Optimizing Bayesian Knowledge Tracing with
Neural Network Parameter Generation

Anirudhan Badrinath Zachary Pardos

Stanford University University of California, Berkeley
Stanford, CA, USA Berkeley, CA, USA
abadrina@stanford.edu pardos@berkeley.edu

Bayesian Knowledge Tracing (BKT) is a well-established model for formative assessment, with opti-
mization typically using expectation maximization, conjugate gradient descent, or brute force search.
However, one of the flaws of existing optimization techniques for BKT models is convergence to un-
desirable local minima that negatively impact performance and interpretability of the BKT parameters
(i.e., parameter degeneracy). Recently, deep knowledge tracing methods such as context-aware atten-
tive knowledge tracing have proven to be state-of-the-art in performance; however, these methods often
lack the inherent interpretability or understanding provided by BKT’s skill-level parameter estimates and
student-level mastery probability estimates.

We propose a novel optimization technique for BKT models using a neural network-based parameter
generation approach, OptimNN, that leverages hypernetworks and stochastic gradient descent for training
BKT parameters. We extend this approach and propose BKTransformer, a transformer-based sequence
modeling technique that generates temporally-evolving BKT parameters for student response correctness
prediction. With both approaches, we demonstrate improved performance compared to BKT and deep
KT baselines, with minimal hyperparameter tuning. Importantly, we demonstrate that these techniques,
despite their state-of-the-art expressive capability, retain the interpretability of skill-level BKT parameter
estimates and student-level estimates of mastery and correctness probabilities.

Our code and data can be found at https://github.com/abadrinath947/OptimNN.

Keywords: knowledge tracing, Bayesian Knowledge Tracing, intelligent tutoring systems, deep learning

1. INTRODUCTION

Knowledge tracing (KT) is a well-researched approach to estimating students’ cognitive mas-
tery in the context of computer tutoring systems based on problem response sequences (Pelanek,
2017). Tutoring systems take a problem-solving or active approach to learning (Aleven and
Koedinger, 2002; Anzai and Simon, 1979) that often resembles the personalized mastery learn-
ing approach researched by Bloom (1984).

Bayesian Knowledge Tracing (BKT) (Corbett and Anderson, 1994) can be described as a
Hidden Markov Model that models per-skill binary student knowledge and correctness states
using four trainable parameters. It has served as a reliable approach to knowledge tracing and is
used in deployed computerized tutoring systems (Ritter et al., 2007).

https://github.com/abadrinath947/OptimNN

However, one of the issues with BKT is its tendency to converge to local minima across dif-
ferent optimization techniques, such as expectation maximization (EM) and conjugate gradient
descent (CGD) (Yudelson et al., 2013). Besides reduced performance on correctness prediction,
many of these local minima result in degenerate BKT parameters (Baker et al., 2008; van de
Sande, 2013). While techniques such as Dirichlet priors or rules about allowable ranges of pa-
rameters have been suggested, they are either not effective in preventing parameter degeneracy
by themselves (Baker et al., 2008) or not scalable to large datasets and different variants of BKT.
Work by Pardos and Heffernan (2010) suggests that altering the EM initialization such that it
did not contain degenerate parameters could lead to non-degenerate fitted parameters. While
this sometimes reduces the number of degenerate parameters, it is not consistently effective and
the margin of improvement over randomly initialized EM is not significant (Table 4).

In recent years, deep learning has been used to improve upon the accuracy of knowledge
tracing with models such as Deep Knowledge Tracing (DKT) (Piech et al., 2015), DKT+ (Yeung
and Yeung, 2018), and Self-Attentive Knowledge Tracing (SAKT) (Pandey and Karypis, 2019).
Though they present a higher performance in correctness prediction, these methods lose access
to directly interpretable probabilistic skill-level estimates (e.g., learn rate) and estimation of the
student mastery probability. While approaches such as clustering or dimensionality reduction
can be used for explainability as in Pandey and Karypis (2019), we believe that they are indirect
and often subjective techniques for interpreting these methods.

Techniques such as Deep-IRT and Deep Learning-Based Knowledge Tracing (DLKT) have
been developed and used for explainable deep KT (Yeung, 2019; Lu et al., 2020). Deep-IRT
provides performance on-par with DKT, and it presents explainability in terms of scalar values
indicating (a) student ability and (b) problem difficulty. However, we believe the explainable
elements have unclear relevance without specific dataset and problem-specific context (i.e., it is
unclear what a student ability of 0.3 implies without further context). DLKT leverages back-
propagation techniques to interpret the predictions of the sequence modeling technique for KT.
It is also limited in the explainable components it presents, using a “relevance” metric whose
definition is more vague than a direct probabilistic interpretation attainable with BKT. None of
these techniques present as much direct probabilistic interpretability about the skill and student-
specific information as the BKT parameters and mastery probabilities.

We propose an optimization technique to bridge the gap between performance of deep KT
methods and interpretability of BKT, using neural networks to generate BKT parameter values.
Addressing concerns associated with local minima, degenerate parameters, and allowing for a
deep KT extension, we summarize the highlights of our study as follows.

* We demonstrate that our technique, OptimNN, generates superior local minima for BKT
compared to other optimization techniques such as EM and stochastic gradient descent
(SGD), while maintaining significantly lesser degenerate parameters.

* We present an extension to the proposed technique, BKTransformer, combining deep KT
methods with OptimNN to achieve a balance between the expressive nature of sequence
learning via transformers and interpretability of BKT. Using this, we achieve performance
rivalling or surpassing state-of-the-art KT methods such as SAKT.

* Importantly, we show that both OptimNN and BKTransformer show insensitivity to hyper-
parameters and demonstrate interpretability at the same level as traditional BK'T methods.

2. RELATED WORK

2.1. BAYESIAN KNOWLEDGE TRACING

BKT has been serving as the canonical model for knowledge tracing and is typically modeled as
a Hidden Markov Model (van de Sande, 2013). A standard BKT model consists of four learned
parameters (prior P(Lg), learn P(T), guess P(G), and slip P(.S) as shown in Equations 1-4)
per skill. At time ¢ of a problem solving sequence, the student mastery probability is given by
P(L; = 1), and the student correctness probability is given by P(obs; = 1).

P(Lo) = P(L, = 1) (1)
P(T)=P(Lyy1 =1]| Ly =0))
P(G) = P(obs; =1]| L; =0) 3)
P(S) = P(obs; =0| L, =1) 4)

Many of the extensions to BKT have diversified the four parameters by modifying the mod-
elling structure or incorporating information such as individualization per student (Yudelson
et al., 2013) or making contextual estimations of the probability of guess and slip (Baker et al.,
2008). Item Learning Effect (ILE) conditions or multiplexes the learn rate based on the item
(Pardos and Heffernan, 2009), and Item Difficulty Effect (KT-IDEM) fits a different guess and
slip rate per item (Pardos and Heffernan, 2011).

2.2. OPTIMIZATION TECHNIQUES FOR BKT

Standard approaches to optimizing BKT parameters include expectation maximization (EM)
(Levinson et al., 1983), conjugate gradient descent (CGD) (Corbett and Anderson, 1994), or
discretized brute force parameter search (Baker et al., 2008). Popular implementations that use
EM for optimization include BNT-SM (Chang et al., 2006) and pyBKT (Badrinath et al., 2021).
hmm-scalable implements both EM and CGD, along with other optimization techniques
(Yudelson, 2016). To our knowledge, techniques popular in the deep learning regime such as
stochastic gradient descent (SGD) have been less popular than these techniques, perhaps due to
the lack of theoretical guarantees.

Discretized brute force parameter search presents the ability to easily discard regions in
the search grid to achieve local minima without “degenerate” parameters (e.g., where guess is
greater than 0.5) (Baker et al., 2008). However, one of the issues with this approach is lack of
scalability as the time complexity grows exponentially with the number of trainable parameters
(e.g., for extensions such as KT-IDEM, which may have hundreds or thousands of parameters).
For EM, Pardos and Heffernan (2010) showed that initialization with non-degenerate parameters
can lead to non-degenerate fitted parameters.

2.3. DEEP KNOWLEDGE TRACING

Deep Knowledge Tracing (DKT) uses a recurrent neural network to predict correctness for prob-
lem solving sequences with the ability to model interdependence in skills unlike BKT, which as-
sumes skill independence and the Markov property (Piech et al., 2015). DKT outperforms BKT

and many proposed variants in terms of prediction accuracy across a wide range of datasets. Re-
cent years have seen a boom in the development and application of DKT, such as incorporating
problem-level features (Zhang et al., 2017) and side information (Wang et al., 2019).

Other work based on DKT, such as DKT+, has leveraged machine learning techniques such
as regularization to improve performance (Yeung and Yeung, 2018). Self-Attentive Knowledge
Tracing (SAKT) (Pandey and Karypis, 2019) introduced a transformer model based on self-
attention for student performance prediction, showing improvements over methods such as DKT.
(Ghosh et al., 2020) incorporate several improvements such as a context-aware relative distance
measure, exponentially decaying attention weights, and usage of the Rasch model to regularize
concept and question embeddings. Other techniques building upon deep KT have leveraged
graph learning (Nakagawa et al., 2019; Tong et al., 2020), text-based featurization (Liu et al.,
2019; Yin et al., 2019), and incorporated forgetting features (Abdelrahman and Wang, 2022;
Nagatani et al., 2019).

2.4. INTERPRETING DEEP KT TECHNIQUES

Deep KT techniques typically rely on different notions of interpretability compared to BKT as
they do not produce explicit probabilistic estimations of a student’s learn, guess, slip, and prior
for a particular skill. Typically, embeddings produced by deep KT techniques such as DKT and
SAKT can be used alongside dimensionality reduction (e.g., T-SNE) to visualize and interpret
the model and its outputs. Both Piech et al. (2015) and Pandey and Karypis (2019) include
these types of analyses for DKT and SAKT respectively. However, while these reveal latent
structure, they lack direct interpretability without the subjective application of techniques such
as clustering.

Unlike DKT, Deep-IRT explicitly presents explainability for KT in terms of scalar values
indicating student ability and problem difficulty (Yeung, 2019). However, without contextual-
izing these scalars in the context of the dataset and student cohort, they are difficult to interpret
directly (e.g., in a probabilistic manner). DLKT leverages layer-wise relevance propagation to
interpret deep KT techniques (Lu et al., 2020), using neural network backpropagation to in-
versely attribute the prediction made by the deep learning method back to the neural network
layers (Bach et al., 2015). That said, it is similarly limited in the directly explainable compo-
nents it presents, using a more vaguely-defined “relevance” metric. Labra and Santos (2023)
leverage data augmentation for training explainable deep KT models by mixing ground-truth
data with data generated by a “surrogate” explainable model. Similarly, the explainability of
this approach is limited in practical use since it is measured by how well the surrogate replicates
the predictions of the trained deep KT model.

Concretely, we believe that no existing deep learning-based KT technique presents as much
probabilistic interpretability about the skill-specific information as the BKT parameters and
about the student’s knowledge state as the generated mastery probabilities.

3. OPTIMIZATION OF BAYESIAN KNOWLEDGE TRACING WITH PARAME-
TER GENERATION

In this section, we motivate and outline the proposed optimization approach, OptimNN, that
leverages a feed-forward neural network architecture and stochastic gradient descent (SGD).
With regards to the generated parameters, we discuss the ability to add penalty terms to Op-

timNN’s loss function to discourage degenerate parameter values and specify prior distributions
over BKT parameters (Baker et al., 2008; Rai et al., 2009).

3.1. OPTIMIZATION USING SGD

To motivate the benefits of the proposed neural network-based parameter generation approach,
we outline a similar preliminary method to optimize BKT parameters using SGD without neural
networks. This is shown in Algorithm 1, where we follow the instructions shown for SGD on
Lines 17 and 20.

Note that we have simplified the fitting algorithm for brevity and ease of understanding in
two ways. In the algorithm, we apply gradient steps for each student problem solving sequence,
whereas we might use a batch in practise. Another practical consideration that is left out for
brevity is that gradient updates could lead to impossible values of probabilistic parameters (e.g.,
prior > 1). To resolve this, we can (a) clip the values between O to 1 or (b) store the parameters
as logits and use the sigmoid function to transform the logit into a probability. In our case, we
choose option (b) to retain as much gradient flow as possible.

3.1.1. Forward Pass

The forward computation as shown in FORWARD in Algorithm 1 is reminiscent of a standard
BKT implementation, such as pyBKT (Badrinath et al., 2021), with the BKT parameters being
initialized randomly for each skill s; (Line 17, SGD). Using the generated correctness probabil-
ities P(obs,, ; = 1) across problem solving sequences, we compute the loss with respect to the
observed correctness using the binary cross-entropy loss (Line 12), as shown in Equation 5.

I7|
BCELoss(obs, P(obs)) = Z obs; log P(obs; = 1)
t=1

+ (1 — obs;) log(1 — P(obs; = 1)) 5)

3.1.2. Optimization

The backward pass is powered by the automatic differentiation (“autodiff’) package provided by

deep learning libraries (Paszke et al., 2019; Chollet et al., 2015). In this case, autodiff would re-

turn the gradient with respect to the trainable BKT parameters 6, = [P(Lg)s,, P(T)s,, P(G)s,, P(S)s,]
(Line 20, SGD). To optimize the parameters, we take a gradient step based on the data with
learning rate «v (not to be confused with BKT’s learn rate P(T)).

3.1.3. Benefits and Drawbacks

While Algorithm 1 is similar in some ways to other gradient-based approaches, there are several
advantages to using SGD with a standard deep learning package such as PyTorch. The autodiff
package allows for optimization without manual gradient computation during the backward pass
(i.e., the parameter update phase) (Paszke et al., 2019). This increases the flexibility and ease-
of-use in adapting the algorithm, for example, to support additional BKT variants.

However, this preliminary approach still has some drawbacks, including the necessity to
tune the learning rate « size depending on the dataset. As an example, we use this approach to
train on the ASSISTments 2009-10 Skill Builder dataset using different learning rates. Figure 6

Algorithm 1 Optimization of BKT parameters using SGD or OptimNN provided a training
dataset D.in. Note that SGD and OptimNN only differ in Line 17 and Line 20, where the
differing steps for both methods are clearly accompanied by the method name in parentheses.

1: procedure FORWARD(0s, , T) > 05, contains BKT parameters for skill s;, 7 is a problem solving sequence

2: P(LO)SZ'vP(T)SwP(G)Sq,v P(S)S7 — 687;7P(L1) <~ P(LO)Sq,
3: for ¢t = 1to |7| do

4. P(obsg = 1) = P(L¢)(1 — P(S)s;) + (1 — P(Ly))P(G)s;
5: if obs; = 1 then PO P(s

6: P(Lt | 0bse) = prroya=p(s)o 1= PP,

7: else L P(S)

8: P(Lt | obst) = Bz yp(sy;, + (- PLOYTP@05;)

9: end if

10: P(Lt+1) = P(Lt | ObSt) -+ (1 - P(Lt | Obst))P(T)si
11: end for

12: return BCELoss(obs, P(obs)) > definition of binary cross-entropy loss (Eqn 5)
13: end procedure

14:

15: procedure TRAIN(D;,ain)
16: for skill ID s; € N in Diyain do

17: set skill-specific params 0s; = [P(Lo)s;, P(T)s;, P(G)s,;, P(S)s,;]: randomly (SGD) or 05, = f4(s;) (OptimNN)
18: for each problem solving sequence 7 = [obs; ... obs;] corresponding to skill s; do

19: L «+ FORWARD(0s,,T)

20: apply gradient step w.r.t.: trainable parameters 65, (SGD) or ¢ (OptimNN) using AUTODIFF(L)

21: end for

22: end for

23: end procedure

(right) demonstrates that this approach is quite sensitive to the learning rate and that a learning
rate of 0.01 is roughly optimal for this dataset, which is quite different from the default of 0.0001
or 0.001 in deep learning libraries (Paszke et al., 2019; Chollet et al., 2015). This tuning would
likely need to performed for every dataset to determine learning rates for fast convergence and
optimal performance.

3.2. NEURAL NETWORK PARAMETER GENERATION

To alleviate the concerns expressed in Section 3.1 about tuning for effective usage of SGD, we
leverage feedforward neural networks. Instead of randomly initializing BKT parameters and
iteratively optimizing them through SGD, we can construct a “parameter generation network”
fs : N+ (0,1)* that generates or computes the 4 BKT parameters given a particular skill; that
is, 65, = f,(s;) instead of being randomly initialized by 4 numbers and trained. We refer to this
approach as OptimNN, shown in Figure 1.

In the backward pass, instead of optimizing 6, directly, we optimize the parameter genera-
tion network f, using the gradient g—g (Line 20, OptimNN) such that the generated parameters
65, = fo(s;) are more appropriate in computing accurate correctness probabilities P(obs).

3.2.1. Forward Computation

The forward computation of correctness and mastery probabilities of a student sequence uses
the same FORWARD algorithm as described in Algorithm 1. The main difference is that the BKT
parameters 0, are generated by a neural network f, : N — (0, 1)%, rather than being initialized
randomly. This change is reflected in Line 17 (OptimNN) of the algorithm. Note that this neural
network does not take student sequences of observed correctness as input; it only takes a skill
ID s; € N, as shown in Figure 1.

Neural Network Generated BKT B

fm ‘N — (0’ 1)4 Parameters BKT P(Ll)
P(Lo)s, Plobs; = 1) = P(L = 1) - (1= P(S),) -
maml H H B NE P(T), + P(L=0)- P(G), P(Liy1)
Skll]. Sir % § 3 ﬁ :E: — P(G)g P(Liyy = 1) = P(L; = 1 | obs)
| P(s). | o P(obsy)
!
-
[obsl obst] | P(obsy) |
Data
(skill s)

Figure 1: Forward pass of OptimNN, given a neural network f, that takes a skill ID s; as input
and training data in the form of observed correctness of student problem solving sequences.

This change can be viewed as an equivalent re-expression of the BKT optimization prob-
lem, and it is similar to hypernetworks (Ha et al., 2017) or black-box adaptation meta learning
(Santoro et al., 2016). Instead of learning a table of parameters using an iterative algorithm
like SGD, we employ neural network-based functional approximation to learn an optimal map-
ping from the skill to its optimal BKT parameters. Although this might seem unnecessarily
complex, we show in Sections 3.2.3 and 6 that this method has several advantages, including
improved numerical stability, vastly reduced hyperparameter tuning, increased flexibility in pre-
venting parameter degeneracy, and empirical performance improvements over SGD and existing
optimization methods.

3.2.2. Optimization

As the BKT parameters are generated by a neural network f,, parameterized by trainable neural
network parameters ¢, we compute the gradient of the loss function with respect to ¢ instead to
optimize the network f, (Line 20, OptimNN). That is, since 6, = f;(s;) are generated, they are
not trainable parameters for the purposes of this method (they are effectively “intermediate com-
putations”). Note that there is an important distinction between the neural network parameters
¢ that parameterize f,, and the BKT parameters, which are outputted by f, (65, = fs(s:)).

By updating ¢ using gradient descent to minimize the loss function, we iteratively update
the parameter generation network f, to be able to generate more appropriate BKT parameters,
such that the FORWARD update produces more accurate correctness probabilities with respect to
the observed values.

3.2.3. Benefits and Drawbacks

Compared to optimization using SGD (i.e., without neural networks), this method does not suf-
fer from the same hyperparameter tuning and convergence issues. Although this may seem
counterintuitive since we still use gradient descent, neural network optimizers such as Adam
tend to require minimal tuning to achieve competitive local minima for deeper neural networks
(Kingma and Ba, 2015). Empirically, we find that the default learning rate of 0.001 performs

consistently well across datasets unlike SGD without a neural network, as demonstrated in Sec-
tion 6 and Figure 6. Further, this optimization method can be adapted easily to any BKT variant
that multiplexes parameters (e.g., guess rate) per item or student by adding an additional feature
to the input of a neural network (i.e., (s;, k;), for some item-related feature k;) for the prediction
of that BKT parameter.

3.3. REGULARIZATION FOR GENERATED PARAMETERS

We present an extension of the framework outlined in Section 3.2 that supports preferences
and rules to discourage undesirable or degenerate parameter values. To judge our approach,
which we call OptimNN-Reg, we adopt guidelines based on the work in Baker et al. (2008) and
van de Sande (2013) to construct the following rules shown for allowable and non-degenerate
parameters:

P(S),, < 0.5 6)
P(G),. < 0.5 %
1 - P(S)Sz

Additionally, OptimNN-Reg provides support for establishing a prior over one or more BKT
parameters across one or more skills using any differentiable distribution. For example, we
choose a Dirichlet distribution [guess, 1 — guess] ~ Dir([6, 14]) to establish a prior about the
guess rate across across all skills (Rai et al., 2009). Note that as described in Rai et al. (2009),
a variety of approaches can be used to select this Dirichlet prior, including domain knowledge
and automatic approaches.

We implement these rules and preferences as regularizing terms (or penalties) added to the
binary cross-entropy loss function with a chosen coefficient \;. The higher the value of)\;, the
greater the effect on the loss function and the more aggressively that rule or preference will
be encouraged. While another valid approach to satisfy the rules would be to simply restrict
the values of the slip and guess probabilities via a transformation which outputs real numbers
between the range of 0 to 0.5 (e.g., applying a sigmoid operation divided by two), it is less
flexible than our regularization or penalty-based approach. Our penalty-based approach not
only effectively generalizes to simple bound-based rules, but it could be used in more complex
distribution-based rules (as in Equation 9, for instance). Since the constraint in our approach is
also not “hard”, it is also possible to specify constraints which are optional and can be violated
in favour of maximizing the primary objective of correctness prediction.

All the inequalities shown in Equations 6-8 are modeled using the max function and the prior
is applied by maximizing the log probability of the generated parameters under the distribution.
The resulting minimization objective to optimize ¢, the neural network parameters for fy, for
skill s; is shown in Equation 9.

arg mqbin BCELoss(¢) + Ay max(P(S)s, — 0.5,0)
+ Ay max(P(G)s, — 0.5,0)

1= P(9)s,
+)\3 HlaX(P(T>Si - #, 0)
— A log P(guess = P(G)s,))

Note that the above objective can be adapted easily with any combination of rules and pref-
erences, i.e., using a Dirichlet prior with another parameter, specifying P,(7") < 0.9, etc.

4. EXTENDING OPTIMNN USING SEQUENCE MODELING

While OptimNN presents a framework to generate non-degenerate BKT parameters, it is still
limited by the global optima within the set of all BKT models. With the advent of deep KT
models that demonstrate superior performance to BKT models, we present an extension of Op-
timNN, BKTransformer, leveraging transformer-based sequence modeling. Retaining many de-
sirable properties of OptimNN such as its interpretability, BKTransformer allows for improved
generalization and more expressive capabilities through deep learning.

4.1. MOTIVATING EXAMPLE

To motivate an extension of a parameter generation approach using sequence modeling, con-
sider a simple example in which a student incorrectly answers a series of ¢ questions for a par-
ticular skill s;. Suppose we have access to arbitrary non-degenerate, learned BKT parameters
P(G) < 0.5, P(S) < 0.5. Additionally, we are even able to assume any reasonable probability
of forgetting, P(F) = P(Li4+1 = 0| Ly = 1) < 1 — P(T), where this “forgets” extension is
used by Khajah et al. (2016).

From an intuitive perspective, we would expect a probability of knowledge that decays cor-
responding to incorrect responses, with the eventual expectation of having a near-zero P(L;) as
t — oo. This corresponds to the intuition that without a singular correct response, it would seem
unreasonable for there to exist a non-zero probability of correctness or mastery. However, given
the standard BKT forward pass as shown in Algorithm 1 with a fixed set of BKT parameters and
the above assumptions, we show that the eventual probability of mastery P(L.,) converges to
greater than the learned value of P(7T'). In fact, the mastery probability P(L;) > P(T’) for all ¢.
The complete derivation of the posterior probability, next latent state, and limit is presented in
Appendix A.

Example 4.1. For any set of non-degenerate learned BKT parameters, i.e., P(G) < 0.5, P(S) <
0.5 with P(F') < 1 — P(T), and any timestep ¢t € [1, 00)

P(Ly) = (1= P(F))P(Li—1 | obs;—1) + P(T)(1 — P(Ly—1 | obs;—1))
> P(T)

Importantly, regardless of the learned prior rate P(Ly), the mastery probability P(L;) for this
example scenario is at least P(T") for the given parameters, even as ¢ — oo (i.e., greater than

9

the learn rate, despite incorrectly answering all questions). When the learned “learn rate” P(7T)
is large and potentially degenerate (i.e., violating Equation 8), this is not a desirable outcome
since the corresponding correctness prediction is likely a high likelihood of correctness despite
unboundedly many incorrect answers (for all time).

To practically and empirically validate this simple scenario in the context of actual learned
BKT parameters, we examine learn rates from BKT trained on the CognitiveTutor Bridge to
Algebra 2008-09 dataset. For instance, consider the case of the skill “find sphere volume in
context,” with a learn rate of 0.887, in the 85th percentile of learn rates. Under this scenario
(i.e., even by answering all questions incorrectly), the student’s mastery probability converges to
P(L) — 1 and eventual correctness probability of 0.886, which is unreasonable. Not only does
the estimate indicate perfect certainty of mastery despite answering all questions incorrectly,
but the produced estimates of the correctness probability always incorrectly classifies the true
correctness for all ¢.

4.2. TEMPORAL EXTENSION OF BKT PARAMETERS

To motivate a temporal extension to the BKT that allows for changing parameters over time, we
draw inspiration from sequence modeling techniques, such as long-short term memory networks
(Hochreiter and Schmidhuber, 1997) or transformers (Vaswani et al., 2017), which retain an
evolving hidden state 2, over timesteps. Conditioned on this hidden state, these methods produce
a prediction y,. Similarly, to extend the expressiveness of our modeling framework and to allow
for performance competitive with sequence modeling methods such as DKT, we consider BKT
parameters that vary as a function of time ¢ that are used to produce a correctness prediction.
By default, the standard BKT parameters do not vary based on the time ¢, i.e., all the param-
eter values at any arbitrary time within the problem solving sequence ¢, and ¢; # t, are equal
(e.g., slip[to] = slip[t1], learn[ty] = learn[t,], and so on). To achieve BKT parameters that vary
over timesteps, we propose that for any time step ¢, the standard BKT parameter set can be ex-
tended as learn[t] = P(7T);, guess|t] = P(G)y, slip[t] = P(S);. Note that the prior cannot vary
as a function of the time since it is a parameter representing the initial probability of mastery.

P(Lo) = P(Ly =1) (10)
P(T), = P(Lipy = 1| L, = 0) (11)
P(G); = P(obs; =1 | L; =0) (12)
P(S); = P(obs; =0 | Ly = 1) (13)

This temporally conditioned parameter extension to BKT can be modeled using existing ex-
tensions to BKT by multiplexing the respective parameters based on the time within the problem
solving sequence. However, there are several drawbacks to the method, which may reduce its
performance and interpretability. As with all other BKT models, the (time-specific) parameters
are static. That is, for all students attempting a skill at time ¢, the relevant BKT parameters are
the same regardless of the student or prior sequence. A possible way to fix this is to multiplex
based on time and student (or item), but this would require sufficient data in each time step and
student/item. The second limitation is that the number of parameters grows as a function of the
maximum number of time steps, which can result in poor efficiency if there exist long training
sequences. Finally, this multiplexed set of BKT parameters can be prone to degenerate param-

10

eters as previously, and the parameter values can vary by arbitrary amounts across consecutive
and nearby timesteps.

4.3. PARAMETER GENERATION USING TRANSFORMER MODELS

To generate optimal values for temporally-evolving BKT parameters that address the issues
highlighted in the previous section, we leverage an expressive sequence modeling approach
conditioned on the student’s problem sequence. Following successful techniques in deep KT,
such as SAKT (Pandey and Karypis, 2019), we leverage a transformer decoder architecture
with masked multi-head attention, based on the GPT-2 architecture. While our transformer
architecture resembles SAKT, the primary point of difference between SAKT’s architecture and
the architecture of our proposed method is the final fully-connected prediction layer, which
outputs BKT parameters as opposed to the correctness prediction.

To that end, we extend the framework presented in Section 3 and propose a parameter gen-
eration network h 4 (0bsy 4,81 441) : Nt x N1 — (0, 1) that generates or computes the BKT
parameters in Equations 11-13 at time ¢ + 1 given a problem sequence of length ¢ and the skill
attempted at timestep ¢ + 1. To explicitly construct this parameter generation network, we lever-
age the previously defined base parameter network f,, which generates BKT parameters for a
given skill without conditioning on the student sequence or timestep, and a “parameter adjust-
ment” transformer decoder g,, which additively adjusts the BKT parameters generated by fy.
The parameter adjustment transformer g, is designed to adjust the base parameters generated by
fo to effectively adapt the parameters to the specific student sequence. Formally, we construct
the temporally-evolving parameter generation network /4, as shown in Equation 14.

h2,¢(0b51..t, S1.t41) = fo(St41)2.4 + gy(ObS1 4, 81.¢) (14)

While this construction allows for adaptive parameter generation as desired, the parameter
adjustments can vary arbitrarily over time. To address this, we develop a set of penalties to
ensure that the BKT parameters do not change arbitrarily over time (i.e., we constrain the pa-
rameter adjustment network to output small and consistent values). Precisely, we augment the
objective shown in Equation 9 with the following terms for parameter adjustments being pe-
nalized by a coefficient \5 and differences in parameter adjustments over consecutive timesteps
being penalized by a coefficient \¢. Ignoring the prior over guess probabilities (i.e., Ay = 0),
the resulting objective is shown in Equation 15. Note that since A, is composed of a sum of
two differentiable components, we are able to apply the same gradient descent-based technique
described in Section 3 to optimize the parameters ¢ and).

arg Ig)lb)n BCELoss(¢,?) + Ay max(P(S).s; — 0.5,0)

+ Ay max(P(G)s, — 0.5,0)

1 — P(S)s,
191 , O

PGl)

+ As||gp(0bsy ¢, 81.641)|]2

+ X6||gy(0bS2 1,82, 141) — gy (Obsy_4—1,81.4) 2 (15)

+ Agmax(P(T):s, —

11

Finally, to capture the expressive capability of methods like DKT, we do not separate the
sequences for a student based on the skill (i.e., as for BKT) as input to the parameter adjustment
network ¢,. Instead, for a student, we maintain a mastery probability P(L;),, for all skills s;
in a vector P(Ly) rather than for a singular skill individually. At each timestep ¢ — 1 in the
sequence, we update the corresponding element P(L;), based on s; using the BKT forward
pass and the generated parameters from hg ... We refer to this technique as BKTransformer, and
its architecture is depicted visually in Figure 2.

Importantly, this approach addresses all the areas of concern expressed in the previous sec-
tion. It allows for adaptive parameter generation conditioned on the current sequence, and it
does not incur significantly higher parameterization for arbitrarily long sequences. Combined
with the penalty terms listed in the objective in Equation 15, we are able to avoid degenerate
parameters as well.

o~ o~ T
P(L,,) P(obs,,,) P(L,,,) P(obs,,,) P(L,s) P(obs,,,)
| | | [[[| | |

PMu || PO || PO PMuz || P@s || PO PMus || POus || PO)s

f(‘ﬁ(st+1) /c‘p(st+2) fc‘p(st+3)

‘o o @
BKTransformer (g,)
1 1 T i i !
obs, s, obs,,, St41 obs,,, Sta2

Figure 2: Architecture of BKTransformer, where the parameter adjustment transformer gy, ac-
cepts a student problem solving sequence and additively adjusts the base parameter network fy
to produce BKT parameter estimates, used for constructing correctness and mastery probability
estimates.

This recurrent parameter modeling framework differs from DKT and other deep learning
techniques for knowledge tracing (Piech et al., 2015). Instead of directly predicting the prob-
ability of correctness, we predict BKT parameters, which can in turn allow for prediction of
correctness and mastery. This allows us to analyze and interpret the way in which correctness
predictions are made through skill-level parameters, whereas for methods such as DKT, the
direct (probabilistic) way in which the correctness predictions are constructed are blackboxed
behind uninterpretable neural network computations. This framework allows access to the latent
mastery state through the predicted mastery probability. While this does not allow for full inter-
pretability of the method (i.e., there are still perhaps millions of neural network computations),
our approach’s correctness predictions can be probabilistically justified by the produced slip,
guess, forget, and learn parameters, which provide a layer of interpretability and structure over
the deep learning component.

12

5. EXPERIMENTAL SETUP

5.1. DATASETS

We use the ASSISTments 2009-10/2012-13 Skill Builder (AST09/AST12), Cognitive Tutor
KDD Cup Algebra 2008-09 Challenge (ALGO08) and Bridge to Algebra (BRIO8) datasets. We
summarize the properties of each raw dataset in Table 1. The datasets provide variety in terms
of size in responses and number of skills and students, and they contain item-level information,
which allows for evaluation of fitting models such as KT-IDEM and ILE (Pardos and Heffernan,
2009; Pardos and Heffernan, 2011).

Table 1: Statistics about AST09, ALGOS8, AST12, and BRIO8 datasets.

’ Dataset ‘ Students ‘ Skills ‘ Responses

ASTO9 | 4,217 123 525,534
ALGO8 | 3,310 930 8,918,054
ASTI2 | 46,674 | 265 6,123,270
BRIO8 | 6,043 1,524 | 20,012,498

To pre-process the datasets, we remove all rows with no skill attached. For any rows with
multiple skills attached, we treat each unique set of skills as its own skill. When training any
model with item-level parameters, we impute missing or unseen item information (e.g., problem
template ID) for a particular row of data with the most common item in the training set.

5.2. EVALUATION METHODOLOGY

To evaluate OptimNN, we compare its performance across the chosen datasets. For evaluation of
BKT and its variants using OptimNN, we compare to other optimization techniques in the liter-
ature: EM, SGD, and CGD. Across each of these techniques, the variants of BK'T we choose for
evaluation include: BKT, KT-IDEM (Pardos and Heffernan, 2011), and ILE (Pardos and Hef-
fernan, 2009). We believe this presents a well-rounded evaluation across a variety of datasets,
optimization techniques, and BKT variants. Note that due to lack of existing implementations
for CGD on KT-IDEM and ILE, we only evaluate CGD on BKT.

We implement SGD in PyTorch by following Algorithm 1, with the only differences in our
implementation being the practical considerations mentioned in Section 3.1. We implement
OptimNN in PyTorch, using a 3-layer neural network with a hidden size of 128. We use a
learning rate of 0.01 for SGD and 0.001 (default) for OptimNN. For the EM implementation, we
use pyBKT (Badrinath et al., 2021) and choose the best model fit after 5 random initializations.
For the CGD implementation, we use hmm-scalable (Yudelson, 2016), with the Hestenes-
Stiefel formula (Hestenes and Stiefel, 1952). All models are trained until a plateau in the training
loss.

We implement BKTransformer in PyTorch, leveraging a transformer decoder architecture
for g,, based on minGPT, with 2 transformer layers, a hidden size of 128, and 4 transformer
heads. As before, the network f, is implemented using PyTorch as a 3-layer neural network
with a hidden size of 128.

To evaluate BKTransformer, we compare to deep KT techniques on the four chosen datasets,
with BKT-EM as a baseline. For deep KT techniques, we compare to DKT and SAKT, which

13

https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with?authuser=0
https://pslcdatashop.web.cmu.edu/KDDCup/
https://pslcdatashop.web.cmu.edu/KDDCup/
https://github.com/karpathy/minGPT

represent contemporary methods from recent years. All deep learning methods are trained with
a learning rate of 0.0005 using the AdamW optimizer (Kingma and Ba, 2015) in PyTorch. For
all experiments, we use root-mean squared error (RMSE) as the evaluation metric, using the
corrected resampled t-test method to generate confidence intervals (Gardner and Brooks, 2017).

5.3. FITTED PARAMETER EVALUATION

To evaluate the BKT parameter quality produced by OptimNN with regularization (OptimNN-
Reg) and BKTransformer (i.e., Equation 9), we use Equations 6-8 to determine the percent of
rule-violating parameter values (RVP) as defined in Section 3.3. We perform this evaluation
using the AST09 and ALGOS8 datasets since they differ in a variety of important properties, e.g.,
number of responses and skills.

As baseline approaches, we train BKT models using EM and OptimNN without any sort
of explicit biasing of the learned parameters. We compare to training BKT using EM after
initializing the guess and slip values to 0.1 (i.e., EM-init) (Pardos and Heffernan, 2010). For
OptimNN-Reg, we use \; = Ay = A3 = 0.25 and \; = 0.002. For BKTransformer, we use
Al =X = A3 =10, \y, =0, and A5 = ¢ = 1. We do not consider CGD, as it is not easily
adaptable to these preferences, or SGD, as we find it to be numerically unstable when adding
penalty terms to the loss function. Other deep KT methods cannot be evaluated in this manner,
so they are not considered for this evaluation.

6. RESULTS

6.1. COMPARISONS WITH OPTIMNN

We compare the performance of OptimNN in predicting student correctness compared to differ-
ent BKT optimization techniques: EM, CGD, and SGD on held-out test sets for the four chosen
datasets, with the results shown in Table 2. To fit BKT parameters on these datasets, OptimNN
shows decreased RMSE compared to all prior methods, with an average improvement of 4.0%
over EM, 24.2% over CGD and 1.8% over SGD (where results are available for each method).

Table 2: Comparison of test RMSE of BKT, KT-IDEM, and ILE using OptimNN and prior
methods on AST09, ALGOS8, AST12, and BRIOS (confidence intervals indicated where width of
any of the methods is greater than 0.002; bold indicates statistical significance).

ASTO09 ALGO08 AST12 BRIO8
Model | BKT ‘ KT-IDEM ‘ ILE BKT ‘ KT-IDEM ‘ ILE BKT ‘ KT-IDEM ‘ ILE BKT ‘ KT-IDEM | ILE
Ours | 0.372£0.009 | 0.363 £ 0.019 | 0.385+0.015 | 0.332 £ 0.001 | 0.329 0.327 | 0.437 | 0.426 0.441 | 0.312 | 0.310 0.310
EM 0.395 £ 0.006 | 0.401 £ 0.004 | 0.408 £ 0.009 | 0.332 £ 0.001 | N/A N/A 0.440 | N/A N/A 0.314 | N/A N/A
CGD | 0.439 4+ 0.005 | N/A N/A 0.441 +0.004 | N/A N/A 0.466 | N/A N/A 0.459 | N/A N/A
SGD | 0.384 +0.005 | 0.377 £0.008 | 0.376 4 0.019 | 0.335 £ 0.001 | 0.334 0.337 | 0.441 | 0.444 0.445 | 0.313 | 0.318 0.319

Compared to other methods, OptimNN shows the highest improvements across KT-IDEM
and ILE, with an extended set of learned model parameters. For instance, to fit KT-IDEM/ILE
on the ASTO09 dataset, OptimNN shows relative improvement in terms of RMSE over EM by
8.2%. While OptimNN is comparable to SGD on ASTO09, it outperforms SGD in statistically
significant fashion on ALGO8, AST12 and BRIO8. We do not report results for KT-IDEM and
ILE on the remaining datasets using EM as that demands over 200 GB of memory (i.e., RAM)
for fitting using pyBKT, which is unreasonable.

14

6.2. COMPARISONS WITH BKTRANSFORMER

Similarly to the evaluation of OptimNN, we compare the performance of BKTransformer in
student correction prediction against deep KT and BKT baselines across the four chosen datasets
in Table 3. We report the AUC and root mean-squared error (RMSE) for each dataset and method
on the test set. On average, BKTransformer outperforms DKT by 0.5%, SAKT by 1.1%, and

BKT-EM by 7.0% in terms of AUC.

Table 3: Comparison of test AUC and RMSE of BKTransformer, BKT-EM, SAKT, and DKT on
AST09, ALGOS, AST12, and BRIOS (confidence intervals indicated where width of any of the
methods is greater than 0.002; bold indicates statistical significance).

ASTO09 ALGO8 ASTI12 BRIO8
Metric AUC ‘ RMSE AUC ‘ RMSE | AUC ‘ RMSE AUC | RMSE
BKTransformer | 0.892 + 0.016 | 0.340 + 0.009 | 0.788 | 0.321 | 0.689 + 0.002 | 0.436 + 0.004 | 0.833 [0.304
DKT 0.881 + 0.030 | 0.347 £ 0.025 | 0.779 | 0.326 | 0.695 + 0.005 | 0.433 & 0.002 | 0.830 | 0.308
SAKT 0.867 + 0.037 | 0.364 £ 0.030 | 0.788 | 0.325 | 0.677 £ 0.004 | 0.443 & 0.005 | 0.833 | 0.309
BKT-EM 0.806 + 0.009 | 0.395 + 0.006 | 0.741 | 0.332 | 0.668 + 0.005 | 0.440 &+ 0.001 | 0.778 | 0.314

Specifically, BKTransformer achieves the largest improvement in performance metrics on
ASTO09, 1.2-10.6% in AUC over other methods, with smaller improvements on ALGO8 and
BRIOS8, compared to other methods. On AST12, DKT outperforms BKTransformer by 0.7% in
RMSE.

Interestingly, while BKTransformer is based on SAKT and simply augments it using the
BKT parameters, we believe that there are minor gains in metrics (e.g., in AST09/BRI08) largely
due to the scaffolding that the BKT forward update provides (even though the BKT parameters
themselves are variable over time). By constraining the ways in which the probabilities are com-
puted through BKT and via penalties on the changing BKT parameters, we ensure that there are
reasonable probabilistic processes governing the ways in which the correctness probability is
computed. Intuitively, we can liken this to an implicit regularization of the correctness prob-
abilities provided through BKT, which is a well-known and accepted structure governing the
knowledge tracing problem.

To analyze this “regularization” hypothesis, we examine the tradeoff between the training
binary cross entropy loss (which regularization is known to increase) and the RMSE on the
evaluation dataset (which, in the case of overfitting, regularization is known to decrease). In
Figure 3, we show the training loss over the duration of training for BKTransformer and SAKT,
where BKTransformer plateaus at a greater eventual training loss. This lends credibility to
the idea that the BKT forward pass may serve as an implicit regularization of the correctness
probability prediction problem.

6.3. FITTED PARAMETER ANALYSES

We examine the generated parameters of BKTranformer, OptimNN, OptimNN-Reg, EM, and
EM-init when fitting BKT on AST09 and ALGOS. The method that minimizes the percentage
of parameters that violate Rules 1-3 (i.e., rule violation percentage, or RVP) is deemed to be the
least “degenerate” (Baker et al., 2008).

The results are shown in Table 4. Based on the average RVP for all three rules, OptimNN-
Reg and BKTransformer demonstrate 0% RVP on the AST09 dataset, compared to OptimNN’s

15

i
~
S}

—— BKTransformer
SAKT

©
o
a

e
o
S

0.55 4

0.50

0.45 -

0.40 -

Avg. Cumulative Training Binary Cross-Entropy Loss

0.35 Teee———

0 20 40 60 80 100
Number of Training Epochs

Figure 3: Cumulative average training binary cross-entropy loss, comparing the predicted cor-
rectness probability to the ground truth correctness observation, for BKTransformer and SAKT.

1.2%, EM-init’s 2.1%, and EM’s 3.3%. On ALGO08, BKTransformer and OptimNN-Reg’s im-
provement over other methods is large; they have a RVP of 0.0% and 1.2% respectively, whereas
OptimNN has 23.3%, EM-init has 16.9%, and EM has 19.4%. Note that despite the large reduc-
tion in the number of rule violations, OptimNN-Reg displays similar AUC across the held-out
test set compared to OptimNN, with a minor decrease of 0.003 on ALGOS. Similarly, BK-
Transformer performs as well if not better than SAKT (Table 3). Across both datasets, SGD
consistently shows the highest number of violations.

Further, we verify OptimNN-Reg’s capability to specify a prior over one or more of the
BKT parameters on the AST09 dataset. We opt to use the Dirichlet distribution such that
[guess, 1 — guess| ~ Dir([6, 14]) as an example, although this may not necessarily be desir-
able in practise depending on the skill or dataset. To verify that the specified distribution is
roughly matched based on the penalty term assigned in Equation 9 by OptimNN-Reg, we plot
the distribution of generated guess rates across skills and compare it to the probability density
function of the chosen Dirichlet prior in Figure 4. We observe that the histogram of generated
guess rates roughly matches the Dirichlet distribution, with the exception of higher guess rates
that violate Rule 2. Note that while this can be used with BKTransformer, its utility may be
lower since the intention is to vary parameters over time for additional expressive capability;
hence, we do not evaluate this with BKTransformer.

6.4. ANALYSIS OF PARAMETER EVOLUTION IN BKTRANSFORMER

One of the key foci of this work is interpretability of the generated BKT parameters and mastery
state. In this pursuit, we examine the way in which BKTransformer formulates its correctness
and mastery predictions by examining how the BKT parameters are produced and varied over
time. We choose two test student sequences from the ASSISTments 2009-10 Skill Builder

16

Table 4: Percent of rules violated by fitted BKT parameters for each method on the AST09 and
ALGO8 datasets according to Rules 1-3 (abbreviated as R1-3), along with the test AUC of the
fitted BKT parameters (bold indicates any improvement).

’ Dataset \ Method \ R1 \ R2 \ R3 \ RMSE \
OptimNN-Reg | 0.0% | 0.0% | 0.0% | 0.373
AST09 BKTransformer | 0.0% | 0.0% | 0.0% | 0.340
EM-init 27% | 1.8% | 1.8% | 0.396
OptimNN 09% |27% |0.0% | 0.372
EM 27% | 64% | 09% | 0.395
SGD 40.0% | 31.8% | 1.8% | 0.384
OptimNN-Reg | 0.0% | 3.7% | 0.0% | 0.332
ALGOS BKTransformer | 0.0% | 0.0% | 0.0% | 0.321
EM-init 46% | 34.8% | 11.4% | 0.332
OptimNN 0.1% | 69.8% | 0.0% | 0.332
EM 51% | 41.6% | 11.5% | 0.332
SGD 69.3% | 183% | 5.3% | 0.335

(ASTO09) dataset. These sequences are chosen to show common or interesting patterns of student
problem solving, and the resulting output is shown in Figure 5.

For Figure 5 (left), we analyze each segment of the sequence based on the attempted skill.
Between t = 0 to t = 2, the student attempts the skill corresponding to “adding and subtracting
fractions” (purple dot), where the series of consecutive correct responses lead to an increasing
mastery P(L;) and correctness probability P(obs;) approaching 1.

Following this, the student attempts “multiplying fractions” (as yellow dot), answering 3
questions consecutively incorrectly and then correctly. From ¢ = 3 to ¢ = 5, as the student
answers incorrectly, the predicted correctness P(obs;) and mastery probability P(L;) drop by
over 20%, alongside an increase in the slip probability P(.S); by roughly 10% and a decrease in
the learn rate P(7T'); and guess rate P(G);. These are reasonable since recent incorrect responses
could indicate an increased probability of “slipping” on a question, with possibly less chance of
attaining mastery or guessing the correct answer given lack of mastery.

At t = 9, the student correctly attempts “dividing fractions” (as turquoise dot), and at
t = 10,11, the student again correctly answers two questions from “adding and subtracting
fractions”. As expected, the mastery P(L,) and correctness probability P(obs;) are high at
t = 10,11 given past successful attempts. Interestingly, while the learn (P(7);) and guess
(P(G),) probabilities at t = 10, 11 are comparable to the segment from ¢ = 0 to ¢t = 2, the slip
probability P(.S), is increased.

In Figure 5 (right), we demonstrate a sequence similar to the motivating example provided in
Section 4.1. In this situation, a student attempts a single skill incorrectly 25 consecutive times,
and we observe that BKTransformer correctly predicts student correctness through P(obs;) at all
timesteps. Importantly, both the mastery P(L;) and correctness probability P(obs;) reduce with
each incorrect response and tend towards zero, indicating no eventual likelihood of mastery or
correctness. Alongside this, we observe that the generated, temporally-evolving slip rate P(S);
tends to rise with incorrect responses. This supports the intuition that despite a higher prior
of mastery probability at earlier timesteps, each incorrect response increases the belief of the

17

—— Dir([6, 14])
OptimNN-Reg (guess)

0.8 1.0
PIG)

Figure 4: Generated guess rates by OptimNN-Reg compared to the probability density function
of the chosen Dirichlet prior (Dir([6, 14])) on AST09, with the dotted line denoting Rule 2.

student “slipping” and answering incorrectly on subsequent questions.

6.5. ABLATION STUDIES

We examine the effect of varying hyperparameters on the performance of the proposed methods.
Specifically, we ablate the effect of the number of layers, hidden size, and learning rate of the
neural network and transformers. For methods that are sensitive to hyperparameters, we expect
that varying these hyperparameters would have a large impact on performance metrics. To
evaluate this, we leverage the ASTO09 dataset and choose AUC and RMSE as the metrics.

In Table 5, we show the effect of varying the number of neural network layers and the
hidden size on OptimNN. For all embedding dimensions and for all layers, there is effectively
no difference on the performance in any metric, which illustrates that our method is relatively
insensitive to hyperparameter changes and would require minimal to no hyperparameter tuning
for such datasets. When the embedding dimension is significantly reduced, the performance
across all metrics begins to drop, but the drop is relatively minimal and performance remains
equal or better relative to other BKT optimization techniques. We believe that this is reasonable
since BKT fundamentally imposes a simple structure on the knowledge tracing problem, and
parameterization far beyond the number of BKT parameters is unlikely to result in far better
optima.

Table 5: Ablating the number of neural network layers and hidden size for OptimNN.

(a) Number of layers (hidden size = 128). (b) Hidden size (number of layers = 1). (c) Hidden size (number of layers = 3).

Layers AUC RMSE EmbDim. AUC RMSE EmbDim. AUC RMSE

1 0.837 | 0.376 8 0.833 0.379 8 0.832 | 0.380

2 0.837 | 0.376 16 0.837 0.377 16 0.834 | 0.378

3 0.837 | 0.376 32 0.839 0.375 32 0.840 | 0.375

64 0.839 0.375 64 0.838 0.377

128 0.838 0.375 128 0.837 0.376

256 0.838 0.376 256 0.837 0.378

18

101 e e ° 0.35
0.30
0.8
0.25 — P(M):
> > P(S):
=2 0.6 =]
= 5 020 — P(G)
@© ©
-g 0.4 g 0.151 —— P(obs;)
go & — P(Lo)
0.10 e obs:
_—/\\/_d
021 <\
0.05
0.0 000{ ee 000000 cececco000000000000O0
0 2 4 6 8 10 0 5 10 15 20 25

Timestep (t) Timestep (t)

Figure 5: Sample student sequences from test set along with predicted probabilities of correctness
and mastery; generated learn, guess, and slip rates. The color of the scatter plot corresponds to
the skill (left: purple is “adding and subtracting fractions”, yellow is “multiplying fractions”,
turquoise is “dividing fractions”; right: purple is “intercepts”), whereas its position indicates true
student correctness.

We compare the sensitivity of OptimNN and SGD to the configuration of the optimizer. For
both methods, we leverage the Adam optimizer, and we ablate the effect of the learning rate. We
choose 4 learning rates, including commonly used or default learning rates for Adam: le-4, Se-
4, 1e-3 (Adam default), and 1e-2. We show the resulting AUC on the test set in Figure 6, where
OptimNN yields an optimal model after simply 1 epoch of training regardless of the learning
rate and SGD fails to do so within 12 epochs for 3 of 4 learning rates.

0.85 0.85
0.801 0.801
0.75 0.75
— le-4
S) O]
2 0.701 2 0.701 5e-4
= 2 — 1le-3
@ 0.65 R 0.65 le-2
0.60 0.60
0551 — 0551
0.50+— T T T T T 0.50+— T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Epoch Epoch

Figure 6: Learning rate versus AUC on the test set for (left) SGD and (right) OptimNN.

In Table 6, we show the effect of varying the number of layers and hidden size on BKTrans-
former. An optimal choice for the number of layers seems to be 2 or 3. Despite that, the largest
difference in AUC is relatively small for any embedding dimension over 32, which again in-

19

dicates that BK'Transformer is relatively insensitive to reasonable hyperparameter changes and
would require minimal tuning to achieve strong performance on such datasets.

We observe sharp performance dropoff with embedding dimensions smaller than 32. This is
a reasonable outcome based on two intuitions. Firstly, as the parameterization of the parameter
generation network becomes lower, deep neural networks tend to be able to reasonably learn a
smaller set of functions using gradient descent, which lead to more suboptimal models. Sec-
ondly, as the parameterization decreases, we empirically observe performance closer to other
low-parameterization methods such as BKT (EM) or BKT (SGD). Interestingly, for the lowest
embedding dimension of 8, we observe that BKTransformer performs worse than all other BKT
optimization techniques except for CGD, which may suggest that underparameterization of the
transformer architecture may lead to worse performance than of simpler architectures.

Table 6: Ablating the number of neural network layers and hidden size for BKTransformer.

(a) Number of layers (hidden size = 128). (b) Hidden size (number of layers = 1).

Layers AUC RMSE Embedding Dim. AUC RMSE

1 0.886 | 0.347 8 0.781 | 0.431

2 0.894 | 0.338 16 0.803 | 0.391

3 0.894 | 0.338 32 0.880 | 0.355

64 0.893 | 0.339

128 0.886 | 0.347

256 0.890 | 0.341

7. DISCUSSION AND CONCLUSION

We demonstrate that the proposed neural network-based optimization technique, OptimNN, out-
performs EM, CGD, and SGD in terms of AUC across all chosen BKT variants and datasets.
Especially on BKT extensions, OptimNN shows an even larger margin of improvement com-
pared to other approaches. This demonstrates that OptimNN is able to discover more optimal
local minima with respect to performance than other approaches.

The proposed extension based on transformer modeling, BKTransformer, improves upon
both BKT and either equals or surpasses deep KT baselines in terms of several performance
metrics across multiple datasets. Presenting a practical framework that rivals or surpasses ex-
isting deep KT methods in performance across a variety of metrics and datasets, we show that
BKTransformer importantly retains more interpretability and explainability through the gener-
ation of temporally-evolving BKT parameters. While we leverage a flexible multi-head atten-
tion mechanism that allows for non-Markovian learning and parameter sharing across skills,
we believe that the implicit regularizing nature of enforcing a BKT structure to the correctness
predictions provides an improved interpretable nature to our model.

Based on an analysis of the fitted BKT parameters, we conclude that both BKTranformer
and OptimNN-Reg show the least violations of guidelines proposed in Baker et al. (2008) and
van de Sande (2013) compared to EM, EM-init, and OptimNN, with a high degree of flexibility
in the possible preferences and rules. Moreover, analyzing the evolution of BKT parameters

20

generated over student sequences, it is clear that the generated parameters support intuition of
how parameters should evolve based on the sequence of correct and incorrect responses.

We believe that this work provides a layer of interpretability beyond what deep learning cur-
rently offers. Specifically, beyond knowing that the probability of correctness or incorrectness
has increased, our technique offers a 4-parameter probabilistic explanation of why exactly it has
offered that prediction. There may be cases in which the slip rate is large or there may be cases
where the forget rate is large; we believe both these cases can lead to different interpretations of
low probabilities of correctness and could lead to different conclusions about learning.

LIMITATIONS AND FUTURE WORK While we believe our work succeeds in providing a layer
of interpretability over prior techniques alongside retaining impressive performance, it has many
limitations that we propose to explore in future work. These including improving interpretabil-
ity in the neural network layers and transformers; for instance, can we examine and regularize
the attention patterns based on prior knowledge? Currently, we are unable to fully interpret the
components of BKTransformer that precede the BKT “layer”, which prevents us from under-
standing how and why BKT parameters over time evolve as they do. Another important analysis
is to discover which preferences and rules are most necessary and effective for use with our pro-
posed technique; while we show that traditional “rules” work well, it is worth exploring a more
restrictive set of rules for a more flexible method like BKTransformer. Finally, there exist no
guarantees that the given rules are followed, and for some rules that are challenging to optimize
(e.g., far away from the “naive” or “easy” solution), hyperparameter tuning might be required to
find the appropriate penalty weight.

REFERENCES

ABDELRAHMAN, G. AND WANG, Q. 2022. Deep graph memory networks for forgetting-robust knowl-

edge tracing. Institute of Electrical and Electronics Engineers Transactions on Knowledge and Data
Engineering 35, 8, 7844-7855.

ALEVEN, V. A. AND KOEDINGER, K. R. 2002. An effective metacognitive strategy: learning by doing
and explaining with a computer-based cognitive tutor. Cognitive Science 26, 2, 147-179.

ANZAIL Y. AND SIMON, H. A. 1979. The theory of learning by doing. Psychological Review 86, 2, 124.

BACH, S., BINDER, A., MONTAVON, G., KLAUSCHEN, F., MULLER, K.-R., AND SAMEK, W. 2015.
On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation.
PLOS ONE 10, 7 (07), 1-46.

BADRINATH, A., WANG, F., AND PARDOS, Z. 2021. pybkt: An accessible python library of bayesian
knowledge tracing models. In Proceedings of the 14th International Conference on Educational Data
Mining (Educational Data Mining 2021), S. Hsiao and S. Sahebi, Eds. International Educational Data
Mining Society, 468—474.

BAKER, R. S.J. D., CORBETT, A. T., AND ALEVEN, V. 2008. More accurate student modeling through
contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In Intelligent Tu-
toring Systems, B. P. Woolf, E. Aimeur, R. Nkambou, and S. Lajoie, Eds. Springer Berlin Heidelberg,
Berlin, Heidelberg, 406—415.

BLooM, B. S. 1984. The 2 sigma problem: The search for methods of group instruction as effective as
one-to-one tutoring. Educational Researcher 13, 6, 4-16.

21

CHANG, K.-M., BECK, J., MosTow, J., AND CORBETT, A. 2006. A bayes net toolkit for student
modeling in intelligent tutoring systems. In Intelligent Tutoring Systems, M. Ikeda, K. D. Ashley, and
T.-W. Chan, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 104—113.

CHOLLET, F. ET AL. 2015. Keras. https://keras.io.

CORBETT, A. T. AND ANDERSON, J. R. 1994. Knowledge tracing: Modeling the acquisition of proce-
dural knowledge. User Modeling and User-Adapted Interaction 4, 4, 253-278.

GARDNER, J. AND BROOKS, C. 2017. Statistical approaches to the model comparison task in learning
analytics. In Joint Proceedings of the Workshop on Methodology in Learning Analytics (MLA) and the
Workshop on Building the Learning Analytics Curriculum (BLAC) co-located with 7th International
Learning Analytics and Knowledge Conference (LAK 2017), Vancouver, Canada, March 13th-14th,
2017, Y. Bergner, C. Lang, G. Gray, S. D. Teasley, and J. C. Stamper, Eds. CEUR Workshop Pro-
ceedings, vol. 1915. CEUR-WS.org.

GHOSH, A., HEFFERNAN, N., AND LAN, A. S. 2020. Context-aware attentive knowledge tracing. In
Proceedings of the 26th Association for Computing Machinery Special Interest Group on Knowledge
Discovery in Data International Conference on Knowledge Discovery & Data Mining. Association
for Computing Machinery, New York, NY, USA, 2330-2339.

Ha, D., DAI, A. M., AND LE, Q. V. 2017. Hypernetworks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

HESTENES, M. R. AND STIEFEL, E. 1952. Methods of conjugate gradients for solving. Journal of
Research of the National Bureau of Standards 49, 6, 409.

HOCHREITER, S. AND SCHMIDHUBER, J. 1997. Long short-term memory. Neural Comput. 9, 8 (Nov.),
1735-1780.

KHAJAH, M., LINDSEY, R. V., AND MOZER, M. C. 2016. How deep is knowledge tracing? In Pro-
ceedings of the 9th International Conference on Educational Data Mining, T. Barnes, M. Chi, and
M. Feng, Eds. International Educational Data Mining Society, 94—101.

KINGMA, D. P. AND BA, J. 2015. Adam: A method for stochastic optimization. In International Con-
ference on Learning Representations (ICLR). ArXiv, Ithaca, NY, 1-13.

LABRA, C. AND SANTOS, O. C. 2023. Exploring cognitive models to augment explainability in deep
knowledge tracing. In Adjunct Proceedings of the 31st Association for Computing Machinery Con-
ference on User Modeling, Adaptation and Personalization. Association for Computing Machinery,
New York, NY, USA, 220-223.

LEVINSON, S. E., RABINER, L. R., AND SONDHI, M. M. 1983. An introduction to the application of
the theory of probabilistic functions of a markov process to automatic speech recognition. Bell System
Technical Journal 62, 4, 1035-1074.

Liu, Q., HUANG, Z., YIN, Y., CHEN, E., XIONG, H., Su, Y., AND Hu, G. 2019. Ekt: Exercise-
aware knowledge tracing for student performance prediction. Institute of Electrical and Electronics
Engineers Transactions on Knowledge and Data Engineering 33, 1, 100-115.

Lu, Y., WANG, D., MENG, Q., AND CHEN, P. 2020. Towards interpretable deep learning models for
knowledge tracing. In Artificial Intelligence in Education, 1. 1. Bittencourt, M. Cukurova, K. Muldner,
R. Luckin, and E. Millan, Eds. Springer International Publishing, Cham, 185-190.

NAGATANI, K., ZHANG, Q., SATO, M., CHEN, Y.-Y., CHEN, F., AND OHKUMA, T. 2019. Augmenting
knowledge tracing by considering forgetting behavior. In The World Wide Web Conference. Associa-
tion for Computing Machinery, New York, NY, USA, 3101-3107.

22

https://keras.io

NAKAGAWA, H., IWASAWA, Y., AND MATSUO, Y. 2019. Graph-based Knowledge Tracing: Model-
ing Student Proficiency Using Graph Neural Network . In 2019 Institute of Electrical and Electronics
Engineers/Web Intelligence Consortium/Association for Computing Machinery International Confer-
ence on Web Intelligence (WI). Institute of Electrical and Electronics Engineers Computer Society,
Los Alamitos, CA, USA, 156-163.

PANDEY, S. AND KARYPIS, G. 2019. A self-attentive model for knowledge tracing. In Educational
Data Mining 2019 - Proceedings of the 12th International Conference on Educational Data Mining,
C. Lynch, A. Merceron, M. Desmarais, and R. Nkambou, Eds. International Educational Data Mining
Society, 384-389.

PARDOS, Z. A. AND HEFFERNAN, N. T. 2009. Detecting the learning value of items in a randomized
problem set. In Proceedings of the 2009 Conference on Artificial Intelligence in Education: Building
Learning Systems That Care: From Knowledge Representation to Affective Modelling, V. Dimitrova,
R. Mizoguchi, B. du Boulay, and A. Graesser, Eds. IOS Press, NLD, 499-506.

PARDOS, Z. A. AND HEFFERNAN, N. T. 2010. Navigating the parameter space of bayesian knowl-
edge tracing models: Visualizations of the convergence of the expectation maximization algorithm.
In Educational Data Mining 2010, The 3rd International Conference on Educational Data Mining,
Pittsburgh, PA, USA, June 11-13, 2010. Proceedings, R. S. J. de Baker, A. Merceron, and P. I. Pavlik,
Eds. www.educationaldatamining.org, 161-170.

PARDOS, Z. A. AND HEFFERNAN, N. T. 2011. Kt-idem: Introducing item difficulty to the knowledge
tracing model. In User Modeling, Adaption and Personalization, J. A. Konstan, R. Conejo, J. L.
Marzo, and N. Oliver, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 243-254.

PASZKE, A., GROSS, S., MASSA, F., LERER, A., BRADBURY, J., CHANAN, G., KILLEEN, T., LIN,
7., GIMELSHEIN, N., ANTIGA, L., DESMAISON, A., KOPF, A., YANG, E., DEVITO, Z., RAISON,
M., TEJANI, A., CHILAMKURTHY, S., STEINER, B., FANG, L., BAL J., AND CHINTALA, S. 2019.
Pytorch: an imperative style, high-performance deep learning library. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems. Curran Associates Inc., Red
Hook, NY, USA.

PELANEK, R. 2017. Bayesian knowledge tracing, logistic models, and beyond: an overview of learner
modeling techniques. User Modeling and User-Adapted Interaction 27, 3 (Dec), 313-350.

PIECH, C., BASSEN, J., HUANG, J., GANGULI, S., SAHAMI, M., GUIBAS, L., AND SOHL-DICKSTEIN,
J. 2015. Deep knowledge tracing. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1. MIT Press, Cambridge, MA, USA, 505-513.

RAIL D., GONG, Y., AND BECK, J. 2009. Using dirichlet priors to improve model parameter plausibility.
In Educational Data Mining - EDM 2009, Cordoba, Spain, July 1-3, 2009. Proceedings of the 2nd
International Conference on Educational Data Mining, T. Barnes, M. C. Desmarais, C. Romero, and
S. Ventura, Eds. International Educational Data Mining Society, 141-150.

RITTER, S., ANDERSON, J. R., KOEDINGER, K. R., AND CORBETT, A. 2007. Cognitive tutor: Applied
research in mathematics education. Psychonomic Bulletin & Review 14, 2, 249-255.

SANTORO, A., BARTUNOV, S., BOTVINICK, M., WIERSTRA, D., AND LILLICRAP, T. 2016. Meta-
learning with memory-augmented neural networks. In Proceedings of the 33rd International Confer-
ence on International Conference on Machine Learning - Volume 48. JMLR.org, 1842—1850.

ToNG, S., Liu, Q., HUANG, W., HUNAG, Z., CHEN, E., L1U, C., MA, H., AND WANG, S. 2020.
Structure-based knowledge tracing: An influence propagation view. In 2020 Institute of Electrical
and Electronics Engineers International Conference on Data Mining (ICDM). Institute of Electrical
and Electronics Engineers, 541-550.

23

VAN DE SANDE, B. 2013. Properties of the bayesian knowledge tracing model. Journal of Educational
Data Mining 5, 2 (Jul.), 1-10.

VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ, A. N., KAISER,
L., AND POLOSUKHIN, I. 2017. Attention is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA,
6000-6010.

WANG, Z., FENG, X., TANG, J., HUANG, G. Y., AND LIU, Z. 2019. Deep knowledge tracing with
side information. In Artificial Intelligence in Education, S. Isotani, E. Milldn, A. Ogan, P. Hastings,
B. McLaren, and R. Luckin, Eds. Springer International Publishing, Cham, 303-308.

YEUNG, C.-K. 2019. Deep-irt: Make deep learning based knowledge tracing explainable using item
response theory. In Proceedings of The 12th International Conference on Educational Data Mining
(EDM 2019), C. F. Lynch, A. Merceron, M. Desmarais, and R. Nkambou, Eds. International Educa-
tional Data Mining Society, 683—686.

YEUNG, C. K. AND YEUNG, D. Y. 2018. Addressing two problems in deep knowledge tracing via
prediction-consistent regularization. In Proceedings of the 5th Association for Computing Machinery
Conference on Learning @ Scale. Association for Computing Machinery, 5:1-5:10.

YIN, Y., L1U, Q., HUANG, Z., CHEN, E., TONG, W., WANG, S., AND SU, Y. 2019. Quesnet: A unified
representation for heterogeneous test questions. In Proceedings of the 25th Association for Computing
Machinery Special Interest Group on Knowledge Discovery in Data International Conference on
Knowledge Discovery & Data Mining. Association for Computing Machinery, New York, NY, USA,
1328-1336.

YUDELSON, M. V. 2016. Individualizing bayesian knowledge tracing. are skill parameters more impor-
tant than student parameters?. In Proceedings of the 9th International Conference on Educational
Data Mining, EDM 2016, Raleigh, North Carolina, USA, June 29 - July 2, 2016, T. Barnes, M. Chi,
and M. Feng, Eds. International Educational Data Mining Society, 46-53.

YUDELSON, M. V., KOEDINGER, K. R., AND GORDON, G. J. 2013. Individualized bayesian knowledge
tracing models. In Artificial Intelligence in Education, H. C. Lane, K. Yacef, J. Mostow, and P. Pavlik,
Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 171-180.

ZHANG, L., XIONG, X., ZHAO, S., BOTELHO, A., AND HEFFERNAN, N. T. 2017. Incorporating rich
features into deep knowledge tracing. In Proceedings of the Fourth (2017) Association for Computing
Machinery Conference on Learning @ Scale. Association for Computing Machinery, New York, NY,
USA, 169-172.

A. DERIVATION FOR MOTIVATING EXAMPLE

Example A.1. For any set of non-degenerate learned BKT parameters, i.e., P(G) < 0.5, P(S) <
0.5 with P(F') < 1 — P(T), and any timestep ¢ € [1, 00)

P(Ly) = (1= P(F))P(Li1 | obsi—1) + P(T)(1 = P(Li_y | obs,_1))
> P(T)

Proof. Given our restriction that 1 — P(F") > P(T'), we can derive:

24

P(Ly) > P(T)P(Ly_y | obsi_1) + P(T)(1 — P(Ly_y | obs;_1)) (16)

> P(T)(P(Lt,1 ’ ObStfl) +1-— P(Lt,1 ’ ObSt,1)> (17)
> P(T) (18)
O

B. CODE REFERENCES

The codebase is available publicly at the following public GitHub repository and the associated
datasets are taken directly from their linked sources in the main paper:
https://github.com/abadrinath947/OptimNN.

25

	Introduction
	Related Work
	Bayesian Knowledge Tracing
	Optimization Techniques for BKT
	Deep Knowledge Tracing
	Interpreting Deep KT Techniques

	Optimization of Bayesian Knowledge Tracing with Parameter Generation
	Optimization using SGD
	Forward Pass
	Optimization
	Benefits and Drawbacks

	Neural Network Parameter Generation
	Forward Computation
	Optimization
	Benefits and Drawbacks

	Regularization for Generated Parameters

	Extending OptimNN using Sequence Modeling
	Motivating Example
	Temporal Extension of BKT Parameters
	Parameter Generation using Transformer Models

	Experimental Setup
	Datasets
	Evaluation Methodology
	Fitted Parameter Evaluation

	Results
	Comparisons with OptimNN
	Comparisons with BKTransformer
	Fitted Parameter Analyses
	Analysis of Parameter Evolution in BKTransformer
	Ablation Studies

	Discussion and Conclusion
	Derivation for Motivating Example
	Code References

