to main-
tain participants’ interests and motivations while providing timely assistance without disrupting
immersion. One promising approach is incorporating intelligent virtual agents into the game,
offering support based on users’ needs (Tumenayu et al., 2014). Another critical aspect re-
quiring AI and machine learning techniques is adaptive learning games, which emphasize the
impact of personalization and personification elements within game design on learning enhance-
ment (Dyulicheva et al., 2020). Researchers (Serhan et al., 2019; Mulwa et al., 2010; Zhu and
Ontañón, 2020; Khenissi et al., 2013; Soflano et al., 2015) have explored the implementation
of dynamically adaptive DGBL environments that depend on participants’ learning styles, per-
formance, in-game behavior, personality traits, rating scores, and preferences. Notably, AI and
machine learning techniques enable the development of real-time adaptive learning games that
flexibly adjust game content and difficulty based on learners’ ongoing data during gameplay

5
218 Journal of Educational Data Mining, Volume 16, No 2, 2024



(López and Tucker, 2018; Hooshyar et al., 2021). In DGBL with virtual and augmented reality
(VR/AR) technologies, AI and machine learning techniques aid researchers and practitioners
in developing adaptive hints and training materials (Drey et al., 2020) within the virtual envi-
ronment to improve learning for learners with special needs (Dyulicheva et al., 2020) and in
domains requiring a better understanding of abstract or complex ideas, contextual awareness,
and problem-solving skills in high-stakes or hazardous situations (Dyulicheva et al., 2020; Afy-
ouni et al., 2020; Lin et al., 2021).

Another area of DGBL involves students learning while developing games from scratch,
transforming the role of instructors from passive observers to active participants (Kuznetsov
et al., 2020). With the support of AI and machine learning tools, instructors can actively and
appropriately participate in students’ learning by directly interacting with students within the
game world based on specific learning objectives. They can also interact with the virtual envi-
ronment to create in-game objects and define how to interact with them (Carbonaro et al., 2006).
AI and machine learning tools facilitate the incorporation of adaptive elements into game me-
chanics to enhance game dynamics and create individualized learning and play paths for users
(Spronck et al., 2006). Additionally, during the game development process, participants can
implement AI blocks allowing recognition of speech, images, videos, and handwritten text for
better learning experiences and outcomes in fields such as language learning, art recognition,
and arithmetic skills (https://github.com/ecraft2learn/ai, 2021). This learning-
while-doing teaching method in DGBL is especially beneficial for teaching difficult-to-learn
concepts (Estevez et al., 2019)), fostering collaborative skills (Annetta et al., 2006), developing
creativity, and enhancing self-education (Carbonaro et al., 2006).

In summary, AI and machine learning applications within DGBL rely on precise perfor-
mance assessment, either directly or indirectly, to develop adaptive learning experiences cus-
tomized to each individual’s characteristics and gameplay history. For example, intelligent vir-
tual agents utilize assessment data to establish appropriate interactions with students, creating
tailored guidance and materials that cater to their diverse abilities. Likewise, adaptive learning
environments depend on assessment data to generate formative feedback, personalized scenar-
ios, tasks, and content based on participants’ in-game behaviors and scores. In DGBL con-
texts, instructors actively engage in students’ learning processes, employing assessment scores
to devise supplementary activities and interventions that foster individualized experiences. Per-
formance assessment remains integral to shaping effective educational strategies and enhancing
continuous skill development. However, accurately assessing students’ in-game performances is
an ongoing, complex challenge due to the dynamic nature of the game world and the abundance
of noisy behavior records generated during gameplay.

2.2. ASSESSMENT WITHIN GAME-BASED LEARNING

Assessment practices in education generally present significant challenges, which primarily
stem from the complexities associated with validating the constructs of the measured knowl-
edge, skills, or competencies; accurately defining the ultimate purpose of the assessment, such
as formative feedback, summative review, or program evaluation; achieving alignment between
students’ assessment responses and predefined measurement objectives; and applying a single
assessment to students with diverse backgrounds and characteristics (Kim and Ifenthaler, 2019).
In game-based assessments, these challenges are further intensified by stakeholders’ additional
expectations and requirements concerning DGBL platforms.
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Advocates of DGBL argue that such environments should foster sustained learning by im-
mersing users in interactive game worlds featuring extensive game mechanics. These envi-
ronments guide learners through scaffolded tasks embedded with pedagogical activities, ulti-
mately supporting the acquisition of new knowledge, skills, and competencies - particularly in
complex and dynamic domains characterized by ill-structured problems (Gee, 2003; Ifenthaler
et al., 2012; Prensky, 2001; Shaffer, 2006; Saleh et al., 2019). In contrast to traditional ed-
ucational courses that necessitate memorization of abstract concepts and procedures without
contextual understanding, DGBL platforms emphasize active learning by prompting learners to
autonomously discover pertinent clues and materials dispersed throughout the game world and
to apply the knowledge acquired from these resources in problem-solving situations.

Owing to these differences in instructional approaches, digital game-based assessment (DGBA)
demands a more comprehensive range of measurement dimensions than their traditional coun-
terparts. Examples of such dimensions include game skill, problem-solving ability, information
retrieval and synthesis, and learning capacity. Additionally, stakeholders are keenly interested
in examining students’ learning progressions as they advance through the game and in exploring
the influence of individual characteristics on learning during gameplay, which imbues DGBA
with real-time dynamism and further amplifies its complexity.

Over recent decades, the field of assessment within DGBL has experienced significant growth,
as numerous research studies have demonstrated the efficacy of video games as instructional
tools. These games have been shown to enhance overall learning outcomes, encompassing cog-
nitive and interpersonal skills (Clark et al., 2016; Boyle et al., 2016), as well as domain-specific
knowledge, particularly in science and mathematics (Divjak and Tomić, 2011), when compared
to conventional educational platforms. Throughout this period, researchers have predominantly
employed external assessment methods, such as questionnaires, interviews, and observational
records, to evaluate students’ learning outcomes, engagement levels, and the game’s perfor-
mance, as well as its usability. In a systematic review conducted by Gris and Bengtson (2021)
which focused on DGBA, the authors discovered that a mere 2.75% of studies measuring learn-
ing, 0.88% of studies measuring engagement, and 1.61% of studies measuring usability relied
on data obtained from within the game, such as game logs. In their discussion, Gris and Bengt-
son emphasize the pressing necessity for future empirical research to construct validated and
reliable assessments that draw upon data from within the game.

Since its inception in 2009, GlassLab (http://www.instituteofplay.org/work/
projects/glasslab-research/) (Rowe et al., 2015) has garnered attention from schol-
ars and practitioners due to the detailed data traces collected from its games. These data traces
offer numerous events per learning activity, providing a remarkable opportunity to extensively
analyze learning in diverse aspects. This analysis can potentially elevate assessment technolo-
gies, bolstering DGBL through data-driven methods that can be scaled to encompass the entire
educational domain. This belief has sparked many research endeavors exploring DGBA in re-
cent decades.

For example, Eseryel et al. (2011) proposed an embedded framework for assessing com-
plex problem-solving in a longitudinal design-based research study. This framework relied
on two methodologies, adapted protocol analysis and HIMATT, to generate quantitative mea-
sures and visualizations for instantaneous feedback during gameplay (Ifenthaler, 2014). Sub-
sequently, researchers integrated techniques from learning analytics and educational data min-
ing into DGBL analytics, advancing the research field with theoretical support and validated
methods for interpreting results (Loh et al., 2015). Rowe et al. (2017) developed detectors us-
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ing a machine-learned algorithm based on in-game log data to gauge implicit understanding
of physics, identify strategies associated with in-game productivity, and assess computational
thinking, enabling real-time player inferences. Similarly, Kim and Rosenheck (2020) employed
sophisticated learning analytics and educational data mining techniques to guide the design and
development of games for assessment purposes. Additionally, Tadayon and Pottie (2020) in-
vestigated the application of hidden Markov models on sequences of learning actions within a
DGBL platform, confirming the efficacy of this approach for predicting learning outcomes.

2.2.1. Stealth Assessment within Game-Based Learning

Stealth assessment (SA) is a relatively mature and structured research line within the realm of
DGBA. SA within DGBL environments has been the subject of continuous investigation in re-
cent years, given its promising potential to meet the high expectations of stakeholders regarding
DGBL. This research line is also capable of measuring learning progressions related to com-
plex competencies, such as those identified as 21st-century competencies (Romero et al., 2015).
These competencies are essential for enabling new generations to adapt to a rapidly changing
world, and they are difficult to quantify through conventional assessment methods (e.g., paper-
based exams, pre-post tests) or traditional educational platforms.

SA within DGBL platforms aims to unobtrusively evaluate participants’ diverse performance
metrics using extensive trace data gathered from adaptive logging systems embedded in the
game. This approach preserves engagement and learning flow, as noted by Shute et al. (2009).
SA is designed to deliver continuous, multifaceted information on learners inconspicuously,
rendering the measurement process more objective and comprehensive. By harnessing advanced
machine learning and artificial intelligence techniques, SA can perform real-time scoring based
on students’ actions and learning progress, providing accurate formative feedback. Moreover,
through its sophisticated integration into game-based environments, SA measures learning in a
context-aware manner, contributing to the advancement of adaptive learning within the realm
of DGBL. Subsequent paragraphs present a concise, systematic review of SA within DGBL
contexts.

Göbel and colleagues (Göbel et al., 2009; Göbel and Mehm, 2013) conducted preliminary
long-term research on story-based edutainment applications and serious games, resulting in the
development of a prototype framework for SA in story-based digital educational games (DEG)
called Narrative Game-based Learning Objects (NGLOB). This framework was demonstrated
and validated using two existing computer-based games; however, its applicability has waned in
recent years, potentially due to restrictions in suitable game genres.

Shute (2011) developed a versatile SA model grounded in evidence-centered design (ECD)
(Mislevy et al., 2003) and applied it to various DGBL environments. Their investigations
covered a range of educational games, evaluating competencies such as mathematical abilities
(Shute et al., 2017), problem-solving capabilities (Shute et al., 2016), conscientiousness (Moore
and Shute, 2017), calculus proficiency (Smith et al., 2019), and creativity (Shute and Rahimi,
2021). The ECD SA model consists of three primary elements: the competency model, the ev-
idence model, and the task model. These components enable practitioners to examine learning
behavior patterns and estimate competence levels promptly. Shute’s studies focus on discern-
ing relationships between different in-game behavior-derived indicators and assessed competen-
cies using Bayesian networks (BN). BNs effectively visualize complex relationships, including
time factors, to keep data valuable and manageable (Mouri et al., 2016; Belland et al., 2017;
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Champion and Elkan, 2017; Heine, 2020). However, developing BNs is labor-intensive, time-
consuming, and costly (Belland et al., 2017), to ensure accurate representation of learning in the
final structure. Furthermore, a tailored BN structure is often specific to a particular game envi-
ronment, making it challenging to apply it to other contexts directly (Georgiadis et al., 2019).

Exploring beyond BNs, researchers working with Lester have examined the use of advanced
machine learning models such as Random Forest, Support Vector Machine, and Recurrent Neu-
ral Networks for SAs within DGBL environments (Akram et al., 2018; Min et al., 2019; Hender-
son et al., 2020; Gupta et al., 2021; Henderson et al., 2022). They identified in-game behaviors
linked to targeted knowledge and skills, integrating these models into the ECD framework. This
resulted in novel SA frameworks with various benefits: streamlining data preprocessing (Min
et al., 2019), enabling the operation of SAs in domains and educational content where prior data
and labels are unavailable (Henderson et al., 2022), and infusing diverse data types (Henderson
et al., 2020). However, challenges remain, including the limited interpretability of model outputs
- such as understanding how individual indicators predict learning outcomes or identify game-
based behaviors - and the difficulty of generalizing these approaches to dynamic, multi-faceted
game environments (Akram et al., 2018; Min et al., 2019). Furthermore, while promising, these
techniques often require additional refinement to balance accuracy, scalability, and usability in
practical applications.

In summary, the rapidly evolving field of SA within DGBL environments has shown signif-
icant potential in evaluating a broad range of competencies. However, much of the research has
focused on specific aspects of the DGBL environment to address scalability challenges or has
constrained student interaction formats to simplify the complexities of measuring dynamic and
multifaceted game worlds. While studies based on complete games exist, the generalizability of
these methods to other DGBL contexts is often limited due to the reliance on manually crafted
features or predictors tailored to specific environments (Shute and Rahimi, 2021)

Researchers have investigated the potential of automatically generating predictors from raw
game logs using advanced machine learning models to mitigate the limitations of expert-engineered
features—such as their complexity, labor-intensive nature, and time consumption. Although
these efforts have produced several promising results, significant challenges persist. These in-
clude the loss of model interpretability (Min et al., 2019), a lack of empirical analysis in address-
ing ill-defined problems involving extensive in-game action formats (Akram et al., 2018), and
generally lower accuracy rates than models utilizing expert-generated features. Botelho et al.
(2019) demonstrated that models based on expert features consistently outperformed those rely-
ing on machine-learned features extracted from raw logs. Despite the absence of a universally
accepted accuracy benchmark for machine learning models in SA within DGBL environments,
it is evident that higher accuracy rates enhance the credibility of these models in practical ap-
plications. Furthermore, Botelho and colleagues introduced an innovative feature engineering
method that integrates expert and machine-learned features, resulting in superior model perfor-
mance compared to traditional techniques. Therefore, selecting a feature engineering method
should be guided by the research objectives, weighing the trade-offs between model perfor-
mance, interpretability, time, cost, and labor.

3. METHODOLOGY

As we reviewed in the previous section, several effective SAs grounded in the ECD approach
have been implemented within various DGBL contexts (Shute et al., 2016; Min et al., 2019;
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Smith et al., 2019; Shute and Rahimi, 2021; Henderson et al., 2022). However, the high-level
nature of ECD, which serves primarily as a conceptual model for defining the broad components
of competence, task, and evidence models, necessitates additional guidance for practitioners to
organize and standardize elements within each component systematically. Many studies have
relied on expert intuition for these decisions (Shute et al., 2016; Smith et al., 2019; Shute and
Rahimi, 2021), underscoring the need for a more structured framework applicable to diverse
DGBL environments. To ensure that SAs effectively and robustly measure the intended learn-
ing objectives, it is crucial to provide sophisticated and systematic guidance for defining the
elements within all three ECD components.

Given the scope of this work, the focus will be on the evidence model, which outlines the
generation of evidence (features) from game content and the statistical models (e.g., machine
learning models) that link this evidence to learning objectives. The following sections present a
pipeline designed to guide the analytical process, particularly within the Evidence Model, vali-
dated through empirical data collected from a DGBL environment—Mission HydroSci (MHS).

3.1. DIGITAL GAME-BASED LEARNING ENVIRONMENT: MISSION HYDROSCI

In this study, we utilized the DGBL tool Mission HydroSci (MHS), a 3D narrative adventure
game designed for middle school students, to evaluate the effectiveness of our proposed an-
alytical pipeline. MHS aligns with the NGSS, a framework that integrates three key dimen-
sions—disciplinary core ideas, science and engineering practices, and crosscutting concepts—to
provide students with a comprehensive and application-focused understanding of science. These
standards aim to prepare students for success in college, careers, and civic life (National Re-
search Council, 2013).

MHS is designed to teach water science and scientific argumentation through a transforma-
tive play approach (Barab et al., 2010), where players adopt the role of a character and apply
in-game knowledge to solve real-world problems. The game’s design incorporates a learning
progressions methodology grounded in extensive research on water systems (Covitt et al., 2009;
Sadler et al., 2017) and scientific argumentation (Osborne et al., 2013). Our assessment strat-
egy leverages a sophisticated logging system, informed by the Activity Theory-based Model
of Serious Games (ATMSG) (Carvalho et al., 2015) and the Experience API (xAPI) standards
(Serrano-Laguna et al., 2017), to track and analyze students’ in-game interactions. This system
enables the development of adaptive assessment tools and the provision of tailored formative
feedback, laying the groundwork for an adaptive learning system.

MHS consists of six modules, each focused on specific curriculum topics and featuring dis-
tinct virtual landscapes, game mechanics, and embedded educational materials. The game re-
quires approximately 10 hours to complete within a classroom setting under the guidance of an
instructor. Please refer to Appendix A for more detailed illustrations and descriptions of MHS.

3.2. DATA COLLECTION AND SUMMARY

3.2.1. Research Design and Data Collection

The data utilized in this study were collected during the second field test of MHS, conducted
between February 11 and April 15, 2019. Prior to the test, thirteen middle school science teach-
ers from nine schools across six school districts were recruited through notifications sent to
science coordinators and the state science teachers association. All participating schools and
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teachers were located in a single Midwestern state, representing a mix of public schools from
both mid-sized cities and small rural communities.

The student sample for this study (N = 806) was composed of 51% male and 49% female stu-
dents, with a demographic breakdown of 66% Caucasian, 11% African American, 6% Hispanic,
4% identifying as multi-racial, 3% Asian, 2% American Indian, and the remaining students self-
identifying as other. The study spanned ten school days, with the first and last days allocated
for pre- and post-testing. These assessments measured students’ knowledge of water systems,
argumentation skills, and how playing MHS affected their attitudes toward learning science and
technology. However, this study focuses explicitly on the pre- and post-assessment outcomes
related to water systems knowledge and scientific argumentation.

All testing, including pre-and post-tests, was completed within a single class period, approx-
imately 40 to 45 minutes. Students took the assessments online, with the science affect measure
administered last to maximize time for the water systems and argumentation assessments. Of
the 806 students, 632 completed the pre-and post-tests for all constructs and were included in
the final analytic sample. Further details on the study methodology can be found in (Reeves
et al., 2020).

3.2.2. Game Log Collection and Summary

In terms of game log collection, all 632 students’ game logs should be collected in the MHS log-
ging system. However, due to technical issues, such as internet loss, not all students’ playthrough
records are saved on the distant server. Moreover, although we provided assistance materials
such as a dashboard, strategy guide, slides, and discussion questions to help teachers’ lesson
preparation, it is still comparatively new for them to incorporate a game into their pedagogical
arrangements so that unexpected situations happen during courses. Consequently, the actual
courses always fell behind the pedagogical arrangements, decreasing the completion rate for
each unit. So, the sample numbers of training the machine-learning models for each unit dif-
fer. We only involved students’ log records who passed all primary quests for a specific unit and
have completed pre- and post-assessment records. Regarding students who may replay the game
several times, we only included their first trials that complete all primary quests for a particular
unit.

Table 1 lists detailed information regarding the number of students and corresponding log
records involved in the model training.

Table 1: Log records information at scales of each unit and the whole game.

Student Count Sum log record Average log record per student per trial
Unit 2 350 4,277,771 4,681
Unit 3 323 11,459,160 14,844
Unit 4 181 7,208,357 11,721
Unit 5 128 4,234,646 9,107

Whole game 463 34,320,924 31,574
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3.2.3. The Measurement of Learning Outcomes: Pre- and Post-Assessment Test Re-
sults Summary

As mentioned, pre- and post-assessment tests administered before and after the gaming experi-
ence evaluated students’ learning. Two external assessments were incorporated to gauge diverse
aspects of learning: the Water Systems Assessment (WSA) for assessing content knowledge ac-
quisition and the Argumentation Assessment (AA) for appraising scientific argumentation com-
petencies. Both assessments comprised a series of multiple-choice questions. To investigate
whether there was a significant score gain between the pre-and post-assessments, we conducted
statistical tests and observed significant score enhancements in units 2, 3, 4, and 5 and also the
aggregate scores for all items in both WSA and AA within the scope of the whole game. Units 1
and 6 were excluded from this analysis: Unit 1 is a tutorial unit designed to teach students how
to play the game and introduce the story background, without specific curriculum content; Unit
6 is a summarization unit that was not fully developed at the time of the field test. More detailed
information regarding the testing process and results can be found in Appendix B.

3.3. THE ANALYTIC PIPELINE DESCRIPTION AND APPLICATION USING MISSION HY-
DROSCI

To address the limitations discussed earlier in the Methodology section and support the broader
implementation of SAs within DGBL environments—particularly those involving complex and
dynamic game worlds—we have developed a pipeline to guide the analytical process, specifi-
cally focusing on the evidence model. This pipeline is illustrated in Figure 1.

In the following subsections, we describe the specific elements within the pipeline and the
analytical process applied to MHS following the outlined wpipeline. The objective is to predict
students’ learning outcomes in water science content knowledge across different units (curricu-
lum topics) and their scientific argumentation skills after engaging with MHS. Each subsection
corresponds to a specific element in the pipeline.

For the implementation process, we initially utilized R, specifically the “mongolite”1 and
“Tidyverse”2 libraries. The “mongolite” library was employed to connect to MongoDB and
retrieve raw logs from the server. At the same time “Tidyverse” was used for processing and
manipulating these raw logs to generate the original features, as discussed in Section 3.3.5.
Following this, we transitioned to Python, using Jupyter Notebook, and employed the “scikit-
learn,”3 “NumPy,”4 and “Pandas”5 libraries to complete the subsequent steps. “NumPy” and
“Pandas” facilitated the necessary data-wrangling processes. At the same time “scikit-learn” was
used to generate transformed feature sets and to conduct the machine learning model training,
validation, and testing processes.

3.3.1. Element (1): Extracting Raw Logs from the Integrated Game Logging System

In this step, practitioners extract participants’ game logs from the adaptive logging system in-
tegrated within the digital game, with the specific game content (e.g., game tasks or quests)
determined by the ECD task model.

1mongolite: https://cran.r-project.org/web/packages/mongolite/index.html
2Tidyverse: https://www.tidyverse.org/
3scikit-learn: https://scikit-learn.org/stable/
4NumPy: https://numpy.org/
5Pandas: https://pandas.pydata.org/
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Figure 1: The diagram to outline the elements of the general analytical pipeline.
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In the case of MHS, the integrated logging system operates on two layers. The first layer
contains general information common to each log record. The second layer includes additional
detailed information specific to each log record, which varies depending on the type of event or
behavior. The variable “ItemID” links these two layers, and a unique identifier is assigned to
each log record. For more comprehensive illustrations regarding our embedded logging system,
refer to Appendix D.1 and our previous publication (Lu et al., 2023).

3.3.2. Element (2): Cleaning and Categorizing Raw Game Logs

After extraction, the raw game logs are processed and cleaned, resulting in data files structured
into multiple rows and columns. Each row corresponds to a unique log record, and each column
represents a specific record attribute. The game logs are then categorized into two data groups:
participants’ in-game behavior features (Element 3) and learning progress features (Element 4).

In applying this step to MHS, we removed students’ log records that were not continuous,
lacked sufficient data (e.g., cases where the game froze before completing the first main quest
for each unit), or were generated when students replayed the same game content multiple times
(only the log record from the first playthrough was retained). Based on the cleaned log dataset,
we manually crafted features representing students’ learning outcomes at specific points within
the game, referred to as embedded assessment scores, which served as the learning progress
features (discussed in Subsection 3.3.4). Other features were categorized as behavioral features
(discussed in Subsection 3.3.3).

3.3.3. Element (3): In-Game Behavior Features

These features capture participants’ rich and varied in-game actions, including their interactions
with in-game objects, navigation within the game world, and responses to non-player characters
(NPCs). For MHS, we generated feature sets that encompass various in-game behaviors such as
task completion, argumentation, and map exploration.

3.3.4. Element (4): Learning Progress Features

These features are expertly generated to describe participants’ learning outcomes in specific
game segments or tasks. Typically, these expert-crafted features act as special markers, indicat-
ing how well a participant performs in a pedagogical activity within the game and whether the
activity effectively imparts the intended knowledge or skill.

For MHS, the research team conducted a series of discussions to identify the game segments
suitable as measurement points for assessing students’ learning outcomes. Additionally, the
team established corresponding standards, which were used to create a scoring rubric table. Due
to space limitations, Table 2 presents a portion of this scoring rubric table used to generate the
learning progress features. The complete scoring rubric table is available in Appendix C.

This study included 16 learning progress features in total: 4 for Unit 2, 3 for Unit 3, 4 for
Unit 4, and 5 for Unit 5.

3.3.5. Element (5): Subcategorizing Behavior Features

Practitioners can further subcategorize behavior features based on specific actions, such as task
completion, dialogue reading, and tool application. For MHS, we categorized behavior features
into two segments based on their nature:
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Table 2: Part of the scoring rubric table for generating learning progress features.

Unit Corresponding Quest Learning
Progress Name

Calculation Stan-
dards

Unit 2

Argue which watershed is bigger:
In this quest, students will enter into
a 2-D system where they will gener-
ate a complete argumentation with
three components - Evidence, Rea-
soning, and Claim – by dragging
and dropping available choices.

biggerArgScore

2 Points: correct an-
swer within 3 attempts;
1 Point: correct answer
within 4 attempts;
0 Points: no correct an-
swer or correct answer
after more than 4 at-
tempts.

CREI system: In this quest, stu-
dents will enter a new game area
where they are asked to deliver or
kick a soccer ball into different di-
rections. Each direction represents
a component of a complete argu-
mentation. Students need to make
the right decision based on the in-
formation they got from dialogues
with an in-game NPC.

CREIScore

1 Point: for each
correct soccer ball
delivery, students will
get one score for this
quest;
-1/3 Points: for each
incorrect soccer ball
delivery, students will
lose 1/3 point.

ACTION-SPECIFIC BEHAVIORS These behaviors represent direct interactions tied to specific
game mechanics or tasks: (1) Task completion behaviors focus on two key metrics: the time
spent completing individual tasks (interaction speed) and the proportion of total gameplay time
allocated to each task (interaction share). (2) Argumentation behaviors are analyzed by mea-
suring the frequency of student interactions within the argumentation system—such as dragging,
dropping, hovering over elements, and using tools—along with the average time spent on these
actions. These measures help assess both the frequency and efficiency of students’ engagement
with argumentation tasks. (3) Hotkey usage captures the frequency with which students utilize
hotkeys for rapid access to game functions, providing insights into how efficiently they navigate
the game. (4) Tool menu usage reflects students’ reliance on the AI assistant, ARF, with metrics
capturing both the frequency of tool usage and the time spent referring to each tool. (5) Dialogue
reading is evaluated by tracking the frequency and speed at which students read in-game dia-
logues. (6) Item triggering measures the frequency of interactions with various in-game items
and the duration of these interactions, particularly for items that involve prolonged engagement,
such as those involved in puzzle-solving.

OVERARCHING BEHAVIOR CATEGORIES These behaviors represent broader patterns or
meta-level actions across multiple game mechanics: (1) Behavior type statement captures
overarching categories of behavior—such as movement, tool usage, or dialogue reading—and
quantifies how frequently each type occurs and the time students spend on them. (2) Map ex-
ploration assesses the extent to which students explore the game world by measuring both the
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percentage of the map they uncover (interaction share) and the time they spend in different game
areas (interaction speed).

Within each behavior type, feature sets can be generated to quantify the behavior from three
perspectives: (1) Interaction frequency, which records how often a specific behavior occurs; (2)
Interaction speed, which measures the average time spent on each occurrence of the behavior;
and (3) Interaction share, which assesses the proportion of a specific behavior relative to the total
frequency of all possible behaviors within that category. Importantly, not all three feature sets
need to be included for every behavior type. Their inclusion depends on the characteristics of
the feature sets (e.g., sufficient variance) and the relevance of the game content (e.g., if the speed
of opening a door is consistent and needs more research significance, it may not be included).

The final feature set for each behavior type should be as comprehensive as possible to ensure
sufficient information for subsequent model training. Collectively, these behavioral measures
provide a detailed view of how students interact with the game’s mechanics and features, offer-
ing insights into their learning processes and gameplay strategies. More detailed descriptions of
these behaviors can be found within Table 10 of Appendix D.2.

Since the behavior types listed above are highly tailored to the specific context of the MHS
case, we cannot assert that this list is exhaustive for all future studies or game environments.
Other DGBLs may likely require customization of behavior features, either by adjusting the level
of granularity or by introducing new behavior types unique to their context. We recommend that
future practitioners use the behavior types outlined here as a starting point for feature generation
in the early stages of their study. Based on their own findings, they can then customize the
feature set in subsequent stages, adding or refining behavior types to better align with the specific
learning objectives or mechanics of their game.

3.3.6. Element (6): Standardizing and Discretizing Learning Progress Features

For the learning progress features generated in Element 4, practitioners may need to preprocess
these features using techniques such as scaling, normalization, or discretization, depending on
the statistical characteristics of each feature. In the case of MHS, we applied discretization
to the learning progress features, specifically the embedded assessment scores. Each score was
categorized as either “High-Score” or “Low-Score” based on its comparison to the average score.
If a student’s score exceeded the average level, it was classified as “High-Score”; otherwise,
it was categorized as “Low-Score.” The final output of this step is a standardized feature set
that reflects participants’ learning progress across different game spots. This feature set can be
integrated with in-game behavior feature sets in subsequent steps of the pipeline.

3.3.7. Element (7): First-layer Unsupervised Learning to Conduct Dimension Reduc-
tion on One Feature Set Within a Certain Behavior Type

Dimensionality reduction, a key function of unsupervised learning, is essential for addressing
challenges when working with high-dimensional datasets. This process involves extracting fea-
tures directly relevant to machine learning tasks, facilitating knowledge discovery and pattern
classification among numerous redundant or irrelevant features. Additionally, dimensionality re-
duction techniques help reduce high-dimensional datasets to lower-dimensional representations
by filtering out or removing redundant and noisy information, which can significantly improve
the performance of computational models (Zebari et al., 2020). These techniques are generally
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categorized into two main groups: feature selection and feature extraction. Since feature selec-
tion may lead to considerable information loss by eliminating features that do not significantly
contribute to predictions, we believe feature extraction techniques are more appropriate for an-
alyzing how players’ game logs influence their learning outcomes. Feature extraction reduces
dimensionality with minimal information loss from the original dataset (Ayesha et al., 2020;
Abd-Alsabour, 2018; Verleysen and François, 2005; Huang et al., 2019).

Due to the complex and dynamic nature of DGBL environments, a single feature set within a
specific behavior type may contain hundreds or thousands of columns. These columns need to be
carefully examined to extract relevant information that can be used to predict targeted learning
outcomes. The first-layer unsupervised learning technique is applied to each feature set derived
from Element 5 within a specific behavior type to extract relevant information and eliminate
noise within the original feature set. After this process, each feature set will be transformed into
a new one containing features generated by a specific unsupervised learning algorithm.

When selecting the most suitable unsupervised learning algorithm, practitioners can base
their decision on the characteristics of the original feature set, such as scale, distribution, dimen-
sionality, type of relationship (e.g., linear or nonlinear), presence of outliers, and the size of the
feature set. Alternatively, practitioners may set up experiments to select the best algorithm from
a pool of candidates.

To set up such experiments, practitioners could apply each unsupervised learning candidate
to the same original feature set, generating transformed feature sets. These transformed sets are
then evaluated using the same supervised learning model, such as logistic regression, to predict
the targeted learning outcomes. The supervised learning model training should follow a 10-fold
cross-validation process. Model performance can be assessed using the mean values of selected
metrics, such as accuracy, precision, recall, and F1-score. Based on these evaluation metrics,
practitioners can determine the best unsupervised learning algorithm to apply to the original
feature set within a specific behavior type and decide how many transformed features should be
included in the final feature set.

For MHS, we employed feature extraction techniques, a subset of unsupervised machine
learning, on each feature set within a specific behavior type to reduce dimensionality as a pre-
processing step before machine learning model training. Given the unique characteristics of
each processed feature set, we determined the best feature extraction technique through an ex-
perimental comparison for each feature set rather than identifying a single overarching best
technique. The methods we considered included Principal Component Analysis (PCA) (Abdi
and Williams, 2010), Singular Value Decomposition (SVD) (Klema and Laub, 1980), Indepen-
dent Component Analysis (ICA) (Hyvärinen and Oja, 2000), Non-negative Matrix Factorization
(NMF) (Lee and Seung, 1999), Kernel PCA (Schölkopf et al., 1997), T-distributed Stochastic
Neighbor Embedding (t-SNE) (Wattenberg et al., 2016), U-map (McGaghie and Harris, 2018),
and Autoencoders (Wang et al., 2016). A brief rationale for selecting each technique is provided
in Appendix D, Table 11.

To conduct the experiments, we first evaluated a logistic regression model on each raw fea-
ture set—interaction frequency, interaction speed, and interaction share—within a specific be-
havior type, predicting the targeted learning outcome in the relevant game context from which
the raw feature set was derived, as a benchmark. The evaluation metric was the mean and stan-
dard deviation of classification accuracy across all folds and repeats after 10 stratified 10-fold
cross-validations. We then applied each of the eight selected feature extraction techniques to
the raw feature sets to obtain transformed feature sets, using the same evaluation method as for
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the raw feature sets. For that specific feature set, we selected the feature extraction technique
that produced a mean accuracy higher than the benchmark and significantly outperformed the
other methods. Finally, we merged all transformed feature sets for each behavior type using the
unique identifier playerID.

It is important to note that the selection of feature extraction techniques was context-specific
and tailored to the unique properties of the feature sets within MHS. Consequently, the optimal
technique for a given feature set in this study may not generalize to other feature sets or game
contexts. This highlights the importance of flexibility in applying feature extraction methods,
as practitioners must consider the distinct characteristics of each feature set to identify the most
appropriate technique.

3.3.8. Element (8): Second-layer Unsupervised Learning to Identify Intersectional La-
tent Variables Across Feature Sets Within One Behavior Type

Incorporating latent features representing intersectional effects across different feature sets into
machine learning model training can provide several distinct benefits. These enhancements im-
prove the performance and robustness of computational models, mainly when dealing with com-
plex datasets where interactions between features are subtle but critical for accurate predictions.
Specifically, the key advantages include:

1. Capturing Hidden Relationships: Latent features can reveal hidden relationships be-
tween various feature sets that may not be apparent in the original data, offering a more
comprehensive view and richer insights.

2. Improving Predictive Accuracy: Models trained with original and intersectional latent
features often achieve higher predictive accuracy by utilizing both direct and derived in-
sights, making them more resilient to variations in the data.

3. Enhancing Generalization: Latent features frequently represent invariant aspects of the
datasets—features consistent across different conditions or domains. This can enhance a
model’s generalizability when applied to unseen data or varying conditions.

The advantages of integrating latent feature sets representing intersectional effects across
various feature sets or domains have been empirically supported in previous studies (Nickel
et al., 2015; Calixto et al., 2019; Wu et al., 2019; Bauer et al., 2022; Wang et al., 2022). Fol-
lowing Element 7, practitioners first obtain new feature sets within each behavior type and then
combine them using a unique identifier, such as playerID. After this combination, practitioners
can apply a second layer of unsupervised learning to extract intersectional effects among fea-
tures within a specific behavior type. The choice of the unsupervised learning algorithm for
this step may differ from the one used previously, as the characteristics of the new combined
feature set may change. Practitioners can select a different algorithm based on their research
needs and the characteristics of the combined feature set, or they can follow the selection pro-
cess described in Element 7. In the case of MHS, we applied factor analysis to derive more
comprehensive insights from the combined transformed feature sets within a particular behavior
type. This method was used on the combined transformed feature set obtained from the previ-
ous step (Element 7) to generate a new feature set representing the intersectional effects across
feature sets within that behavior type. Factor analysis is particularly suited for identifying latent
variables influencing observed variables or features. When applied to transformed features, it
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can uncover underlying structures or hidden factors that were not fully captured in the initial
rounds of feature extraction (Bartholomew et al., 2011).

The final output of this step is a consolidated intersectional feature set per behavior type,
which integrates the combined transformed feature sets from Element 7 and incorporates the
intersectional latent variables. This comprehensive feature set can then be used for subsequent
processing and machine learning model training.

3.3.9. Element (9): Generating a New Feature Set That Combines New Feature Sets
of All Behavior Types

In this step, practitioners combine all the new feature sets generated from Element 7 with the
feature set representing intersectional effects identified in Element 8. This combination is based
on a unique identifier to form a comprehensive “Behavior Type x New Features” dataset. Prac-
titioners combine the new features from all behavior types using the same unique identifier.

For MHS, we first merged the combined transformed feature set from Element 7 with the
feature set from Element 8 to create a new feature set for each behavior type, using playerID as
the key. Subsequently, we combined these feature sets across all behavior types using playerID
to prepare the data for further analysis.

3.3.10. Element (10): Third-layer Unsupervised Learning to Identify Intersectional La-
tent Variables Across Various Behavior Types

With the combined feature set generated from Element 9, practitioners can apply unsupervised
learning algorithms to identify intersectional latent variables across all behavior types. Given
that both elements deal with latent variables, practitioners may either use the same algorithm
selected in Element 8 or follow the experimental process described in Element 7 to choose an
appropriate algorithm. For MHS, we once again employed factor analysis on the combined fea-
ture set from Element 9 to derive a new feature set representing the intersectional effects across
all behavior types. The final output of this step is a feature set that encapsulates the intersec-
tional effects across behavior types, providing a comprehensive representation for subsequent
processing and machine learning model training.

3.3.11. Element (11): Preparing Model Training: Combining and Standardizing Fea-
ture set from Different Sources

The initial step in preparing for model training is to combine the feature sets from Elements 6,
9, and 10 using a unique identifier. Once combined, practitioners should preprocess the final
dataset, including tasks such as standardization, imputation, and outlier exclusion. For MHS,
we first merged the datasets from Elements 6, 9, and 10 using the unique identifier, playerID.
Following this, we standardized the combined feature set to ensure that each feature was scaled
consistently, which is crucial for effective model training.

3.3.12. Element (12): Machine learning: Training, Validation, and Testing

Based on the preprocessed dataset derived from Element 11, practitioners can proceed with
training, validating, tuning, and testing machine learning models. For the MHS case, the process
was as follows:
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Given our feature set’s emergent and context-dependent nature and the need for robust and
generalized predictions across diverse data conditions, we decided to employ an Ensemble
Learning approach using a hard voting scheme (Assiri et al., 2020). To optimize the hard-voting
ensemble for binary classification, we selected classifiers that are diverse, robust, and comple-
mentary in their strengths. These classifiers included C-Support Vector Classification (SVC)
(Cervantes et al., 2020), Random Forest (Breiman, 2001), Logistic Regression (Hosmer Jr et al.,
2013), K-Nearest Neighbors (KNN) (Peterson, 2009), Gaussian Naı̈ve Bayes (Kamel et al.,
2019), XGBoost Classifier (Chen and Guestrin, 2016), Gradient Boosting Classifier (Natekin
and Knoll, 2013), AdaBoost Classifier (Ying et al., 2013), Linear Discriminant Analysis (LDA)
(Tharwat, 2016), and Quadratic Discriminant Analysis (QDA) (Tharwat, 2016). The rationale
for selecting these classifiers is detailed in Appendix D, Table 12.

To ensure the stability, validity, and robustness of the model, we allocated 80% of the obser-
vations to the training dataset and the remaining 20% to the testing dataset, using 10 different
random seeds (each seed represents a distinct way to split the dataset, ensuring variability in
training and testing datasets).

Since the post-test assessment scores were discretized into “high” and “low” categories based
on the average score, these two categories’ sample sizes were imbalanced, potentially affecting
model outcomes. To address this issue, we used stratified sampling when splitting the training
and testing datasets to maintain the proportion of each class within both datasets. We also
employed subsampling techniques on the training dataset, specifically using a hybrid approach,
SMOTETomek (Sasada et al., 2020), which combines oversampling the minority class with
SMOTE and Tomek Links to remove samples that contribute to class overlap.

During model training, we implemented 10-fold stratified cross-validation, which preserves
the proportion of each class (“low” and “high”) in each data split. We repeated this process 10
times to estimate model parameters, conduct feature selection, and assess performance.

We aimed to mitigate bias and overfitting for the feature selection process by selecting classi-
fiers capable of providing feature importance scores from those involved in the ensemble learn-
ing model. These classifiers included Random Forest, XGBoost, Gradient Boosting, and Ad-
aBoost. Each classifier was trained separately on the processed (standardized and encoded)
training dataset. After training, we retrieved the feature importance scores from each model.
We then normalized these scores across classifiers to ensure they were on the same scale and
calculated the average importance score for each feature. Based on these average scores, we
ranked the features.

We followed a forward feature selection process, beginning with a single feature (e.g., the
pre-assessment score of a specific unit or the entire game) and adding additional features one by
one, starting with the one with the highest average importance score. After adding each feature,
we evaluated its contribution to the ensemble learning model’s performance using the average
F1 score from the cross-validations. If the F1 score improved, the feature was permanently
added to the final feature set; if not, the feature was discarded, and we moved on to the next one.

After completing the training and validation process, we tested the trained model on the
test dataset. Model performance was assessed using the average and standard deviation metrics
such as accuracy, precision, recall, and F1 score across different dataset splits. Additionally, to
compare model performance across the “Low” and “High” categories of learning outcomes (both
per unit and across the entire game), we calculated these metrics for each class individually. The
results section provides a detailed explanation of each performance metric.

20
233 Journal of Educational Data Mining, Volume 16, No 2, 2024



3.3.13. Element (13): Outcome of Targeted Competence Learning

Within this element, practitioners should first clearly define the specific competencies, knowl-
edge, or skills that their models are intended to predict, aligning with the learning goals outlined
in the ECD competence model. Then, practitioners should appropriately measure and quantify
these learning outcomes. For example, in our case, the dependent or target variable predicted
by the classification model was generated by extracting relevant items from the post-test assess-
ment. These items were summed to produce post-test scores aligned with the targeted learning
goals (detailed information, including the number of items per unit and per competence within
the assessment instruments, is provided in Table 8 of Appendix B). The summed scores were
then discretized into “Low” and “High” categories based on the average score.

To gain insights beyond performance metrics, such as identifying key game behaviors that
drive learning outcomes and adjusting game and pedagogy design accordingly, practitioners
could consider conducting model inference to further interpret the model results. For MHS,
we used the following approaches: 1) Model performance comparison: standard performance
metrics on the test set allow practitioners to compare model performance across different game
contexts and establish how well the model predicts learning outcomes. 2) Feature importance:
Practitioners can calculate feature importance rates using permutation importance. This method
identifies which in-game features contribute most to the model’s predictions by evaluating how
shuffling feature values impacts accuracy. 3) ALE plots: Accumulated local effects (ALE)
plots can help visualize how individual features influence predictions, allowing practitioners to
understand the nonlinear or interaction effects of in-game behaviors on learning outcomes.

3.4. VISUALIZING THE INFERENCE OF LATENT VARIABLES FROM OBSERVABLE BE-
HAVIORS

This section illustrates the transformation of observable behaviors—captured through players’
in-game actions—into latent variables using our structured, multi-layer analytic pipeline. It also
demonstrates the relationship between observable features and the latent features generated at
different stages.

For better illustration, we created Figure 2, reflecting the features generated from different
pipeline stages and the relationships between those features. The following paragraphs contain
comprehensive illustrations regarding the above figure.

3.4.1. Observable Variables

Observable variables are directly derived from players’ interactions with the game environment,
encompassing behaviors such as task completion, argumentation, hotkey usage, tool menu nav-
igation, and in-game item interactions. These raw features are categorized into the types of
Frequency, Speed and Share, as described in Section 3.3.5.

The observable features follow a standardized naming convention that reflects the behavior
type, feature type, and sequence. For instance, raw interaction frequencies, speeds, and shares
are expressed as:

• (behavior type name) frequency raw (feature name) (number)

• (behavior type name) speed raw (feature name) (number)

• (behavior type name) share raw (feature name) (number).
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Figure 2: The diagram to outline the relationship between observable features and latent fea-
tures.

These observable variables form the foundational data used for subsequent processing in the
unsupervised learning pipeline.

3.4.2. Latent Variables: First Layer of Unsupervised Learning

The first layer of the unsupervised learning process (Element 7) applies dimension reduction
techniques to the observable features, generating behavior-specific and feature-type-specific la-
tent variables. This layer focuses on extracting key patterns from the raw data, creating a set
of latent factors (i.e., frequency, speed, share) for each behavior type. The naming convention
reflects these transformations:

• FirstLayer (behavior type name) frequency factor (number)

• FirstLayer (behavior type name) speed factor (number)

• FirstLayer (behavior type name) share factor (number).

These first-layer latent variables capture condensed and abstracted representations of the raw
data, enabling the identification of essential behavior patterns while maintaining the behavioral
integrity of the observable features.

3.4.3. Latent Variables: Second Layer of Unsupervised Learning

The second layer of processing (Element 8) further abstracts the data by identifying intersec-
tional latent variables across different feature types under a certain behavior type. This stage
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aggregates behavior-specific latent variables from the first layer, reflecting complex interactions
between different feature types and uncovering intersectional effects. These intersectional latent
variables are denoted as:

• SecondLayer (behavior type name) inter factor (number).

The second layer provides a deeper level of insight by examining how various behaviors in-
teract and co-occur, offering a richer understanding of player behavior that transcends individual
actions.

3.4.4. Latent Variables: Third Layer of Unsupervised Learning

In the third and final layer (Element 10), the model integrates second-layer latent variables to
form high-level latent constructs that span multiple behavior types. These constructs represent
the most condensed and abstracted set of features, encapsulating the comprehensive behavioral
patterns exhibited by players across various in-game interactions. The naming convention for
these latent constructs is as follows:

• ThirdLayer inter factor (number).

At this stage, the latent variables provide a holistic view of the player’s behavior, combining
data from multiple interactions to infer overall competence and learning outcomes.

Finally, the dataset generated from the entire analytic pipeline—comprising latent features
from the first, second, and third layers of unsupervised learning, along with processed features
reflecting students’ learning progress—serves as the input for machine learning model training.

3.5. APPLYING THE MHS CASE TO THE DEVELOPMENT OF AN EVIDENCE-CENTERED
DESIGN FRAMEWORK

Given the unique curriculum topic of each MHS unit and our intent to empirically evaluate our
proposed pipeline under diverse scopes or contexts within MHS, we established an ECD frame-
work for each context. According to highly cited literature (e.g., Mislevy et al. (2003), Shute
(2011), Shute et al. (2016)) illustrating the ECD framework and its corresponding applications
in SA construction within DGBL environments, ECD can be generally categorized into task, ev-
idence, and competency models. Specifically, the task model involves the tasks or situations in
which evidence about the learner’s competencies is elicited. It consists of the design of the envi-
ronment and the activities that will generate the necessary data. The evidence model describes
how practitioners can infer learners’ competency from in-game performances or behaviors. It
bridges the competency and task models by defining the observable variables and scoring rules.
The competency model contains the knowledge, skills, and abilities the assessment intends to
measure. By carefully defining content within each of the three components, practitioners can
ensure the alignment between measurement contexts and objectives of the SA (Shute, 2011;
Shute and Ventura, 2013; Shute and Kim, 2014; Shute et al., 2016; Min et al., 2019). Table 3
describes how we constructed the ECD framework under different contexts:
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Table 3: Defining evidence-centered design (ECD) framework for each context.

Contexts Task Model Evidence Model Competency Model
Unit 2 All main quests

in unit 2 of MHS.
(Detailed infor-
mation about
each quest in
each unit can
be found in
Appendix A.)

Observable variables: 36
features are included after the
feature selection process, of
which 3 represent learning
progress and 33 represent in-
game actions.

The sum of posttest as-
sessment scores related to
the content knowledge taught
within unit 2, which has 6
items in total.

Unit 3 All main quests
in unit 3

Observable variables: 45
features are included after the
feature selection process, of
which 3 represent learning
progress and 42 represent in-
game actions.

The sum of posttest as-
sessment scores related to
the content knowledge taught
within unit 3, which has 3
items in total.

Unit 4 All main quests
in unit 4

Observable variables: 24
features are included after the
feature selection process, of
which 1 represents learning
progress and 23 represent in-
game actions.

The sum of posttest as-
sessment scores related to
the content knowledge taught
within unit 4, which has 4
items in total.

Unit 5 All main quests
in unit 5

Observable variables: 27
features are included after the
feature selection process, of
which no features represent
learning progress within the
final feature set.

The sum of posttest as-
sessment scores related to
the content knowledge taught
within unit 5, which has 10
items in total.

Whole
Game
Content
Knowledge

All main quests
from unit 1 to unit
5

Observable variables: 45
features are included after the
feature selection process, of
which 3 represent learning
progress and 42 represent in-
game actions.

The sum of posttest assess-
ment scores related to the
content knowledge taught in
the whole game, which has 23
items in total.

Argumen-
tation
Skill

All main quests
from unit 1 to unit
5

Observable variables: 36
features are included after the
feature selection process, of
which 2 represent learning
progress and 34 represent in-
game actions.

The sum of posttest assess-
ment scores related to the sci-
entific argumentation taught
in the whole game, which has
12 items in total.

As part of the evidence model within the ECD framework, we employed a hard-voting en-
semble learning classifier as the statistical model. This method combines multiple classifiers
to improve model robustness and predictive accuracy across all contexts. To avoid redundancy,
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this statistical model is applied consistently throughout the study and is not repeatedly defined
in Table 3.

Notably, the final feature set selected after each round of model training, validating, and test-
ing may be different because of the different thresholds of splitting the dataset (different random
seed numbers). To optimize the model’s robustness, stability, and generalizability and avoid the
over-complexity of the model, the features listed in Table 3 are those that have consistently been
selected as important predictors across different random seeds.

3.6. SUMMARY

This section presents and applies an analytical pipeline designed to predict learning outcomes
across multiple learning objectives within a complex DGBL environment. This pipeline intro-
duces several unique and innovative approaches that distinguish it from previous methods:

Firstly, the pipeline integrates both in-game behavior features and learning progress features.
This integration facilitates the extraction of rich, nuanced features that capture students’ intricate
in-game actions and decision-making processes and strategies. These features form a critical
foundation for constructing accurate models to predict learning outcomes. Moreover, including
expert-crafted learning progress features enhances the interpretability of these models, making
them more meaningful and applicable within educational theory and practice.

Secondly, the pipeline systematically deconstructs complex in-game behaviors into distinct
types, each representing a unique aspect of player interaction. This decomposition ensures that
the multifaceted nature of player behaviors is comprehensively captured. These datasets are
meticulously designed to highlight specific dimensions of behavior patterns by examining the
occurrence of behaviors and their speed and relative importance.

Lastly, the pipeline employs a three-layered unsupervised learning approach. This multi-
layered method facilitates dimension reduction and the identification of intersectional latent
variables within and across different behavior types, eliminating noises within feature sets and
adding significant depth to the analysis. This approach ensures that the most relevant features
are identified and utilized effectively in predicting learning outcomes.

4. RESULTS

4.1. MODEL PERFORMANCE EVALUATION

4.1.1. Comparison across Different Feature Sets

To assess the efficacy of our proposed pipeline in the empirical study utilizing MHS, we initially
compared test accuracy rates across varying feature sets. The outcomes of this comparison are
presented in Table 4.
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Table 4: Comparison of mean testing accuracy rates across 10 different random seed numbers,
used to split the training and testing datasets, among various contexts. The table includes
five performance measurements illustrating the effectiveness of the proposed analytic pipeline.
Detailed descriptions of these measurements can be found in the main text. The values in
parentheses represent the standard deviation of the corresponding testing accuracy rates.

Game
sections

Majority-
based
accuracy

Only pre-score
accuracy

Original
feature set
accuracy

No intersec-
tional features
accuracy

Post-pipeline
feature set
accuracy

Unit 2 57% 64.62%
(0.052)

67.2%
(0.0685)

76.45%
(0.028)

84.3%
(0.0377)

Unit 3 69% 69.47%
(0.074)

70%
(0.0716)

78.22%
(0.024)

82.6%
(0.0222)

Unit 4 67% 67.88%
(0.076)

67.57%
(0.0985)

83.08%
(0.02)

87.4%
(0.0347)

Unit 5 73% 73.7%
(0.076)

76%
(0.1171)

86.56%
(0.025)

93.67%
(0.0398)

Whole
Game

60% 60.22%
(0.038)

73.72%
(0.066)

81.81%
(0.027)

86.2%
(0.029)

Argum-
entation

55.5% 65.59%
(0.08)

66.26%
(0.065)

80.63%
(0.023)

85%
(0.03)

More specifically, majority-based accuracy measures how well a model performs concern-
ing just predicting the majority class for every instance. If the model’s testing accuracy is not
significantly higher than the majority class predictor, it may not effectively leverage the features
to make predictions. It is pertinent to note that the majority class in this study consistently rep-
resents the “high-level” class across all scenarios, which is to say the accuracy rate based on the
majority class corresponds directly to the proportion of the “high-level” class. From Table 4, we
can see that the accuracy rates under this column are lower than those of other columns.

For only pre-score accuracy, we only used the pre-assessment score as the predictor to
establish another baseline model for comparison. By investigating the model performance based
on this feature set, we can know whether the pre-assessment score alone is a strong predictor for
the targeted variable, whether we need additional features as predictors to solve the classification
task, and if the increases of students’ learning outcomes are primarily because of they have better
pre-knowledge regarding the teaching materials within MHS. The third column of Table 4 shows
an accuracy increase from the majority-based rates across all scenarios. However, the degree of
these increases varies considerably across the range of scenarios. As we can see, the water
science knowledge accuracy rates in units 3, 4, and 5, and the whole game scope increased by
less than 1%. In comparison, the accuracy rates of the water-science knowledge in unit 2 and the
scientific argumentation skill increased by over 7%. Overall, none of the accuracy rates surpass
75%.

Regarding original feature set accuracy, compared to the third column, the accuracy rates
utilizing the feature set merging combined feature sets described in Element 5, the feature set
described in Element 4, and the pre-assessment score together do not universally indicate an
increase across all conditions, especially for the water-science knowledge of unit 4, which even
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shows a decrease compared to the third column. We think it may be caused by the curse of
dimensionality, which contains many redundant or irrelevant features. In scenarios indicating
increased accuracy rates, the increase is relatively moderate within the water-science knowledge
of units 2, 3, and 5 and scientific argumentation skills. A notable increase of over 10% is
observed for the water-science knowledge in the whole game scope, compared to its counterpart
of “only pre-score accuracy.”

In terms of no intersectional features accuracy, which utilized the combined feature sets,
each of which is processed after Element 7 merged with the feature set described in Element
6 but without including any intersectional features, compared to the fourth column, we can
see a universal increase in accuracy rates across various scenarios with around 10%. Four out
of six scenarios – the water science knowledge of unit 4, 5 and the whole game scope, and
the scientific argumentation skill – have testing accuracy rates surpass 80%. Furthermore, the
standard deviation of the testing accuracy rates significantly decreased, compared to the third
and fourth columns, which we think is because dimension reduction techniques help to exclude
redundant features and alleviate noise for better capture of useful patterns underlying the dataset.

For post-pipeline feature set accuracy, which used the final feature set from going through
all 13 processes described in the pipeline, we can see a universal increase in the testing accuracy
rates compared to the counterparts when using the feature set without intersectional features.
All testing accuracies surpass the threshold of 80%, which is an acceptable prediction accuracy
rate within educational contexts (Bird et al., 2021). However, we can also notice that, in 5 out of
6 scenarios, the standard deviations of this column are more significant than their counterparts
of the fifth column. We think the possible reasons could be although involving intersectional
features helps us capture useful information across different feature sets and all behavior types
for better performance of our classification tasks, this kind of process could also introduce addi-
tional variabilities that increase the standard deviation of the testing accuracies across different
dataset splitting thresholds (random seeds’ numbers).

Regarding the comparison across different scenarios based on the “post-pipeline feature set
accuracy,” when focusing on water science content knowledge, we find that the highest mean
test accuracy is seen in unit 5, whereas unit 3 is the lowest. The mean test accuracy for the
whole game presents an intermediate performance level compared to the counterparts of other
unit-based records. When comparing under the scope of the entire game, the mean test accuracy
for the water science knowledge is higher than that of the scientific argumentation skill.

4.1.2. Comparison Using Multiple Measurement Metrics for Evaluating Model Perfor-
mance

As previously discussed, the dependent variables, namely posttest assessment scores, measured
students’ learning outcomes in the current study and have been discretized into “high” and “low”
levels based on their mean values. This methodology could introduce significant challenges re-
lated to skewed class distribution or imbalanced datasets. Given this potential issue, the exclu-
sive use of testing accuracy rate to measure model performance may lead to biased evaluations.
This is because a high test accuracy rate could still be obtained even if the model’s proficiency in
predicting the minority class is substantially deficient. To provide a more comprehensive evalu-
ation of model performance, we incorporated additional metrics of precision, recall, and the F1
score, alongside test accuracy.

Precision quantifies the ratio of true positive predictions (correct predictions of the “high-
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level” class in this study) to all positive predictions. A high precision value suggests that the
model seldom misclassifies a negative instance as positive. Conversely, recall calculates the
ratio of true positive predictions to all actual positive instances. A model with high recall excels
at detecting positive instances, which is our study’s “high-level” students. The F1 score, the
harmonic mean of precision and recall, balances these two metrics. It becomes particularly
advantageous when a balance between precision and recall is sought and the dataset exhibits an
uneven class distribution.

Although testing accuracy is included as an overall metric to evaluate the model’s perfor-
mance, it is not reported for individual classes because accuracy inherently reflects performance
across all classes combined. Reporting class-specific accuracy would be redundant, as it is
equivalent to recall for each class and does not provide additional insights. Instead, class-
specific metrics such as precision, recall, and the F1 score are used to comprehensively evaluate
the model’s effectiveness for each class.

For precision, recall, and F1 score, in addition to overall performance evaluation metrics,
we also included class-specific performance metrics for both the “high” and “low” levels. This
approach provides a more detailed understanding of how well the model performs for each
specific class, allowing for a fairer evaluation and evidence-based insights to refine the model.

Providing a more nuanced understanding of model effectiveness is crucial in educational
contexts, where the consequences of misclassification can be significantly different for each
class. For example, failing to identify students who need additional support (low-level class)
could be more detrimental than incorrectly classifying a high-performing student (Bird et al.,
2021). With comprehensive metrics, stakeholders (educators, administrators, and technolo-
gists) can have greater confidence in the model’s deployment, knowing that its performance
has been thoroughly evaluated in nuanced ways that reflect the complex realities of educational
outcomes. Summarily, this approach supports more informed decision-making in educational
contexts where the stakes of accurate and equitable student assessment are high.

The model’s performance, assessed using multiple metrics under various scenarios, is de-
tailed in Table 5.

Table 5 provides information facilitating several insights. Primarily, examining learning
outcomes associated with water science knowledge in units 2, 3, 4 and 5 reveals a trend where
F1 scores are lower than the corresponding test accuracies (refer to the last column of Table 4).
On the contrary, for the learning outcomes under the scope of the whole game, related to both
water science knowledge and scientific argumentation skills, F1 scores exceed the corresponding
test accuracy rates. Such a difference indicates that within the scenarios of the water science
knowledge for units 2, 3, 4, and 5, the model excels in predicting the majority class or high-
performing group while presenting a weaker capability of predicting the minority class or low-
performing group.

28
241 Journal of Educational Data Mining, Volume 16, No 2, 2024



Table 5: All data across the metrics are calculated based on the feature set that went through
all processes described in the pipeline. This table presents a comprehensive assessment of
the model’s effectiveness, including Overall F1-score, precision, and recall, alongside detailed
metrics for high- and low-performing student groups. The “Overall Performance” section re-
ports F1-score, precision, and recall for the entire student group, while the “High Performance”
and “Low Performance” sections provide the same metrics specifically for the high- and low-
performing student groups, respectively. These metrics collectively illustrate the model’s ca-
pability to predict and distinguish between different levels of student performance accurately.

Overall Performance High Performance Low Performance

F1
Preci
-sion Recall F1

Preci
-sion Recall F1

Preci
-sion Recall

Unit 2
84.1%
(0.04)

84.7%
(0.036)

84.1%
(0.042)

86.4%
(0.028)

86.3%
(0.064)

86.9%
(0.049)

81.5%
(0.052)

82.5%
(0.051)

81%
(0.1)

Unit 3
78%
(0.035)

81.3%
(0.031)

76.9%
(0.047)

87.6%
(0.015)

85.1%
(0.05)

91.3%
(0.057)

68.5%
(0.06)

77.5%
(0.072)

63%
(0.14)

Unit 4
85.4%
(0.042)

86.9%
(0.044)

85.1%
(0.046)

90.9%
(0.026)

89.7%
(0.04)

91.5%
(0.059)

79.3%
(0.052)

84.3%
(0.089)

77.5%
(0.105)

Unit 5
91.6%
(0.056)

94.9%
(0.034)

90.3%
(0.074)

95.8%
(0.023)

93.9%
(0.054)

98.3%
(0.024)

86.9%
(0.091)

95.6%
(0.067)

82.1%
(0.164)

Whole
Game

88.7%
(0.045)

85.9%
(0.032)

85.62%
(0.033)

88.3%
(0.025)

88.2%
(0.025)

88.4%
(0.057)

82.5%
(0.04)

83.6%
(0.05)

83.5%
(0.05)

Argumen
-tation

87%
(0.031)

84.89%
(0.032)

85%
(0.03)

82%
(0.048)

85.89%
(0.047)

86.22%
(0.031)

84.75%
(0.032)

85%
(0.032)

83.33%
(0.033)

This finding is corroborated by analyzing the corresponding precision and recall values,
which show noticeably higher precision than recall. However, a shift is observed when con-
sidering the scope of the whole game, including both water science knowledge and scientific
argumentation skill, in which the model shows a nearly balanced or closed performance in pre-
dicting both “High” and “Low” classes. This finding is confirmed by corresponding overall
precision and recall values where recall equals or exceeds precision.

Further validation of the above findings can be achieved by investigating the class-specific
F1 score, precision, and recall metrics. The data clearly demonstrates that for water science
knowledge in units 2, 3, 4, and 5, all measurement metrics for the high-level class are markedly
superior to those for the low-level class; the largest extent can be seen in unit 3. However, the
disparity between these metrics for the high-level class and their counterparts for the low-level
class is almost negligible when considering water science knowledge and scientific argumenta-
tion skill under the scope of the whole game.

Furthermore, Table 5 reveals various model performances in predicting learning outcomes
regarding water science knowledge across different units. The model is most effective at pre-
dicting learning outcomes for Unit 5 and least effective for Unit 3. By investigating the class-
specific metrics in corresponding units, we think the model’s limited capability in predicting the
learning outcomes of low-level classes is the primary factor contributing to the comparatively
weak predictive performance for unit 3. This finding is reinforced by the fact that all metrics
specific to the low class in unit 3 fall below the 80% threshold and are significantly lower than
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their high-class counterparts. Similarly, a notable performance gap between the low and high
classes is observed in the water science knowledge of unit 4. Notably, when concentrating on
the performance metrics associated with the low-level class, the recall values consistently lag
behind precision values, especially in units 3, 4, and 5. Although this observation implies a high
accuracy when the model labels a student as a low-level learner, the model’s ability to identify
low-level learners remains underwhelming. It overlooks several genuinely struggling students
who could benefit from additional learning support.

When we focus on the overall learning outcomes of water science knowledge and scientific
argumentation skills, the overall performance metrics, as well as the performance metrics for
the high-level class of water science knowledge, exceed that of the scientific argumentation
skill. Conversely, the predictive performance for a low-level water science knowledge class is
similar to the counterpart of the scientific argumentation skill.

4.2. MODEL INFERENCE

After a comprehensive evaluation of the model performance metrics, which reflect the effec-
tiveness of our proposed analytic pipeline, we also conducted model inference to examine how
involved features operationalized to predict the targeted learning outcomes for understanding
their specific impacts. This involved calculating the importance rate for each feature that suc-
cessfully passed the feature selection process, as we described in section 3.3.12, and creating
plots of accumulated local effects (ALE) for expert-crafted features, which represent students’
learning progress in different gaming stages and were also retained after the feature selection
process. We think these plots provided an in-depth interpretation of the model’s outcomes.

4.2.1. Feature Importance Rate

As we mentioned previously, we utilized an ensemble learning model with the hard voting
scheme, which involves multiple classification model algorithms, each of which in the ensemble
votes for a class (“High” or “Low”), and the class that gets the majority of the votes is chosen
as the final prediction. Although this approach is robust against overfitting, one of its issues is
that when examining each feature’s importance rate, not all algorithms involved within the en-
semble model provide a built-in method to calculate features’ importance rates. Given the hard
voting scheme, which considers all involved classifiers with equal weight, we decided to use
the importance of the permutation feature across all classifiers. This method can be applied to
any classifier that provides a predictive performance metric and a consistent and model-agnostic
metric for assessing feature importance across a diverse array of classifiers within the ensemble
model, enabling a holistic understanding of feature contributions devoid of the biases typically
associated with model-specific importance measures (Breiman, 2001; Altmann et al., 2010).

Here is a brief illustration of the process we followed to calculate the permutation impor-
tance rate for each selected feature. Upon successful training and validation of the ensemble
model, the importance of the permutation feature was computed to determine the relative sig-
nificance of each feature across the model’s predictions. This process involved systematically
shuffling each feature in the test dataset while maintaining the integrity of all other features,
thereby isolating the impact of the shuffled feature on the model’s accuracy and stability. The
model’s performance was evaluated both before and after the permutation of the shuffled feature.
For each iteration, the performance metric, which in the current study is the test accuracy, was
recorded. The difference in performance metrics quantified the impact of the feature’s permu-
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tation, indicating its importance. To ensure the reliability and reproducibility of the importance
scores, this permutation process was repeated ten times for each feature per dataset split random
seed. After the total of 100 (10 repeats * 10 distinct random seeds) repeats, the resultant changes
in performance were then averaged to mitigate the effects of random variations inherent in the
permutation process.

(a) Water science knowledge - unit 2. (b) Water science knowledge – unit 3.

(c) Water science knowledge – unit 4. (d) Water science knowledge – unit 5.

Figure 3: Ordered Permutation Importance Rate Across Game Contexts. Orange bars represent
learning progress features. Blue bars represent other features.

After an initial glance at Figures 3 and 4, we can summarize some key findings to provide a
clearer context for the subsequent analysis: 1) the dialogue-related behaviors contribute largely
to the learning outcome prediction of the water science knowledge in units 2, 3, 4 and 5, across
the whole game and the scientific argumentation skill; 2) The argumentation-related behaviors
significantly contribute to learning prediction of the overall scientific argumentation skill and
the water science knowledge of unit 2; 3) For the item-interaction behaviors, we can see it
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(a) Water science knowledge – whole game. (b) Scientific argumentation skill – whole game.

Figure 4: Ordered Permutation Importance Rate Across Game Contexts. Following Figure 3.

contributes significantly to the learning prediction in regards to the water science knowledge in
units 3, 4, and the overall game scale; 4) Regarding the tool usage behaviors, they contribute
largely to the learning outcome prediction in units 3; 5) The task completion behaviors have
significant contribution to the learning prediction regarding overall water science knowledge
and scientific argumentation skill; 6) The shares of different behavior types (events) contributes
to predicting the learning outcomes of the water science knowledge of unit 5 and the whole
game scale. These findings set the stage for a deeper analysis of the underlying contributions of
these behaviors in various game contexts.

Building on these general findings, we examine the specific contributions of in-game features
to learning outcome predictions in each game context. Figures 3 and 4 provide detailed results
of the permutation importance rates for each context. Our first inquiry focuses on what types of
in-game actions significantly contribute to the learning outcome prediction under each context.
We first discovered that contributions of 8%, 13%, 4%, 15%, 9%, and 17% are attributed to
intersectional features across all behavior types (the features’ names start with “ThirdLayer”)
in units 2, 3, 4, 5, the water science knowledge for the whole game, and the scientific argu-
mentation skill for the entire game, respectively. Interestingly, we infer that at least 80% of the
contributions are attributed to features representing a specific in-game behavior type (combin-
ing features with names starting with “FirstLayer” and “SecondLayer” under a certain behavior
type) across different game contexts.

A closer look at individual units reveals further details about these contributions. Within Unit
2 (Figure 3a), dialogue- and argumentation-related behaviors account for 25% and 22% of the
predictive contribution among individual behavior types. In unit 3 (Figure 3b), 29% of predictive
performance originates from item interaction behaviors, 13% is derived from dialogue reading
behaviors, and 11% stems from tool usage behaviors among individual behavior types. Concern-
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ing unit 4 (Figure 3c), dialogue-related attributes contribute 46%, and item interaction behaviors
contribute 29% within individual behavior types. In unit 5 (Figure 3d), the primary contribu-
tion comes from dialogue-related behaviors, with 48% shares among individual behavior types,
followed by behavior type shares, with shares of 11%. Under the whole game scope (Figure
4a), for water science knowledge, the dialogue-related behaviors lead, contributing 27% among
individual behavior types, followed by item interaction behaviors contributing 18%, shares of
different behaviors (events) contributing 16%, and task-completion behaviors with 13%. Re-
garding argumentation skills (Figure 4b), argumentation-related behaviors contribute the most,
with 28% shares. The second most contributed behavior type is dialogue-related behaviors, with
25% shares, followed by task-completion behaviors, with 22% shares.

In addition to these behavior-specific contributions, certain predictors stand out as highly
influential. For instance, in some game contexts, pre-assessment scores emerge as the most
important predictor, such as for water science knowledge in unit 2 and the overall game scale.
However, for water science knowledge in unit 4 (Figure 3c), the corresponding pre-assessment
score is excluded from the selected features. Additionally, bar plots in Figures 3 and 4 highlight
the importance of features representing students’ learning progress at different game stages.
Specifically, these include three features for Unit 2, three for Unit 3, one for Unit 4, three for
water science knowledge across the whole game, and two for scientific argumentation skills.

There are 12 learning progress features involved within prediction models across different
game contexts, and we are interested in studying the impact of each expert-crafted feature on the
final learning outcome per context. This pursuit is motivated by gaining comprehensive insights
into questions such as how our learning progress features, which quantitatively assess students’
progress or milestones, influence the prediction of their post-assessment learning outcomes, and
what perspectives we can extract from interpreting the nature of the influence to refine the game
and pedagogical design.

4.2.2. Feature Interpretation: Accumulated Local Effects Plots

In our previous description, we mentioned that we used an ensemble learning algorithm with the
hard-voting scheme, which includes ten base classifiers to predict the targeted learning outcome,
given our complex and adaptive feature sets. Most of these base classifiers are characterized as
“black-box” supervised learning models. A significant drawback of these models is their lack of
interpretability or transparency, making it challenging to examine how the included predictors
influence the predicted responses. Applying partial dependence (PD) plots to estimate feature
effects is a common strategy to overcome this shortcoming. However, PD plots require the tested
features to be uncorrelated, which is hard to meet in datasets collected within real-world con-
texts. As a viable alternative, accumulated local effects (ALE) can handle features that exhibit
correlation with one another and provide visualizations depicting how the changes in each fea-
ture’s value impact the probability of class classification of the dependent variable (Apley and
Zhu, 2020).

For several reasons, we draw ALE plots exclusively for features representing students’ learn-
ing progress, as selected by the final ensemble learning model. Firstly, these features are expert-
crafted, inherently interpretable, and meaningful within the educational domain. This facilitates
a clearer understanding of how variations in these features influence the model’s predictions.
Secondly, the interpretability of these features is crucial for deriving actionable insights and
effectively communicating results to stakeholders, particularly non-technical ones. Thirdly, en-
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(a) The ALE plot for the learning progress feature -
“upstreamArgScore” and Unit 3’s water science content
knowledge.

(b) The ALE plot for the learning progress feature –
“findTeamAveScore” and Unit 2’s water science content
knowledge.

(c) The ALE plot for the embedded score – “secondSe-
tUpScore” and overall posttest score for water science
content knowledge.

(d) The ALE plot for the embedded score – “plantScore”
and Unit 3’s water science content knowledge.

(e) The ALE plot for the embedded score – “bigger-
ArgScore” and Unit 2’s water science content knowl-
edge.

(f) The ALE plot for the embedded – “crateDeliv-
eryScore” and Unit 3’s water science content knowledge.

Figure 5: ALE plots for standardized scores measuring students’ in-game learning progress,
which are selected by the hard-voting ensemble learning model under different scenarios and
display representative shapes or trends.
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semble learning models’ selection of these features indicates their statistically significant influ-
ence on model predictions. In contrast, other features, which are latent and generated by feature
extraction techniques representing students’ in-game behaviors, often lack straightforward in-
terpretations, diminishing their utility in explanatory analyses. Therefore, focusing on features
that represent learning progress enhances the relevance and comprehensibility of the model’s
results, ensuring that the analysis remains accessible and meaningful to a broader audience.

Figure 5 presents parts of the ALE plots, which display representative or typical shapes or
trends between learning progress features and their corresponding learning outcomes. Appendix
F contains ALE plots and detailed illustrations for all selected learning progress features. Un-
derstanding the ALE plots can be aided by the subsequent explications of the key involved
components:

1. X-axis: Represents the range of standardized feature values used in the study.

2. Y-axis: Indicates the variation in the predicted probability of the positive class (in our
study, the high-level class) as the feature value changes.

3. Horizontal line at y = 0: serves as a reference point. An ALE curve crossing this line
suggests that feature values below it decrease the predicted probability of the positive
class, whereas values above it increase the probability (or vice versa).

4. Shape of the plot: The ALE plot’s shape reveals the relationship between the feature
and the predicted probability, which can be linear, non-linear, non-monotonic, or exhibit
complex patterns.

5. Magnitude of ALE value: Reflects the importance of the feature; larger magnitudes
indicate a more significant impact on the predicted probability.

Their relative orientation remains consistent with the original scores despite standardizing
score values. This means the transformed values’ lower range (leftmost side) corresponds to
the lower range of the original scores, and the upper range (rightmost side) corresponds to the
upper range of the original scores. To facilitate interpretation, we correlate student in-game
performance metrics with the respective intervals of the standardized score values, as detailed in
Table 6.

Table 6: Score intervals and corresponding in-game performances for selected features repre-
senting students’ learning progress.

Feature Name and Brief Il-
lustration

Standardized score
value interval

In-game performance

(a) UpstreamArgScore:
Measures progress in con-
structing a scientific argu-
ment to identify the pollutant
source in Unit 3.

Leftmost interval Failed the task or made more than
six attempts without a correct argu-
ment.

Middle interval Submitted a correct argument
within three attempts.

Rightmost interval Correct argument submitted on the
first attempt.
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Table 6: Score intervals and corresponding in-game performances for selected features repre-
senting students’ learning progress.

Feature Name and Brief Il-
lustration

Standardized score
value interval

In-game performance

(b) findTeamAveScore:
Measures progress in locating
the team using topographic
knowledge in Unit 2.

Leftmost interval Abandoned the task or found the
team after three minutes without us-
ing the topographic map.

Middle interval Found the team after more than
three minutes using the map, or
within three minutes without using
the map.

Rightmost interval Successfully found the team within
three minutes, demonstrating strong
topographic map skills.

(c) secondSetUpScore:
Measures progress in select-
ing the correct machine to
generate distilled water on
the second floor of a factory
in Unit 5.

Leftmost interval Failed to complete the task or se-
lected the wrong machine type.

Middle interval Eventually selected the correct ma-
chine after several attempts.

Rightmost interval Chose the correct machine type on
the first attempt.

(d) plantScore: Measures
progress in selecting correct
seedbeds to install pumps
along a river, assessing
knowledge of dissolvable
materials in Unit 3.

Leftmost interval Failed to complete the task or
installed all pumps in incorrect
seedbeds.

Middle interval Installed some pumps correctly, but
others in incorrect seedbeds.

Rightmost interval Successfully installed all pumps in
the correct seedbeds, demonstrating
complete accuracy.

(e) biggerArgScore: Mea-
sures progress in constructing
a scientific argument to deter-
mine the larger watershed in
Unit 2.

Leftmost interval Disengaged from the task without
submitting a correct argument.

Middle interval Submitted a correct argument
within three attempts.

Rightmost interval Submitted a correct argument on
the first attempt.

(f) crateDeliveryScore:
Measures progress in de-
livering crates to an NPC’s
base based on water flow
direction.

Leftmost interval Failed to complete the task or deliv-
ered all crates via the wrong river.

Middle interval Delivered some crates correctly, but
others via the wrong river.

Rightmost interval Successfully delivered all crates
via the correct river, demonstrating
complete accuracy.

ANALYSIS OF ALE PLOTS DISPLAYING INCREASING TRENDS The ALE plots in this sub-
section exhibit approximately increasing trends between students’ standardized scores repre-
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senting their learning progress and corresponding learning outcomes. However, variations exist
among these plots, with one showing a linear relationship, another showing a steady non-linear
increase, and others demonstrating non-linear relationships with abrupt increases.

For the “upstreamArgScore” – which assesses students’ performance in the scientific argu-
mentation task in Unit 3 – a clear linear relationship is evident between the standardized score
and the likelihood of being classified as a high-level learner, as illustrated in Figure 5a. This task
requires students to persuade a character, Bill, about the source of pollution based on evidence.
As shown in row (a) of Table 6, students who present a correct argument with fewer attempts
are likelier to achieve high-level learner status in the posttest.

In the case of the “plantScore” – which measures students’ progress in installing pumps
for garden beds downstream of a large polluted tree based on their understanding of dissolvable
materials in water – the ALE plot in Figure 5d reveals a non-linear but steadily increasing impact
on performance. As noted in row (d) of Table 6, students incorrectly placing more than two
pumps are less likely to be classified as high-level learners. In comparison, correctly installing
more than two pumps significantly boosts this likelihood.

Figures 5b and 5c display ALE plots with non-linear relationships characterized by sudden
increases at different score points. Figure 5b shows this sudden change at the rightmost score
interval, while Figure 5c shows it at the leftmost score interval. Specifically, Figure 5b exam-
ines the relationship between post-test scores and students’ performance in locating their teams.
Row (b) of Table 6 indicates a significant positive impact on posttest scores for the highest per-
formance range, with ALE values exceeding the zero threshold. Students who locate their team
within three minutes and effectively use the topographic map are significantly more likely to at-
tain a high-level understanding of Unit 2’s water science content. In contrast, other performance
levels are associated with lower post-test outcomes, suggesting a greater likelihood of achiev-
ing only a low-level understanding of the material. Learning progress features which present
similar trends to Figure 5b (“findTeamAveScore”), include “floodArmoryScore,” “wareHous-
eScore,” and “fountainScore.”

Regarding Figure 5c, which examines the relationship between the “secondSetUpScore” and
the overall posttest score for water science knowledge, row (c) of Table 6 indicates a positive
correlation between students’ posttest scores and their performance in this task, provided they
select the correct machine, regardless of the number of attempts. Conversely, incorrect machine
selection is associated with lower post-test scores. The learning progress feature “thirdSetUp-
Score” has a similar trend to “secondSetUpScore.”

ANALYSIS OF ALE PLOTS DISPLAYING BELL-LIKE SHAPE The bell-like shape in ALE
plots is characterized by negative impacts on learning outcomes at the leftmost and rightmost
score intervals, while the middle interval has a positive effect. Figure 5e exemplifies this shape.
It illustrates the relationship between posttest scores measuring students’ water science knowl-
edge and their performance in scientific argumentation within Unit 2. The plot reveals that the
lowest and highest score intervals negatively affect the likelihood of attaining a high-level clas-
sification in the corresponding learning outcome. In contrast, an intermediate score range of -0.2
to 0.3 positively influences the probability of achieving a high-level classification. As shown in
row (e) of Table 6, students who submit correct arguments within three attempts but not on the
first attempt are likelier to achieve high-level outcomes as measured by the posttest.
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ANALYSIS OF ALE PLOTS DISPLAYING COMPLEX AND OSCILLATING PATTERNS The
ALE plot selected for this subsection exhibits a complex and oscillating trend, which is more
challenging to interpret than the other plots.

Figure 5f shows the ALE plot for “crateDeliveryScore,” which evaluates the accuracy of de-
livering crates based on water flow in a specific task. Combined with row (f) of Table 6, the
plot indicates that delivering three crates incorrectly while delivering one correctly negatively
impacts post-test scores. Conversely, correct delivery—mainly when all crates are delivered
accurately—correlates positively with higher post-test scores. This pattern underscores the im-
portance of accuracy in this task for better knowledge acquisition in Unit 3’s water science
content. The challenging aspect of interpreting this ALE plot lies in explaining the observed
phenomenon where no correct delivery still positively impacts post-test scores. This may re-
quire higher-dimensional ALE plots to provide a more straightforward explanation. Learning
progress features that show similar trends to “crateDeliveryScore” include “CREiScore” and
“drillRoomScore.”

SUMMARY Among the selected learning progress features, only “UpstreamArgScore” demon-
strates a linear relationship with the probability of classification into high-level learning out-
comes, as measured by posttest assessment scores. The other features exhibit non-linear rela-
tionships. Not all features show a consistent positive correlation, indicating that better in-game
performance does not always correspond to better post-game learning outcomes. This is evident
in learning progress features such as “biggerArgScore,” and “crateDeliveryScore.” The ALE
plots for these features reveal complex, non-linear, and oscillating patterns, suggesting a need
for further analysis to clarify these relationships.

4.3. CONTRIBUTION SUMMARY

Before beginning our discussion, it is essential to revisit the foundational research questions that
have guided our study. These questions have provided direction and focus, supporting us in
describing and validating the proposed analytic pipeline and interpreting its results.

4.3.1. RQ1: What Distinct Elements are Encapsulated within the Overarching Analytic
Pipeline?

In addressing RQ1, which aimed to identify the distinct elements within our analytic pipeline,
we outlined a methodical 16-step process. The pipeline begins with extracting raw logs from
the game logging system, followed by comprehensive cleaning and categorization to ensure
data integrity. Key stages involve the extraction and standardization of both learning progress
features and in-game behavior features. The in-game behavior features were further categorized
to provide a detailed understanding of player interactions.

We employed unsupervised learning techniques to improve feature clarity, reduce noise,
and optimize predictive accuracy while minimizing information loss. These techniques enabled
dimensionality reduction and the identification of latent variables within individuals and across
multiple behavior types. The result was a set of refined features that captured intricate learning
patterns and the interplay between different behaviors, offering a comprehensive view of student
interactions and learning outcomes.

During the modeling phase, consistent data preprocessing and standardization were priori-
tized. We adopted an ensemble learning approach, utilizing 10 diverse, robust, and complemen-
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tary classifiers. This strategy was designed to address our feature set’s complexities and dynamic
nature, ensuring robust and generalized predictions across various game contexts and outcomes
for different learning objectives. Additionally, we conducted a feature selection process during
model training to reduce noise and improve the signal within the feature set.

To validate the effectiveness of the analytic pipeline, we employed multiple model perfor-
mance metrics using feature sets generated at different stages of the pipeline. These metrics
were evaluated against rich gameplay logs collected from the DGBL environment Mission Hy-
droSci (MHS). The results confirmed the pipeline’s ability to significantly enhance prediction
model performance across different game contexts and learning subjects, demonstrating its po-
tential applicability to other DGBL environments. A more detailed summary of the pipeline’s
validation is provided in the subsequent subsection.

4.3.2. RQ2: How Effective is This Pipeline across Various Contexts?

To evaluate the efficacy of the analytic pipeline across various contexts within the MHS environ-
ment, we systematically assessed its ability to predict different learning outcomes. The analysis
of testing accuracy rates derived from feature sets at various pipeline stages, confirmed that the
comprehensive feature processing significantly enhances model predictive accuracy. The final,
post-pipeline feature set consistently improved testing accuracy across all scenarios, surpass-
ing the 80% threshold acceptable in educational settings. This outcome highlights the critical
role of advanced feature engineering techniques in capturing the complex patterns of student
interactions and learning outcomes, such as dimensionality reduction and the integration of in-
tersectional features.

Our analysis also revealed variability in model performance across different game contexts
(units) and learning objectives. When comparing different knowledge domains within the entire
game context, the accuracy for overall content knowledge in water science slightly exceeded
that for scientific argumentation. Notably, the pipeline was most effective in predicting learning
outcomes for water science knowledge in Unit 5 and least effective in Unit 3.

The lower accuracy observed in Unit 3 could be attributed to the increased complexity and
novelty of its content and mechanics, which were new and more diverse for students than earlier
units. Unlike Unit 2, where content variations reappear in later units, Unit 3’s unique challenges
likely demanded more cognitive resources from students, making it harder for them to solve
in-game puzzles and tasks using prior knowledge. This may have led to frustration, confusion,
and disengagement, ultimately impacting their performance.

In contrast, the higher accuracy observed in Unit 5 may be due to the consistency of core
game mechanics—such as dungeon puzzles, item interactions, and environmental exploration—
despite differences in specific mechanics. Familiarity with these core mechanics likely helped
students maintain their progression in the game and focus on mastering the targeted content
knowledge and skills. This increased their likelihood of being classified into the high-level
learning outcome category and mitigated the model’s difficulty in predicting the minority class.

The inclusion of precision, recall, and F1 score metrics provided a more nuanced evaluation
of model performance, particularly in predicting high and low learning classes separately. While
the models excelled in predicting high-performing students, their effectiveness in identifying
low-performing students was less robust, particularly within individual units. This shortcoming
likely stems from the absence of features specifically capturing off-task behavior, disengage-
ment, and guessing. The inability to measure these factors reduced the accuracy of predicting
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low-level learning outcomes. This finding highlights the need for future research to improve
model performance in predicting low-performing students, as misclassification in this group can
have more severe consequences in educational contexts.

4.3.3. RQ3: What Methods Can Help Interpret the Black-box Computational Models,
and What Insights Can be Drawn from their Results?

To address RQ3, we explored methods for interpreting black-box computational models, focus-
ing on enhancing model transparency and understanding. We employed two primary techniques:
permutation feature importance and ALE plots.

PERMUTATION FEATURE IMPORTANCE Through permutation importance analysis, we iden-
tified that both individual in-game behaviors—such as dialogue-related, argumentation-related,
item interaction, tool usage, and task completion behaviors—and intersectional features that
combine different behavior types consistently play a crucial role in predicting learning outcomes
across various game contexts. This finding highlights the need to consider specific behaviors and
their interactions when designing predictive models in educational settings.

The analysis also revealed that the types of behaviors most influential in predicting learning
outcomes vary across different game contexts. This finding suggests that the design of each
DGBL environment strongly influences which behaviors become significant predictors of the
targeted learning objectives. For example, in Unit 2, extensive dialogues between the main
character and non-player characters (NPCs) convey critical background information, enhance
engagement, and guide quest completion. As a result, dialogue-related behaviors emerge as
the most influential in model construction. In contrast, Unit 3 emphasizes puzzles requiring
interaction with various in-game items, making item interaction behaviors the most critical for
predicting learning outcomes related to Unit 3’s content knowledge.

Additionally, our analysis revealed variability in the importance of pre-assessment scores
across different scenarios. In certain units, pre-assessment scores were not the most critical
predictors, suggesting that other in-game behaviors may have a more direct impact on learning
outcomes. This underscores the importance of context-specific feature selection depending on
the game environment and learning objectives. Especially for unit 4’s water science knowledge,
the pretest score is absent in the final prediction model, although it correlates significantly with
its posttest score. This could suggest that the pedagogical and game design of Unit 4 effectively
facilitate students’ mastery of the targeted learning objectives within the game, reducing their
reliance on prior knowledge to achieve specific outcomes.

ACCUMULATED LOCAL EFFECTS (ALE) PLOTS We further emphasized the value of expert-
crafted features representing students’ learning progress at different game stages. The model
selected these features as important predictors and we analyzed their influence using ALE plots.
This approach revealed various relationships between these features and learning outcomes. For
instance, while some features like “UpstreamArgScore” displayed a clear linear relationship
with high-level learning outcomes, others, such as “crateDeliveryScore,” exhibited more com-
plex, non-linear patterns. These findings indicate that in-game performance does not always
straightforwardly translate to better learning outcomes, highlighting the complexity of these re-
lationships and the need for sophisticated analytical methods to fully understand them.
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The use of ALE plots contributes to the broader goal of enhancing model transparency in ed-
ucational data mining. By providing clear visualizations and interpretations of feature impacts,
the research makes predictive models more accessible and usable for stakeholders, including
educators and administrators. This transparency is crucial for ensuring that predictive models
are not only accurate but also comprehensible and actionable in real-world educational settings.
Additionally, the insights derived from ALE plots have practical implications for designing edu-
cational games and developing pedagogical strategies. Educators and game designers can refine
their approaches to better support student learning by understanding how specific in-game be-
haviors and learning progress features influence outcomes. The findings offer a foundation for
improving both game mechanics and educational interventions, with specific recommendations
and potential refinements discussed in the following section.

5. DISCUSSION

5.1. FURTHER COMPREHENSION OF ALE PLOTS

The analysis of ALE plots identified 12 learning progress features that significantly impacted the
targeted learning objectives. However, these features exhibited different patterns in influencing
outcomes as their values changed. Broadly, these patterns can be categorized into three groups:
“Increasing Trend,” “Bell-like Shape,” and “Complex and Oscillating Patterns,” as discussed in
Section 4.2.2.

5.1.1. Increasing Trend

This group includes most selected learning progress features—8 out of 12 fall into this category.
Upon closer inspection, these features can be further divided into three subgroups: “Threshold
Incremental Learning,” “Progressive Learning Gain,” and “Learning Inflection Point.”

THRESHOLD INCREMENTAL LEARNING ALE plots in this subgroup display a distinctive
pattern: the leftmost range falls below zero on the y-axis, while the middle and rightmost ranges
rise above it. This suggests an overall increasing trend in student performance on these learn-
ing progress values, particularly after surpassing a specific threshold. Each quest associated
with these features incorporates feedback elements, leading us to hypothesize that the feedback
mechanisms within MHS—such as pop-up dialogues, auditory feedback from an AI robot, and
changes in game scenes based on student choices—significantly influence these patterns. Stu-
dents who fail to adapt their strategies in response to feedback tend to display lower learning
outcomes, while those who effectively use feedback to adjust their decision-making are more
likely to be classified as high-level learners.

Constructivist theory provides an alternative explanation, positing that learners construct
knowledge through interactions with their environment and reflection on those experiences
(Pivec et al., 2003; Bada and Olusegun, 2015). In the MHS environment, students learn from
actions such as submitting arguments, assembling machine parts, and using topographic maps,
adjusting their understanding based on feedback. As indicated by the ALE plots, students who
do not adapt their strategies (leftmost range) are less likely to achieve high learning outcomes,
while those who actively learn from feedback (middle and rightmost ranges) are more likely to
succeed.
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PROGRESSIVE LEARNING GAIN This subgroup includes features that show an ascending
trend, varying only in linearity. The ALE plots for these features indicate a positive correlation
between the learning progress scores and the ALE values—more accurate decisions and fewer
errors correspond to improved learning outcomes.

While constructivist theory explains some aspects, operant conditioning theory (Staddon
and Cerutti, 2003; Akpan, 2020) may better account for scenarios where the impact on learning
outcomes decreases with more correct choices or where the middle range of learning progress
values has a negligible effect. Positive reinforcement (Staddon and Cerutti, 2003; Kirsch et al.,
2004; Wu et al., 2012) likely plays a role, as students who receive positive feedback after correct
decisions are more motivated to continue using successful strategies, thereby enhancing learn-
ing outcomes. Conversely, punishment or negative reinforcement following incorrect choices
prompts students to adjust their strategies, improving their performance.

Cognitive load theory (Sweller, 1994; Sweller, 2011) also offers insights, suggesting that
the leftmost range may represent a high cognitive load where students struggle to assimilate
new information, leading to underperformance. The rightmost range may indicate effective
cognitive load management, where students have acquired the necessary knowledge and skills,
improving their problem-solving abilities. The middle range could represent a transitional stage
where students gradually improve their cognitive load efficiency.

LEARNING INFLECTION POINT In this subgroup, ALE plots reveal that the leftmost and
middle intervals fall below zero, while the rightmost range rises above it. This suggests that
only students with high learning progress values will likely be classified as high-level learners.
Mastery learning theory (Block and Burns, 1976; Slavin, 1987; Yang, 2017; McGaghie and
Harris, 2018) provides a cogent framework for interpreting these patterns. This theory posits
that students must master one topic before progressing to the next. Students who make the
correct choice on their first attempt demonstrate mastery of the necessary skills and knowledge.
At the same time, those who struggle may need additional support or interventions to reach
mastery. Cognitive load theory also offers an explanation. High-level learners likely manage
their cognitive load effectively, balancing the complexity of tasks with their available cognitive
resources. Students who struggle may be experiencing increased cognitive load due to complex
instructions or problem-solving demands, and this higher load can impede learning.

5.1.2. Bell-Like Shape

In this category, ALE plots resemble an arch, with both extremes falling below zero and the mid-
point rising above it. This pattern suggests that extremely low or high values on these learning
progress features correlate with lower learning outcomes, while intermediate scores yield better
outcomes. This effect may be due to MHS’s integrated formative feedback approach. Students
who fail to make correct decisions may disengage, leading to frustration and missed learning
opportunities. Conversely, students who make correct decisions too quickly may rely too heav-
ily on pre-existing knowledge, missing new insights. Those who adapt their choices based on
feedback tend to enhance their understanding and performance, aligning with Vygotsky’s Zone
of Proximal Development theory, which suggests optimal learning occurs when tasks are neither
easy nor difficult (Chaiklin et al., 2003).
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5.1.3. Complex and Oscillating Patterns

Features in this group generate ALE plots with unstructured and oscillatory patterns, with some
intervals above and others below zero. While certain intervals align with expectations—such as
higher scores increasing the likelihood of high learning outcomes—other unexpected patterns
emerge, making these ALE shapes difficult to explain.

Cognitive load theory offers a potential explanation for some of these patterns. Students in
the rightmost ranges may manage their cognitive load effectively, leading to better outcomes,
while those in the leftmost ranges may struggle with higher cognitive loads, impairing their
learning. The oscillatory nature of the middle interval suggests a complex interplay of cognitive
loads, where learning outcomes do not change linearly but fluctuate based on task complexity,
prior knowledge, and instructional effectiveness.

These findings indicate that further research, possibly involving higher-order ALE plots, is
needed to fully understand the dynamic interactions among these factors.

5.2. THOUGHTS ON GAME DESIGN ISSUES

As discussed in the previous sections, some learning progress features produced ALE shapes that
deviated from our initial expectations, particularly those in the “Bell-like Shape” and “Complex
and Oscillating Patterns” categories. These unexpected trends suggest potential issues related to
the design and implementation of these learning progress features. Three key unexpected trends
emerged:

1. Students who achieved high learning progress values (typically by submitting correct an-
swers on their first attempt) were not consistently classified as high-level learners in the
corresponding learning outcomes.

2. Students with mid-range learning progress values did not exhibit an increasing likelihood
of achieving high-level learner status, compared to those with low-range learning progress
values, which is contrary to expectations.

3. Fluctuating and oscillating patterns appeared around the x-axis zero threshold in the ALE
plots, which are difficult to interpret.

Several factors may contribute to these trends, including possible shortcomings in how the
learning progress features were crafted, which could fail to capture all necessary information
to predict the targeted learning outcomes. However, this section will focus on discussing the
game design-related issues that might underlie these trends, briefly mentioning potential issues
in feature generation.

5.2.1. High Learning Progress Values Not Leading to High-Level Learner Status

One possible explanation for this trend is that the game design of MHS might encourage sur-
face learning, where students focus on getting the correct answer without fully understanding
the underlying concepts. Students may rely on memorization or pattern recognition rather than
engaging deeply with the content, allowing them to submit correct answers initially but not lead-
ing to a thorough comprehension of the material—critical for long-term retention and knowledge
transfer.
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Additionally, the game may not provide sufficient opportunities for students to integrate new
knowledge with existing schemas or practice newly learned concepts in varied scenarios. With-
out these opportunities, students are less likely to develop the deeper understanding required to
achieve high-level learning outcomes.

Another issue might be the limited feedback provided within the game. If MHS fails to
encourage students to reflect on their choices or to understand why an answer is correct, students
might not fully engage with the learning process. Even when they submit correct answers, they
may not grasp the underlying principles or how they apply to broader concepts, leading to a gap
between performance on individual tasks and overall learning outcomes.

Finally, there might be a misalignment between cognitive load and task complexity. High
progress scores could reflect low cognitive load for certain tasks, meaning students find them
easy and do not need to engage deeply to succeed. However, this lack of cognitive engagement
might prevent the development of higher-order thinking skills, which are necessary for high-
level learning outcomes. Similarly, the tasks associated with high progress values might be
too simple or disconnected from more complex, integrative challenges. This simplicity allows
students to succeed at a certain stage but does not prepare them for more complex problem-
solving, requiring deeper understanding and higher-level skills.

5.2.2. Mid-Range Learning Progress Values Not Correlating with Higher Learner Sta-
tus

Several game design issues might explain this unexpected trend. First, the feedback provided
after incorrect attempts might be insufficient or unclear, preventing students from understanding
their mistakes and making necessary adjustments. Without constructive feedback guiding them
toward the correct approach, students’ learning processes could be hindered, leading to lower
learning outcomes despite eventual success.

Second, repeated attempts or incorrect decisions may lead to cognitive overload and fatigue.
The effort required to process information repeatedly and attempt different strategies could ex-
haust students’ cognitive resources, resulting in mental fatigue. This fatigue might prevent them
from maintaining the concentration and effort needed to achieve high-level learning outcomes.

Third, some in-game tasks might include ambiguous instructions. Students may make mis-
takes not because they lack understanding but because they misunderstand the task requirements.
This could lead to unnecessary errors, reducing motivation and engagement and negatively im-
pacting learning outcomes.

Overall, MHS may benefit from refining its systems or game mechanics to better support
students in correcting their mistakes and receiving appropriate rewards for such behaviors.

5.2.3. Fluctuating and Oscillating Patterns in ALE Plots

Several factors could contribute to these fluctuating and oscillating patterns. First, tasks asso-
ciated with these learning progress features might simultaneously teach or provide information
on multiple skills or knowledge areas. If these objectives are not well-integrated or prioritized,
progress in one skill might not translate effectively to outcomes in another, creating complex
interactions that are difficult to interpret.

Second, MHS might allow for multiple strategies without providing sufficient guidance.
Players may adopt various approaches—including luck-based guessing—to achieve objectives

44
257 Journal of Educational Data Mining, Volume 16, No 2, 2024



or complete tasks. Some strategies might be more effective than others in promoting learning,
leading to inconsistent patterns in the data.

Third, better integration of educational content with game mechanics may be needed. If
there is a disconnect between learning objectives and game elements, progress in the game may
not effectively translate to learning outcomes.

Lastly, the expert-crafted learning progress features might be interdependent or have hidden
dependencies with each other or with features representing in-game behaviors. These inter-
dependencies can create complex interactions that are not immediately apparent. Addressing
this issue may require additional iterations of feature engineering to refine the dataset used for
training the model.

5.3. ADVANCING DGBL ENVIRONMENTS DESIGN BASED ON EMPIRICAL FINDINGS

Building on previously summarized empirical observations and analyses, we have synthesized
the following recommendations to guide future advancements in DGBL environment design.

5.3.1. Enhance Scaffolding to Balance Novelty and Familiarity

To address the challenges posed by increasing complexity and novelty within in-game units,
practitioners should consider enhancing scaffolding techniques to balance these elements effec-
tively. For units like Unit 3, where both complexity and novelty are heightened, introducing new
game mechanics incrementally can facilitate better learning outcomes (Grey et al., 2017). This
approach involves beginning with simpler tasks that build foundational understanding before
progressing to more complex challenges.

One effective strategy is to utilize familiar game mechanics from previous units to introduce
new pedagogical concepts. For example, at the beginning of a complex unit, employing game
mechanics that players have already mastered allows them to focus on assimilating new content
without the added cognitive load of learning unfamiliar mechanics. Once students have inter-
nalized the new concepts through familiar gameplay, new game mechanics can be introduced to
enable them to apply these concepts in novel contexts. By combining new content with familiar
game mechanics, this method reduces the potential for cognitive overload and leverages prior
knowledge, making it easier for students to adapt to new challenges (Braad et al., 2016).

Alternatively, establishing core game mechanics that persist across units while introducing
variations—such as the argumentation engine within MHS—can aid in the transfer of skills
learned in earlier units to new contexts. This consistency provides a stable framework within
which students can navigate new content, promoting deeper understanding and skill retention.

Another valuable approach is to implement tutorials or guided practice sessions before intro-
ducing new game mechanics. These sessions focus solely on familiarizing students with the new
mechanics without integrating pedagogical or curriculum content initially. Once players become
comfortable with the new mechanics, curriculum content can then be seamlessly blended into
the gameplay. This staged introduction allows students to concentrate on mastering one aspect
at a time, thereby managing cognitive load more effectively.

By adopting these strategies, educators can break down complex information into smaller,
manageable chunks, preventing students from becoming overwhelmed. It is crucial to ensure
that students focus on one learning objective at a time—either acclimating to new game mechan-
ics or learning new curriculum content—to reduce unnecessary cognitive burden. This refined
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approach to game design not only enhances the learning experience but also leads to improved
engagement and better learning outcomes.

5.3.2. Optimize Feedback Mechanisms

Optimizing feedback mechanisms is crucial for enhancing learning outcomes in DGBL envi-
ronments. Feedback content should be adapted to students’ prior performance to maximize its
effectiveness (Johnson et al., 2017). Initially, when students make mistakes in their first or early
attempts, providing comparatively generic feedback can encourage them to think more deeply
about the problems, fostering better understanding and more accurate responses. As the number
of unsuccessful attempts increases, feedback should become more specific and actionable, of-
fering tailored suggestions based on their actions to help them adjust their strategies effectively.

Practitioners should utilize various forms of feedback—visual, auditory, and kinesthetic—to
reinforce understanding, maintain student engagement, and cater to different learning styles. The
timing of feedback is also a critical factor that should align with the design objectives. If the goal
is to reinforce immediate learning, providing instant feedback for in-game actions is beneficial.
Conversely, if the aim is to encourage deeper cognitive processing, implementing delayed or
reflective feedback can prompt students to engage more thoughtfully with the content.

By carefully designing adaptive, multimodal, and strategically timed feedback mechanisms,
educators can enhance the educational effectiveness of DGBL environments. This approach not
only supports students in correcting errors but also promotes deeper engagement and long-term
retention of the material.

5.3.3. Monitor Engagement Levels to Address Off-Task Behavior and Guessing

To mitigate off-task behavior and ensure sustained engagement and learning, monitoring stu-
dent actions through the integrated logging system can offer insights for targeted interventions
and game adjustments (Biedermann et al., 2023). By analyzing engagement metrics, patterns
indicative of disengagement or random guessing—such as rapid sequences of incorrect re-
sponses—can be detected. Based on these insights, game mechanics can be designed to mitigate
the effectiveness of guessing. For instance, implementing penalties for consecutive incorrect at-
tempts or requiring students to provide justifications for their answers can discourage superficial
engagement.

If the system detects that a student is exhibiting guessing behavior, the game could tem-
porarily halt the progression of the main storyline. Instead, the student would be redirected to
supplementary side tasks designed to reinforce familiarity with the curriculum content. Upon
successful completion of these tasks, the student would be allowed to resume the main story-
line. Additionally, implementing a reward system that recognizes consistent engagement and
thoughtful responses can further encourage sustained focus.

It is also important to acknowledge that off-task behavior or guessing may be symptomatic
of fatigue. In such cases, enhancing in-game task design to ensure that tasks are challenging
yet not overwhelming is crucial (Kanal et al., 2020). Incorporating moments of rest or lighter
activities within the game can help prevent cognitive overload and maintain student engagement.
By balancing task difficulty with opportunities for recuperation, practitioners can create a more
sustainable and effective learning environment within the game.
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5.3.4. Foster Consistent Motivation

Maintaining student motivation throughout gameplay is key to effective learning. The follow-
ing strategies aim to deepen student engagement and encourage continued effort. Enhancing
the game’s storyline to promote emotional investment can significantly motivate students to
progress and overcome challenges, with educational content appropriately embedded through-
out (Dickey, 2011). Assigning unique personalities to each non-player character (NPC) allows
for diverse interactions, enabling students to develop deeper connections through communica-
tion. Transforming dialogues with in-game characters into interactive conversations—where
choices affect outcomes—can increase engagement and enhance information retention (Chris-
tensen et al., 2018). These choices can offer immediate feedback, such as changes in the af-
fection level or favorability rating of NPCs, leading to different game endings, or providing
additional hints for problem-solving within the game.

Practitioners should also consider incorporating incentives that acknowledge both effort and
achievement (Rahimi et al., 2021). For instance, students could earn titles or badges based on
their performance, whether by correcting previous mistakes or by making optimal choices on
their initial attempts. After gameplay, instructors could host activities where students share the
titles or badges they have earned, fostering peer interaction and further enhancing motivation to
engage deeply with the game content.

5.3.5. Provide Clear Guidance and Support

To enable students to navigate challenges more effectively, it is essential to provide clear guid-
ance and support tools within the game environment (Oren et al., 2020). In addition to imple-
menting tutorials before introducing new game mechanics or educational content, practitioners
should provide readily accessible in-game tools to assist students when they encounter diffi-
culties and to enable them to monitor their progress. Such tools might include quest progress
trackers, chat log histories, game maps, options to replay previous tutorials and instructions, and
reviews of collected achievements. These features empower students to self-assess and navigate
challenges independently, enhancing their learning experience.

Furthermore, for games which are designed for classroom integration (such as MHS), the de-
velopment of a real-time instructor dashboard is essential (Nieland et al., 2021). This dashboard
would allow educators to monitor students’ progress and provide timely, appropriate interven-
tions during or after gameplay. Given that an average classroom comprises approximately 15
to 20 students—based on observations during MHS field tests—it is impractical for instructors
to offer individualized support without such technological assistance. Therefore, incorporating
an instructor dashboard is crucial for facilitating effective teaching and ensuring that students
receive the guidance they need within the DGBL environment.

5.3.6. Embed Adaptive Learning Experience

The oscillatory patterns observed in the ALE plots indicate that individual students may perceive
game tasks differently regarding the tasks’ complexity, learning difficulty, and cognitive load.
To address these individual differences, implementing an adaptive system that utilizes real-time
data to monitor fluctuations in student performance can provide timely support and adjust the
game as needed.

For example, if a student consistently makes correct choices over several attempts, the task
complexity can be increased to maintain an appropriate level of challenge and sustain engage-
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ment. Conversely, if a student struggles to make correct choices after a certain number of at-
tempts, the task complexity can be decreased, alternative easier game mechanics can be intro-
duced, or tutorials can be replayed. This adaptive approach allows students to learn and master
the targeted knowledge at their own pace, ensuring that the game remains accessible and engag-
ing for learners with varying abilities (Streicher and Smeddinck, 2016).

5.4. LIMITATIONS AND FUTURE RESEARCH

While our proposed analytic pipeline has proven effective and yielded several insightful findings,
certain limitations that offer avenues for future research have been identified.

Firstly, our study utilized only one variable to represent students’ argumentation skills, lim-
iting our analysis to the overall outcome of this skill without providing insights into its distinct
components. Future research should disaggregate the argumentation skill into multiple compo-
nents and develop SAs for each segment. This approach would enable more precise formative
feedback and a deeper understanding of student performance in different argumentation aspects.

Secondly, enhancements in our feature engineering process could further improve model
performance. This study used factor analysis to generate features representing the interactive
effects among various behavior types. However, this technique primarily captures linear interac-
tions, leaving nonlinear interactions underexplored. Future research could incorporate advanced
techniques such as autoencoders, kernel PCA, and t-SNE, which are better suited for generating
nonlinear interactive representations. Additionally, our process of merging datasets from differ-
ent behavior types involved normalizing and standardizing each dataset, followed by a merge
based on student names. Exploring alternative data fusion methods could yield superior results
when combining disparate datasets.

Regarding missing data, our current approach involved inserting zeros for null values, which
may not be the most effective method. Future studies could employ more sophisticated impu-
tation techniques, such as Hot-Deck, K-Nearest Neighbors (KNN), and Regression imputation,
to enhance model training by better addressing missing data. Moreover, our feature set lacks
elements representing student disengagement, off-task behavior, and guessing behaviors, poten-
tially weakening the model’s ability to identify low-performing learners who may require addi-
tional assistance. Future research should focus on generating features that specifically target the
characteristics of low-level learners, which could significantly enhance the design of instructor
dashboards, particularly in aiding teachers in identifying students who need additional support.

Another limitation of our study is that the proposed analytic pipeline’s effectiveness was
assessed within a single DGBL environment. Future research should expand this examination
to multiple DGBL environments, particularly those featuring rich interaction mechanics and ill-
structured problem-solving tasks, like MHS. Such environments offer diverse challenges and
require nuanced solutions, making them ideal for assessing the pipeline’s generalizability and
robustness.

While we referenced several theories, such as cognitive load theory, to help interpret our
ALE plot results, these theories did not explicitly guide our analytics. Future studies could
adopt more theory-driven approaches, such as those adopted by Huang (2011) and Martinez-
Garza and Clark (2017), focusing on specific theories like cognitive load theory to examine
student learning in greater detail. For instance, future research could identify features from raw
game logs to measure cognitive load, analyze its variation across different tasks and learners, and
investigate its impact on learning outcomes. Such insights could guide the design of learning
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experiences that effectively manage cognitive load, potentially leading to improved learning
outcomes.

Additionally, our analysis revealed that not all learning progress values were included in the
final feature set used to train the model. This suggests that some learning progress values did not
significantly influence the targeted learning objectives, or their impact was less substantial than
that of certain behavior features, leading to their exclusion during the feature selection process.
Ideally, all or most embedded scores would be included in the final model after feature selection.
We may need to revisit the standards used to generate learning progress features and modify the
formula guiding the transformation from raw game logs to these features to achieve this. The
final standards and formula should be determined through expert knowledge, judgment, and
iterative testing rather than relying on a single reference as in this study.

Furthermore, while video games are valued for their ability to provide diverse and engaging
interactions that foster active learning, research on specific game mechanics tied to engagement
outcomes remains sparse. As suggested by Boyle et al. (2016), the link between engagement and
learning requires further investigation. Future research should focus on designing and generating
additional learning progress values that measure student engagement at different game stages.
This effort aims to construct links between engagement and learning and evaluate engagement
differences across various game mechanics.

Finally, we also acknowledge the potential limitations of using ALE plots to interpret black-
box models, such as the hard-voting ensemble learning models employed in this study (Wadoux
and Molnar, 2022; Apley and Zhu, 2020). While ALE plots are useful for providing insights
into how different features representing learning progress influence learning outcomes, offering
an entry point for stakeholders like educators and game designers to understand relationships
that might otherwise remain opaque, they are not without their limitations. This is particularly
true when dealing with complex, nonlinear interactions or features that exhibit inherently non-
monotonic effects.

When ALE plots yield unexpected patterns, such as bell-shaped curves or oscillating trends,
caution must be exercised before attributing these findings solely to game design or feature inter-
actions (Wadoux and Molnar, 2022). Such patterns may indicate not only unique feature effects
but also potential artifacts or overfitting within the model. In these instances, the interpretabil-
ity of ALE plots could be misleading if they fail to capture the nuanced relationships between
features and outcome variables, especially in the high-dimensional feature space often found in
DGBL environments.

Moreover, ALE plots operate under the assumption of conditional independence between
features, which, when violated, can lead to inaccurate representations of feature effects (Apley
and Zhu, 2020). This is particularly relevant in DGBL contexts, where features are often highly
correlated due to the complex interplay of learning behaviors, strategies, and game mechanics.
In the current study, although unsupervised learning techniques were employed to reduce in-
tercorrelations between features, these correlations could not be entirely eliminated, potentially
contributing to the unexpected patterns observed in the ALE plots. As such, interpretations
derived from these plots should be supplemented by domain knowledge or further statistical
investigation.

In light of these concerns, it is crucial to treat ALE plots as one component of a broader
interpretative toolkit rather than as a definitive source of insights. In future research, we plan to
explore alternative interpretability methods, such as Shapley values or feature interaction anal-
ysis, which can theoretically provide a more comprehensive understanding of feature effects
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(Lundberg and Lee, 2017; Hassija et al., 2024). By triangulating findings across multiple in-
terpretative methods, we believe researchers and practitioners can more confidently distinguish
true design flaws from limitations inherent in the interpretative approach.
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BRAAD, E., ŽAVCER, G., AND SANDOVAR, A. 2016. Processes and models for serious game design and
development. In Entertainment Computing and Serious Games: International GI-Dagstuhl Seminar
15283, Dagstuhl Castle, Germany, July 5-10, 2015, Revised Selected Papers, R. Dörner, S. Göbel,
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Ed. Vol. 8. Universidad Internacional de La Rioja (UNIR) in Spain, Spain, 146–159.

CALIXTO, I., RIOS, M., AND AZIZ, W. 2019. Latent variable model for multi-modal translation. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, A. Ko-
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A. APPENDIX A: THE DIGITAL GAME-BASED LEARNING ENVIRONMENT:
MISSION HYDROSCI

Mission HydroSci is a first-person 3D narrative adventure designed to instruct middle school
students in Water Science and Scientific Argumentation in response to the NGSS, which empha-
sizes a novel approach to science education, prioritizing student engagement with disciplinary
core ideas, cross-cutting themes, and scientific practices. MHS is rooted in the pedagogical
approach known as “transformational play” (Barab et al., 2010), which posits that students’
learning is enhanced when they assume the role of a character who must utilize subject matter
knowledge to make decisions and take actions within an educational game or simulation. Sub-
sequently, students can apply what they have learned in the virtual world to solve real-world
problems that resemble the scenarios they encountered during gameplay. Additionally, the de-
sign of MHS incorporates a learning progressions methodology for sequencing gameplay activ-
ities and content, drawing upon extensive knowledge regarding students’ progress in learning
about water systems (Covitt et al., 2009; Gunckel et al., 2009; Sadler et al., 2017) and scientific
argumentation (Osborne et al., 2013).

We have integrated a logging system in conjunction with the game to assess students’ learn-
ing outcomes, provide formative feedback, and work as a foundation of a data-driven dashboard
for instructors to better understand students’ performances during gameplay effectively and un-
obtrusively. To guide the design of the logging system, we have utilized two frameworks: the
Activity Theory-based Model of Serious Games (ATMSG) (Carvalho et al., 2015) and Experi-
ence API (xAPI) (Serrano-Laguna et al., 2017). ATMSG can establish a connection between
in-game activities and educational objectives, ensuring that learners can acquire the targeted
knowledge or skills by completing in-game activities. In our case, we combined ATMSG with
the theory of transformational play to design authentic activities or tasks that reflect real-world
contexts and challenges in water science and scientific argumentation, enabling learners to ad-
dress real-world issues in these fields by playing the game. ATMSG provides a framework for
breaking down complex and dynamic systems, such as serious games, into components that
lay the foundation for fine-grained learning analytics. After defining what content the logging
system should capture from the game based on ATMSG, we incorporated xAPI to establish the
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data formats to track learners’ interactions during the game and save them in the MongoDB
server. xAPI standards provide a promising solution to automatically or semi-automatically re-
alize intelligent DGBL environments that foster learners’ learning through tailored scaffolding
and context-sensitive feedback base don each learner’s real-time game logs.

Based on the curriculum topics around water science and scientific argumentation, MHS
contains six modules. Each module has a unique curriculum topic and game map with distinc-
tive landscapes. Designed around the curriculum topic, the MHS team renders each module with
different pedagogical arrangements and game mechanics or tasks. Additional hints and learn-
ing materials, such as animated posters describing the aliens’ technology and the new planet’s
history, are scattered around the game world, encouraging learners to explore the virtual world
while learning to improve their engagement and learning motives. On average, middle-school
students will take around 10 hours to complete the MHS under the guidance of instructors in
the classroom setting. The detailed information related to each module’s design can be seen in
Table7.

Table 7: Detailed description of the curriculum topic, pedagogical arrangements and corre-
sponding game mechanics or tasks.

Curriculum
Topic

Curriculum Arrangement Game Mechanics (main quests)

Unit 1 Tutorial unit

Brings the introduction to
the components of scien-
tific argumentation, includ-
ing claim, reasoning, and evi-
dence.

Talk to each key non-playable char-
acter (NPC).
Guided by the AI ARF, players will
learn to open and get familiar of
each in-game tool through menus or
hotkeys.
Guided by the AI ARF, players will
know how to navigate the game
world, such as walking, running,
and jumping guided by the AI ARF.
Guided by Dr. Toppo (one of the
NPCs), players will open and get fa-
miliar with the interface of the ar-
gumentation system to understand
how to construct a complete scien-
tific argument.

Unit 2 Watersheds

Content knowledge: Inter-
preting topographic maps

Find The Team: After crash-
landing on a new planet, the main
character (controlled by the player)
must locate the rest of the crew. To
accomplish this, they must interpret
the topographic map and carefully
observe their surroundings. How-
ever, there is no wayfinding assis-
tance provided during this quest.
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Content knowledge: Water-
sheds

Collect samples from eastern and
western waterfalls: Based on the
conversations with NPCs, players
need to find the positions of the
eastern and western waterfalls. By
investigating the samples of two
waterfalls, players need to collect
appropriate evidence describing the
characteristics of each waterfall. In
this way, they could deduce the con-
ditions of each waterfall’s water-
shed and prepare later scientific ar-
gumentation or debate with NPCs.

Content knowledge: Rela-
tionship between topography
and surface water

Argue which watershed is bigger:
Dr. Toppo (one of the NPCs) will
invite players to the argumentation
system to construct a complete ar-
gument that makes sense with col-
lected evidence from the waterfalls.
The argumentation system mimics
the solar system, where the claim
works as the sun, and reason and ev-
idence work as planets around the
sun. The planets represent evidence
position in the further interstellar
orbit than the planets representing
reasons. Players need to choose the
correct claim, reason and evidence
from available choices displayed in
the left corner of the system.
Jasper’s proposal: Through a con-
versation with Jasper (Another
NPC), you will debate with him to
determine if his proposal about the
new place is logical with the infor-
mation the player collected from the
environment today.
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Scientific argumentation:
Practicing and getting more
familiar with components of
argumentation.

CREI system: To fix the system of
the AI ARF, players will enter into
a system called CREI to practice
the definitions of three components
of scientific argumentation. Players
will see a screen showing different
sentences, and they need to judge
which component the sentence rep-
resents by throwing balls in the di-
rection showing the correct compo-
nent.

Scientific argumentation:
Learning to support claims
with evidence.

Argue which watershed is bigger:
Players need to choose correct ev-
idence to support the pre-decided
claim and reason.

Unit 3 Surface wa-
ter

Content knowledge: Inter-
preting watershed representa-
tions.

Sam’s supplies: Players will meet
Samantha (NPC) at her garden base
as she is just starting. To help her
build up the garden, players need
to transport supplies to Sam’s Gar-
den base through the river. Play-
ers must deliver 4 crates to the river
stream to finish the quest. There
are two river streams where players
must investigate their water flows to
decide which is the correct stream
to transport. After players deliver
each crate to a certain river stream,
a dialogue will pop-up showing the
feedback on whether the stream is
correct.
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Collect pumps from the alien ruins:
After finding the pollutant source,
Sam told us she found a huge tree
near an intersection of the river
branches and doubted that some
river branches were also polluted
by the battery core. To ensure her
thought, we need to enter into an
alien ruin to collect pumps that al-
low us to plant Sam’s seeds into the
mini gardens along the river to test
which branch was polluted. Players
need to apply what they learned re-
garding water flows to unlock those
pumps to solve puzzles within the
alien ruin. The general format of
the puzzle is to find and carry a cube
from the surroundings, put it into
the water channel,l and guide it to
the destination by managing the wa-
ter flow direction through a control-
ling panel.

Content knowledge: Move-
ment of dissolved materials in
surface water.

Trace the source of the pollutant:
After receiving the supplies, Sam
found the river is polluted. She
provides players with sensors that
will light red when the river spot is
polluted and green when it’s clean.
Players need to take advantage of
the sensors and investigate the char-
acteristics of the river, such as wa-
ter flow direction, whether in a river
branch or its surrounding environ-
ment, to find the source of the pol-
lutant, which is a crashed battery
core.
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Plant seeds: After getting the
pumps, players can plant Sam’s
seeds into the garden along the
river to trace how the dissolved pol-
lutant materials spread along the
river flow. Players need to observe
the river conditions to judge which
mini garden to plant to trace the
flow direction of the dissolved pol-
lutant materials accurately. Each
time players plant the seed will trig-
ger a dialogue showing Sam’s feed-
back regarding whether the mini-
garden is polluted.

Scientific argumentation:
Learning how the reasoning
works to connect the claim
and evidence.

Convince Bill the pollutant is
nearby: After finding the position
of the battery core, Bill (NPC) will
invite us to enter the argumenta-
tion system to construct a complete
scientific argument to convince him
where the battery core is. The play-
ers must choose the correct reason-
ing to connect the pre-decided evi-
dence and claim logically within the
system.
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Unit 4 Ground wa-
ter

Content knowledge: Ground-
water

Content knowledge: Soil
types and permeability

Enter the ruins: Players meet An-
derson (NPC) in a desert area of the
new planet and are told we need to
access the subsurface water. Play-
ers need to enter the alien ruin to
activate 5 engine parts by solving
puzzles to restore the power of a
huge alien drill. The general for-
mat of the puzzle is that the play-
ers need to figure out the appropri-
ate proportion of soil types, such as
sandy, silt or clay, which creates the
perfect condition to reserve ground-
water and operate the panel to point
to the correct proportion so that the
players can control the water to flow
into or out of the tank. This way,
a potable cube can reach the tank’s
ground or float up from the bottom
of the tank to trigger the switch for
recharging the engine and unlock-
ing the next room in the alien ruin.

Content knowledge: Water
table

Drill to the water table: After
restoring the power of the huge
drill, players need to apply the
knowledge learned from solving
previous puzzles to operate the con-
trol panel controlling the drill to go
deep down into the geological layer
of the ground where the water table
exists. Dialogues from Anderson
will give feedback on whether the
players choose the correct ground
layer.
Fountains: After returning to An-
derson’s base, players meet Ander-
son and see three blueprints of the
fountain design from his presen-
tation. By carefully investigating
each blueprint, players need to fig-
ure out which one is constructing a
fountain that can pump groundwa-
ter from the ground.

68
281 Journal of Educational Data Mining, Volume 16, No 2, 2024



Content knowledge: Infiltra-
tion

Investigate the flood in the mili-
tary base: After successfully pump-
ing out the groundwater using the
huge drill, Anderson finds a flood
in the military base and doubts it’s
the players’ responsibility. Players
arrive at the military base to investi-
gate the reason behind the flood and
start a comprehensive exploration.
After the exploration, players will
notice that the armory and the ware-
house of the military base are both
seriously flooded. Then, the players
must search carefully in those two
rooms to collect as much informa-
tion as possible to determine what
triggered the flood.
Who flooded the warehouse: An-
derson starts a debate with us to fig-
ure out who should be responsible
for the warehouse flood. Players
will respond to his debate by en-
tering the argumentation system to
construct a complete scientific ar-
gument with the evidence collected.
Who flooded the armory: Anderson
starts a debate with us to figure out
who should be responsible for the
flood of the armory. Players will re-
spond to his debate by entering the
argumentation system to construct
a complete scientific argument with
the evidence collected.

Scientific argumentation:
Construct a complete scien-
tific argumentation to defense
players’ thoughts.

Who flooded the warehouse: This
time, players will construct a com-
plete argument without any pre-
decided components.
Who flooded the armory: This time,
players will construct a complete
argument without any pre-decided
components.
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Unit 5 Water cycle

Content knowledge: Conden-
sation

Content knowledge: Evapo-
ration

Explore the alien ruin in the tropical
island: Players met Bill (NPC) on
a tropical island of the new planet.
Bill wants to set up a factory gener-
ating bottled water but is still deter-
mining how to make it. He asks the
players to explore the alien ruin for
related techniques. Players need to
solve puzzles within the alien ruin
to get the technology. The gen-
eral format of the puzzles is that the
players need to operate the control-
ling panel to decide if they should
condense into or evaporate out from
the water tank to guide a portable
cube to a certain spot for unlock-
ing the next room. In the final room
of the alien ruin, players can get the
technology they need.
Set up the condensation and evap-
oration machines in Bill’s factory:
After mastering the knowledge of
water condensation, evaporation,
and precipitation, players can help
Bill set up the bottling factory.
In this quest, players must set up
the correct machine (condensation
or evaporation machine) on each
factory floor according to Bill’s
arrangement and information col-
lected from each factory floor. Af-
ter deciding on each floor’s ma-
chine, players will see a pop-up di-
alogue showing whether the player
set up the correct machine. Theo-
retically, the factory can start bot-
tling water production when each
floor has the correct machine.
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Content knowledge: Precipi-
tation

Precipitate salt from the water col-
lected from the cave: After getting
out of the alien ruin, players and
Bill come into a cave where they
start arguing about whether the wa-
ter here contains salt. Players set
up the equipment collected from the
cave to precipitate salt from the wa-
ter to prove the thought.
Convince Bill: Players need to con-
struct a scientific argument to con-
vince Bill further to clarify why
there is salt in the water.

Scientific argumentation:
Learn how to provide a
counterargument to a faulty
claim.

Convince Bill: In this argumenta-
tion time, Bill will start a complete
scientific argument. Players must
provide a counterargument to con-
vince Bill that his claim is wrong
according to collected facts (evi-
dence).

Unit 6
(Still in
devel-
oping
at the
second
field
test)

Water in
engineered
systems
and sum-
marization

This unit is the culminating
experience for players. To
solve the problems of this
unit, players need to review
information collected from
the whole previous game pro-
cess and knowledge learned
until the current time point.

Players wake up to a declining
planet caused by natural disasters
resulting from a system-wide im-
balance. The crew realizes that
restarting the alien structures trans-
ferred the planet’s water to an alien
shuttle orbiting it as a moon. The
players travel to the shuttle, where
they must use their knowledge of
the ancient alien culture, water sys-
tems, and energy transfer to solve
the final challenge. The cinematic
ending of the game depends on their
success in restoring balance to the
planet and the mission. After the fi-
nal challenge, players can freely ex-
plore the environments, finish side
quests, and play in their customized
base.
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B. APPENDIX B: THE ANALYTIC PROCESS AND RESULTS REGARDING

PRE- AND POST-TEST RESULTS

To investigate whether there is a significant score gain between pre- and post-assessment, we first
conducted the Shapiro-Wilk test to check if the scores are normally distributed. Results indicated
that none of the scores conformed to a normal distribution, necessitating the application of the
non-parametric Wilcoxon test as an alternative to the paired t-test. Table 8 shows significant
score enhancements from pre- to post-test were observed in units 2, 3, 4, and 5. Additionally,
the increases in the aggregate score for all items in the WSA and the cumulative score of the AA
were statistically significant.

Table 8: Statements of pre-and-post test score differences. We used ”.”, ”*,” ”**,” and ”***”
markers represent the significance levels when the p-value equals to 0.1, 0.05, 0.01, and 0.001,
respectively, tested by the Wilcoxon test. No marker following the number within the “Mean
difference” row means the difference between pre and post-test scores is not statistically sig-
nificant.

Unit 2 Unit 3 Unit 4 Unit 5 Sum con-
tent score

Argument
score

Question number 6 3 4 10 23 12
Mean pre score 2.98

(1.39)
1.45
(0.98)

2.28
(1.03)

6.81
(2.26)

13.52 (4) 6.75 (2.43)

Mean post score 3.66
(1.46)

1.88
(1.01)

2.62
(1.04)

7.34
(2.34)

15.5 (4.64) 7.7 (7.7)

Mean difference 0.68*** 0.42*** 0.34*** 0.53*** 1.97*** 0.95***

C. APPENDIX C: THE FULL SCORING RUBRIC TABLE WE BASED ON

TO GENERATE LEARNING PROGRESS FEATURES
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Table 9: The full version of the scoring rubric table for generating learning progress features.

Game
Context

Corresponding Quest Embedded
Score
Name

Calculation Standards

Unit 2

Argue which watershed is bigger:
In this quest, students will enter into
a 2-D system where they will gener-
ate a complete argumentation with
three components - Evidence, Rea-
soning and Claim – by dragging and
dropping available choices.

bigger-Arg-
Score

2 Points: correct answer within 3
attempts;

1 Points: correct answer within 4
attempts;

0 Points: no correct answer or
correct answer after more than 4
attempts.

CREI system: In this quest, stu-
dents will enter a new game area
where they are asked to deliver or
kick soccer ball into different direc-
tions. Each direction represents a
component of a complete argumen-
tation. Students need to make the
right decision based on the informa-
tion they got from dialogues with an
in-game NPC.

CREIScore

1 Point: for each correct soccer ball
delivery, students will get one score
for this quest;

-1/3 Points: for each incorrect
soccer ball delivery, students will
lose 1/3 point.

Jasper’s proposal: In this quest, stu-
dents will have a conversion with
one of the NPCs, named Jasper.
Within this conversation, students
need to accept or deny Jasper’s
claim by making choices along with
appropriate reasons.

Jasper-
Critique-
Score

1 Point: for selecting “you forgot
evidence,” students will get 1 point;
0 Points: for either “Jasper you
are right; or “Jasper you forgot the
claim,” students will get no score.
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Find the team: In this quest, stu-
dents need to find the correct lo-
cation where the team is gathering
based on cluses got from conversa-
tions and the in-game topographic
map.

find-Team-
Ave-Score

2 Point: opening the map during
completing the quest;

1 Point: finding the correct lo-
cation of the team in 3 minutes or
less;

0 points: for anything else.

Unit 3
Sam’s supplies: In this quest,
students need to deliver supplies
spread on the riverbanks. Since the
weight of those supplies, students
find the most efficient way to de-
liver those supplies is to through
them into the river and let them
flow to the destination – Sam’s lab.
Students need to choose the correct
river branch based on their knowl-
edge regarding waterflow.

crate-
Delivery-
Score

1 Point: for correct crate placement;

0 Point: for incorrect crate
placement.

Plant seeds: Sam constructed nurs-
eries along the riverbanks. Students
are asked to plant seeds in the nurs-
eries where the river branches, they
close to are polluted by a pollutant
source on the upstream of the river.

plantScore

1 Point: Selecting a correct pump
location;

-1/2 Points: selecting an incor-
rect pump location.

Convince Bill the pollutant is
nearby: In this quest, students will
enter the 2-D argumentation sys-
tem to construct a complete scien-
tific argumentation to convince one
of the NPCs, Bill, regarding where
the pollutant source is.

up-stream-
Arg-Score

2 Points: for getting correct argu-
ment within 3 tries;

1 Point: for getting correct ar-
gument within 6 tries;

0 Points: no correct argument
or getting correct one with more
than 6 tries.
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Unit 4

Drill to the water table: Students
are asked to solve a puzzle intend
to choose the correct geographical
layer of the ground for extracting
water.

drill-
Room-
Score

1 Point: Select correct depth;

0 Points: for incorrect depth.

Who flooded the armory: Students
will enter the argumentation sys-
tem to determine who caused the ar-
mory’s flood by constructing scien-
tific argumentation.

flood-
Armory-
Score

2 Points: for correct argument
within 3 tries;

1 Point: for correct argument
within 6 tries;

0 Points: for no correct argu-
ment or correct argument with
more than 6 tries.

Who flooded the warehouse: Stu-
dents will enter the argumentation
system to determine who caused the
warehouse’s flood by constructing
another scientific argumentation.

ware-
House-
Score

1 Point: for selecting “your ar-
gument uses the wrong piece of
evidence;”

0 Points: for selecting anything
else.

Fountains: In this quest, students
need to choose the correct de-
sign plan for constructing foun-
tains, which can pump groundwater
successfully.

fountain-
Score

1 Point: for selecting Fountain 1;

0 Points: for selecting anything
else.

Unit 5

Convince Bill: in this quest, stu-
dents need to build a scientific argu-
mentation to explain to Bill the rea-
sons for salt’s presence in the water.

convince-
Bill-Score

2 Points: for correct argument
within 3 tries;

1 Point: for correct argument
within 6 tries;

0 Points: for no correct argu-
ment or correct argument with
more than 6 tries.

75
288 Journal of Educational Data Mining, Volume 16, No 2, 2024



Set up the condensation and evap-
oration machines in Bill’s factory
(First floor): In this quest, students
need to help one of the NPCs –
Bill – determine which machine is
needed to be installed within each
floor of Bill’s water factory based
on their knowledge regarding water
cycle.

first-SetUp-
Score

1 Point: for Select evaporator/
water to gas;

0 Points: for selecting anything
else.

Second floor
second-
SetUp-
Score

1 Point: for selecting condenser/
gas to water;

0 Points: for selecting anything
else.

Third floor
third-
SetUp-
Score

1 Point: for selecting evaporator/
water to gas;

0 Points for anything else.

Fourth floor
forth-
SetUp-
Score

1 Point: for select condenser/ gas
to water;

0 Points: for selecting anything
else.

D. APPENDIX D: SUPPLEMENTARY ILLUSTRATION MATERIAL FOR METHOD-
OLOGY

D.1. ADDITIONAL ILLUSTRATIONS ABOUT THE EMBEDDED LOGGING SYSTEM

Figure 6 illustrates the basic data structure of the logging system. Additionally, Figure 7 provides
example snippets from the raw log dataset, showcasing two different behavior types: movement
and trigger (interaction with in-game objects).

D.2. ADDITIONAL ILLUSTRATIONS ABOUT THE FINAL OBSERVABLE OR RAW DATASET
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Figure 6: A diagram as a brief illustration regarding the structure of the raw log data.

(a) First-layer raw dataset providing general information. Which behavior the player conducted can be determined
by the column of “type.”

(b) Second-layer raw dataset specific to Movement
behavior type, providing additional information re-
garding Movement behaviors.

(c) Second-layer raw dataset specific to Trigger be-
havior type, providing additional information re-
garding Trigger behaviors.

Figure 7: Example snippets of the raw log dataset specific to two different behavior types-
Movement and Trigger.
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Table 10: The descriptions regarding what features are involved within the final observable or
raw feature set for our current study. Notably, for the behavior type of “Task completion,” the
task can be replayed in one gameplay trial, so there is no interaction frequency dataset under
this behavior type. Also, for the behavior type of “Hotkey usage,” because pressing a hotkey is
a one-time action, it contains limited information to calculate the duration of pressing a specific
hotkey, which makes us decide not to include the interaction speed dataset under this behavior
type. Additionally, for the behavior type of “Map exploration,” since the linear quest design
of the game, there’s nearly no need for students to explore a specific map more than one time,
making us not include the frequency dataset under this behavior type.

Behavior Type Sub-Datasets Description

Task completion Interaction speed Each variable under this feature set represents
the time duration a student used to complete a
specific task.

Interaction share The time duration used to complete a particu-
lar task is divided by the total duration used to
complete a unit or the whole game.

Argumentation
Interaction fre-
quency

Each column under this dataset represents how
often a student conducted a specific action
within the argumentation system. The action
can be dragging or dropping a particular node
of choice into one component (evidence, rea-
soning, or claim) of a complete argument, Hov-
ering on a particular choice node for reading de-
tailed information, opening a specific in-system
tool for seeking help, and submitting an answer
with a successful or failed outcome

Interaction speed What is a student’s average time to read the
information for a particular choice node or in-
system tool?

Interaction share The total frequency for a particular node or in-
system tool divides the total frequency of all
available nodes or tools.

Hotkey usage Interaction fre-
quency

Each column represents the frequency a student
pressed a specific hotkey to reach a particular
function quickly.

Interaction share The frequency of a specific hotkey divided by
the total counts of all hotkey usage.

Tool menu usage
Interaction fre-
quency

Each column reflects the frequency of a certain
tool a student referred to for checking informa-
tion.

Interaction speed Each variable indicates the average time dura-
tion a student used a specific tool.

Interaction share The total time duration of a specific tool usage
is divided by the total duration of using all tools.
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Dialogue reading
Interaction fre-
quency

Each column represented the frequency of a
particular dialogue (identified by dialogue ID)
when a student went through one game trial.
Dialogues designed to show once (usually those
driving story progress) are deleted from this
dataset because there is no variance or new in-
formation to investigate within those dialogues’
counts.

Interaction speed Each column reflects the average speed at which
a student reads a particular dialogue.

Interaction share The total duration a student used to read a spe-
cific dialogue divided by the total duration a stu-
dent used to read all dialogues within the unit or
the whole game.

Item triggering
Interaction fre-
quency

Each variable represents the frequency a student
interacts with a particular in-game item.

Interaction speed Like hotkey usage, some item interactions are
a one-time occurrence and happen quickly, so
we decided not to involve those items’ durations
in this feature set. For items that can be inter-
acted with for a certain amount of time, such
as the supply crates needed to be delivered to a
river, cubes worked as a key to solve puzzles in
dungeon areas. The panel students must solve a
puzzle to unlock a door; we included the inter-
action durations for those items (identified by
the item ID) in this feature set.

Interaction share The total count of students interacting with a
certain item (identified by item ID) divided by
the total count of students interacting with all
available items within a unit or the whole game.

Behavior type statement
Interaction fre-
quency

Each column represents the frequency of a par-
ticular behavior type that happened during a
student’s one time of playing through a particu-
lar unit or the whole game.

Interaction speed Each column represents the duration of a partic-
ular behavior type that happened during a stu-
dent’s one time of playing through a particular
unit or the whole game.

Interaction share Each variable reflects the percentage of one spe-
cific behavior type that happened compared to
the total number of log records for a student’s
one time of gameplay of a particular unit or the
whole game.
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Map exploration Interaction speed i. Each variable indicates the percentage of ex-
plored game map size for a student compared to
the total map size. ii. Each variable represents
the time duration used to explore one particular
map and divides the total time spent exploring
all maps within one unit or the whole game (If
the unit includes just one map, then this feature
set will not be generated).

Interaction share Each column reflects the total time duration a
student spent on a specific game map (identified
by the scene name).

D.3. ADDITIONAL ILLUSTRATIONS ABOUT THE INVOLVED MACHINE LEARNING ALGO-
RITHMS

Table 11: Selected feature extraction techniques and corresponding selection reasons.

Feature Extraction
Techniques

Brief Reasons to Select

Principal Component
Analysis (PCA) (Abdi
and Williams, 2010)

PCA is a classic linear dimensionality reduction technique that
can be used to reduce the number of features while retaining the
most variance in the data. It can be used on frequency dataset
and especially useful if many behaviors are correlated, allowing
users to reduce the complexity without losing critical information.
However, it assumes variables within the feature set are normally
distributed and linearly correlated, which usually is hard to be
satisfied when dealing with real-world dataset.

Singular Value Decom-
position (SVD) (Klema
and Laub, 1980)

SVD is a powerful linear algebra technique that can effectively
reduce dimensionality for large datasets, keeping useful informa-
tion, represented by several components, and eliminating noises.
It can also effectively handle sparse data, such as zeros or very
low values. Its variation – truncated SVD – allow for focusing on
the most significant components without needing to compute the
full decomposition, thus saving computational resources.

Independent Compo-
nent Analysis (ICA)
(Hyvärinen and Oja,
2000)

ICA is used to reveal hidden factors (components) that are sta-
tistically independent from each other. This method is especially
useful if you suspect that the observed frequency of behaviors can
be explained by independent latent factors.
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Non-negative Matrix
Factorization (NMF)
(Lee and Seung, 1999)

Because the feature sets we involved to represent human behav-
iors are non-negative, NMF is an appropriate method to consider.
NMF decomposes the feature matrix into two lower-dimensional
matrices with the constraint that all matrices have no negative el-
ements. This can be particularly useful for part-based representa-
tion where each component can be interpreted as contributing to
some parts of the data structure.

Kernal PCA (Schölkopf
et al., 1997)

It extends the capabilities of standard PCA by using kernel meth-
ods to capture nonlinear relationships within the data. This allows
Kernel PCA to uncover complex, higher-dimensional structures
hidden in the frequencies, which might not be apparent when us-
ing linear methods, thus providing a more detailed and insightful
representation of behavioral interactions and dependencies.

T-distributed Stochastic
Neighbor Embedding
(tSNE) (Wattenberg
et al., 2016)

This technique is well-suited for visualization purposes and can
also be useful for exploring the structure of data representing hu-
man behaviors in a reduced dimension space. T-SNE is particu-
larly good at maintain local structure and can reveal clusters or
groups in the data, which might correspond to distinct behavioral
patterns.

U-map (McGaghie and
Harris, 2018)

U-map is suitable for feature extraction in datasets containing
human behaviors because it excels at preserving both local and
global structures in high-dimensional data. This technique effec-
tively maps complex patterns and relationships among behavioral
frequencies into a lower-dimensional space, facilitating insights
into clusters, continuities, and variations in behavior that are cru-
cial for understanding underlying patterns and groupings in the
data.

Autoencoders (Wang
et al., 2016)

Using neural networks, Autoencoders is a powerful method for
feature extraction. It is a type of neural network that learns to
compress (encode) the data into a smaller representation and then
decompress (decode) it back to the original form. The encoder
part of the network could provide users with a new, potentially
more meaningful set of features to use.

Table 12: Classifier algorithms joined the hard voting ensemble learning and brief illustration.

Classifier Algorithm Involvement Reason
C-Support Vector Classifica-
tion (SVC) (Cervantes et al.,
2020)

Provides robustness in high-dimensional spaces and is capa-
ble of defining complex, nonlinear boundaries using kernel
mechanisms.

Random Forest (Breiman,
2001)

Excellent for handling a mix of numerical and categorical
data, provides robustness against overfitting, and doesn’t as-
sume data linearity.
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Logistic Regression (Hos-
mer Jr et al., 2013)

Good baseline linear model for binary classification.

K-Nearest Neighbors (KNN)
(Peterson, 2009)

Adds a non-parametric approach that can adapt well to the
data’s local structure.

Gaussian Naı̈ve Bayes
(Kamel et al., 2019)

Quick and effective, especially in high-dimensional spaces
despite its assumption of feature independence.

XGBoost Classifier (Chen
and Guestrin, 2016)

A gradient boosting framework that is highly efficient and
effective, often outperforming other classifiers in structured
datasets.

Gradient Boosting Classifier
(Natekin and Knoll, 2013)

Similar to XGBoost but still distinct as it might handle cer-
tain types of data differently.

AdaBoost Classifier (Ying
et al., 2013)

Focuses on increasing the weight of misclassified instances
and often complements well with other types of errors made
by other classifiers.

Linear Discriminant Analysis
(LDA) (Tharwat, 2016)

Provides a good linear decision surface based on class sep-
arability, which is different from logistic regression.

Quadratic Discriminant Anal-
ysis (QDA) (Tharwat, 2016)

Useful when the decision boundary between classes is
quadratic.

82
295 Journal of Educational Data Mining, Volume 16, No 2, 2024



E. APPENDIX E: ALE PLOTS FOR ALL SELECTED LEARNING PROGRESS

FEATURES

E.1. ANALYSIS OF ALE PLOTS FOR UNIT 2’S WATER SCIENCE CONTENT KNOWL-
EDGE

The ALE plot in Figure 8a illustrates the relationship between posttest scores measuring stu-
dents’ water science knowledge and their performance in scientific argumentation within Unit 2.
The plot reveals that both the lowest and highest score intervals negatively impact the likelihood
of attaining a high-level class in the corresponding learning outcome. In contrast, an intermedi-
ate score range of -0.2 to 0.3 positively affects the probability of being in the high-level class.
As indicated in the row (a) of Table 13, students who submit correct arguments within three
attempts, but not on the first attempt, are more likely to achieve high-level outcomes as assessed
by the posttest.

Figure 8b presents the ALE plot depicting the relationship between posttest scores and task
performance within the CREi system. The plot and the corresponding illustration in row (b)
of Table 13 show a dichotomous impact: extreme performance levels—either consistently in-
correct or achieving a perfect score (directing 5 or 6 soccer balls correctly out of 6)—correlate
positively with high-level learning outcomes, as indicated by values above the zero threshold.
Conversely, intermediate performance is associated with a decreased probability of achieving
high-level content knowledge, as reflected by ALE values below the zero threshold.

In Figure 8c, the ALE plot examines the relationship between posttest scores and students’
performance in the task of finding the team’s location. Along with row (c) of Table 13, it
indicates a pronounced positive impact on posttest scores for the highest performance range,
marked by ALE values above the zero threshold. Specifically, students who locate their team
within three minutes and utilize the topographic map effectively are significantly more likely
to attain a high-level understanding of Unit 2’s water science content. In contrast, all other
performance levels are associated with lower posttest outcomes, suggesting a greater likelihood
of achieving only a low-level understanding of the material.

Table 13: Score intervals and corresponding in-game performances for all selected features
represent students’ learning progress.

Feature Name Standardized score
value interval

Students in-game performance

(a) BiggerArgScore (Scien-
tific argumentation in Unit 2)

Leftmost interval Disengage from this argumentation
task without submitting any correct
argument.

Middle interval A correct argument was submitted
within three attempts.

Rightmost interval Submitting a correct argument at
the first submission.

(b) CREIScore (Choosing the
correct component to com-
plete the scientific argumen-
tation)

Leftmost interval The student delivered all balls into
wrong directions, indicating an in-
correct selection of the argumenta-
tion component.

83
296 Journal of Educational Data Mining, Volume 16, No 2, 2024



Middle interval The student demonstrated mixed
accuracy in their direction selec-
tion, with some balls being de-
livered into the correct directions,
while others were delivered into the
incorrect directions.

Rightmost interval The students delivered all soccer
balls into correct directions, which
means the students always choosing
the correct scientific argumentation
component.

(c) findTeamAveScore (Find-
ing the team location using
topographic knowledge)

Leftmost interval The student either abandoned the
quest or located the team after
exceeding three minutes without
leveraging the topographic map for
navigation.

Middle interval The student either located the team
after more than three minutes but
knowing how to use topographic
map for navigation, or alternatively,
managed to find the team within
three minutes but did not employe
the map to find the correct location.

Rightmost interval The student successfully located the
team within a span of three min-
utes or less, concurrently exhibiting
a competent understanding of the
topographic map’s usage during the
navigation process.

(d) PlantScore (Examine stu-
dents’ knowledge regarding
dissolvable material within
water flow in Unit 3)

Leftmost interval The student either failed to com-
plete the quest or incorrectly in-
stalled all pumps in inappropriate
locations.

Middle interval The student demonstrated partial
accuracy by installing some pumps
at the correct locations while incor-
rectly placing others.

Rightmost interval The student successfully installed
all pumps at the correct locations,
thereby demonstrating complete ac-
curacy in the task.

(e) UpstreamArgScore (Sci-
entific argumentation in Unit
3)

Leftmost interval The student failed to complete the
task or made more than six attempts
without submitting a correct argu-
ment.
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Middle interval The student successfully submitted
a correct argument within the range
of four to six attempts.

Rightmost interval Submitted a correct argument
within 3 tries.

(f) crateDeliveryScore (De-
livering crates to Sam’s base
based on water flow direc-
tion)

Leftmost interval The student either failed to com-
plete the quest or incorrectly in-
stalled all pumps in inappropriate
locations.

Middle interval The student demonstrated partial
accuracy by installing some pumps
at the correct locations while incor-
rectly placing others.

Rightmost interval The student successfully installed
all pumps at the correct locations,
thereby demonstrating complete ac-
curacy in the task.

(g) floodArmoryScore (2nd
scientific argumentation in
Unit 4)

Leftmost interval The student failed to complete the
task or made more than six attempts
without submitting a correct argu-
ment.

Middle interval The student successfully submitted
a correct argument within the range
of four to six attempts.

Rightmost interval Submitted a correct argument
within 3 tries.

(h) wareHouseScore (1st sci-
entific argumentation in Unit
4)

Leftmost interval The student failed to complete the
task or made more than six attempts
without submitting a correct argu-
ment.

Middle interval The student successfully submitted
a correct argument within the range
of four to six attempts.

Rightmost interval Submitted a correct argument
within 3 tries

(i) sortSecondScore (Score
for setting up the correct type
of machine in unit 5 – The
second one)

Leftmost interval The student either failed to com-
plete the quest or selected an inap-
propriate type of machine.

Middle interval After several iterations of the quest,
the student eventually made an ap-
propriate selection regarding the
machine type to install.

Rightmost interval The student successfully chose the
correct machine type during the ini-
tial attempt.
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(j) thirdSetUpScore (Score
for setting up the correct type
of machine in unit 5 – the
third one

)

Leftmost interval The student either failed to com-
plete the quest or selected an inap-
propriate type of machine.

Middle interval After several iterations of the quest,
the student eventually made an ap-
propriate selection regarding the
machine type to install.

Rightmost interval The student successfully chose the
correct machine type during the ini-
tial attempt.

(k) FountainScore (Examine
students’ knowledge regard-
ing soil types and ground wa-
ter)

Leftmost interval The student either failed to com-
plete the quest or made an incorrect
selection of the fountain design.

Middle interval After multiple attempts, the student
successfully identified the correct
fountain design.

Rightmost interval During the first attempt, the stu-
dent accurately selected the correct
fountain design.

(l) drillRoomScore (Score for
drilling to the water table
based on soil types)

Leftmost interval The student either failed to com-
plete the quest or was incorrectly
drilled to an inappropriate water ta-
ble depth.

Middle interval After multiple attempts, the student
successfully identified the requisite
fountain design.

Rightmost interval The student accurately selected the
requisite fountain design at the first
attempt.

E.2. ANALYSIS OF ALE PLOTS FOR UNIT 3’S WATER SCIENCE CONTENT KNOWL-
EDGE

The analysis of ALE plots for Unit 3 reveals significant influences of the standardized scores
“plantScore,” “upstreamArgScore,” and “crateDeliveryScore,” on the posttest assessment of Unit
3’s water science content knowledge.

The “plantScore” measures students’ learning progress while installing four pumps for gar-
den beds downstream of a large tree, based on their understanding of dissolvable materials in
water. The ALE plot in Figure 8e shows fluctuating impacts on performance. Combined with
row (d) of Table 13, we can observe that incorrect placement of more than two pumps decreases
the likelihood of being classified as a high-level learner, whereas correctly installing more than
two pumps significantly increases this probability. This is consistent with the description pro-
vided in the second row of Table 12.

For “upstreamArgScore,” which assesses students’ performance in a scientific argumenta-
tion task in Unit 3, there is a clear linear relationship between the standardized score and the

86
299 Journal of Educational Data Mining, Volume 16, No 2, 2024



(a) ALE plot of U2 water science V.S. U2 Argumenta-
tion. (b) ALE plot of U2 water science V.S. U2 CREi Quest.

(c) ALE plot of U2 water science V.S. U2 Find Team
Quest.

(d) ALE plot of U3 water science V.S. U3 Argumenta-
tion.

(e) ALE plot of U3 water science V.S. U3 Pump Instal-
lation Quest.

(f) ALE plot of U3 Water Science V.S. U3 Crate Delivery
Quest.

Figure 8: Full selected ALE plots: part 1.
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(a) ALE plot of U4 water science V.S. U4 Flood Armory
Argumentation.

(b) ALE plot of overall water science V.S. U4 Warehouse
Argumentation.

(c) ALE plot of Overall water science V.S. U5 Factory
setup floor 2 Quest.

(d) ALE plot of overall water science V.S. U5 factory
setup floor 3 quest.

(e) ALE plot of overall argumentation skill V.S. U4 foun-
tain quest.

(f) ALE plot of overall argumentation skill V.S. U4 drill
room quest.

Figure 9: Full selected ALE plots: part 2.
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likelihood of being classified as a high-level learner, as depicted in Figure 8d. This task involves
persuading a character, Bill, about the pollutant source based on evidence. According to row (e)
of Table 13, students who submit the correct argument with fewer attempts are more likely to
achieve high-level learner status in the posttest.

The “crateDeliveryScore” evaluates the accuracy of delivering crates based on the water flow
in a task. Figure 8f and row (f) of Table 13 illustrate that delivering three crates incorrectly while
one is correct has a notable negative impact on posttest scores. Conversely, correct delivery,
particularly when all crates are delivered accurately, correlates positively with higher posttest
scores. This pattern underscores the importance of accuracy in this task for better knowledge
acquisition in Unit 3’s water science content.

E.3. ANALYSIS OF ALE PLOTS FOR UNIT 4’S WATER SCIENCE CONTENT KNOWL-
EDGE

In Unit 4, the “floodArmoryScore” significantly influences the classification of students’ learn-
ing outcomes in water science knowledge. This score measures students’ progress in the second
scientific argumentation task, where they must identify the individual responsible for trigger-
ing the armory flood. The ALE plot in Figure 9a shows that only the rightmost score interval
positively impacts the probability of being classified as a high-level learner for Unit 4’s water
science knowledge. According to row (g) of Table 13, students who submit the correct argument
within three attempts are more likely to be classified as high-level learners. In contrast, other
score intervals, which include cases where students either did not submit a correct argument or
took more than three attempts to do so, are associated with a decreased likelihood of achieving
a high-level learning outcome in the posttest assessment.

E.4. ANALYSIS OF ALE PLOTS FOR OVERALL WATER SCIENCE CONTENT KNOWL-
EDGE

The analysis of ALE plots for overall water science knowledge reveals significant associations
with specific learning progress measurements. The “wareHouseScore,” which assesses students’
ability to respond to an argument generated by an NPC to identify the person responsible for the
warehouse flood, shows a notable correlation. As depicted in Figure 9b and discussed in row
(h) of Table 13, students in the highest scoring interval—those who present the correct argu-
ment within three attempts—are more likely to be classified as high-level learners. In contrast,
students who either exit the argumentation without submitting a correct argument or do so after
more than three attempts have a reduced likelihood of being classified as high-level learners.

Additionally, the scores “secondSetUpScore” and “thirdSetUpScore,” collected from tasks
requiring students to choose between installing an evaporator or condenser in a factory, also
demonstrate relevant trends, as shown by Figure 9c and Figure 9d. Based on row (i) and (j)
of Table 13, both scores indicate a positive correlation between students’ overall posttest water
science knowledge and their performance in these tasks when they select the correct machine,
regardless of the number of attempts. Conversely, incorrect machine selection is associated with
lower overall posttest scores.

E.5. ANALYSIS OF ALE PLOTS FOR OVERALL SCIENTIFIC ARGUMENTATION SKILLS

For overall scientific argumentation skills, the “fountainScore” has a significant impact on the
classification probability of the corresponding learning outcome. As shown in Figure 9e and
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row (k) of Table 13, students in the highest score interval, who select the correct design on their
first attempt, are more likely to be classified as high-level learners in argumentation skills. In
contrast, students who do not choose correctly on their first attempt are less likely to achieve
high-level outcomes in these skills.

The “drillRoomScore,” which measures students’ progress in selecting the appropriate ground
level based on soil type for drilling groundwater, presents a complex relationship with overall
scientific argumentation posttest scores. According to the ALE plot in Figure 9f and the last
row of Table 13, success on the first attempt correlates with a higher likelihood of achieving
high posttest scores in argumentation skills. Students who fail to find the correct ground level at
all are less likely to attain high scores. Interestingly, the data shows that students who succeed
on their second or third attempt have a lower probability of high posttest performance. How-
ever, those who succeed after more than three attempts, within a certain limit, exhibit a positive
correlation with higher argumentation skill scores.

90
303 Journal of Educational Data Mining, Volume 16, No 2, 2024


