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With the aim to provide teachers with more specific, frequent, and actionable feedback about their teach-
ing, we explore how Large Language Models (LLMs) can be used to estimate “Instructional Support”
domain scores of the CLassroom Assessment Scoring System (CLASS), a widely used observation pro-
tocol. We design a machine learning architecture that uses either zero-shot prompting of Meta’s Llama2,
and/or a classic Bag of Words (BoW) model, to classify individual utterances of teachers’ speech (tran-
scribed automatically using OpenAI’s Whisper) for the presence of Instructional Support. Then, these
utterance-level judgments are aggregated over a 15-min observation session to estimate a global CLASS
score. Experiments on two CLASS-coded datasets of toddler and pre-kindergarten classrooms indicate
that (1) automatic CLASS Instructional Support estimation accuracy using the proposed method (Pearson
R up to 0.48) approaches human inter-rater reliability (up to R = 0.55); (2) LLMs generally yield slightly
greater accuracy than BoW for this task, though the best models often combined features extracted from
both LLM and BoW; and (3) for classifying individual utterances, there is still room for improvement
of automated methods compared to human-level judgments. Finally, (4) we illustrate how the model’s
outputs can be visualized at the utterance level to provide teachers with explainable feedback on which
utterances were most positively or negatively correlated with specific CLASS dimensions.
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1. INTRODUCTION

A perennial challenge in modern schools is to give teachers frequent, specific, and helpful feed-
back about their teaching. Such feedback is essential for teachers’ professional development
(Lesiak et al., 2021) and accountability, and it also supports educational research to assess the
outcomes of various interventions. However, in most schools, teachers typically receive feed-
back just a few times a year from a school principal or senior colleague. The guidance they do
receive is often given at a high level (e.g., a short summary of an entire class period), with only
few specific references to classroom interactions that could have been handled better and little
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actionable feedback for how to improve. It is also subjective and can vary in quality depending
on the fatigue and other factors of the observer.

In an effort to standardize teacher evaluation and to enable more useful feedback to teachers,
educational researchers have developed various classroom observation protocols over the years,
including the Mathematical Quality Instruction (Hill et al., 2008), the Protocol for Language
Arts Teaching Observations (Grossman et al., 2014), and the CLassroom Assessment Scoring
System (CLASS; (Pianta et al., 2008)). Such protocols are usually scored globally, i.e., just
a few numbers are assigned to an entire segment (typically around 15 minutes) of classroom
teaching. Researchers from learning science, team science, and education have also developed
frameworks (e.g., “accountable talk” (O’Connor et al., 2015)) for promoting effective classroom
discourse as well as other teaching strategies (Orlich et al., 2010) to promote students’ deep and
critical thinking. While classroom observation and discourse analysis frameworks are invaluable
for guiding human observers in how to observe and rate classroom interactions and instruction,
they often require significant training, are expensive to implement, and can suffer from low inter-
rater reliability (Ho and Kane, 2013). Moreover, due to the sheer volume of classroom inter-
personal interaction and speech that transpire during a typical classroom session, it is practically
impossible for human observers to capture every nuance.

For the purpose of facilitating teachers’ professional growth in general, and for improving
equity (Lesiak et al., 2021) in teachers’ professional development opportunities in particular,
it is important to develop new ways of giving teachers more frequent, detailed, accurate, and
actionable feedback. The last few years have seen tremendous growth in the accuracy of auto-
matic speech recognition systems (Radford et al., 2023), as well as in the capability of natural
language processing (NLP) models to represent the meaning of words (Pennington et al., 2014)
and sentences (Reimers and Gurevych, 2019) and to predict and generate the most likely to-
ken sequences following a given input (GPT, Llama2 (Touvron et al., 2023), and many more).
Researchers in education, NLP, speech recognition, learning analytics, and other fields are thus
exploring how these new computational tools can benefit students – e.g., by generating helpful
hints and explanations of math content (Pardos and Bhandari, 2023) – and benefit teachers –
e.g., with specific feedback about their classroom discourse (Wang and Demszky, 2023).

In this paper, we explore how large language models (LLMs) can analyze classroom speech
and automatically predict the human-annotated scores from a validated observation protocol
(specifically, the CLASS). These predictions could be offered to teachers as either fully auto-
mated feedback, or within a human-in-the-loop framework in which teachers receive suggestions
and can judge for themselves whether they agree or disagree, thus providing the machine with
labels to improve its predictions. In order to understand the relative merits for automatic class-
room analysis of LLMs compared to simpler NLP methods, we compare LLMs to a classic Bag
of Words (BoW) model. The long-term goal of our work is to explore how artificial intelligence
can provide teachers with more specific, frequent, and accurate feedback about their teaching in
an unobtrusive and privacy-preserving way.

Contributions: (1) We devise a zero-shot prompting approach to using an LLM to estimate
a globally scored classroom observation measure (CLASS), but still providing feedback at a
temporally local (and possibly more actionable) level. Our machine learning approach requires
only weak supervision at the global level (15-minute classroom session), not dense supervision
at the utterance level. (2) We compare both LLM, BoW, and combined LLM-BoW methods
to estimate CLASS “Instructional Support” domain scores, and we show in a stratified cross-
validation analysis that the estimated scores correlate similarily with scores from human experts
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compared to inter-rater reliability. (3) We illustrate how temporally specific feedback from either
approach (LLM or BoW) can be both explained and visualized intuitively for the teacher to point
out the most important utterances in the transcript.

2. RELATED WORK

2.1. CLASSROOM ASSESSMENT SCORING SYSTEM (CLASS)

Noting that classrooms are a highly influential context in which children learn, much effort
has been invested to understand and systematically improve classroom instruction. In terms of
measurement, most recent research has focused on classroom-level measures of the quality of
teacher-child interactions because both theory and empirical evidence suggest that frequent, re-
sponsive, and stimulating interactions between learners and caregivers within close and support-
ive relationships serve as the foundation for early development (Mashburn et al., 2008; Hamre,
2014). The CLASS is one of the most widely used classroom observation protocols to address
this and thus is the reference point for this study. CLASS scores have been shown to be posi-
tively associated with students’ vocabulary (Hamre et al., 2014), phonological awareness (Wasik
and Hindman, 2011), early reading skills (Burchinal et al., 2010), and more. We provide specific
details about CLASS below.

The CLASS Manual defines how the protocol is structured and how it is scored: With the
CLASS, a classroom observation session is scored in terms of multiple dimensions. Each dimen-
sion reflects a particular aspect of classroom interactions and has associated behavior indicators
to “look for” in considering the quality of that dimension in the classroom interactions. Trained
CLASS observers (more details about this are given below) score each 15-min observation ses-
sion by watching either a live classroom or a videorecording post-hoc, taking notes what they
observe about key interactions and events, and then assigning a holistic score that estimates the
total evidence that each CLASS dimension is present during the session. Each CLASS dimen-
sion is scored on a scale of 1-7.

Next, the CLASS dimensions are partitioned into a set of domains, and each domain score
is obtained by aggregating (either averaging or summing) the constituent dimension scores. Do-
main scores reflect both conceptual and correlational relationships between dimensions estab-
lished in prior research. How the CLASS domains are defined depends on the students’ age
group (see below), but the domains that are most commonly used across the different versions
of the protocol are Emotional Support, Classroom Organization, and Instructional Support. The
Emotional Support domain reflects the dimensions capturing the ways in which educators estab-
lish and promote a positive climate. The Classroom Organization domain includes dimensions
capturing interactions related to classroom routines and procedures that guide behavior, time and
attention. Lastly, the Instructional Support domain reflects the dimensions assessing the ways in
which teachers effectively promote cognitive and language development.

While the approach of conceptualizing and scoring CLASS is similar across ages, there
are different versions of the CLASS for different age groups to reflect the unique behaviors
and interactions in those settings. In this study, we used the CLASS-Toddler (CLASS-T) and
CLASS-Pre-Kindergarten (CLASS-PreK) as they align with the age range of children in the
study samples. Further, we focus specifically on the “Instructional Support” domain of each
tool (in CLASS-T this is actually called “Engaged Support for Learning”), as it is the domain
most consistently linked to improved student language and cognitive outcomes and also the area
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in which educators typically show the lowest skills (Perlman et al., 2016). Because it is largely
rooted in the classroom discourse, it likely lends itself particularly well to automatic analysis via
NLP. The Instructional Support domain comprises three dimensions, briefly defined here:

1. “Language Modeling”, which describes how teachers intentionally encourage, respond
to, and expand on children’s language. Behavior indicators that would reflect this dimen-
sion include teachers engaging in frequent conversation, asking open-ended questions,
repeating and extending language, providing self- and parallel talk, and advanced lan-
guage. Contingent responding, questions that require more than a one-word response, and
elaborations on language are specific observed behaviors that would reflect high quality
language modeling.

2. “Quality of Feedback”, which reflects when a teacher responds to what a child says or
does in a way that pushes the child to keep thinking or trying. Indicators that would
reflect this dimension include teachers’ scaffolding students, engaging in feedback loops,
prompting thought processes, providing information, and encouragement & affirmations.
High quality examples include observed back and forth exchanges, asking students to
explain their thinking, and expanding or clarifying their comments.

3. Either “Facilitation of Learning and Development” (CLASS-T), or “Concept Develop-
ment” (CLASS-PreK), both of which focus on teachers’ involvement with children to
guide and build their thinking skills. Indicators that would reflect this dimension include
teachers prompting analysis and reasoning, encouraging creation and integration of ideas,
and making connections of the content to the real world. High quality observed examples
of this dimension include asking “how” and “why” questions, engaging in brainstorming,
and relating material to students’ lives.

Certification in the CLASS requires undergoing a multi-day training seminar, practice annotat-
ing a set of pre-scored videos, and then a certification test. It is up to the observer to watch a
classroom session carefully and apply their knowledge of these indicators, as supported by the
detailed instructions from the CLASS Manual, to each session judiciously. Although CLASS
has been used in a range of education studies and found useful in understanding teacher behav-
iors related to student growth, manual CLASS coding involves a high time cost that makes it
infeasible to code large numbers of videos at a fine-grained temporal resolution. New AI-based
scoring mechanisms may offer ways of giving teachers more detailed feedback more frequently.

2.2. AI FOR AUTOMATED CLASSROOM ANALYSIS

As machine perception has become more accurate over the past decade, researchers in educa-
tional data-mining, learning analytics, speech processing, and other fields have explored how
it can be used to characterize classroom interactions and classroom discourse, and how such
learning analytics can be presented to teachers as useful feedback. Here we summarize the most
relevant work.

Kelly et al. (2018) developed an approach to identifying “authentic” teacher questions, i.e.,
questions without a predefined answer that stimulate student discussion. Their approach uses
automatic speech recognition to create a classroom transcript, followed by regression trees to
analyze a set of 244 syntactic and semantic features, including part-of-speech tags, dependency
structures, and discourse relations (Olney et al., 2017). Instead of predicting authenticity of
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individual questions, they estimate the proportion of authentic questions of classroom sessions.
The accuracy of their system (Pearson correlation of predictions to human-labeled scores), when
evaluated on datasets spanning nearly 150 classrooms, was estimated to be over 0.6.

Dai et al. (2023) explored multimodal approaches to detecting “negative moments” in the
classroom, defined as 10-sec segments of a classroom session in which the teacher’s emotion
or speech was indicative of the CLASS “Negative Climate” dimension (which is part of the
Emotional Support domain previously described). In particular, they assessed the accuracy of
various classifiers of facial expression, auditory emotion, and text sentiment to find negative
moments in a dataset of about 1000 middle and high school classrooms. The most promising
approach to finding negative moments, according to their study, was simple keyphrase spotting –
if an utterance contained a phrase such as “excuse me”, “why are you”, “don’t talk”, etc., then it
was flagged as a potentially negative moment. In their semi-automated approach, this automated
keyphrase spotting was followed by manual annotation.

Zylich and Whitehill (2020) trained a custom speech recognizer to recognize a small set
of keyphrases (“thank you”, “good job”, etc.) associated with “supportive speech” in toddler
classrooms. They found that the counts of how often such keywords were detected in toddler
videos (the same UVA Toddler dataset that we use in our paper) correlated, albeit to only modest
degree (the largest Pearson correlation magnitude was 0.237), with dimensions of the human-
coded CLASS scores.

Demszky et al. (2021) developed an automated tool to identify conversational “uptake” in
school classrooms, i.e., moments when the teacher revoices, elaborates on, or asks a follow-up
question to a student contribution. In particular, they explored different approaches to analyzing
a pair of utterances (S, T ) (where S is a student utterance and T is a teacher utterance) so as to
predict whether T directly followed S in the conversation, or whether it was chosen randomly. If
the model predicts that T follows S directly, then it is likely that T is an example of “uptake” of
S. For classification, the authors compared (a) distance-based measures of semantic similarity
of the two utterances using GloVe (Pennington et al., 2014) or Sentence-BERT (Reimers and
Gurevych, 2019); (b) simple proportions of the number of tokens appearing in both utterances;
and (c) a fine-tuned BERT-based (Devlin et al., 2019) classifier that takes S and T as input.
The fine-tuned BERT worked the best. Since the ground-truth label of whether T follows S
can be inferred automatically from the transcript (self-supervision), the methodology is highly
scalable. In a comparison, they found that a fully supervised approach (which requires laborious
and dense utterance-wise labeling of “uptake”) performed only slightly better. In later work
(Demszky et al., 2023), their research team deployed the BERT-based tool in an online course
on computer programming and found that teachers, after receiving visualized feedback on their
conversational uptake, increased the degree to which they took up students’ contributions.

Suresh et al. (Suresh et al., 2021) compared both LSTM and fine-tuned BERT-based models
for “TalkMove” classification of pairs of utterances (student, teacher). TalkMoves are a frame-
work for analyzing classroom discourse during math instruction. Specific TalkMoves include
“keeping everyone together”, “restating”, “press for reasoning”, and more.

Most similar to our work, Wang and Demszky (2023) used GPT-3.5 in a zero-shot prompting
framework to estimate CLASS scores, identify specific utterances associated with high or low
performance within each CLASS dimension, and provide suggestions for how the teachers could
elicit student reasoning. In their task formulation, the entire transcript of a classroom session,
along with a prompt about the CLASS dimension, was fed to the language model, and the model
then provided an estimate of the score. On a dataset of elementary school math classrooms, they
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Transcript
09:14: Let's do one more.
09:24: I'm going to add a color to our bubbles.
09:28: Can you tell me what color this is?
09:30: When I put it down, you tell me what color it is.
09:32: See if you can tell me.
09:34: What color is that?
…

Classroom 
Audio

1. Transcribe
(Whisper)

4. Regress

3. Aggregate 
& Standardize

.93 0 .72 .86 0 .64 0 .99 0 0 0

.88 0 .67 0 0 0 0 0 0 0 0

0 0 0 0 0 0 .93 0 0 .89 0

0 .76 .89 0 0 0 0 .84 0 0 0

0 0 0 0 0 0 0 0 0 0 .99

.68 0 .77 .91 0 .90 0 .87 0 .98 0

ŷ=wTg+b72.1 17.9 83.4 16.0 13.1 25.2 26.8 3.91 42.4 64.4 13.9

g=∑i x
(i)

…

2. Analyze Features (indicators or 
n-gram counts)

CLASS 
Score

or

x(i)

~

Figure 1: Our high-level approach for CLASS score estimation: After transcribing each class-
room audio into text, each utterance is analyzed using either Llama2 or a BoW model to produce
a feature vector. The feature vectors are then aggregated (summed and z-scored) across utter-
ances, and finally regressed into a CLASS score estimate.

found that the Spearman correlation between the estimated and expert-labeled scores was low,
i.e., between −0.05 and 0.07 for the “Instructional Dialogue” dimension (one of the Instructional
Support dimensions in the CLASS Upper-Elementary protocol). Methodologically, our work
differs from theirs in several ways: (1) our method analyzes the classroom transcript at the
utterance level instead of globally; (2) we ask the LLM to score each utterance in terms of the
CLASS-defined indicators of each dimension, rather than directly at the dimension level; (3) we
connect global dimension scores to individual utterances via linear regression.

Outlook: As speech recognition and other machine perception technologies become more
accurate, it is useful to evaluate whether the accuracy of downstream classroom analysis tools
also increases. Moreover, as fundamentally new technologies such as LLMs emerge, it is excit-
ing to explore how they can be used to enable better classroom feedback. Some of the challenges
when applying LLMs to classroom discourse are that (1) classroom transcripts are long, span-
ning thousands of tokens, which can be challenging for LLMs; (2) it is unclear how to define
the task (zero-shot? few-shot?), and to design effective prompts, so that an LLM can make a
semantically very high-level judgment about classroom discourse quality, but still connect the
globally scored measure such as the CLASS, or the Mathematical Quality of Instruction (MQI),
to specific utterances; (3) the first work (Wang and Demszky, 2023) on LLMs for CLASS and
MQI score estimation showed mostly low-to-modest correlations with human scores. On the
other hand, recent studies by (Demszky et al., 2021) and (Dai et al., 2023) have found that even
very simple techniques such as keyword spotting can be surprisingly competitive in terms of
prediction accuracy. It is thus important to compare new generative models to classical methods
to understand their relative merits.

3. ARCHITECTURE

We seek to develop an automatic system (see Figure 1) for analyzing a classroom transcript,
which was produced automatically by an automatic speech recognition system, and estimating
the CLASS “Instructional Support” domain scores. Such a system could be used by teachers
at their own discretion, and conceivably on their own school’s computer rather than a cloud-
computing platform, to obtain objective feedback about the quality of their classroom discourse.
To ensure simple explainability and also to provide more actionable feedback, we require that
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the system’s global (i.e., over a 15-min session) estimates be tied to specific utterances in the
transcript. Moreover, to reduce the data annotation effort, we will use only weak supervision
and require just global labels (CLASS scores), not utterance-level labels. To aggregate the
machine’s judgments from individual utterances to the entire classroom observation session, we
use a simple linear model with L1 regularization.

Remarks: (1) An alternative strategy would be first to summarize the transcript and then to
compute features (rather than the reverse order). Due both to the fact that CLASS is coded based
on specific events and interactions rather than at a gestalt level, and to our goal of providing
specific and actionable feedback, we chose to analyze individual utterances first and then to
aggregate afterwards (see Section 4 for a comparison with analyzing sequences of 3 utterances
at a time). (2) When the regression coefficient estimates themselves are of primary interest (e.g.,
to compute confidence intervals around the estimates of the individual feature coefficients), then
it is standard practice to verify that the usual assumptions (homoscedasticity, linearity, etc.)
of linear regression hold true, and in particular to verify the linearity of the target variable in
each of the different covariates/features. In our case, however, the main focus is on predictive
accuracy of the model’s outputs rather than the coefficients themselves, and hence we omit
this step (see Section 8.1 on Limitations). (3) Compared to the more commonly used ridge
regression (i.e., with L2 regularization), L1 yields regression coefficients that are sparse (i.e., for
most features they are 0), which affords greater model interpretability. (4) We also considered
non-negative L1-regularized linear regression to enforce non-negativity of all feature coefficients
(see Appendix).

Given this high-level design, the key question is how to make reliable judgments of indi-
vidual utterances. We compare two methods: (1) Large Language Models (LLMs), which have
demonstrated impressive ability to make accurate semantic inferences on a wide variety of tasks
and may also hold significant promise for classroom feedback; and (2) classic Bag of Words
(BoW) models, which have the advantage of determinism/reproducibilty, efficiency/speed, and
simplicity of implementation. Moreover, findings by (Dai et al., 2023) and (Demszky et al.,
2021) suggest that such simple methods can be surprisingly effective.

3.1. DATASETS

Before describing the two methods in detail, we first present the two datasets we used for training
and evaluation in our experiments.

1. UVA Toddler: The University of Virginia (UVA) Toddler dataset (LoCasale-Crouch et al.,
2023; LoCasale-Crouch et al., 2016) consists of 172 classroom observation sessions (each
15 minutes long) from classrooms serving children 18-36 months (with 47 teachers in to-
tal) in a south-eastern state of the United States. Teacher demographics: 50% Black/African-
American, 38% White/Caucasian, 4% Asian, 2% Latino/Hispanic/Spanish, 2% Multira-
cial, and 4% Other. All teachers were female. No child demographic information is
available in the dataset description by (LoCasale-Crouch et al., 2023). The sessions were
scored for the CLASS-Toddler protocol by a team of 9 annotators, and on average each
15-min CLASS session was scored by 1.30 different annotators. The average transcript
length (obtained automatically from Whisper) is 1204.34 words per session.

2. NCRECE PreK: The National Center for Research on Early Childhood Education Pre-
Kindergarten (NCRECE PreK) dataset (Pianta and Burchinal, 2016; Pianta et al., 2017)
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consists of several thousand videos from pre-kindergarten classrooms across nine socio-
demographically diverse U.S. cities in the United States. In our study, we utilized a ran-
dom subset of NCRECE PreK sessions consisting of 561 classroom sessions (each 15
minutes long) from 41 unique teachers. In particular, the subset was chosen by selecting
an arbitrary video from the entire database, and then adding all CLASS-coded sessions
from that video to the subset; see Appendix for more details. Teacher demographics of
the sample: 55% Black/African-American, 31% White/Caucasian, 12% Multiracial, and
2% Other. 93% of the teachers were female. Child demographics of the sample: 50%
Black/African-American, 29% Hispanic, 13% White/Caucasian, 4% Asian, 3% Multira-
cial, and 1% Other. 52% of the children were female. These sessions were scored by a
team of 43 annotators, and on average each 15-min CLASS session was scored by 1.67
different annotators. The average transcript length is 1585.51 words per session.

The human inter-rater reliabilities of the CLASS labels for these datasets are given in Table 1.

3.1.1. Preprocessing

Each video was transcribed automatically using OpenAI’s Whisper large-v2 automatic speech
recognition model (Radford et al., 2023), which is state-of-the-art. Whisper estimates the start
and end times of each detected utterance. Given the student age groups (toddler and pre-
kindergarten) in our datasets, as well as the fact that the children’s speech tended to be quieter
and less clear than that of the adults, most of the detected speech came from the teachers rather
than the students.1 Nonetheless, the teachers’ speech still captures rich teacher-student interac-
tions, e.g., by prodding students to think more deeply (“Why do you think she ran away?”), re-
peating or rephrasing what a student said (“You say you drew a circle?”), or narrating a teacher’s
reaction to something the student did (e.g., “I like how you are coloring, Jennifer.”). We removed
those sessions that contained no detected speech. Note that Whisper occasionally splits a single
sentence (“I wish you would stop speaking so loudly.”) into multiple sentence fragments (“I
wish you would” and “stop speaking so loudly.”). We decided not to try to merge such speech
and left them as-is. Also, it is possible that Whisper’s accuracy differs across different demo-
graphic groups in our dataset; since we do not have ground-truth transcripts, we cannot assess
this possible differential accuracy.

3.1.2. Inter-rater reliability

To ensure the greatest possible comparability with the automated predictors, we assessed human
inter-rater reliability (IRR) of the CLASS scores in a leave-one-labeler-out fashion. Specifically,
we computed the average (over all k labelers) Pearson correlation R, as well as the average root-
mean-squared error (RMSE), between each labeler’s labels and the mean labels assigned to the
sessions by all the other labelers. We also report the standard error of these averages, estimated
as the standard deviation divided by

√
k. In this way, we use the same metrics to quantify human

IRR as we do for the accuracy of the automated methods.

3.2. METHOD I: LARGE LANGUAGE MODELS (LLM)

In our experiments we used Meta’s Llama2-7b-chat model (Touvron et al., 2023) to assess each
input utterance for multiple indicators pertaining to the CLASS “Instructional Support” domain.

1While it would be conceivable to try to detect segments of children’s speech and then somehow filter it to boost
the signal-to-noise ratio, we followed standard practice and applied Whisper to the raw speech signal.
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With the Llama2 chat models, both a system message and a user message are input: the
former can be used to provide general instructions for how the LLM should respond, and the
latter contains the specific queries to which it should respond. Our general approach to applying
Llama2 was to ask it to analyze an individual utterance from a classroom transcript and infer
whether or not the utterance exhibits one of the behavioral indicators (see Section 2.1) associ-
ated with CLASS Instructional Support. Accordingly, we gave Llama2 a system message of
"Answer YES or NO." and a user message of:

"In the context of a preschool classroom in which a teacher is talking to
their students, does the following sentence ’<indicator>’ and help students
to grow cognitively?\n<input text>"

Here, <input text> was a single detected utterance of classroom speech. For the NCRECE
PreK dataset (labeled for CLASS-PreK), the <indicator> was one of the following: (1)
“promote analysis and reasoning”, (2) “facilitate creativity by brainstorming and/or planning”,
(3) “help students to make connections”, (4) “provide scaffolding”, (5) “provide information”,
(6) “ask students to explain their reasoning”, (7) “encourage and affirms”, (8) “ask open-ended
questions”, (9) “repeat and extend students’ language”, (10) “perform self- and parallel talk”,
and (11) “use advanced language”. Indicators (1)-(3) correspond to “concept development”,
indicators (4)-(7) to “quality of feedback”, and (8)-(11) to “language modeling”. For the UVA
Toddler dataset, the prompts were changed slightly to match the indicators of the CLASS-T
dimensions; see Appendix. Below is an example of a chat sent to Llama2 for the input text,
“What animal roars?”:

{"role": "system", "content": "Answer YES or NO."},
{"role": "user", "content": """In the context of a preschool classroom in
which a teacher is talking to their students, does the following sentence
’promote analysis and reasoning’ and help students to grow cognitively?
"What animal roars?" """ }

After feeding the prompt to Llama2, we then parsed its response to determine whether or not
the first token of the response was the “YES” token. If it was, then we obtained from Llama2
the probability of this token given the prompt (by enabling the logprobs flag in Llama2’s
generator.chat completion method) and used it as a feature value. If it was not, then
we set the feature value to 0.2 Our intuition was that Llama2’s confidence in “YES” – not just
the binary presence/absence – could contain useful information about the queried indicator in
the input sentence. Across the 11 different indicators, this approach formed a real-valued vector
x(i) ∈ [0, 1]11 for each utterance i. We processed each classroom transcript in mini-batches,
where one mini-batch consisted of 11 chats (corresponding to the 11 indicators) for a single
utterance. Note that we also tried some alternative LLM-based approaches; see Appendix.

3.3. METHOD II: BAG OF WORDS (BOW)

We employed a Bag of Words (BoW) approach to analyze the transcript of each 15-minute
classroom session. We performed this utterance-wise to compute the number of occurrences of
each of a fixed set of words within each utterance. As a preprocessing step, we first converted
all the utterances detected by Whisper to lower-case and then removed commas, periods, and
a set of stop-words (see Appendix). For the set of “words”, we considered both individual
words as well as word sequences (known as “shingling” (Manning et al., 2008)): Across all
utterances over all videos within each dataset, we computed the set of unique word sequences

2This is actually an underestimate, since the probability of “YES” is positive even if it is not the most likely
token, but it simplified the processing since Llama2 only outputs log-probabilities for the most likely token.
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(n-grams) within each utterance, where the sequence length n ∈ {1, 2, 3, 4}. From this set of
possible n-grams, we selected the 300 most frequently elements (separately for each dataset;
see Appendix) and then manually added two more “words” consisting of ’?’ and ’ ’, which
implicitly enabled the BoW model to count the number of questions and total number of words
within each transcript. Next, we extracted a 302-dim feature vector from each detected utterance
from each classroom video, consisting of the counts (within each utterance) of each of the 300
selected n-grams and the two manually added ’?’ and ’ ’ words.

3.4. FEATURE AGGREGATION AND L1 REGRESSION TO ESTIMATE CLASS SCORES

The feature vector for each utterance consisted of either the LLM probability for each behavioral
indicator or the BoW count for each n-gram. We then aggregated the feature vectors over all
utterances in each transcript, z-scored the result, and then regressed the CLASS score. Let x(i)

be the feature vector of utterance i in a classroom observation session. We first compute a global
feature vector for the session as g =

∑
i=1 x

(i), where the summation is over all utterances in
the session. We chose to sum (rather than, say, average) the utterance-wise feature vectors since
CLASS scores are intended to represent the total amount of evidence for each dimension (rather
than, say, the proportion of the session that exhibits the dimension). Next, we z-scored the
elements of g by subtracting the mean feature vector m and dividing by the standard deviation
s, where m and s are computed over the entire training set of classroom sessions. This yields
a standardized global feature vector g̃ = (g − m)/s where the division is computed element-
wise. Finally, we predict the CLASS scores for the session as ŷ = w⊤g̃ + b, where w are the
regression weights and b is the bias term.

4. EXPERIMENTS

Using the datasets described in Section 3.1, we conducted experiments to compare the accuracy
of the LLM and BoW approaches for CLASS score prediction. Experiments were conducted on
an NVIDIA A100 GPU with 40GB of RAM. We used the official Open AI and Meta code repos-
itories for Whisper and Llama2, respectively. As accuracy metrics, we used both the root mean
squared error (RMSE) and Pearson’s correlation coefficient R. We prefer Pearson correlations
(rather than Spearman rank correlation or Cohen’s κ) for two reasons: (1) We are quantifying
the accuracy of a continuous-valued estimator ŷ with respect to another continuous-valued target
(the average CLASS score of each session from multiple human annotators). (2) It is arguably
more useful to develop a predictor whose scores ŷ are linearly related to the target value y, not
just monotonically related. Note that Pearson correlation measures the ability of a predictor to
explain the variance in CLASS scores above-and-beyond always predicting the central tendency
of the test set. L1-regularized regression models from feature vectors to CLASS scores were
trained for each of the 3 separate CLASS dimensions as well as the entire CLASS domain (i.e.,
the sum of the three dimensions’ scores). Moreover, for the LLM approach, we tried subselect-
ing elements of the feature vector that were related to only a specific dimension. For instance,
the “LLM(ConDev)” feature vector includes the LLM’s judgments for only those indicators per-
taining to the Concept Development dimension (see Section 3.2); this allowed us to investigate
whether the LLM can reason specifically about particular aspects of the CLASS rather than to
just the Instructional Support domain as whole. The “LLM(All)” feature vector consists of all
11 behavioral indicators. To test whether the BoW and LLM approaches are complementary, we
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also tried combining the feature vectors of both the LLM and BoW approaches (“LLM(All) ∥
BoW”). Finally, we also implemented several baselines consisting of feature vectors with counts
of the number of words and/or the number of questions in each transcript.

Cross-validation: To measure generalization accuracy, we used 5-fold cross-validation, con-
structed so that no teacher appeared in more than one fold and so that each fold spanned a range
of small to large CLASS scores. We set the L1 regularization strength to 0.1, and the Llama2
temperature and top-p probability to 0.6 and 0.9, respectively, for all models in both datasets.
Each model was trained on all the videos belonging to the teachers in the training fold and then
evaluated on all the videos belonging to the teachers in the testing fold. We computed the average
(across the 5-folds) of the Pearson correlations (R) and root mean squared errors (RMSE), along
with standard error estimates (standard deviation across the folds divided by

√
5, as suggested

by (Tibshirani, 2014); we acknowledge, however, that no unbiased estimate of the variance ex-
ists for cross-validation (Bengio and Grandvalet, 2003)). We also report inter-rater reliability of
human annotators for comparison.

Model Variations: Finally, we explored several variations to the LLM-based approaches
described in Section 3.2:

1. Binary features: instead of the real-valued probability that the first word of the LLM’s
response was “YES”, we tried binarizing the result.

2. Larger LLM: instead of the Llama2-7b-chat model, we tried the larger Llama2-13b-chat
model to see if larger LLMs might yield higher accuracy.

3. 3-sentence context: instead of analyzing each utterance i individually for the presence of
the 11 CLASS indicators, we analyzed the concatenation of the utterances (i− 1, i, i+1).
For the very first (last) utterance in the transcript, we defined the preceding (succeeding)
utterance to be the empty string.

For each variation, we trained the LLM(All) model and assessed its accuracy on the overall
Instructional Support domain for each dataset.

4.1. RESULTS

Results (Pearson R and RMSE) are shown in Table 1 separately for each prediction task (the
three CLASS dimensions for each age group, along with the combined domain score). All
numbers are displayed with two decimal digits of precision, along with standard error estimates
in parentheses and the best method in each column (modulo the “Human labelers” row) rendered
in bold. Note that the RMSE for the CLASS domain is about 3 times higher than for each
individual CLASS dimension; this is because the dimension score was computed by summing
the 3 constituent dimension scores.

CLASS-T: On the UVA Toddler dataset, the best automated approach for the CLASS In-
structional Support domain prediction task achieved Pearson R = 0.39. The best automated
predictors were comparable in accuracy to human IRR on all prediction tasks except for the Fa-
cilitation of Learning and Development dimension, in which the human IRR was substantially
better. Note that IRR was quite low on the other dimensions (Pearson R between 0.24 − 0.37),
suggesting the difficulty and/or subjectivity of the annotation task, or possibly insufficient train-
ing of the annotators. From the automated approaches, there was no universally best feature
vector, but the best feature vector for each task usually came from the LLM rather than from the
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Table 1: Prediction accuracy (using 5-fold cross-validation), as expressed in terms of Pearson
correlation R and RMSE, on the UVA Toddler (top) and NCRECE PreK (bottom) datasets.
Standard error estimates are given in parentheses. ∥ indicates the concatenation of multiple
feature vectors. Bold-face results are the best automated prediction accuracy within each column.

UVA Toddler
Fac Learn & Dev Qual Fdbk Lang Modeling Inst Support

Method R↑ RMSE↓ R↑ RMSE↓ R↑ RMSE↓ R↑ RMSE↓
Inter-Rater Reliability

Human labelers 0.53 (0.10) 1.24 (0.10) 0.24 (0.22) 0.80 (0.19) 0.32 (0.21) 1.29 (0.14) 0.37 (0.20) 2.40 (0.21)
Baselines

#words 0.27 (0.10) 1.15 (0.08) 0.23 (0.12) 1.23 (0.09) 0.21 (0.11) 1.33 (0.03) 0.26 (0.12) 3.20 (0.18)
#questions 0.34 (0.07) 1.12 (0.08) 0.28 (0.09) 1.21 (0.10) 0.28 (0.07) 1.30 (0.04) 0.34 (0.09) 3.11 (0.21)
#words ∥ #ques. 0.30 (0.08) 1.13 (0.08) 0.22 (0.10) 1.23 (0.10) 0.26 (0.08) 1.30 (0.04) 0.30 (0.10) 3.15 (0.21)

Proposed Methods
BoW 0.31 (0.11) 1.24 (0.15) 0.33 (0.08) 1.23 (0.09) 0.31 (0.04) 1.41 (0.10) 0.39 (0.08) 3.72 (0.44)
LLM(FacLDev) 0.27 (0.07) 1.14 (0.08) 0.31 (0.10) 1.20 (0.09) 0.25 (0.08) 1.31 (0.04) 0.31 (0.08) 3.16 (0.18)
LLM(QualFbk) 0.32 (0.07) 1.12 (0.08) 0.35 (0.12) 1.18 (0.10) 0.33 (0.08) 1.27 (0.02) 0.38 (0.10) 3.04 (0.19)
LLM(LangMod) 0.27 (0.07) 1.18 (0.09) 0.28 (0.09) 1.26 (0.10) 0.19 (0.08) 1.38 (0.08) 0.26 (0.08) 3.43 (0.30)
LLM(All) 0.25 (0.08) 1.17 (0.09) 0.34 (0.11) 1.22 (0.10) 0.29 (0.09) 1.30 (0.05) 0.32 (0.10) 3.25 (0.25)
LLM(All) ∥ BoW 0.32 (0.11) 1.18 (0.12) 0.35 (0.09) 1.21 (0.09) 0.30 (0.04) 1.40 (0.09) 0.39 (0.08) 3.70 (0.41)

NCRECE PreK
Con Dev Qual Fdbk Lang Modeling Inst Support

Method R↑ RMSE↓ R↑ RMSE↓ R↑ RMSE↓ R↑ RMSE↓
Inter-Rater Reliability

Human labelers 0.49 (0.04) 1.25 (0.05) 0.35 (0.07) 1.22 (0.08) 0.44 (0.04) 1.25 (0.05) 0.55 (0.04) 2.79 (0.15)
Baselines

#words 0.23 (0.04) 1.03 (0.04) 0.16 (0.06) 0.98 (0.03) 0.19 (0.05) 1.01 (0.04) 0.22 (0.05) 2.60 (0.09)
#questions 0.26 (0.05) 1.02 (0.04) 0.20 (0.06) 0.97 (0.03) 0.21 (0.05) 1.01 (0.04) 0.26 (0.06) 2.57 (0.09)
#words ∥ #ques. 0.26 (0.05) 1.02 (0.04) 0.20 (0.06) 0.97 (0.03) 0.21 (0.05) 1.01 (0.04) 0.26 (0.06) 2.57 (0.08)

Proposed Methods
BoW 0.36 (0.04) 0.97 (0.04) 0.23 (0.04) 0.95 (0.04) 0.41 (0.05) 0.94 (0.03) 0.47 (0.04) 2.34 (0.08)
LLM(FacLDev) 0.38 (0.04) 0.98 (0.04) 0.29 (0.06) 0.95 (0.04) 0.40 (0.05) 0.96 (0.04) 0.41 (0.05) 2.46 (0.08)
LLM(QualFdbk) 0.20 (0.05) 1.04 (0.04) 0.19 (0.04) 0.97 (0.03) 0.08 (0.03) 1.02 (0.05) 0.19 (0.05) 2.63 (0.11)
LLM(LangMod) 0.37 (0.04) 0.99 (0.04) 0.31 (0.05) 0.95 (0.04) 0.40 (0.05) 0.96 (0.03) 0.41 (0.05) 2.49 (0.08)
LLM(All) 0.38 (0.04) 0.98 (0.04) 0.30 (0.05) 0.95 (0.04) 0.41 (0.05) 0.96 (0.04) 0.42 (0.05) 2.47 (0.08)
LLM(All) ∥ BoW 0.41 (0.04) 0.95 (0.05) 0.27 (0.03) 0.94 (0.04) 0.44 (0.04) 0.93 (0.03) 0.48 (0.04) 2.32 (0.08)
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BoW model. Compared to both the BoW and LLM approaches, the baselines (number of words,
questions, or both, within each transcript) were surprisingly competitive; in fact, for the Facil-
itation of Learning and Development dimension, the #questions baseline achieved the highest
Pearson correlation with human annotations. For the baselines, the L1 regression coefficients of
the number of words (#words) and/or number of questions (#ques) features were always posi-
tive, indicating that, in general, more classroom speech is associated with higher Instructional
Support scores.

CLASS-PreK: On the NCRECE PreK dataset, the best automated approach for Instructional
Support domain prediction was R = 0.48. Over each dimensions/domain, human IRR was
higher (Pearson R between 0.35 − 0.55) than for UVA Toddler – possibly because there were
more annotators for NCRECE PreK than UVA Toddler, and thus the “mean label” to which each
annotator’s scores were compared was statistically more reliable (see Section 3.1.2). Automated
prediction accuracy was also generally better than in UVA Toddler. The combined approach
“LLM(All) ∥ BoW” almost always performed best, usually just slightly more accurate than
LLM(All) or the BoW model by itself. The relative benefit of LLM, and also of BoW, relative to
the baselines (which attained Pearson R of at most 0.26 on any dimension/domain) was stronger
compared to in the UVA Toddler dataset. Similar to CLASS-T, the regression coefficients of
the baseline features were always positive. The fact that the accuracy attained by the LLM
approaches on NCRECE PreK was higher than on UVA Toddler could be because the semantic
judgments required for CLASS-PreK, with more advanced language, align better with Llama2’s
strengths. In toddler classrooms, there are often more “tasks” to do – such as feeding, diapering,
etc. – and the language exchanges between teachers and students tend to be more focused on
such tasks rather than expanding language and learning.

Dimension-Specific LLMs: There was no evidence that the dimension-specific LLM fea-
ture vectors were more accurate for predicting their designated dimension than the other LLM
prompts. In fact, for the 3 different CLASS dimensions on both datasets, the dimension-specific
predictor was usually not the most accurate one. This could potentially be because the different
dimensions are related to each other (since they all belong to the Instructional Support domain),
or because of statistical noise induced by the relatively low IRR.

LLM vs. BoW: The LLMs usually outperformed the BoW models, but not always. BoW
was especially strong for predicting Instructional Support domain scores on both UVA Toddler
(0.39) and NCRECE PreK (0.47), and on UVA Toddler it was the best automated method for
this task. When the LLMs did outperform BoW, the difference was often small; this is in-line
with results by (Demszky et al., 2021). Moreover, there was utility in combining the feature
vectors from the two approaches.

Overall Accuracy: The correlations in our experiments were generally higher than those
found by Wang and Demszky (2023); in their paper, the highest reported correlation with any
CLASS dimension was 0.35 (Spearman R). While the results are not directly comparable (dif-
ferent metric, different dataset and age group, GPT vs. Llama2, etc.), we suspect the main reason
for the accuracy difference is that the “long-form” approach used by (Wang and Demszky, 2023)
– whereby the entire transcript was input to the LLM – does not provide the model with enough
scaffolding. In contrast, our approach decomposes the estimation task in two ways: instead of
asking the model to predict a CLASS score for an entire dimension, we instead asked it to judge
the presence/absence of a specific indicator within a dimension. Moreover, instead of asking
Llama2 to judge an entire transcript, we instead asked it to judge just a single utterance.

Model Variations: Results are shown in Table 2; for comparison, we also included the cor-
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Table 2: Architectural variations of the LLM model and corresponding accuracies.

UVA Toddler NCRECE PreK
Method R↑ RMSE↓ R↑ RMSE↓
LLM(All) (from Table 1) 0.32 (0.09) 3.25 (0.25) 0.42 (0.05) 2.47 (0.08)
Binary features 0.30 (0.09) 3.27 (0.25) 0.40 (0.05) 2.49 (0.08)
Llama2-13b-chat 0.31 (0.07) 3.11 (0.19) 0.34 (0.07) 2.57 (0.07)
3-sentence context 0.37 (0.11) 3.08 (0.22) 0.39 (0.04) 2.46 (0.10)

responding data from Table 1 for the original LLM(All) models. The only advantage over our
originally proposed model (Section 3.2) was for the 3-sentence-context and only for the UVA
Toddler dataset. It is possible that the additional context was useful due to the typically very
short utterance length in the classrooms of the younger students. The larger LLM showed no
accuracy advantage on this task, and it is also slower and/or requires more GPU hardware. Fi-
nally, the fact that the binary features performed worse suggests that the real-valued confidence
scores provided by Llama2 for each indicator are informative.

Other accuracy metrics: Prediction accuracy as well as human inter-rater reliability were
generally very similar when assessed with Spearman rank correlation rather than Pearson. For
brevity, we report only a few key results on the CLASS Instructional Support domain scores:
IRR was 0.35 on UVA Toddler and 0.55 on NCRECE. On UVA Toddler, the best model (accord-
ing to Spearman correlations) was the LLM(FacLDev), which achieved a Spearman correlation
of 0.36, and on NCRECE, it was the LLM(All) ∥ BoW model, which achieved a Spearman
correlation of 0.49. Finally, we also report quadratically-weighted Cohen’s κ, which we ob-
tained by linearly scaling ŷ to [1, 7] (for dimension scores) or [1, 21] (for domain scores) and
then rounding to the nearest integer: On UVA Toddler using the LLM(FacLDev) model, it was
0.27, and on NCRECE using the LLM(All) ∥ BoW model, it was 0.36.

5. ANALYSIS OF LLAMA2’S JUDGMENTS OF INDIVIDUAL UTTERANCES

The experiments above assessed the models’ ability to estimate CLASS scores at the global level
of classroom transcripts. Here, we inspect their ability to infer whether individual utterances
displayed Instructional Support. To make this idea precise, we define the marginal score ∆ŷ(i)

of a single utterance i as how much it increases the overall CLASS score estimate ŷ of the entire
transcript. Recall that, after training the regression model to yield parameters w and b as well
as standardization parameters m and s, we can estimate the CLASS score as ŷ = w⊤g̃ + b =
w⊤(

∑
i x

(i) −m)/s + b. When we add a feature vector x corresponding to a new utterance to
this sum, we obtain ŷ′ = w⊤ (∑

i x
(i) + x−m

)
/s+ b. Hence, the marginal score

∆ŷ
.
= ŷ′ − ŷ = (w/s)⊤x

where w/s represents the standardized weights vector.
Given this definition, we investigated how much the marginal scores ∆ŷ(i) according to the

LLM(All) model correlated with human judgments of Instructional Support. To this end, the
two authors of this paper, both of whom are CLASS-trained, labeled a subset of the utterances
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Table 3: Specific utterances that the LLM(All) model believed to exhibit particularly high or
low CLASS Instructional Support. Ellipses (. . .) are inserted where the utterance began/ended
abruptly due to how Whisper segmented the transcript.

Sample Utterances with Highest/Lowest Estimated Inst. Supp.
High Inst. Supp. Low Inst. Supp.
Malia said maybe they have to cry. So if they’re hungry and Aria, give me an animal that was in the story.
they want a bottle, how do you think their mommy knows?
Well, let’s find out. Oh, maybe you should go look for the letter J.
Why does she think that? Right?
Who do you think the dress belongs to? Let’s try it.
And what else? But you know what?
And what were you in your princess’s dream? Just like this.
Then I’ll puff, and I’ll puff, and I’ll blow your house down, So you can . . .
said the big, bad wolf.
Any clues? Write your own name on . . .
It looks like a little piece of sky in the ground. Oh, I see.
This is something that Dr. King dreamed about. . . . that you don’t like. So, from now on, . . .

in the NCRECE Pre-K dataset for whether or not each utterance exhibited Instructional Sup-
port. The labeling was performed independently and blindly of the other labeler’s as well as
of the LLM’s judgments. In particular, a set of 100 utterances was extracted from one of the
test folds of the cross-validation procedure described in Section 4. Using the trained regres-
sion weights for the LLM(All) model, the utterances were selected to span the entire range
[mini(∆ŷ(i)),maxi(∆ŷ(i))] of the model’s estimates of the CLASS domain scores on this test
fold; this was achieved by sorting the ∆ŷ values and then picking every (n/100)th utterance in
sequence, where n was the total number of utterances in the test fold. Then, the Pearson correla-
tion R between the ∆ŷ scores and the average of the two human labelers’ scores was computed,
as well as the IRR of the two labelers themselves. In addition, to get a sense of how well the
LLM(All) model can make coarse-grained distinctions between utterances associated with very
strong vs. very weak estimated Instructional Support, we also computed the Pearson correlation
with human judgments on the top and bottom 10 scores according to the estimated ∆ŷ values.

We note that manually scoring individual utterances is not standard practice in CLASS scor-
ing (due in part to the high labor involved), and hence it is not known whether such coding tends
to correlate highly with CLASS scores.

5.1. RESULTS

The correlation between LLM(All) and the average of the two labelers’ scores on the set of 100
utterances was 0.35. On the subset of 20 utterances corresponding to the highest and lowest ŷ
scores, the correlation was 0.52. For comparison, the IRR on all 100 utterances was 0.75. This
indicates that, for the task of assessing Instructional Support on individual utterances, there is
still substantial room for improvement compared to human-level accuracy.

To give a qualitative sense of which utteranes the LLM(All) model deemed to be very high
or very low Instructional Support, we list the utterances in the 20-utterance subset in Table 3.
Ellipses (. . .) denote a sentence fragment that is likely due to Whisper incorrectly segmenting
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it from the audio stream. Among those associated with high CLASS Instructional Support, we
see several questions (“Why does she think that?”, “So if they’re hungry and they want a bottle,
how do you think their mommy knows?”, “What else?”) that are more open-ended than those
in the low Instructional Support list. Among those associated with low Instructional Support,
some are very short (“Oh, I see.”, “Right?”), and some are more directive (“Just like this.”, “Oh,
maybe you should go look for the letter J.”) than inquisitive. On the other hand, the utterance
“Aria, give me an animal that was in the story.” does prompt the student to think about the story;
the fact that this utterance was scored by the model as having a very low ŷ could be due to
overfitting of the regression model weights.

5.2. HALLUCINATIONS

We examined qualitatively the set of utterances analyzed in the previous section with a focus
on the kinds of LLM hallucinations the model would sometimes make. First, we modified the
system message to “Answer YES or NO and explain the reasoning.” so that
it would produce more than just a yes/no answer. We then asked Llama2 to judge each of the
100 utterances for each of the 11 binary indicators listed in Section 3.2. Based on reading the
responses, we noticed three distinct types of hallucinations that occurred most frequently:

• Incorrect parsing: Especially for very short input utterances, Llama2 would sometimes
misinterpret part of the query itself as part of the input sentence it was supposed to analyze.
For instance, for the input utterance “Yes” (which sometimes occurred as a single-word
utterance), it turned out that Llama2 incorrectly classified this utterance as positive for all
11 indicators (i.e., it answered “YES” as the first word of its response). When we asked
Llama2 to provide an explanation for one of the indicators (“perform self- and parallel
talk”):

In the context of a preschool classroom in which a teacher is talking to
their students, does the following sentence "perform self- and parallel
talk" and help students to grow cognitively?
"Yes"

it output:

YES.
The sentence "perform self- and parallel talk" is a teaching strategy that
can help preschool students grow cognitively...

It seems that Llama2 interpreted “perform self- and parallel talk” as the input utterance of
classroom speech itself, rather than the indicator to inspect it for. This is likely because
the actual input utterance “Yes” was short and deemed to be the answer to the query itself.

• Subjective misjudgment: Llama2 sometimes exaggerated the degree to which an utterance
exhibited a CLASS indicator in a way that – while not completely illogical – contra-
dicts the CLASS standards for what is deemed sufficient for that indicator. For example,
Llama2 judged that the utterance “Write your own name on” could “help students make
connections” because, “By writing their own names, students can develop a sense of iden-
tity and self-awareness”. As another example, Llama2’s response to the input “Do you
want to fix it up?” was that it “Develop decision-making skills: By asking the students if
they want to fix something, the teacher is giving them the opportunity to make a decision.
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Figure 2: Temporal heatmap of CLASS “Instructional Support” dimension. The top 4 most and
least highly related utterances from the classroom audio are highlighted.

This helps to develop decision-making skills, which are important for cognitive growth
and development.” Both of these inferences exaggerate the significance of the respective
classroom utterances.

• Objective misjudgment: Llama2 would sometimes make objectively false claims about the
classroom speech. For instance, Llama2 judged that the utterance “Then I’ll puff, and I’ll
puff, and I’ll blow your house down, said the big, bad wolf.” exhibits “advanced language”
because it contains “two subordinate clauses (”said the big, bad wolf”)”. In fact, the input
contains no such subordinate clauses. Another example is Llama2’s incorrect judgment
that “The sentence ”When it was time to do what?” is an example of parallel talk, which
is a teaching technique used to encourage cognitive growth in young children.” This
sentence “When it was time to do what?” is not parallel talk (describing what a student is
doing) in the classroom sense.

Finally, we note that we found no instances of total gibberish or of classroom-inappropriate
content in Llama2’s responses.

There are various strategies that could be used to mitigate these hallucinations (Tonmoy
et al., 2024), e.g., prompt engineering, the use of few-shot examples rather than a zero-shot
classification approach, supervised fine-tuning, and many more. We leave these to future work.

6. VISUALIZATION & EXPLANATION OF AUTOMATED FEEDBACK

6.1. VISUALIZATION

Given our machine learning approach that is based on analyzing individual utterances followed
by L1-regularized linear regression, it is straightforward to find the specific utterances in a class-
room transcript that contribute the most toward receiving a high or low CLASS score: We can
rank the utterances within an observation session according to their marginal scores ∆ŷ(i). An
example of this process is given in Figure 2, where the marginal scores were computed using
the BoW model on the NCRECE PreK dataset: the horizontal axis is time (in seconds, up to
900sec=15min), and the color value (blue is lowest, orange is highest) at each time t is com-
puted as a linear function of ∆ŷ for the utterance that took place at time t. The figure additionally
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shows the 4 utterances whose ∆ŷ were highest (above the graph, arrows in orange) and lowest
(below the graph, arrows in blue). Among the negative utterances we see examples of behavioral
control (“Please don’t put your feet on her”) rather than intellectual stimulation, and among the
positive utterances we find an open-ended question (“What are we talking about this week?”).

6.2. EXPLANATION OF CLASS SCORE ESTIMATES

It is also easy to obtain a simple explanation of a predicted CLASS score. For the BoW model, an
utterance can be characterized as including or not including each of the 302 n-grams (including
’?’ and ’ ’), and for the LLM models, by the detected presence/absence of each of the 11
indicators. Because of the sparsity of the L1 regression coefficients, the number of n-grams
with non-zero impact on the marginal CLASS score estimate is typically low. For example,
the utterance “Please don’t put your feet on her.” received a relatively low ∆ŷ score because
it contained the n-grams “please” and “put your”, whose associated standardized regression
coefficients were −0.030 and −0.072. The utterance “What are we talking about this week?”
received a relatively high ∆ŷ score because it contained the n-grams “?”, “we”, and “about”,
whose associated standardized regression coefficients were +0.005, +0.053, and +0.011.

The LLM-based models, instead of counting occurrences of n-grams, can identify specific
indicators. For instance, the LLM judged that the utterance “What are we talking about this
week?” exhibits the indicators “help students to make connections”, “provide information”,
“repeat and extend students’ language”, and “repeat and extend students’ language” (note that
here we used Llama2 to provide binary answers rather than the real-valued probability scores).
Moreover, the LLMs can also offer an explanation as to why it believes a given utterance ex-
hibits a certain indicator. By changing the system message to “Answer YES or NO and
explain the reasoning.”, we can ask Llama2 for an explanation of these judgments.
For example, with regards to “help students to make connections”, it provides useful feedback:

The sentence "What are we talking about this week?" can help students to
make connections and grow cognitively in the following ways:
1. Encourages critical thinking: By asking students to think about the topic
of discussion, the teacher is encouraging them to think critically and make
connections between different ideas and concepts.
2. Promotes prior knowledge integration: When students are asked to reflect
on what they are talking about, they are required to integrate their prior
knowledge and experiences with the new information being presented...
...
Overall, the sentence "What are we talking about this week?" can be a
powerful tool for promoting cognitive growth and engagement in a preschool
classroom.

7. GENERAL DISCUSSION

7.1. SYSTEM ACCURACY AND IMPLICATIONS FOR PRACTICAL USE

The highest Pearson R attained by any of the automated approaches in Table 1 was 0.48. This
level of accuracy is approaching human IRR and is noteworthy considering that the human raters
scored each classroom session from full video, whereas the automated predictors observed only
the text transcript. Also remarkable is the fact that, although LLMs performed best, the baselines
and BoW-based models were surprisingly competitive on the datasets in our study and are far
easier and faster to deploy. On the other hand, these simplistic approaches arguably capture
only superficial features of classroom speech (similarly to how early methods for automated
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essay scoring worked (Yang et al., 2014)) and could thus easily be gamed, whereas LLM may
have a deeper semantic understanding.

At the current accuracy level (R = 0.48), a fully automated system would likely be more
useful for educational research rather than for guidance to individual teachers. In the former
context, such a tool might be used to evaluate the effectiveness of a particular educational in-
tervention in a large-scale study of hundreds of classrooms (e.g., at the scale of the Measures
of Effective Teaching (Kane et al., 2013) study), and the statistical noise in estimating CLASS
scores of individual classrooms can be averaged out. In the latter context (feedback to indi-
vidual teachers), the accuracy requirements would likely be higher, and a hybrid human-AI
scoring paradigm might be more useful. For instance, the utterance-wise predictions of an auto-
mated predictor could be presented as suggestions rather than “ground-truth”, and the teachers
or coaches could feel free to confirm or refute these suggestions. This could reduce the labor
involved in tedious utterance-by-utterance scoring, provide high accuracy to teachers, and even
help to improve the accuracy of the models by fine-tuning them on the corrected labels.

7.2. ETHICS, EQUITY, AND PRIVACY

The goal of our research is to harness AI to give teachers more opportunities to receive specific
and useful feedback about their classroom discourse as well as to make classroom observation
scoring more efficient and accurate for large-scale research use. AI-based systems could be
deployed at the teacher’s discretion, without the need to share the results with anyone else.
Since the methods described in this paper used only classroom audio and no video, the privacy
infringement is reduced significantly. Moreover, since locally-executable LLMs such as Llama2
can be run on a school computer, there is no need to upload a classroom video to a private
company for processing.

AI-based classroom observation has the potential to promote educational equity by giving
detailed feedback to teachers who otherwise could not receive it due to geographical distance,
financial constraints, additional family responsibilities, etc. (Lesiak et al., 2021). To realize this
potential, it is necessary to train such models on diverse classroom datasets. Moreover, before
deploying them at scale, it is important to evaluate them for potential biases using appropriate
accuracy metrics (e.g., ABROCA (Gardner et al., 2019)).

8. CONCLUSIONS

We have explored how either Large Language Models or classic Bag of Words models, can,
with the right scaffolding and task decomposition, be used to estimate the level of “Instructional
Support” of a classroom, given an automatically generated transcript of the classroom speech.
In particular, we proposed a machine learning architecture whereby a transcript is analyzed at
the utterance level for specific behavioral indicators associated with the Instructional Support
domain of the CLassroom Assessment Scoring System (CLASS), and then these utterance-wise
judgments are aggregated using L1-regularized linear regression to produce a global score esti-
mate. We conducted experiments on two CLASS-coded datasets of toddler and pre-kindergarten
classrooms to validate the approach. The results suggest that, at the global CLASS score level,
the system’s accuracy is similar to human inter-rater reliability. Moreover, since the global es-
timates are grounded in utterance-level judgments, it can give teachers specific and explainable
feedback about which utterances were positively/negatively correlated with Instructional Sup-
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port. Importantly, this automated approach comes at a substantial savings to the education re-
search and support field. While there is still substantial room for improvement by the automated
approaches, particularly at the individual utterance level, AI-assisted coding shows substantial
promise as a step forward in providing timely and accurate feedback to the education field on
practices known to foster student development. Thus, building on this approach – in terms of
accuracy, equity, and the ways in which the feedback can be user-friendly to individuals – has
the potential to positively shape the field of classroom observation for the better.

8.1. LIMITATIONS

Automatic speech recognition: The entrypoint to our CLASS score estimation system is the
automatic speech recognition provided by Whisper. It is possible that the speech recognition
accuracy differs across demographics such as gender and ethnicity (Koenecke et al., 2020). This
could result in accuracy disparities of downstream CLASS score estimates as well.

Interpretation of cross-validation accuracy: We followed a standard cross-validation ap-
proach whereby we partitioned each dataset (UVA Toddler, NCRECE PreK) into 5 disjoint
folds, stratified such that (a) no teacher appeared in more than one fold and (b) each of the
5 folds received a similar distribution of CLASS scores. Because each of the 5 testing folds
contains multiple teachers, and because there is significant variance in CLASS scores across
teachers, the cross-validation accuracy captures how well the trained model can distinguish
among teachers those who tend to receive higher CLASS scores from those who tend to re-
ceive lower CLASS scores. Note that this contrasts with leave-one-teacher-out cross-validation,
which would express how well the trained model can distinguish classroom sessions with low
from high CLASS scores within multiple classrooms from the same teacher.

CLASS behavioral indicators and non-negative regression coefficients: Because our goal was
to explore the extent to which the proposed techniques can estimate CLASS scores, we applied
standard L1-regularized linear regression for prediction, which allows the learned coefficients
to be any real number. However, according to the CLASS Manual (Pianta et al., 2008), each
CLASS dimension is scored based on the positive evidence that it exists; it should not be judged
based on observed behaviors or events that are negatively correlated with the target dimension.
For example, just because a teacher refrains from asking closed-ended questions does not mean
that they should receive a high score for Language Modeling. To enforce the constraint that all
regression coefficients should be non-negative, a technique such as non-negative L1-regularized
linear regression (Ang, 2020) can be used. See Appendix for details.

Statistical assumptions of linear regression: The primary focus of our paper is on the pre-
dictive accuracy of the proposed models for CLASS score estimation, not the estimation of
the regression coefficients themselves. For visualizing and explaining the model’s predictions
to teachers (Section 6.1), however, the reliability of these coefficient estimates does come into
play: These coefficients represent how the presence of one of the behavioral indicators (as es-
timated by the LLM), or how the count of a particular n-gram, impacts the final CLASS score
prediction. Unbiased estimation of the linear regression coefficients requires that the standard
assumptions of linear regression (linearity, homoscedasticity, etc.) hold true. Given that our
models are high-dimensional (e.g., we used 302 BoW features), and given that checks for lin-
earity are usually conducted manually (and often subjectively) by inspecting scatter plots, this
would be infeasible in our case. Hence, the quantitative estimates of how individual utterances
contribute to the final CLASS score prediction for a given observation session should be treated
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with caution.
Limitations of existing observation protocols: Even widely-used protocols such as the CLASS

have only modest short-term associations (Burchinal, 2018) with students’ learning. More work
is needed to elucidate the factors that impact children (Burchinal and Farran, 2020; Pianta et al.,
2020). New AI-based approaches may be useful for this purpose.

8.2. FUTURE WORK

Future work on AI for classroom observation can investigate how the LLM-based judgments of
individual utterances can benefit from global information from the entire classroom transcript.
Even more powerfully, multi-modal LLMs (e.g., NExT-GPT (Wu et al., 2023)) could analyze not
just the transcript but the audio and video as well, e.g., to infer more about the educational and
emotional context, or to analyze which kinds of classroom activities (meals, read-aloud, etc.) are
associated with different levels of interaction. Moreover, it would be valuable to explore whether
AI-based tools can predict other classroom observation measures beyond Instructional Support,
and, more generally, whether they can predict students’ downstream learning outcomes, not
just classroom observation scores from human coders. Finally, by tracking the dialogue from
teachers to individual students, it would be possible to analyze classroom speech from an equity
perspective.
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APPENDIX

NCRECE SUBSET

Due to the significant manual effort that was necessary to convert the old digital video (DV)
tapes on which NCRECE was originally collected into a format that was usable for our analy-
ses, we used only a subset of the entire NCRECE dataset. Compared to the entire dataset, the
subset’s distribution of CLASS scores was statistically significantly different for the Language
Modeling dimension (χ2(6) = 12.892, p = 0.045). However, the actual difference in the proba-
bility distributions over Language Modeling scores (1-7) was small:
[0.16132479, 0.40598291, 0.24679487, 0.1207265, 0.04380342, 0.01923077, 0.00213675] (subset)
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versus
[0.16824275, 0.35383976, 0.27008209, 0.13041671, 0.05902525, 0.01662683, 0.0017666] (whole).

There was no statistically significant difference found between the subset and whole-sample
scores for either the Quality of Feedback (χ2(6) = 4.128, p = 0.659) or the Concept Develop-
ment dimensions (χ2(6) = 0.660, p = 0.995).

NON-NEGATIVE L1-REGULARIZED LINEAR REGRESSION

We explored an approach based on non-negative L1-regularized linear regression (Ang, 2020)
which, in addition to sparsity, requires all coefficients to be non-negative. We found slightly
worse performance of this approach compared to unconstrained L1 regression. On UVA Toddler,
the best model was the LLM(QualFbk), which achieved a Pearson correlation of 0.37, and on
NCRECE, it was the LLM(All) model, which achieved a Pearson correlation of 0.43.

n-GRAMS

We applied a stop-word list consisting of:
[ ’a’, ’an’, ’and’, ’are’, ’as’, ’at’, ’be’, ’but’, ’by’, ’for’, ’if’, ’in’, ’into’, ’is’, ’it’, ’no’, ’not’, ’of’, ’on’, ’or’,

’such’, ’that’, ’the’, ’their’, ’then’, ’there’, ’these’, ’they’, ’this’, ’to’, ’was’, ’will’, ’with’].
After removing stop-words, the 300 most frequently occurring n-grams in the UVA Toddler

dataset were (in decreasing order of frequency):
[’you’, ’i’, ’your’, ’go’, ’do’, ’can’, ’what’, ’good’, ’come’, ’going’, ’all’, ’here’, ’me’, ’okay’, ’going to’, ’we’,
’right’, ’want’, ’have’, ’up’, ’put’, ”it’s”, ’sit’, ’thank’, ’thank you’, ’see’, ’one’, ”let’s”, ’job’, ’oh’, ’do you’,
”don’t”, ’down’, ”i’m”, ’good job’, ’so’, ’get’, ’you want’, ’yeah’, ’like’, ’want to’, ’come on’, ’all right’, ’are you’,
”that’s”, ”we’re”, ’my’, ”you’re”, ’look’, ’can you’, ’know’, ’on the’, ’yes’, ’back’, ’you want to’, ’got’, ’in the’,
’how’, ’did’, ’sit down’, ’okay?’, ’he’, ’over’, ’our’, ’please’, ’say’, ’you can’, ’let’, ”he’s”, ’put it’, ’hands’, ’now’,
”we’re going”, ”what’s”, ’ready?’, ”we’re going to”, ’do you want’, ”i don’t”, ’some’, ”i’m going”, ’it?’, ”i’m going
to”, ’little’, ’you have’, ’out’, ’them’, ’have a’, ’two’, ’you go’, ’color’, ’need’, ’more’, ’just’, ’guys’, ’turn’, ’let
me’, ’morning’, ’she’, ’to the’, ’that?’, ’to go’, ’his’, ’play’, ’take’, ’come here’, ’give’, ’eat’, ’red’, ’where’, ’have
to’, ’good morning’, ’baby’, ’why’, ’ready’, ’time’, ’her’, ’what is’, ’do you want to’, ”don’t know”, ’on your’,
’make’, ’to do’, ”i don’t know”, ’in your’, ’wait’, ’does’, ’did you’, ’look at’, ’three’, ’think’, ’hold’, ’very’, ’you
are’, ”let’s go”, ’jump’, ’ball’, ’your hands’, ’too’, ’friends’, ”where’s”, ’you guys’, ’green’, ’find’, ’i want’, ”i’ll”,
’hey’, ’big’, ’this?’, ’at me’, ’it in’, ’what color’, ’alright’, ’five’, ’when’, ’blue’, ’about’, ’what do’, ’table’, ’hi’,
’nice’, ’me see’, ’let me see’, ’book’, ’over here’, ’way’, ’seat’, ’this is’, ’clean’, ’put your’, ’high’, ’to get’, ’done’,
’him’, ’wash’, ’there you’, ’mad’, ’off’, ’right here’, ’there you go’, ’yellow’, ’we have’, ’around’, ”why he’s”,
’you got’, ’who’, ’i like’, ’mad at’, ”can’t”, ’what you’, ’mad at me’, ’what do you’, ’me i’, ’289’, ’everybody’,
”there’s”, ’love’, ’to be’, ’to put’, ’four’, ’know why’, ’sing’, ’no no’, ”me i don’t”, ’288’, ’today’, ’open’, ’i know’,
’mommy’, ’help’, ’at the’, ’go to’, ’at me i’, ’do it’, ’you need’, ’said’, ”he’s mad”, ”why he’s mad”, ’you like’, ’see
you’, ”at me i don’t”, ’miss’, ’has’, ’you know’, ’i have’, ’mad at me i’, ’if you’, ’chair’, ”know why he’s”, ”he’s
mad at”, ”why he’s mad at”, ”it’s a”, ’world’, ”mad at me i don’t”, ”don’t know why”, ”he’s mad at me”, ”why
he’s mad at me”, ”i don’t know why”, ’put it in’, ’you ready?’, ”me i don’t know”, ’wonder’, ’because’, ’feet’,
’bus’, ”at me i don’t know”, ’need to’, ’use’, ’what?’, ’how i’, ’read’, ”let’s see”, ’you see’, ’the table’, ’i wonder’,
’the world’, ”don’t know why he’s”, ’outside’, ’you?’, ’above’, ”i don’t know why he’s”, ’yay!’, ’you put’, ’i see’,
’how i wonder’, ’what you are’, ”he’s mad at me i”, ’is it’, ’is this?’, ’walk’, ’circle’, ’day’, ”know why he’s mad”,
’stand’, ’try’, ’up above’, ’color is’, ’got to’, ”know why he’s mad at”, ’can i’, ’what color is’, ’i think’, ’all the’,
’hand’, ’away’, ’one two’, ”you don’t”, ’right?’, ”me i don’t know why”, ’a little’, ’and then’, ”don’t know why
he’s mad”, ’put the’, ’to sit’, ’uh-oh’, ’mouth’, ’purple’, ’milk’, ’song’, ’one?’, ’show’].
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In NCRECE PreK, they were:
[’you’, ’i’, ’what’, ’your’, ’do’, ’we’, ’going’, ’going to’, ’okay’, ’can’, ’have’, ’so’, ’good’, ’see’, ’he’, ’all’,
’me’, ’right’, ’go’, ’do you’, ’up’, ’one’, ”it’s”, ’like’, ”let’s”, ’my’, ”i’m”, ’here’, ’put’, ’did’, ”that’s”, ’our’, ’in
the’, ”we’re”, ’think’, ’how’, ’want’, ’now’, ’she’, ’know’, ”you’re”, ’look’, ’about’, ’get’, ’letter’, ’very’, ’down’,
”don’t”, ’little’, ’yes’, ’them’, ’his’, ’when’, ’said’, ’on the’, ’oh’, ’because’, ’say’, ’out’, ’you think’, ’some’,
”we’re going”, ”we’re going to”, ’you can’, ’job’, ’need’, ’come’, ’just’, ’name’, ’this is’, ’can you’, ’two’, ’want
to’, ’make’, ”i’m going”, ’what do’, ”i’m going to”, ’thank’, ’her’, ’thank you’, ’does’, ’have a’, ’who’, ’very
good’, ’good job’, ’all right’, ’back’, ’sit’, ’yeah’, ’got’, ”what’s”, ’what?’, ’friends’, ’where’, ’to the’, ’do you
think’, ’over’, ’what is’, ’hands’, ’to do’, ’what do you’, ’okay?’, ’of the’, ’today’, ’would’, ’you have’, ’let’, ’has’,
’you know’, ’tell’, ’are you’, ’look at’, ’three’, ’word’, ’we have’, ’if you’, ”let’s see”, ’i want’, ’read’, ”he’s”,
’time’, ’too’, ’everybody’, ’give’, ’to be’, ’have to’, ’big’, ’story’, ’book’, ’well’, ’you want’, ’turn’, ’hand’, ’and
then’, ’it?’, ’a little’, ’morning’, ’take’, ’i have’, ’sound’, ’why’, ’and the’, ’is the’, ’more’, ’us’, ’to go’, ’first’,
’ready’, ’this?’, ’remember’, ’did you’, ’him’, ’is a’, ’please’, ’picture’, ’way’, ’the letter’, ’s’, ’had’, ”they’re”,
’from’, ’something’, ’at the’, ’find’, ’let me’, ”it’s a”, ’were’, ’help’, ’next’, ’red’, ’on your’, ’around’, ’show’,
’hear’, ’water’, ’four’, ’write’, ’you to’, ’color’, ’with the’, ”i don’t”, ”can’t”, ’five’, ’guys’, ’that?’, ”there’s”,
’words’, ’listen’, ’go to’, ’your hands’, ’you want to’, ’hold’, ’cat’, ’another’, ’need to’, ’and you’, ’baby’, ’do?’,
’stand’, ’else’, ”you’re going”, ’to get’, ’to put’, ’day’, ’says’, ’again’, ’in your’, ”you’re going to”, ’start’, ’you see’,
’eat’, ”didn’t”, ’those’, ’ready?’, ’things’, ’use’, ’bear’, ’what letter’, ’all the’, ’friend’, ’right here’, ”i’ll”, ’i need’,
’good morning’, ’play’, ’what did’, ’m’, ’really’, ’put it’, ’many’, ’n’, ’your name’, ’put your’, ’to make’, ’doing’,
’going to do’, ’green’, ’went’, ’move’, ’blue’, ’is this?’, ’in a’, ’to see’, ’wait’, ’i can’, ’and what’, ”she’s”, ’kind’,
’house’, ’you guys’, ’called’, ’r’, ’tell me’, ’do we’, ’like to’, ’and i’, ’what do you think’, ’other’, ’it is’, ’could’,
’l’, ’it was’, ’i see’, ’off’, ’kind of’, ’and a’, ’your hand’, ’sit down’, ’clap’, ’people’, ’try’, ’stand up’, ’e’, ’dog’,
’know what’, ’i like’, ’we can’, ’d’, ’table’, ’going to be’, ’i know’, ’alright’, ’up and’, ’b’, ’shake’, ’you go’, ’come
on’, ’wow’, ’talk’, ’how do’, ’together’, ’after’, ’letter?’, ’snow’, ’is this’, ’thing’, ”you don’t”, ’how many’, ’what
are’, ’with a’].

LLM PROMPTS

For the UVA Toddler dataset (Toddler CLASS), we asked Llama2 to examine the following
indicators: (1) “provide active facilitation of children’s learning”, (2) “expand children’s cogni-
tion”, (3) “promote children’s active engagement”, (4) “provide scaffolding”, (5) “provide infor-
mation”, (6) “encourage and affirms”, (7) “ask open-ended questions”, (8) “repeat and extend
students’ language”, (9) “perform self- and parallel talk”, and (10) “use advanced language”.

ALTERNATIVE LLM APPROACHES

In addition to the zero-shot prompting approach, we explored several approaches that did not
work as well: (1) We tried automated prompt engineering whereby we asked Llama2 to gener-
ated hundreds of semantically equivalent variations of the prompts shown above; then, we used
a Gaussian Process (GP) (Williams and Rasmussen, 2006) to optimize (on a small subset of our
datasets) the input prompt in terms of its CLASS score estimation accuracy. For this purpose, we
defined the covariance function of the GP to be the squared-exponential function of the L2 dis-
tance between the embedding vectors of the two prompts, as given by Sentence-BERT (Reimers
and Gurevych, 2019). However, our pilot experiments suggested that all the generated prompts
perform about equally well for CLASS score prediction, and we thus abandoned the idea. (2)
We also tried fine-tuning Llama2 on long-form text (the entire classroom transcript of each 15-
minute session) using Low-Rank Adaptation (Hu et al., 2021) but found that the resulting model
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usually just output the median CLASS score of the training labels.
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