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Knowledge graphs are effective tools for organizing information. In this work, we focus on a specialized
type of Knowledge Graph called an Educational Knowledge Graph (EKG), with prerequisite relations
forming paths that students can follow in their learning process. An EKG provides several features,
including a comprehensive visual representation of the learning domain, and offers students alternative
learning paths. The manual construction of EKGs is a time-consuming and labor-intensive task, re-
quiring domain experts to evaluate each concept pair to identify prerequisite relations. To address this
challenge, we propose a methodology that combines machine learning techniques and expert knowledge.
We first introduce a prerequisite scoring mechanism for concept pairs based on semantic references cap-
tured through word embeddings. Concept pairs are then ranked with respect to their scores, and pairs
with high scores are selected for expert evaluation, reducing the total number of pairs to be evaluated.
The expert is iteratively presented with a concept pair, and an EKG is dynamically constructed in the
background based on the expert’s label. As the graph evolves, some prerequisites can be inferred based
on the existing ones, further reducing the expert’s task. We implemented our methodology in a web appli-
cation, allowing experts to interact with the system and create their own graphs. Evaluations on real-life
benchmark datasets show that our AI-assisted graph construction methodology forms accurate graphs
and significantly reduces expert effort during the process. Further experiments conducted on a dataset
from an educational platform demonstrate that students who study concept pairs in a prerequisite order
determined by our methodology have a better overall success rate indicating that EKGs can improve
learning outcomes in education. Interested readers can access additional material and the dataset at our
Github repository1.

Keywords: semantic search, prerequisite relation extraction, knowledge graph construction.

1. INTRODUCTION

Knowledge graphs (KGs) are developed to organize data sources and enable reasoning based
on the integrated data. In simple terms, a KG is a data structure that stores information about
entities such as people, places, things, concepts, etc., and their relations. In this paper, our
main focus is a distinct type of KG, termed an Educational Knowledge Graph (EKG), which

1https://github.com/cemaytekin/EKG-Dataset
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is designed to show the relations among concepts within an education domain. Among the pos-
sible relations connecting different concepts, we chose the prerequisite relation. Although it’s
challenging to extract, it helps students make more informed choices about their learning paths.
With EKGs, students are offered a visual representation of a domain in education as well as
different learning paths through prerequisite relations. Instructors can also build and maintain
their curriculum as an EKG, together with teaching materials and learning objectives. Although
we only consider the prerequisite relation, other relations such as more/less difficult can also be
included in an EKG. In this work, we first establish a formalism for expressing EKGs based
on prerequisites and propose a methodology that we call ACE for the AI-assisted Construction
of Educational KGs. In fact, the manual construction of an EKG places a substantial burden
on experts, as they must carefully evaluate each concept pair to determine possible prerequisite
relations. It is also challenging for the expert to identify all the indirect prerequisite relations
among concepts that arise due to the transitivity property of the prerequisite relation (i.e. if A is
a prerequisite of B and B is a prerequisite of C, then A is a prerequisite of C). To address these
challenges, ACE combines machine learning techniques with expert knowledge and enables ac-
curate construction of EKGs containing numerous concepts without requiring experts to assess
all combinations of concept pairs individually. Our first contribution is a Prerequisite Rank Scor-
ing (PRS) mechanism which ranks all the concept pairs within a concept set according to their
likelihood of forming a prerequisite relation for expert evaluation. Our second contribution is an
iterative strategy that consults the expert for high-ranked concept pairs and dynamically updates
the EKG based on the expert’s answers. Prerequisite pairs that can be inferred from the current
EKG are eliminated from the list to further reduce the expert effort.

The main research challenge for constructing an EKG is building a model to assign prereq-
uisite scores to concept pairs in a given domain. The existing methods in the literature treat pre-
requisite detection as a binary decision problem and do not provide a ranking mechanism among
the prerequisite candidates. Furthermore, they rely on external features such as the Wikipedia
page information of the concepts (Miaschi et al., 2019), the student exam results (Chen et al.,
2018), or a specific book (Adorni et al., 2019) to determine the prerequisites. ACE methodology
has two advantages over the state-of-the-art: (1) It only uses the plain text descriptions of the
concepts to infer prerequisite relations without requiring external resources, and (2) it is able to
produce a prerequisite score for any given concept pair.

We implemented the ACE methodology as a web application2. Experts can interact with
the system to form their EKGs for a desired domain. Students can also use the implemented
system to see the EKGs of the domain that they are interested in. The ACE system can further
generate larger labeled data sets for training supervised models for prerequisite identification.
We evaluate the ACE methodology using benchmark datasets and EKGs that we obtained from
an e-learning site specialized in machine learning topics. Experimental results demonstrate that
our methodology enables experts to construct accurate EKGs with many concepts in a relatively
short time. Further evaluation results on real-life datasets also show that students learning the
concepts based on the prerequisite scores of our algorithm perform better than students who do
not.

Our main contributions can be summarized as follows:

1. We introduce a formalism for expressing EKGs and provide a comprehensive methodol-
ogy for their construction.

2http://aytekincem.pythonanywhere.com/
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2. We present a novel unsupervised scoring method that can identify and rank potential pre-
requisite pairs in a given concept set without requiring any initial training data.

3. We offer the ACE web application that can be used by both experts and students. Ex-
perts can create their own EKGs, while students can observe the paths in the constructed
EKGs to understand the prerequisite relations between different concepts within a par-
ticular domain.

4. We test our prerequisite ranking methodology on the real-world student exam data and
show that students knowing the higher ranked prerequisites by our methodology perform
better than students knowing the lower ranked prerequisites.

The rest of the paper is organized as follows: Section 2 discusses related work. In Section 3,
we define the problem and terminology. Section 4 introduces our methodology to construct an
EKG from a given set of concepts and their textual descriptions. In Section 5, implementation
details of the ACE methodology are given. Section 6 provides the experimental evaluation, and
finally, Section 7 concludes our work with an outlook on future avenues.

2. BACKGROUND AND RELATED WORK

In this section, we provide background information on KGs and examples of their real-life
use cases. We then introduce EKGs. Finally, we present a literature survey on prerequisite
detection, one of the main relations forming EKGs.

2.1. KNOWLEDGE GRAPHS

KGs are composed of a network of nodes and edges, where nodes represent the entities and
edges represent their relations. The most generic example is Google’s KG3, which is designed
to show relations among different pieces of information so that it can provide a better under-
standing of what a user is searching for. KGs offer several advantages compared to other data
representation models, such as the relational model and NoSQL, mainly in terms of flexibility
and scalability (Hogan et al., 2021), and their use has been extended to various domains; for
example, they have been applied in the tourism sector to organize festivals in Chile. The graph
includes entities such as cities, events, and dates, represented by nodes, and relations between
these entities, represented by directed edges with different labels. KGs also enable the deduc-
tion of new knowledge that is not explicitly stored in the graph through reasoning and inference.
This involves using logical rules and algorithms to derive new facts based on existing infor-
mation in the graph. For instance, in the field of recommendation systems, KGs can capture
the relations between users, items, and their attributes. By reasoning over this graph, new rec-
ommendations can be generated based on the preferences and behaviors of similar users or the
characteristics of similar items (Shokrzadeh et al., 2024). Another example is in the domain
of healthcare, where the KGs have nodes representing a patient, a disease they are diagnosed
with, and the symptoms they are experiencing. By applying reasoning techniques, the graph
can deduce additional information, such as potential treatments for the disease based on known
effective treatments for similar cases (Yang et al., 2024). In our work, we use the transitivity

3https://en.wikipedia.org/wiki/Google_Knowledge_Graph
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property of the prerequisite relation to derive new conclusions from existing information. Tran-
sitive relations are represented as paths that are greater than length one, and the number of such
paths correspond to the number of captured new prerequisite information among nodes in our
KGs.

KGs in educational contexts, also sometimes referred to as concept maps, usually represent
abstract ideas and principles rather than concrete real-life objects. Concept maps are visualiza-
tion frameworks that illustrate the relationships between various concepts within a specific edu-
cational domain (Novak and Cañas, 2006). Using this means of visualization has been shown to
be beneficial for learners on multiple levels, such as improved knowledge retention, a more sat-
isfactory learning experience, reduced cognitive load, and better learning achievements (Novak,
2010; Chiou et al., 2015; Furtado et al., 2019). The initial works on concept maps assume that
domain experts manually construct them; however, later on, various attempts have been made
to construct concept maps either automatically or semi-automatically. For example, Aguiar
et al. (2016) construct concept maps by using natural language processing techniques (NLP)
on the given text document. The resulting map has the extracted noun phrases as key concepts
and verbs between them as relations. However, precision (29%) and recall (44%) scores were
low when comparing the identified relations of the automatically constructed concept maps with
concept maps constructed by experts. Lee et al. (2015) adopted another approach which consists
of utilizing burst analysis of words to establish relations between terms. Meanwhile, Hirashima
et al. (2015) propose a semi-automatic method through which instructors and students collabora-
tively construct concept maps where instructors provide students with the concepts and students
are asked to define the possible relations.

These approaches often assume an unlimited number of possible relations among concepts,
making it challenging to fully automate the construction of concept maps (Pinandito et al., 2021).

2.2. PREREQUISITE RELATION IDENTIFICATION

Extraction of prerequisite relations among educational concepts from textual data is a challeng-
ing task and an active area of research. One way this has been pursued is through establish-
ing pairwise concept prerequisite relations among Wikipedia articles, starting with the work
of Talukdar and Cohen (2012). Subsequently, other methods are developed to detect prerequi-
site relations between Wikipedia articles, utilizing either unsupervised or supervised techniques.
Most of these methods treat the titles of Wikipedia articles as concept names and the content of
the articles as their textual descriptions. Wikipedia articles are connected through hyperlinks
which can be used to train a supervised machine learning model as in the work of Sayyadi-
harikandeh et al. (2019), Liang et al. (2019) and Pan et al. (2017). In terms of unsupervised
methods, the most prominent one is reference difference (RefD) (Liang et al., 2015), which
makes use of the densely linked structure of Wikipedia. RefD captures prerequisite relations be-
tween pairs of concepts (ci, cj) from their Wikipedia articles by counting how often links from
ci refer to cj and how often links from cj refer to ci. A prerequisite relation is established from
concept cj to ci if the links in ci refer to cj more frequently than those in cj referring to ci. Our
prerequisite detection method extends the idea of RefD by applying it to unstructured text. We
also extend our previous work (Aytekin et al., 2020) by incorporating the notion of semantic
reference and a ranking mechanism.

Adorni et al. (2019) aim to identify prerequisite relations by exploiting temporal patterns be-
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tween concepts in books. The authors combine burst analysis and the co-occurrence of concepts
to identify these patterns. However, this method relies on extracting all the information from the
same book to make sure that consistent temporal patterns are obtained. Molontay et al. (2020)
propose a data-driven probabilistic student flow approach to characterize the prerequisite rela-
tions among university courses based on the success rates of students in those courses. Manrique
et al. (2019) utilize generic knowledge graphs such as DBpedia, Wikidata, and YAGO to detect
prerequisite relations. More recently, Zhang et al. (2022) introduced MHAVGAE, a multi-head
attention variational graph auto-encoders model. MHAVGAE takes as input an existing knowl-
edge graph consisting of two types of entities, concepts, and resources and estimates prerequisite
relations among resources by leveraging the existing prerequisite relations. Similarly, Jia et al.
(2021) discuss the automatic completion of a heterogeneous graph consisting of concepts and
learning objectives.

Our methodology ACE, on the other hand, aims to construct a knowledge graph from scratch
based on given concepts and their descriptions. Therefore, ACE could complement MHAVGAE
by producing an initial (though incomplete) graph with some limited expert effort, which could
then be fed to MHAVGAE for completion. Existing approaches described in the literature often
require the inclusion of external features, such as Wikipedia page information, student course
data, or known prerequisite relations, as in the case of MHAVGAE (Zhang et al., 2022), while
our approach only requires the plain textual descriptions of the concepts. The complexity of
certain domains can make it challenging to identify prerequisite relationships, especially when
the prerequisite relation from A to D is indirect, having intermediate concepts in between, such
as A → B → C → D. The work of Li et al. (2019) underscores the difficulty of annotation
when determining prerequisite dependencies, particularly “long dependencies”. By keeping
the labeled prerequisite pairs in a graph structure, we allow experts to see all of these “long
dependencies” in the form of paths in the graph.

Yu et al. (2021) describes the design of one of China’s largest MOOC websites (MOOC-
CubeX) for adaptive learning. The website contains a repository consisting of around 4K
courses, 230K videos, 358K exercises, 637K fine-grained concepts, and over 296 million raw
behavioral data of more than three million students. The main research objective of MOOC-
CubeX is to personalize the student learning experience and recommend the best possible learn-
ing paths to students. To achieve this, both student-related and content-related data are utilized.
Content-related data comprises identified concepts and pairwise prerequisite relations of those
concepts. Due to the massive size of the unlabeled pairs, experts manually label a small portion
of them, which is then used by a neural network as training data. The trained NN then predicts
the prerequisite relations of the unlabeled pairs by assigning probability scores to each of them.
The experts evaluate these probability scores, and verified pairs are included in a separate pool.
Another group of experts checks whether the prerequisite pairs in this pool form cyclic relations
and, if so, removes the ones that cause cycles. Although this process is similar to our general
methodology, the unsupervised nature of our prerequisite scoring algorithm eliminates the need
for training data. Moreover, our iterative graph-building algorithm automatically removes pairs
that can cause cycles while the expert labels the pairs. Therefore, instead of first labeling all of
the pairs and then checking for cycle-forming pairs, our method performs online cycle detection
and removal.
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3. PRELIMINARIES AND PROBLEM DEFINITION

In this section, we provide the essential definitions and the terminology. We start with the
preliminary definitions from Graph Theory, which will lead us to the formal definition of an
EKG.

Definition 1 A directed graph G = V,E consists of a set of vertices (also called nodes) V and
a set of edges E that are ordered pairs of distinct vertices from V .

In our case, each node in a graph represents a concept; concepts are visualized as circles,
while directed edges represent relations among those concepts, as shown in Figure 1a.

Definition 2 A simple directed path from node A to node B in a graph is a sequence of edges
that originates at node A and terminates at node B such that we can reach B from A by follow-
ing directed edges. All nodes in the path are distinct.

Definition 3 A directed edge from node A to node B is called a transitive edge if and only if
there is a simple directed path from node A to node B.

Figure 1a shows transitive edges in red. Transitive edges, also called redundant edges, do
not provide additional connectivity information in the graph.

Definition 4 A directed acyclic graph is a directed graph with no cycles where a cycle is a
sequence of edges forming a directed path starting from a node A and ending at the same node
A.

There may be different relations among concepts, but we concentrate on the prerequisite re-
lation, which is fundamental for students to navigate in the graph by following different learning
paths as prerequisite chains. A concept ci is a prerequisite of another concept cj if one must
learn ci before studying cj . The prerequisite relation has three axioms:

1. Asymmetry: If concept ci is a prerequisite of concept cj , then concept cj cannot be a
prerequisite of concept ci.

2. Irreflexivity: A concept cannot be a prerequisite of itself.

3. Transitivity: If concept ci is a prerequisite of concept cj , and concept cj is a prerequisite
of concept ck, then concept ci must also be a prerequisite of concept ck.

Definition 5 An Educational Knowledge Graph of a set of concepts C, denoted by EKG, is
a DAG where the nodes represent the concepts, and the simple directed paths among pairs of
nodes represent the prerequisite relations among the concepts.

An EKG needs to be acyclic, and the acyclicity property can be proven easily since for a
cycle to appear in EKG, we need to have a directed path starting from concept ci and ending
back at ci. This means that ci is a prerequisite of ci, which violates the axiom of irreflexivity
property of the prerequisite relation. A prerequisite relation could be direct or indirect, which
we define based on an EKG as follows:
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(a) (b)

Figure 1: Illustration of the transformation from EKG to MEKG.

Definition 6 A concept ci is an indirect prerequisite of concept cj if and only if there is a simple
path of length 2 or longer from ci to cj in the EKG.

Definition 7 A concept ci is a direct prerequisite of concept cj if and only if there is a directed
edge from ci to cj in the EKG and ci is not an indirect prerequisite of concept cj

Definition 8 A graph Gmin is called a Minimal Educational Knowledge Graph of G if and only
if Gmin has the same nodes as G and Gmin has all the edges of G except the transitive edges.

Let C be a set of concepts appearing in a domain D, where each concept ci ∈ C is associated
with a textual description di. Our goal is to construct an MEKG, representing the concepts in
C as nodes and their prerequisite relations as directed edges based on textual descriptions. In
Figure 1a, we have depicted an EKG with transitive edges. We already know that concept ci is a
prerequisite of concept ck because it is reachable from ci (through edges 1 and 3), and concept cm
is a prerequisite of concept cn because it is reachable from ck (through edges 4 and 5). Because
these paths already exist, edges 6 and 7 are transitive edges and should not be included in the
MEKG, as shown in Figure 1b.

The textual descriptions that are provided together with the concepts give us hints as to
which concept is a prerequisite of another concept. We exploit those hints through deep learning
models and ease the expert’s task of constructing the MEKG. Details of our methodology are
described in Section 4.

4. ACE METHODOLOGY FOR CONSTRUCTING A MEKG

We assume that there is a domain of interest together with a set of concepts with their textual
descriptions from that domain. A snapshot from our web-based application is provided as an
example in Figure 2, which contains a small set of concepts with their textual descriptions. Our
aim is to construct a MEKG where nodes are the concepts, and directed edges between nodes
represent prerequisite relations. Our prerequisite pair-scoring mechanism for building the graph
is based on the references in the textual descriptions, which could be exact references or seman-
tic references. A concept can have different explanations, and depending on its explanation, its
prerequisites can vary. Consequently, we rely on references to concept names in those explana-
tions to identify prerequisite relationships, yet the final decision is left to the expert. The expert
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Figure 2: A sample set of concepts and their descriptions from the ACE Web Application.

may determine that, although references exist, they are insufficient to establish a prerequisite
relationship. Conversely, the expert might decide that a concept is a prerequisite, despite the
absence of references. Therefore, by incorporating expert feedback, we improve the reliability
of our EKGs in prerequisite identification. In the following subsections, we first explain the
notion of semantic references as opposed to exact references. Then we describe our scoring
mechanism based on semantic references.

4.1. SEMANTIC REFERENCES VERSUS EXACT REFERENCES IN PREREQUISITE RE-
LATION IDENTIFICATION

If a learner frequently encounters some keywords in the textual description dj of a concept ci
then this is an indication that one should know ci before they may fully understand dj . De-
termining which keywords are related to which concept in a given textual description requires
semantic analysis of the textual description. In our problem setting, we have predetermined
concepts where each concept has its own textual description, and we need to check if there are
references to other concepts in a given textual description. These references could be either
exact or semantic references. An exact reference is identified when a concept is explicitly
mentioned in the textual description, while a semantic reference is observed when keywords
with a semantic connection to a concept are in the textual description. For example, let cj be
recurrent neural networks along with its description dj and let ci be chain rule. If we encounter
specific keywords such as “derivative,” “product rule,” or “quotient rule” within the description
dj , which are highly associated with the concept chain rule (ci), we consider them as semantic
references to ci in dj . However, if we directly encounter the concept name chain rule in dj , we
consider that as an exact reference to ci. Based on the frequency and prevalence of semantic and
exact references to ci in dj , we can decide if chain rule is a potential prerequisite of recurrent
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neural networks. The process of identifying exact references is straightforward. But, in order to
capture the semantic similarity, we employ embeddings.

4.2. EMBEDDINGS FOR SEMANTIC SIMILARITY

To compute semantic similarities, each word sequence must be represented by a fixed-length
vector called its embedding. Models learn embeddings through training on large amounts of
textual data based on how often words appear together in the training data. By representing
word sequences as fixed-length vectors, the models can compare the embeddings using metrics
such as cosine similarity. Cosine similarity measures the angle between two vectors, with a
smaller angle indicating a higher level of similarity. Therefore, if two word sequences have
similar embeddings, their cosine similarity will be high.

In this work, we used three models that can produce embeddings with different strategies.
The first two are Word2Vec and Fasttext. These models produce fixed embeddings for the words
they encounter during their training phase. We calculate the similarities between sequences
of words (between a 10-gram and a concept name, which can be composed of any number of
words). To be able to do this with Word2Vec and Fasttext, we represent two sequences by
taking the average of the word embeddings for each individual word in the sequence. Since each
embedding is a vector and vectors can have different lengths, we also make sure that the averaged
vectors are unit vectors by dividing each vector by its L2 norm (Ecludian norm). Furthermore,
Word2Vec cannot deal with out-of-vocabulary words (oov); therefore, if there is an oov in either
of the sequences, we exclude it from the calculation. Fasttext, on the other hand, considers each
word as a combination of character n-grams. It uses these n-gram representations to generate
word embeddings. Therefore for the calculations with Fasttext, we don’t check for oov because
Fasttext can recognize each word even if it is oov due to its character n-gram representations.

The overall methodology for obtaining the embeddings is provided in Figure 3. For training
Word2Vec and Fasttext models, we first formed a corpus that consists of Wikipedia articles that
are of category “Machine Learning”, “Linear Algebra” and “Algorithms and Data Structures”.
We chose these domains as we used standard MEKGs for evaluation that mainly include con-
cepts from these areas. We also included the text of all the articles that are linked from those
articles, eventually reaching a corpus of 2.5 million sentences. We then preprocess our corpus
by removing stopwords and punctuation marks and by converting all words to lowercase. We
tokenized the sentences into individual words and trained Word2Vec and Fasttext models on
the preprocessed corpus. We used the Gensim library4 in Python to train both Word2Vec and
Fasttext models.

For Word2Vec, we set the dimension of the word embeddings to 100 and trained the model
with the skip-gram algorithm with a window size of 20. We also set the minimum word count
to 100, meaning that words occurring less than 100 times in the corpus are excluded from the
vocabulary. We trained the Word2Vec model for 10 epochs. For Fasttext, we set the dimension
of the word embeddings to 100, as in the case of Word2Vec, and trained a model using a skip-
gram algorithm with a window size of 20. Similarly to Word2Vec, we set the minimum word
count to 100. We also set the character n-gram size to range from 3 to 6, meaning that the model
considers character n-grams of lengths 3, 4, 5, and 6 during training.

The third model we employ is a more sophisticated and recent model named all-MiniLM-
L6-v2, which belongs to the category of sentence-transformers models. Sentence Transformers

4https://radimrehurek.com/gensim/models/word2vec.html
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start by employing a pre-trained language model, such as Bidirectional Encoder Representa-
tions from Transformers (BERT) (Devlin et al., 2019) or Unified pre-trained Language Model
(UniLM) (Dong et al., 2019) and then train with pairs of sentences that are semantically related
and non-related. The training process encourages the models to generate embeddings where
semantically related sentences have close vector embeddings and non-related sentences have
distant vector embeddings. The all-MiniLM-L6-v2 employs Microsoft’s MiniLM pre-trained
language model5 and is fine-tuned on 1B sentence pairs for the semantic similarity task. The
fine-tuned model can be downloaded from Huggingface6. Given a sentence with a maximum of
128 tokens, all-MiniLM-L6-v2 produces a fixed-length sentence vector embedding of size 384.
Since the model is already fine-tuned on a very large dataset for semantic similarity tasks, we
directly use the model without any further fine-tuning and analyze its effect on our prerequisite
detection methodology together with the two other models (Word2Vec and Fasttext).

Figure 3: Flowchart illustrating the prerequisite detection in ACE methodology.

5https://www.microsoft.com/en-us/research/publication/
6https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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4.3. SCORING BASED ON SEMANTIC AND EXACT REFERENCES

Given a set of concepts C and ci ∈ C where di is the textual description of ci, we calculate either
of the two reference scores: the Cumulative Semantic Reference score (CSR) or the Cumulative
Exact Reference score (CER).

We use a sliding window strategy to split di into n-grams, with a fixed value of n set to 10
and stride parameter s (which determines the distance that the window moves at each step) also
set to 10. This is done to ensure a reasonable sentence size while simultaneously optimizing the
speed and performance of the algorithm’s execution.

Let di be a textual description that contains x number of 10-grams. We denote each 10-gram
of di by sij , where 0 < j ≤ x. To detect semantic references, we consider the cosine similarities
between the embeddings of concept names in C and the embedding of sij . We would like to
note that our language model returns a single embedding for sij . CSR score of pair (ci, ck) is
calculated as shown in Equation 1.

CSR(ci, ck) =
∑

j

simCosine(sij, ck) (1)

CSR scores are not symmetric, meaning that CSR(ci, ck) may not be equal to CSR(ck, ci)
since semantic references of ck in di are different than the semantic references of ci in dk.

Exact references are identified without any word or sentence embedding. Given a concept ci
and its description di with 10-grams sij , the formula for CER is:

CER(ci, ck) =
∑

j

I(sij, ck) (2)

In this context, I(sij, ck) is an indicator function that outputs 1 if the 10-gram contains the
concept name ck and returns 0 otherwise.

The prerequisite Ranking Score (PRS) is based on the CSR or CER scores of the concept
pairs. For two concepts ci and ck, a high CSR(ci, ck) or CSR(ck, ci) score indicates a strong
possibility that there is a direct prerequisite relation from either ci to ck or ck to ci. Although
the CSR score is a good indicator for prerequisite relations, it results in false positives when it
is used to determine the direction (i.e. ci → ck vs ck → ci), especially when CSR(ci, ck) and
CSR(ck, ci) are close to each other. Therefore the PRS score is based on the maximum CSR
scores as shown in Equation 3.

PRS (ci, ck) = max {CSR (ci, ck) , CSR (ck, ci)} (3)

We note that PRS is symmetric thus PRS(ci, ck) = PRS(ck, ci). PRS with CER is
defined similarly as shown in Equation 4.

PRS (ci, ck) = max {CER (ci, ck) , CER (ck, ci)} (4)

To identify potential prerequisite pairs, we calculate the PRS scores of all unordered pairs
in the concept set and sort them according to their scores. We then consider the top t percent of
the sorted pairs potential direct prerequisite pairs to be evaluated by the expert.
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Algorithm: ACE Main Algorithm

Input:
C = {c1, . . . , cm} ▷ Concepts
d = {d1, . . . , dm | di describes ci ∈ C} ▷ Textual descriptions of C

Output:
MEKG for set C

1. RL← rank(C, d) // Rank all the unordered pairs of C according to their PRS scores.

2. EKG = (V,E), where V = C and E = ∅ // Initial graph with no edges.

3. for k in range(0, len(RL)) do

(a) (ci, cj) = RL[k] // Pair is retrieved from the ranked list.

(b) if NOT (Path P ⟨ci, . . . , cj⟩ exists or Path P ⟨cj, . . . , ci⟩ exists in EKG)

i. answer← expert response // Expert selects an option.
ii. if answer == 0 then

A. E ← E ∪ {ci → cj}
B. Reduce(EKG) // Remove transitive edges.

iii. else if answer == 1 then
A. E ← E ∪ {cj → ci}
B. Reduce(EKG) // Remove transitive edges.

iv. else if answer == 2 then
A. break // Expert decides to finish labeling.

4. end for

pi

d

c

d is labeled and pi and c
are its prerequisites


now pi d becomes a tran-
sitive edge and is removed


pi

d

c

c is labeled, and pi is
its prerequisite


pi

d

c

Figure 4: Scenario for an existing edge becoming a transitive one with newly labeled direct
prerequisites.

5. ACE MAIN ALGORITHM AND SYSTEM IMPLEMENTATION

The ACE System takes a set of concepts along with their textual descriptions as input. Figure 2
shows a sample input set. Based on the provided input, ACE forms an MEKG based on expert
feedback and eliminates redundant edges. It then displays the result as shown in Figure 5. The
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experts can prepare concept descriptions or obtain them from existing resources. The experts
also have the option to modify the descriptions by removing or adding sentences as needed.

ACE algorithm has two distinct phases. In the first phase, ACE assigns scores to all un-
ordered pairs of the concept set C based on their PRS values as described in Section 4.3. This
results in a list, RL, containing all concept pairs, sorted from the most likely to the least likely
to form a prerequisite relation.

In the second phase, ACE initializes the MEKG as a null graph, where V corresponds to the
set of concepts and E to the set of edges which is initially empty. Subsequently, the algorithm
iterates over concept pairs in RL. For each pair (ci, cj), the current graph is checked to see if
there is an existing path from ci to cj or cj to ci. If there is a path P < ci, . . . cj > then we can
infer that ci is a prerequisite of cj and similarly if a path P < cj, . . . ci > exists then we can
infer that cj is a prerequisite of ci. If neither of the paths exists, the algorithm asks for expert
feedback, presenting the pair for evaluation. The expert’s response is obtained through a graph-
ical user interface (GUI) and stored in the variable answer. Based on the expert’s response, the
algorithm takes appropriate actions to update the MEKG. If the expert determines that ci is a
direct prerequisite of cj , the directed edge {ci → cj} is added to the MEKG. Alternatively,
if the expert identifies cj as a direct prerequisite of ci, the directed edge {cj → ci} is included.
The graph formation process may reveal that some of the already created edges are transitive.
Such a scenario is shown in Figure 4, where red nodes in the figure indicate the current con-
cept for which direct prerequisites are labeled. Similarly, dashed red lines indicate prerequisite
candidates for labeling, whereas black edges denote actual prerequisites after the transitive edge
is eliminated. Such cases are checked, and newly formed transitive edges are removed by the
Reduce(EKG) operation in the algorithm. If the expert’s response does not indicate a direct
prerequisite relationship, no action is taken in the current MEKG. The expert can also label
some of the sorted pairs and retrieve the corresponding MEKG without having to complete all
the pairs in RL.

Figure 5: Example of a constructed MEKG for 6 concepts.

We implemented the ACE methodology in a web application. Experts can use the system to
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create their own MEKGs by interacting with a simple GUI. Figure 6 shows an instance where
the expert decides that there is a prerequisite relation from conditional probability to bayes rule
by checking the box corresponding to C2 → C1. The label C1 corresponds to the name of the
first concept; C2 corresponds to the name of the second concept. The PRS score is also included
as a reference for the expert. Each time the expert evaluates a concept pair, she can also see the
resulting MEKG in the web application. Figure 5 shows an example MEKG. We can see
that the DAG shows the prerequisite relations among 6 concepts. Experts may also use the web
application to create labeled data for training supervised algorithms on a prerequisite detection
task. To do that, the ACE system has the option to convert the graph to binary labeled data in
tabular form as shown in Table 1 where the presence of a simple directed path between a pair of
concepts is represented by ‘1’ to indicate a prerequisite relationship from the first concept to the
second concept in the pair.

Figure 6: Example of an instance where the
expert makes a selection from the GUI

Table 1: Binary labeled data where 1 indicates
a prerequisite relation from the first concept to
the second concept and 0 means not a prereq-
uisite

Concept 1 Concept 2 Label
C1 C2 1
C1 C3 0
C1 C4 0
C4 C1 1
C4 C2 1
C4 C3 0

5.1. ROLE OF THE EXPERT

The involvement of an expert helps ensure the MEKG does not contain invalid edges, assum-
ing the expert accurately assigns direct prerequisite relationships. Note that invalid edges in
the graph can have a cascading effect, resulting in the formation of many invalid paths. Further-
more, references in a textual description indicate a potential prerequisite relation, but sometimes,
expert assistance is needed in order to determine the direction of the relation because both de-
scriptions can refer to each other with similar CSR scores. For example, in our evaluation study
we have encountered the concept linked list whose textual description refers to concept tree as
“linked list can be used to implement several other data structures such as stack and tree” and
at the same time, textual description of concept tree also refers to concept linked list as “trees
are implemented with linked lists” thus CSR(linked list, tree) and CSR(tree, linked list) are
high and close to each other. Therefore instead of automatically assigning the prerequisite direc-
tion either from linked lists to tree or from tree to linked lists, we refer to PRS(linked list, tree)
which is the maximum of the two CSR scores for the selected pair and ask the expert to decide.

For a concept set with n concepts, there are n·(n−1)
2

unordered concept pairs. For each un-
ordered pair A,B, the expert needs to evaluate whether there is a prerequisite relation from A
to B, from B to A, or no prerequisite relation at all. If the expert evaluates approximately the
top t% of the pairs, then the expert effort is

[
n·(n−1)

2
· t
100

]
− d units, where d corresponds to the

number of transitive edges that we inferred from the MEKG. Since d is not a fixed value and it
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could be 0 in the worst case, therefore we eliminated d in theoretical calculations for simplicity.
In this case the relative reduction in expert effort as: n·(n−1)

2
· (1− t

100
).

If t = 100, the expert will have considered all the concept pairs and the resulting MEKG
will be identical to the gold-standard graph. However, the relative reduction will be 0. On the
other hand, for t < 100, the expert may miss some prerequisite pairs. According to our evalua-
tion of real-life MEKGs constructed by the experts, as shown in Section 6, on average, between
5% - 15% of the unordered pairs have direct prerequisite relations (edges). With this in consider-
ation, we also introduce the maximum relative reduction, which is the minimum value of t under
which the expert will definitely miss some pairs that contain prerequisite relations. For example,
if the standard MEKG contains 100 concepts and 495 edges, the maximum relative reduction
will be equal to 90 because we have 100×99

2
= 4950 number of unordered pairs, and 495 of them

contain a direct prerequisite relation (edges). This means that if a perfect prerequisite ranking
algorithm uses t = 10 in this example, all 495 prerequisite pairs shown to the expert will be the
true candidates, and the expert will build a standard MEKG with a maximum possible relative
reduction of 90%.

6. EXPERIMENTAL EVALUATION

In this section, we perform two experiments to test the capability of our prerequisite scoring
methodology and then perform a third experiment to assess the reliability and scalability of our
constructed MEKGs using the ACE algorithm.

In the first experiment, we create a supervised binary prerequisite classifier CSR bin(t),
which turns the CSR scores of concept pairs into binary classes 0 and 1 according to a learned
threshold t. Class 1 is composed of pairs (A,B) where there is a prerequisite relation from A
to B, and Class 0 is composed of pairs where there is no prerequisite relation from A to B. By
creating a binary supervised classifier, we can evaluate our prerequisite scoring methodology
against the other well-known approaches in the literature.

We argue that concept pairs with high CSR scores have a higher number of semantic ref-
erences and, therefore, are expected to have a positive correlation with student performance.
In the second experiment, we assess CSR scoring methodology using a real-world student
dataset (Gong et al., 2022). We claim that concept pairs (A,B) having high CSR scores may
indicate a prerequisite relation from A to B therefore, students knowing A should demonstrate a
better performance on questions related to B than randomly selected students. To show this, we
form 1000 concept pairs (A,B) for which we have one control group and one treatment group.
The treatment group consists of students who know the concept A and solve questions related to
B, and the control group consists of random students who only solve questions related to B. We
then show that the treatment group consistently outperforms the control group on the pairs with
high CSR scores, indicating that high CSR scores and student performances are correlated.

In the third and final experiment, we evaluate the reliability of our MEKGs constructed by
the ACE Algorithm. We then discuss the impact of the language model choice, the mode of the
prerequisite scoring methodology (CSR or CER), and the concept set size on the runtime of
our algorithm and the quality of the resulting graphs.
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6.1. PREREQUISITE SCORING METHODOLOGY AS A SUPERVISED BINARY CLASSI-
FIER

Prerequisite detection is treated in the literature as a binary classification problem. Given a pair
(A,B), the supervised models learn to predict whether a prerequisite relation exists from A to
B. To make a meaningful comparison with the related models in the literature, we do not use
PRS with expert interaction and instead create CSR bin(t) which assigns CSR(B,A) scores
to every pair and labels the t percent of the highest scored pairs as 1 indicating a prerequisite
relation from A to B, and others as 0 indicating no prerequisite relation. The parameter t is a
learnable parameter, and we decide that it should be the t value that gives the highest F1 score
in the training data, as both recall and precision are equally important in this task.

We evaluate CSR bin(t) on the University Course Dataset (UCD), introduced by Liang et al.
(2017). UCD dataset initially contained 1008 manually annotated prerequisite concept pairs ex-
tracted from the Computer Science course syllabus of various universities in the USA. UCD was
later enriched by Roy et al. (2019) by providing 1512 negative instances (i.e., non-prerequisite
pairs) on top of 1008 positive pairs making it a larger and more complete dataset with 2520
pairs. The dataset can be downloaded from GitHub7. Roy et al. (2019) conducted a comparative
analysis of the outcomes associated with four distinct prerequisite detection strategies applied to
this dataset. Two of these strategies, developed by Pan et al. (2017) and Liang et al. (2017), are
referred to as MOOC-RF and CPR-Recover and the remaining two strategies, introduced by
Roy et al. (2019) are referred to as PREREQ and Pairwise LDA. Each concept pair (A,B) in
UCD is labeled either 0 or 1. Label 1 indicates that A is a prerequisite of B, and 0 indicates that
A is not a prerequisite of B. Each concept in the concept pair has its corresponding Wikipedia
article; therefore, the textual content in these articles is used as concept descriptions. Liang
et al. (2017) report that they use 60% of UCD data as training and 40% of it as testing for all the
reported models with 5-fold cross-validation. To make a fair comparison, we also use the same
setup. After training, we learn the t value to be 68. In addition to the four mentioned models,
we experiment with two state-of-the-art large language models and their various configurations
to assess their capability to understand prerequisite relations. These models include GPT-3.5
turbo, GPT-4o-mini, GPT-4o-mini with Retrieval-Augmented Generation (RAG)8, LLAMA 3
and LLAMA 3 with RAG9. For each model, we construct the initial prompt “is concept B a
prerequisite of A?” and expect the LLM to answer it with “yes” or “no” and then make an ex-
planation. In cases where the LLMs do not give a clear response in the form of a binary decision
“yes” or “no”, we use a Chain-of-Thought (CoT) prompting technique. Specifically, we give a
follow-up prompt to the LLM as: “If this would be a binary classification task where class 1
consists of pairs (A, B) in which B is a prerequisite of A and class 0 consists of pairs (A, B) in
which B is not a prerequisite of A, how would you evaluate this pair (A, B) according to your
previous answer: + previous answer”, where the previous answer is a variable that stores the
LLM’s previous output. This way, we let the LLM evaluate and make a binary decision based
on its previous answer. For the experiments with GPT-3.5 turbo, LLAMA 3, and GPT-4o-mini,
we send the query “is concept B a prerequisite of A?” and parse the LLM output to see if it
contains a “yes” or “no” keyword. If such a keyword is not found, we use the CoT prompt to get
the final output which always contains a “yes” or “no” keyword. In the case of RAG configu-

7https://github.com/suderoy/PREREQ-IAAI-19
8https://openai.com/blog/gpt-3-apps/
9https://www.llama.com/llama-downloads
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rations, we provide two texts (textA, textB) corresponding to the Wikipedia articles of concepts
A and B to the LLM. We then designed the prompt to ask whether the text of concept B is a
prerequisite for understanding the text of concept A. To avoid exceeding the input size limit, we
only consider the first 500 words from textA and textB. As with the other models, we use the
CoT prompt if the parsed output does not contain a “yes” or “no” keyword.

Figure 7: Zero shot LLM used as a binary classifier
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Table 2: Table comparing different prerequisite detection methods.

Name of the method Precision Recall F1 score
PREREQ 46.76 91.64 59.68
Pairwise LDA 98.27 16.42 28.14
CPR-Recover 16.66 46.51 24.54
MOOC-RF 43.70 53.43 50.95
CSR binary classi-
fier(t=68)

46.13 1 66.53

Zero-shot GPT-3.5
Turbo

83.33 44.77 58.25

Zero-shot GPT 4o-mini 86.70 35.80 50.70
LLAMA 3 72 62.68 67.02
GPT 4o-mini RAG 87.23 61.11 71.92
LLAMA 3 RAG 80.64 62.18 70.22

In Table 2, we compare the performance of CSR bin(t = 68) with nine other models: PRE-
REQ, Pairwise LDA, CPR-Recover, MOOC-RF, Zero-shot GPT-3.5 Turbo, Zero-shot GPT-4o-
mini, LLAMA 3, GPT-4o-mini RAG, and LLAMA 3 RAG in terms of recall, precision, and F1
score. From the table, we can observe that CSR bin(t = 68) outperforms traditional models
such as PREREQ, Pairwise LDA, CPR-Recover, and MOOC-RF in terms of recall and overall
F1 score. CSR bin(t = 68) achieves a perfect recall score of 1, meaning all actual prereq-
uisite pairs in the dataset were correctly identified by labeling the top 68% of the CSR-sorted
pairs as prerequisites. It also achieves the highest F1 score among traditional methods, with a
value of 66.53. The second-best F1 score is from PREREQ at 59.68, followed by MOOC-RF at
50.95, CPR-Recover at 24.54, and Pairwise LDA at 28.14. This indicates superior overall per-
formance in balancing precision and recall compared to traditional methods. However, in terms
of precision, CSR bin(t = 68) has a precision of 46.13, which is lower than Pairwise LDA’s
precision of 98.27 but higher than CPR-Recover’s precision of 16.66. PREREQ and MOOC-RF
have precisions of 46.76 and 43.70, respectively, making CSR bin(t = 68) comparable to PRE-
REQ and MOOC-RF in precision but significantly lower than Pairwise LDA. When comparing
CSR bin(t = 68) with large language models (LLMs) and their various configurations, we ob-
serve that LLMs like Zero-shot GPT-4o-mini (86.70), GPT-4o-mini RAG (87.23), and LLAMA
3 RAG (80.64) exhibit significantly higher precision compared to CSR bin(t = 68)’s 46.13.
Zero-shot GPT-3.5 Turbo (83.33) and LLAMA 3 (72) also show higher precision, reflecting the
advancements LLMs bring in terms of accurately identifying true positives. In terms of recall,
CSR bin(t = 68)’s recall of 1 is higher than all the tested LLM configurations, which achieve
recalls ranging from 35.80 (Zero-shot GPT-4o-mini) to 62.68 (LLAMA 3). This suggests that
while LLMs identify prerequisites with high accuracy (precision), their ability to capture all
relevant prerequisite pairs (recall) is still below that of CSR bin(t = 68). Among the LLMs,
GPT-4o-mini RAG attains the highest F1 score of 71.92, followed by LLAMA 3 RAG at 70.22
and LLAMA 3 at 67.02. Given that our goal in ACE methodology is to capture all the prerequi-
site relations in the respective domain and false positives can be tolerated thanks to the presence
of the expert, we conclude that CSR scores demonstrate promise, particularly in educational
contexts where identifying all potential prerequisites is crucial. Moreover, we also observe that
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simultaneously achieving high precision and recall in the context of binary prerequisite detection
tasks still remains a significant challenge whether we use traditional methods or LLMs.

6.2. TESTING THE CORRELATION BETWEEN PREREQUISITE SCORING METHODOL-
OGY AND STUDENT PERFORMANCE

In this experiment, we test if CSR scores are correlated with student performance. Remember
that CSR(B,A) is high if concept A is frequently referenced in the description of concept B. In
case of a high CSR(B,A) score, we expect that students who already know concept A perform
better on concept B when compared to the control group. Conversely, in the case of a low
CSR(B,A) score, students knowing A are not expected to have better performance on B when
compared to the control group. The control group is a set of randomly selected students whose
knowledge of A is not known. Figure 8 illustrates how we calculate this correlation.

Figure 8: Correlation between CSR Scores and Student Success

To realize our experiment, we use the student logs from a dataset of a real-world educational
platform (Gong et al., 2022). We partition the dataset into two tables concept metadata.csv
and student answers.csv. The concept metadata.csv contains 756 different secondary school
mathematics concepts with columns:

• Concept IDs: A unique numerical code assigned to each concept.

• Concept Name: A descriptive title associated with each concept.
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The student answers.csv table contains 6468 unique students and their answers for questions
related to these concepts with columns:

• User IDs: A unique identifier for each student.

• Concept and Question IDs: Identifiers that link each question to its corresponding con-
cept.

• Timestamps: The exact date and time of each attempt on a question.

• IsCorrect: A binary value indicating if the student’s answer to a question is correct.

The questions are multiple-choice with four options: A, B, C, and D. We assume that a
student knows a concept if she correctly answers at least three different questions related to that
concept at her first attempt. Our experiment has three phases. In Phase 1, we find all possible
pairs (A,B) from the initial 756 unique concepts such that we can form a Treatment Group
TG consisting of students who know A and solved questions related to B and a Control Group
CG consisting of students who only solved questions related to B. In Phase 2, we calculate
the students’ average ratio of correct answers for the questions related to B for both groups to
determine if TG outperforms CG. In Phase 3, we sort concept pairs formed in Phase 1 based
on their CSR scores to see how the average ratio of correct answers in TG and CG change for
decreasing CSR scores.

In Phase 1 of our experiment, we form all ordered concept pairs (A,B) from the initial 756
concepts, which corresponds to (756×755 = 570780) concept pairs. For each pair in the list, we
check if both TG and CG are formed. TG is formed for pair (A,B) if we can find students who
correctly answered a minimum of 3 questions from A in their first attempt and answered at least
one question from B. CG is formed if we can find students who solve at least one question from
B without first solving questions from any other concept. If both TG and CG are not formed for
a pair of concepts, we discard that pair and move on to the next pair in the list. Following this
methodology, we form a test set of 1000 concept pairs for which the average number of students
in TG and CG are 15.75 and 27.28, respectively.

In Phase 2, for each of the 1000 concept pairs (A,B), we calculate students’ average ratio
of correct answers to B in TG and CG. If the average ratio of TG is higher than CG, we label
that pair as 1, indicating that TG outperforms CG, and label it as 0 if CG outperforms TG.
Given a sequence S of concept pairs, we count the number of concept pairs in S for which TG
outperforms CG (i.e., pairs with label 1) and define the ratio of outperforming pairs over all
pairs Ro(S) formally as:

Ro(S) =
1

|S|

|S|∑

i=1

label(S[i]) (5)

where label(S[i]) is the label of the ith concept pair in S, and |S| is the number of concept pairs
in S.

The third and final phase of our experiment begins with the calculation of CSR scores of the
1000 concept pairs (A,B) that we obtained in Phase 1. Our benchmark data set does not contain
the textual descriptions of concepts, therefore in order to calculate CSR scores through semantic
references, we opted to use GPT-3 to generate the textual descriptions. We then calculate CSR
scores based on those descriptions and sort the concept pairs (A,B) in descending order of
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CSR(B,A). The sorted list of 1000 concept pairs is then partitioned into 10 subsequences
S1, S2, ..., S10, each containing 100 concept pairs such that S1 has the top 100 concept pairs,
S2 contains the next 100 concepts and so on. Finally, we calculate Ro(Sj) for each of Sj for
1 < j < 10.

Figure 9: Outperforming ratio of TG over CG for lists of concept pairs with decreasing CSR
scores

In Figure 9, we plot the ratio of outperforming pairs of concepts where S1 denotes the list
of concept pairs with the highest CSR scores and S10 contains the pairs with the lowest CSR
scores. As can be seen in Figure 9, we have the highest ratio of outperforming concept pairs for
S1 with Ro(S1) = 0.88. The ratio falls as the CSR scores decrease. We see the lowest ratio
Ro(S10) = 0.64 for S10 containing pairs with the lowest CSR scores.

If knowing the semantically referenced concepts has zero effect on the performance, the
outperforming ratio is expected to be close to 0.5. However, our benchmark data set consists of
concepts only within the Mathematics domain. Therefore all the concepts are related, and even
knowing the least semantically referenced concept may have a positive effect on the student
performance, which could be the reason for all the Ro values being above 0.5

Overall, the decreasing Ro values for the (A,B) pairs with lower CSR scores, and the
increasing Ro values for the (A,B) pairs with higher CSR scores demonstrate that student
performances and CSR scores show correlation. To suppress the effect of the other hidden
variables that can cause the performance differences between the students in TG and in CG,
we made sure that the students in CG solved only questions related to B and did not work
on any questions from other concepts in the learning platform. This increased our confidence
that the results of concept B were not influenced by knowledge or problem-solving skills from
other concepts in the related domain. However, in order to take one step further and claim that
CSR scores and student performances do not just have a correlation but also have a cause-and-
effect relationship, further experiments should focus on collecting richer data with more student-
related features such as age, current educational level, academic history or study material for the
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related concepts. By selecting students with similar features in TG and CG, we can better
control for these additional variables.

For reproducibility, we have posted all the data sets we extracted from the original bench-
mark data set on GitHub 10. The GitHub page includes all the Treatment Groups (TG), Control
Groups (CG), concept pairs, textual descriptions (obtained from GPT-3), as well as the CSR
scores.

6.3. CONSTRUCTING AND EVALUATING MEKGS: METHODOLOGIES, QUALITY MET-
RICS, AND EFFICIENCY FACTORS

In this section, we construct MEKGs using our ACE methodology and assess the quality of
the resulting graphs. To evaluate the produced MEKGs, we use three different gold-standard
datasets in our experiments. The first dataset is a KG from an e-learning platform called Meta-
cademy, which specializes in topics related to machine learning11. This graph, which we refer to
as Metacademy, has 141 nodes, each representing a concept from Machine Learning, Statistics,
or Linear Algebra. Each concept has a short description provided by the experts of the Meta-
cademy platform, and the directed paths represent the prerequisite relations among concepts.
We remove the transitive edges from the Metacademy graph, turning it into a MEKG. We
also create our own gold-standard MEKG using our ACE web application. For that, we chose
the Data Structures and Algorithms field, one of the core disciplines of computer science, and
named the corresponding graph, consisting of 29 concepts, as DSA.

We use the gold-standard MEKGs with path recall and path precision as the quality metrics
to compare two graphs. Let G1 and G2 represent two MEKGs that we want to compare. Let
P1 be the set of all paths in G1 and P2 be the set of all paths in G2. We define path recall as:

PathRecall(G1, G2) =
|P1 ∩ P2|
|P1|

(6)

Path precision is defined similarly:

PathPrecision(G1, G2) =
|P1 ∩ P2|
|P2|

(7)

Assuming that the MEKG produced through the ACE methodology is denoted by MEKGA

and the gold-standard graph is denoted by MEKGG, to demonstrate the role of the expert on
the quality of MEKGA, we plot the relative reduction of expert effort on the x-axis and plot the
PathRecall(MEKGG, MEKGA) on the y-axis. This way, we can observe the effect of reduced
expert effort (i.e., reducing parameter t) on the path recall. We utilize 20 different values of t
ranging from 5 to 100. We assume that the expert correctly identifies the prerequisite pairs in the
top t% of the concept pairs. Therefore, the path precision, which measures the fraction of paths
in the compared MEKG that are also in the standard MEKG, is always equal to 1, and we do
not report it in the experiments. Furthermore, in order to observe the contribution of semantic

10https://github.com/cemaytekin/EKG-Dataset
11https://metacademy.org/browse
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reference over exact reference in the ranking process, we compute the prerequisite scores for the
pairs twice, employing both CSR and CER-based approaches. Additionally, we use random
ordering of the pairs as a baseline in which the t percentage of pairs is randomly presented to
the expert, and the expert constructs the graph from those pairs.

Figure 10: Impact of PRS on path recall in Metacademy dataset.

Figure 11: Impact of PRS on path recall in DSA dataset.
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Table 3: Description of the two datasets that are used as gold-standard MEKGs

Dataset # Concepts # Unordered
Pairs

# Direct
Prerequisites

# Total
Prerequisites

Metacademy 141 9870 331 1586
DSA 29 406 55 111

In Figure 10, we observe the path recall values on the y-axis for different values of relative
expert effort reduction. For instance, when the relative expert effort reduction is 50%, the path
recall for PRS with CSR is approximately 90%, indicating that our methodology produces a
MEKG that is 90% similar to the Metacademy MEKG by letting the expert evaluate only half
of the pairs. As expected, the lowest average recall value (0.385) belongs to random ordering.
We also see that choosing semantic references over exact references increases average path
recall from 0.485 to 0.684, which is a significant improvement. We also show the maximum
relative reduction in the plot as a dashed line. This line corresponds to an x-axis value of 97,
indicating that if the prerequisite ranking algorithm is perfect (every presented pair to the expert
includes a prerequisite relation), then it would give a path recall value of 1 from 0 to 97 relative
to the expert effort reduction. Therefore, while we can conclude that semantic references help us
succeed in making our approach more feasible, there is still room for improvement. Similarly,
in Figure 11, we observe that PRS with CSR mode achieves the best performance compared
to the other approaches with a score of 0.634. Between the x-axis values (75-95), we see that
both modes of PRS show almost equal performances. This can be because pairs with strong
prerequisite relations tend to possess both exact and semantic references, while pairs with more
subtle prerequisite relations typically display only semantic references. As the relative reduction
in expert effort becomes more significant, only the topmost pairs are presented for evaluation.
Consequently, both modes of PRS adequately capture these significant pairs. However, as the
relative reduction in expert effort becomes less substantial, the CSR mode outperforms the other
mode by effectively differentiating between subtle prerequisite pairs and non-prerequisite pairs.

We also test the effect of the language model selection on the resulting quality of the con-
structed MEKG. To do that, we construct 3 different MEKGs, one constructed with our main
language model all-MiniLM-L6-v2 and the other two constructed using Word2Vec and Fasttext.
For each constructed MEKG, we calculate path recall for different relative reductions in expert
effort and show the results in Figure 12. It can be observed from the figure that with all-MiniLM-
L6-v2, we have higher path recall in the constructed MEKG for every t value between 5 to 95,
indicating that it brings the top t percent of the sorted pairs to expert more accurately than the
other language models.

There are three main factors affecting the runtime of our methodology: (1) the length of the
concept descriptions, (2) The size of the concept set, and (3) The choice of the language model
in CSR mode. To understand the impact of the first factor, we prepared five ranked lists for DSA
with varying lengths and recorded the time taken to prepare each list, with the results detailed
in Table 4. From the table, we observe that as the length of the concept descriptions increases,
the runtime of our methodology also increases. This is expected as longer descriptions require
more processing time to generate all pairwise prerequisite scores. For instance, when the length
of the concept descriptions is 108 words, the runtime is 18 minutes, whereas for descriptions
with a length of 1370, the runtime increases to 160 minutes.
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Figure 12: Impact of utilizing different language models in PRS.

Table 4: Effect of Concept Description
Length on Runtime.

Avg length con-
cept descriptions
(# of words)

Runtime (in min-
utes)

108 18
229 35
438 55
838 90
1370 160

Table 5: Effect of the number of concepts on
Runtime.

# concepts
in subset
MEKG

Runtime (in
minutes)

30 15
60 55
90 125
120 185

To assess the impact of the second factor, we use four different subsets of concepts from the
Metacademy dataset and construct four different MEKGs with different numbers of concepts
(Metacademy n=30, Metacademy n=60, Metacademy n=90 and Metacademy n=120). Each
description has, on average, 78 words. From Table 5, it can be observed that as the number of
concepts increases, the runtime of the methodology also increases in proportion.

Lastly, in order to understand the effect of the third factor, we present Table 6, which demon-
strates the effects of the usage of different language models on the runtime. The three models
analyzed are all-MiniLM-L6-v2, Word2Vec, and Fasttext. The table presents the runtimes in
minutes for ranking all the pairwise prerequisites of 141 Metacademy concepts, each with an
average description size of 78 words.

Based on the results presented in the table, it can be observed that the all-MiniLM-L6-v2
model has the longest runtime of 150 minutes. On the other hand, both Word2Vec and Fasttext
have considerably shorter runtimes, with 12 minutes and 9 minutes, respectively. However, they
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exhibit lower path recall values, as shown in Figure 12.

Table 6: Effect of word embedding model on runtime on the Metacademy dataset.

Utilized Word Embedding Model Runtime (in minutes)
all-MiniLM-L6-v2 150
Word2Vec 12
Fasttext 9

These findings suggest that while all-MiniLM offers improved quality in the constructed
MEKGs compared to Word2Vec and Fasttext, it constitutes the main bottleneck in the runtime
of the methodology. Therefore, we consider the calculation of the similarity simCosine(sij, ck)
between the concept description’s sentence (10-gram) and the concept’s name as the primary
time-consuming process and count these operations as cost. If we have k number of sentences
on average, then calculating CSR(ci, ck) requires k similarity operations. Since PRS computes
the maximum of CSR(ci, ck) and CSR(ck, ci), we have 2k operations for an unordered pair. The
number of unordered pairs for n concepts is n·(n−1)

2
; therefore we have k · n(n − 1) similarity

operations for n number concepts. The dominating term is n2, and the time complexity of our
prerequisite calculation is O(k · n2).

7. CONCLUSIONS AND FUTURE WORK

Industrial adoptions of knowledge gave rise to the emergence of huge graph databases. For
instance, DBpedia12 is updated with 22 billion new facts every month. The same trend can be
realized in the educational domain, where educational knowledge graphs can be used to store
and represent educational knowledge. In this paper, we propose an AI-assisted methodology
to build Educational Knowledge Graphs (EKG) designed to show all the prerequisite relations
among concepts within a domain. Considering the challenge of manual construction, we propose
a methodology that can significantly reduce the expert’s workload. Moreover, we introduce
a novel prerequisite scoring algorithm CSR, which can assign unique prerequisite scores to
concept pairs using the notion of semantic similarity. We also implemented our methodology
in our web application and provided a framework for the experts who would like to create their
own EKGs that can serve as a guide to students in their learning process. E-learning systems
can also use these graphs as a database, and e-learning applications can use EKGs for various
reasons, such as finding optimal learning paths for students or identifying concepts according
to their difficulty level by looking at the number of incoming and outgoing edges on concepts.
Given the scarcity of benchmark datasets for prerequisite identification in the literature (Roy
et al., 2019), our framework can serve as a prerequisite labeled data generator. Future supervised
models can use our framework to create training data for their models for prerequisite detection.

In future research, we plan to add other relations to EKGs, such as ‘subclass’ relations.
These relations represent the hierarchy between concepts, where one concept is a subcategory
or a specific instance of a broader concept, such as neural networks being a subclass of machine
learning. This type of relation is often overlooked in publicly available prerequisite datasets.
Moreover, in this work, we only demonstrated the transitivity property of the prerequisite rela-
tion to deduce new knowledge from the existing knowledge in our EKGs. However, incorpo-

12https://www.dbpedia.org
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rating new types of relations in our graphs can allow us to discover new types of rules for the
introduced relations.

Our overall framework offers an alternative way to store, organize, and share domain knowl-
edge using EKGs, which may lead to new research directions and pave the way for more effi-
cient educational systems.
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