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This paper describes how to discover simple logistic regression models that outperform more complex 
approaches such as Deep Knowledge Tracing (DKT) and Self-Attentive Knowledge Tracing (SAKT). 
Creating student models is done either by expert selection of the appropriate terms, beginning with models as 
simple as Item Response Theory (IRT) or Additive Factors Model (AFM) or with more “black box” 
approaches like DKT, in which the model discovers student features. We demonstrate how feature search 
approaches (i.e., stepwise selection or Least Absolute Shrinkage and Selection Operator (LASSO)) can 
discover superior models that are explainable. Such automatic methods of model creation offer the possibility 
of better student models with reduced complexity and better fit, in addition to relieving experts from the 
burden of searching for better models by hand with possible human error. Our new functions are part of the 
preexisting R package Logistic Knowledge Tracing (LKT). We demonstrate our search methods with three 
datasets in which research-supported features (e.g., counts of success, elapsed time, recent performance) are 
computed at multiple levels (student, knowledge component (KC), item) and input to stepwise regression and 
LASSO methods to discover the best-fitting regression models. The approach was intended to balance 
accuracy and explainability. However, somewhat surprisingly, both stepwise regression and LASSO found 
regression models that were both simpler and more accurate than DKT, SAKT, and Interpretable Knowledge 
Tracing (IKT) in all datasets, typically requiring multiple orders of magnitude fewer parameters than 
alternatives.  

Keywords: logistic regression, student modeling, knowledge tracing, deep knowledge tracing, explainable  
AI, transparency in AI 

1. INTRODUCTION 
Adaptive learning technology requires estimating a student’s learning in order to make decisions 
about how to interact with the student. The general assumption is that a model of students 
provides values (e.g., probability estimates typically) that are used to make decisions on 
pedagogy, the most common decisions being about when or whether to give practice and also 
how much practice to give (e.g., has the student mastered the proficiency; Pavlik Jr. et al., 2013). 
While pursuing a higher model fit presents challenges, an equally pressing issue is the rising 
complexity associated with handcrafting new models for different content areas and types of 
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learning technology.  
This paper describes a tool to build logistic regression models automatically from student 

data. We focus on finding models that are explainable and parsimonious for various reasons. 
One reason is due to the need for open learner models to provide interpretation of the student 
data, e.g., in a student dashboard, which means that there are benefits if it is scrutable, can be 
made cooperative, and is editable (Conati et al., 2018). Complex models make these things more 
difficult to achieve. Trust is another advantage of explainable systems (Khosravi et al., 2022), 
which can increase stakeholder adoption. Moreover, pursuing ever-more complex models does 
not merely make it difficult to achieve explainability; it also erects a formidable barrier to entry 
for practitioners, requiring an intricate set of skills and domain-specific knowledge.  

A common practice in student modeling research is choosing models based on fit statistics 
such as AUC and RMSE. However, the practical benefits of going from an AUC of .85 to .88 
(for instance) may be close to zero, depending on how the model is used. If it is being used for 
reporting proficiency to a dashboard (e.g., in binary terms such as mastered or not), both models 
may come to the same conclusions. In adaptive instructional systems, whether the better fitting 
model changes practice sequences depends on the decision rules utilizing the model predictions. 
Frequently, the same recommended practice sequences will be recommended from both models. 
In short, there are dramatically diminishing returns from improving model fit, and if the 
improvement reduces explainability, it may be unjustified. The present work addresses this 
tension between optimal model fits and practical considerations.  

Unfortunately, because student models differ by content area and the type of learning 
technology,  it often seems necessary to handcraft new models to maximize model accuracy 
(Cen et al., 2006; Chi et al., 2011; Galyardt and Goldin, 2015; Gervet et al., 2020; Gong et al., 
2011; Pavlik Jr. et al., 2009; Schmucker et al., 2022; Yudelson et al., 2011). Handcrafting has 
created a parade of alternatives such that a huge amount of researcher knowledge is necessary 
before a practitioner can easily transfer these methods to new systems. The researcher must be 
an expert in quantitative methods of knowledge tracing, have a deep understanding of the 
domain, and be adept in the learning science principles important in that domain (repetition, 
spacing, forgetting, and similar principles.). In addition to these basic technical skills, there are 
the complexities of model building itself, such as overfitting and the need for generalization. 
This base knowledge necessary for model creation creates a long learning curve. 

We suppose that the long learning curve in our area can be solved by building better tools to 
build models. We have been using LKT, which subsumes many prior logistic models by 
providing a flexible model-building framework in R (Pavlik et al., 2021). However, although 
LKT enables the use of many predictive features, it did not select features for the user. The 
present work illustrates its new functionality to select a subset of features for the user 
automatically. The idea of having a large feature space that can be searched for interactive 
features to produce different previously studied models (like AFM and PFA) is less well-studied 
but not entirely novel (Vie and Kashima, 2019). 

With the purported excellent model fits of recent deep learning models, some readers will 
see this prior research as a dead end that people need to move away from, but from these authors’ 
perspective, that is unlikely to be the case. Deep learning student modeling (e.g., Piech et al., 
2015) has been around for several years but can be more complicated to implement within 
adaptive practice systems than regression and harder to interpret model parameters and errors. 
New deep-learning models can fit well but do not seem to fit reliably better than simpler 
alternatives (Gervet et al., 2020). The complexity may be unwarranted for applications in many 
cases unless there is some demonstration that these models can predict student knowledge better 
than simpler methods like logistic regression. To help establish that the gains for using more 
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complex methods are small, we compare three complex methods with logistic regression in the 
LKT package. 

If logistic regression can compete in terms of fit, it becomes important to emphasize that the 
simplicity of regression means that software developers and educational content developers can 
incorporate student models of astounding power using basic algebra. Incorporating such models 
as pedagogical decision-makers in educational software is relatively straightforward and well-
described.  So, in this paper, we also look more deeply at one of the remaining stumbling blocks 
in the more widespread use of logistic regression to trace student learning — choosing features.  

While the LKT R package allows the application of more than 30 features, it did not 
previously provide any direction on how to choose these features for the components (e.g., KCs, 
students, items) of the data. Choosing such component/feature pairs is also difficult for an expert 
since despite an expert perhaps understanding the palette of possible features, given 3 levels of 
components (e.g., as in BestLR below, with student, items, and KCs), there can be more than 90 
possible choices to add to a model (assuming we search across all 30 features for each 
component).  

With such a large palette for each of multiple terms in the regression, it is understandable 
that we have very coefficient-heavy models like BestLR being proposed in the literature (Gervet 
et al., 2020) since it is very hard to exclude all the possibilities to find one logistic regression 
model to rule them all. Best LR is formulated with the following equation, where α is the student 
ability, δ is item difficulty, φ is the function log(x+1), β is the KC difficulty, and γ and ρ capture 
the effect of prior success (c counts) and failures (f counts) for the KC. The function 𝜙 scales 
those counts according to 𝜙(𝑥) = log(1 + 𝑥). The σ (sigmoid) function transforms the linear 
measure to the logistic prediction probability. Here, s indexes the student, and t predicted trial, 
and 𝒙 indexes all the prior data from the student. The left side of the equation says we are 
predicting the correctness of each trial (a=1) conditional on the question (𝑞!,#$%) given the 
student and all the prior data for that student. Note “α” and “a” represent different quantities. 
So, then the linear input to the sigmoid transformation includes student ability, item difficulty, 
log of 1+ prior success for student, log of 1+ prior failures for student, sum of the difficulty of 
all KCs in the item, log of 1+ prior success for each KC and log of 1+ prior failures for each 
KC. 

 
𝐵𝑒𝑠𝑡𝐿𝑅3𝑎!,#$% = 15𝑞!,#$%, 𝒙!,%:#7 = 	𝜎(𝛼! − 𝛿'!,#$% 	+ 𝜙(𝑐!) 	+ 𝜙(𝑓!) + ∑ 𝛽(()*+('!,#$%) +

𝛾(ϕ(𝑐!,() 	+ 𝜌(𝜙3𝑓!,()7 
 
It is unclear if such complexity in BestLR is warranted. To address this problem in the 

complexity and potential inefficiency of logistic regression model creation generally, we 
describe and test our tool for stepwise and LASSO student model search in LKT. For the expert, 
these methods will save either the need to use “cookie-cutter” models that they know (but that 
may not be appropriate) or the countless hours of manual search that is often necessary when 
trying to understand modeling in a new domain. For the practitioner, this LKT package will 
allow the fast creation of models tailored to multiple purposes and domains. For the student 
modeler, the package provides a way to begin building models quickly and with sufficient 
feedback so as to think deeply about the functioning of those models. The example vignette in 
the LKT R package shows many examples from this paper. 

1.1. COMPARISON METHODS 
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In this journal version of our 2023 Educational Data Mining Conference Best Paper, we sought 
to improve our analysis methods by adding various enhancements to our comparisons. The three 
main enhancements were to carefully crossvalidate our results to ensure they were not the result 
of overfitting and to compare our methods vs. a variety of powerful alternatives that have 
recently shown their ability to produce very good results. Finally, we added another dataset, 
ASSISTments2012, an order of magnitude larger than previously used. These additions provide 
a richer sense of the advantages of LKT modeling.  

To further contextualize the utility of logistic regression models, we will compare their 
performance with other complex modeling approaches, assessing the tradeoffs involved. The 
student-stratified crossvalidation we apply to these models is a rigorous test of their 
generalizability and allows us to make clearer comparisons with Deep Knowledge Tracing 
(DKT), Self-Aware Knowledge Tracing (SAKT), and Interpretable Knowledge Tracing (IKT). 
These alternative methods were chosen based on their strong performance in the recent literature 
(Gervet et al., 2020; Minn et al., 2022; Pandey and Karypis, 2019; Xiong et al., 2016). While 
we will argue that these alternatives are harder to explain (Khosravi et al., 2022), we would also 
argue that there is a tradeoff between explainability and effectiveness, so perhaps less 
explainable student models might be worth adopting should their accuracy well exceed easy to 
explain models. 

2. METHODS 

2.1. STEPWISE LKT 

Stepwise LKT is simply the stepwise method applied to the LKT model fitting function. In the 
buildLKTModel R function, the user may set the objective function (BIC, AIC, AUC, R2, or 
RMSE). However, these metrics behave quite similarly in our testing except for BIC, which 
corrects heavily for the potential of overfitting due to high parameter counts. The user may 
specify a forward or backward search or alternate between forward and backward (bidirectional 
search). The user also has control over the initial features and components in the model, allowing 
the exploration of theoretical hypotheses for completed models and optimizing those models. 
For example, in our tests, we illustrate starting with the BestLR model and then allowing the 
algorithm to simplify the model while simultaneously adding a key new predictor. The user can 
also specify the forward and backward step size needed for the objective function (fit statistic), 
which is also chosen. 

2.1.1. Stepwise Crossvalidation 

As shown in the captions for the results, this version of the paper has full crossvalidation of 
results. In the case of the stepwise procedure, this student-stratified crossvalidation validates the 
entire process by ensuring no leakage of any model information between the models found for 
the held-out data in each iteration. We do the entire stepwise search process, independently 
finding the model terms, coefficients, and nonlinear feature parameters for the training folds and 
then testing how well that final model fits the held-out fold. This crossvalidation is implemented 
by a change in the main LKT R function that allows it to fit a model for a subset of the data, yet 
where it still computes and outputs the features for the entire dataset, allowing the model to be 
fit for the held-out data following the LKT function call (Pavlik Jr and Eglington, 2021). The 5-
folds used for each of the three datasets were also used for all subsequent fits for LKT-LASSO 
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SAKT, IKT, and DKT unless otherwise specified. The data preparation code is also shared in 
the R package. 

2.2. LKT-LASSO 

An alternative approach to stepwise regression is LASSO regression, a form of regularization. 
In this method, a penalty term is added to the loss function equal to the sum of the absolute 
values of the coefficients times a scalar lambda. This penalty term may result in the best-fitting 
model having fewer features if they are correlated. Larger lambda values will result in fewer 
features. A common method to use this approach is to attempt a large number of potential 
lambda values and choose the value with the best cross-validated performance. In the present 
case, we are particularly concerned with finding interpretable models that are easier to 
implement, so larger values with slightly worse performance may be preferred. To evaluate the 
resultant models from LKT-LASSO, we began by using the glmnet R package to fit both 
datasets with 100 values starting at the lowest value that would reduce all coefficients to zero 
(the maximum lambda) decreasing in increments of .001 (e.g., the default strategy with glmnet; 
Friedman et al., 2010).  This method allowed us to evaluate the stability of the candidate lambda 
values. Subsequent model fitting and analyses used specific lambdas to evaluate the fit and 
interpretability of LASSO models with varying levels of complexity to determine the usefulness 
of LASSO compared to stepwise regression. An important distinction between LASSO and the 
stepwise approach employed in this work is that the coefficients for individual KCs may be 
dropped for LASSO. For instance, if two different KCs are essentially redundant, a LASSO 
model may reduce a coefficient for one of them to zero if the lambda value is large enough. In 
contrast, the stepwise regression approach we employed treats the KC model as a single feature; 
either it is included, or it is not. 

For nonlinear features logitdec, propdec, and recency, features were generated with 
parameters from .1 to 1 in .1 increments (e.g., propdec with decay parameters .1, .2, up to 1). 
All the resultant features were included in the LKT-LASSO models to allow us to evaluate 
which parameter values remained and whether more than one was beneficial. 

2.3. DKT 

Deep Knowledge Tracing (DKT) is a recurrent neural network approach to knowledge tracing 
first introduced by Piech et al. (2015). It is a Long Short Term Memory (LSTM) variant of a 
recurrent neural network architecture initially developed to overcome the vanishing gradient 
problem (Hochreiter and Schmidhuber, 1997). Knowledge states and temporal dynamics are 
intended to be represented in large neural layers. More recently, DKT was shown to perform 
well on some datasets (Gervet et al., 2020) when compared against BKT, IRT, and particular 
implementations of logistic regression (termed ‘BestLR’). DKT had the highest AUC on 4 of 9 
datasets. Logistic regression, feedforward neural networks, and SAKT won or tied on the 
remaining datasets. Notably, DKT was rarely far behind the winning model (Gervet et al., 2020). 
For more details about DKT architecture and implementation, see Xiong et al. (2016). DKT was 
fit to the present datasets using the code provided by Gervet et al. (2020), 
https://github.com/theophilegervet/learner-performance-prediction. 

2.4. SAKT 

Self-Attentive Knowledge Tracing (SAKT) model is a transformer architecture originally 
intended to improve upon prior approaches like DKT by weighting prior practice on KCs 
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according to their predictiveness for the present practice item. In other words, not all prior 
practice was considered equally relevant. This approach was intended to overcome data sparsity 
issues that can limit models like DKT. In some cases, SAKT was shown to fit similarly (Gervet 
et al., 2020) or better than DKT (Pandey and Karypis, 2019). Analyses of the attentional weights 
of the model by the original authors indicated that the weights could be used to interpret inferred 
relations among the KCs. SAKT was fit to the present datasets using the code provided by 
Gervet et al. (2020), https://github.com/theophilegervet/learner-performance-prediction. 

2.5. IKT 

Interpretable Knowledge Tracing (IKT) is an explicit attempt to make a knowledge tracing 
model that is accurate and interpretable (Minn et al., 2022). This interpretability was 
operationalized as partitioning the contributions of problem difficulty, skill mastery, and 
student-level “ability profile” (intended to track learning transfer ability) into separate input 
variables in a Tree-Augmented Naive Bayes classifier (TAN).  Problem difficulty was estimated 
by grouping individual practice items into ordered bins from 1-10 according to difficulty, 
enabling simpler fitting of their tree structure. Skill mastery was estimated using per-skill BKT 
models. Ability profiles were estimated by first dividing prior student interactions into time 
intervals. Students were clustered into ability groups to represent their learning ability over a 
time interval. This ability was computed across skills, thus allowing learning transfer to varying 
degrees. This approach also allows simple ablation of the model to ascertain the source of model 
accuracy (e.g., removing the problem difficulty feature is straightforward). IKT is relatively 
simple compared with contemporary knowledge tracing models while outperforming several of 
them (including DKT) on multiple datasets. However, when we fit IKT using code by the 
authors, the first trials of students in test folds appeared to be removed during the feature 
generation process (which can also be seen in their example data on their GitHub). This data 
preparation step is likely to have some effect on the model's results, albeit small. Despite some 
ambiguity about why initial trials are dropped when using their code, we decided to still include 
the model due to its impressive performance and relative simplicity. 

3. DATASETS 

3.1. CLOZE PRACTICE 

The statistics cloze dataset included 58,316 observations from 478 participants who learned 
statistical concepts by reading sentences and filling in missing words. Participants were adults 
recruited from Amazon Mechanical Turk. There were 144 KCs in the dataset, derived from 36 
sentences, each with one of four possible words missing (cloze items). The number of times 
specific cloze items were presented and the temporal spacing between presentations (narrow, 
medium, or wide) was manipulated. The post-practice test (filling in missing words) could be 
after two minutes, one day, or three days (manipulated between students).  Data is available at 
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5513. The preprocessing code for this 
dataset and the other two used in this paper are available as part of the LKT R package 
documentation here: https://cran.r-project.org/web/packages/LKT/vignettes/Examples.html.  

The stimuli type, manipulation of spacing, repetition of KCs and items, and multiple-day 
delays made this dataset appropriate for evaluating model fit to well-known patterns in human 
learning data (e.g., substantial forgetting across delays, benefits of spacing). As components, we 
choose to use the IDs for the student (Anon.Student.Id), sentence itself (KC..Cluster, 32 levels 
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due to each sentence having two feedback conditions which we do not investigate here), specific 
items (KC.Default.) and the response word (CF..Correct.Answer.). KC..Default. (items) and 
CF..Correct.Answer. (answers) had a good deal of overlap since there were 72 items with 64 
different answers. Here are two examples of these items, "The standard deviation is a 
__________ that describes typical variability for a set of observations.", and "Standard deviation 
is the __________ of the variance, also known as root mean squared error."     

3.2. MATHIA COGNITIVE TUTOR EQUATION SOLVING 

The MATHia dataset included 119,379 transactions from 500 students from the unit Modeling 
Two-Step Expressions for the 2019-2020 school year. We used the student (Anon.Student.Id), 
MATHia assigned skills (KC..MATHia.), and Problem.Name as the item. This decision meant 
that our item parameter was distributed across the steps in the problems. There were nine KCs 
and 99 problems. For simplicity, we chose not to use the unique steps as an item in our models. 
This dataset included skills such as “write expression negative slope” and “enter given, reading 
numerals”. Data is available at https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=4845.  

3.3. ASSISTMENTS 2012-2013 DATASET 

The ASSISTments system is an online platform designed to provide immediate, formative 
feedback to students as they engage in problem-solving activities, primarily in mathematics 
(Feng et al., 2009). It serves dual purposes: it assists students by offering hints and guidance 
while they work on problems, and it simultaneously assesses their performance, thereby 
providing valuable data for educators. We used the 2012-2013 data available online and used 
by a recent paper on IKT (Minn et al., 2022). We attempted to process the data identically to 
this paper, but their code was unavailable, and we got an N of observations of 2540455 
compared to their paper, which used 2506769. For the stepwise model, we used a subset of 5% 
of this data, 124,176 rows. We used skill, problem-type, and type columns in the data as potential 
knowledge components in our search. We did not use problem_id since the models ran too 
slowly for search, but then we applied a data-compression method to group the problem_ids and 
relabel them as similar to the IKT model technique, see our discussion of this issue below. As 
noted above, the full dataset was 2540455 rows after cleaning. Our cleaning code (available in 
the LKT package vignette) removed blank skills, repeated rows, cases where there was no 
outcome for correctness and then filtered for users with 20 more rows. Data is available at 
https://sites.google.com/site/assistmentsdata/datasets/2012-13-school-data-with-affect.  

4. RESULTS 

4.1. STEPWISE LKT  

For the stepwise method, it is possible to use any collection of features as a “start” model that is 
subsequently added to and subtracted from. Using different starts helps us understand how the 
method can have problems with local minima but also helps us see that these problems are rather 
minimal as the different starts converge on similar results. At the same time, showing how the 
method improves upon “stock” models is an important part of the demonstration, showing that 
these “stock” models are not found to be particularly precise, and we might question whether 
better local minima are an improvement. 
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We choose to use AFM (Cen et al., 2006) and BestLR (Gervet et al., 2020) models as starting 
points, in addition to using an empty start (which included a global intercept to account for the 
grand mean of performance, as did all our models without explicit intercepts). AFM and BestLR 
starts are interesting since they illustrate the advantages of using the search method by arriving 
at models that fit better or equivalently with fewer parameters. Furthermore, using these start 
points allows us to show that these canonical models are not even local minima, which highlights 
how our methods are useful. If these models are particularly strong, it should not be possible to 
add terms to them, and the current terms should not be dropped.  

Using these starts, we search over a preset group of features that are meant to be “complete 
enough” to produce interesting, relevant results and go beyond BestLR features (which it 
includes) to include some of the simplest and most predictive nonlinear features we have 
developed in other work (Pavlik et al., 2021). 

We used several features, which we crossed with all the possible components (listed below) 
for each dataset. A $ indicates that the feature is fit with one coefficient per level of the 
component (e.g., one coefficient for each KC, student, or item). Intercept (a fixed coefficient for 
each level of the feature) does not require the $ notation since it is always fit this way. In contrast, 
without a $ indicates that all levels of the KC behave the same, so, for example, lineafm$ for 
the student means that there would be a continuous linear increase in performance for each trial 
for each student, with a different rate for each student. 

We choose a limited set of likely features from the LKT software to search across. These 
included: 

• Intercept–one coefficient for each level of the component factor 
• Lineafm–one coefficient to characterize the linear change with each repletion of the 

component. 
• Logafm–one coefficient to characterize the logarithmic change with each repetition for 

each level of the component. One is added to prior repetitions. 
• Linesuc–one coefficient to characterize the linear change with each successful repetition 

for each level of the component. 
• Linefail–one coefficient to characterize the linear change with each failed repetition for 

each level of the component. 
• Logsuc–one coefficient to characterize the logarithmic change with each successful 

repetition for each level of the component. One is added to prior repetitions. 
• Logfail–one coefficient to characterize the logarithmic change with each failed repetition 

for each level of the component. One is added to prior repetitions. 
• Logitdec–one coefficient to characterize the logit of prior success and failures for the 

component (seeded with one success and one failures resulting in a start value of 0, e.g., 
log(.5/.5)=0). It uses nonlinear exponential decay to weight priors according to how far 
they are back in the sequence for the component traced. 

• Propdec–one coefficient to characterize the probability of prior success and failures for 
the component (seeded with 1 success and 2 failures resulting in a start value of 0, e.g., 
.5/1)=.5). Uses a nonlinear exponential decay to weight prior success and failures 
according to how far they are back in the sequence for the component traced. 

• Recency–one coefficient to characterize the influence of the recency of the previous 
repetition only, where t is the time since the prior repetition at the time of the new 
prediction and d characterizes nonlinear decay. The value is computed as t-d. 

• Logsuc$–like logsuc above, except one coefficient is added per level of the component 
(e.g., different effects for each KC or item) 
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• Logfail$–like logfail above, except one coefficient is added per level of the component 
(e.g., different effects for each KC or item) 

4.1.1. Cloze practice 

For the AFM start, the final model is specified in feature(component) notation; see equation 
below.  
	

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟. ) + 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. )
+ 𝑙𝑜𝑔𝑠𝑢𝑐(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟. ) + 	𝑝𝑟𝑜𝑝𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑)	

 
See Table 1 and Figure 1 for the step actions that led to this final model. Note that in these 

figures, the results for the 5th fold are displayed, and the values for 3 fit statistics (AUC, R2, and 
RMSE) are shown in the caption. As we can see, the cloze models crossvalidate well, perhaps 
due to the conservative 500 BIC threshold needed for the inclusion of the features in the model. 

Table 1: AFM start 5th fold results, cloze data. Overall 5-fold CV values for the method were 
CV AUC mean(SD)= 0.857(0.0023), CV R-squared CV mean(SD) = 0.318(0.0043), CV RMSE 
mean(SD) = 0.392(0.0022). 

R2 params BIC AUC RMSE action 
0.285 676 50944.89 0.841 0.402 starting model 
0.354 678 46776.44 0.872 0.380 add recency-KC..Default. 
0.352 643 46531.57 0.871 0.381 drop intercept-KC..Cluster. 
0.361 644 45941.29 0.876 0.378 add logsuc-CF..Correct.Answer. 
0.295 167 44779.57 0.845 0.400 drop intercept-Anon.Student.Id 
0.331 169 42596.43 0.862 0.388 add propdec-Anon.Student.Id 
0.328 133 42366.51 0.861 0.389 drop lineafm$-KC..Cluster. 
0.321 69 42136.65 0.858 0.391 drop lineafm$-CF..Correct.Answer. 

. 

 

Figure 1: Scaled fit statistic (Z-score) changes during BIC bidirectional stepwise search for the 
AFM model start with cloze data, 5th fold results. Values for R2 and AUC are inverted for 
comparison (lower is a better fit for all metrics). Parallel coordinates plot showing all metrics 
across the steps. 

For the BestLR start, the final model is specified in feature(component) notation; see the 
equation below.  
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𝑙𝑜𝑔𝑠𝑢𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑. ) + 𝑙𝑜𝑔𝑓𝑎𝑖𝑙(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑. )

+ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡	(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟. ) + 𝑙𝑜𝑔𝑠𝑢𝑐$(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟. )
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. 𝐷𝑒𝑓𝑎𝑢𝑙𝑡) 

 
See Table 2 and Figure 2 for the step actions that led to this final model. 

Table 2: BestLR start 5th fold results, cloze data. Overall 5-fold CV values for the method were 
CV AUC mean(SD)= 0.857(0.003), CV R-squared CV mean(SD) = 0.32(0.0056), CV RMSE 
mean(SD) = 0.391(0.0027). 

R2 params BIC AUC RMSE action 
0.318 849 50849.11 0.856 0.392 starting model 
0.370 851 47647.61 0.879 0.375 add recency-KC..Default. 
0.337 374 44491.22 0.865 0.386 drop intercept-Anon.Student.Id 
0.337 303 43719.29 0.865 0.386 drop intercept-KC..Default. 
0.331 239 43349.10 0.862 0.388 drop logfail$-CF..Correct.Answer. 
0.330 203 43041.02 0.862 0.388 drop logfail$-KC..Cluster. 
0.328 168 42791.05 0.861 0.389 drop intercept-KC..Cluster. 
0.324 132 42646.90 0.859 0.391 drop logsuc$-KC..Cluster. 

 

 

Figure 2: Scaled fit statistic (Z-score) changes during BIC bidirectional stepwise search for 
BestLR model start with cloze data, 5th fold results. Values for R2 and AUC are inverted for 
comparison (lower is a better fit for all metrics). Parallel coordinates plot showing all metrics 
across the steps. 

For the empty start, the final model is specified in feature(component) notation; see the 
equation below.  

 
𝑙𝑜𝑔𝑠𝑢𝑐$(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟. ) + 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. ) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. )

+ 𝑝𝑟𝑜𝑝𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) 
 
See Table 3 and Figure 3 for the step actions that led to this final model. 
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Table 3: Empty start 5th fold results, cloze data. Overall 5-fold CV values for the method were 
CV AUC mean(SD)= 0.859(0.0047), CV R-squared CV mean(SD) = 0.324(0.0107), CV RMSE 
mean(SD) = 0.39(0.0032). 

R2 params BIC AUC RMSE action 
0.000 1 60909.18 0.500 0.498 null model 
0.175 65 50936.41 0.746 0.440 add logsuc$-CF..Correct.Answer. 
0.220 67 48257.54 0.788 0.425 add recency-KC..Default. 
0.284 138 45107.18 0.840 0.403 add intercept-KC..Default. 
0.330 140 42336.92 0.862 0.388 add propdec-Anon.Student.Id 

 

 

Figure 3: Scaled fit statistic (Z-score) changes during BIC bidirectional stepwise search for 
empty model start with cloze data, 5th fold results. Values for R2 and AUC are inverted for 
comparison (lower is a better fit for all metrics). Parallel coordinates plot showing all metrics 
across the steps. 

4.1.2. MATHia Cognitive Tutor equation solving 

For the AFM start, the final model is specified in feature(component) notation; see the equation 
below.  
 
𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. .𝑀𝐴𝑇𝐻𝑖𝑎. ) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. .𝑀𝐴𝑇𝐻𝑖𝑎. ) 

 
See Table 4 and Figure 4 for the step actions that led to this final model. 

Table 4: AFM start 5th fold results, MATHia data. Overall 5-fold CV values for the method were 
CV AUC mean(SD)= 0.809(0.0056), CV R-squared CV mean(SD) = 0.223(0.0134), CV RMSE 
mean(SD) = 0.391(0.0017). 

R2 params BIC AUC RMSE action 
0.229 517 42400.97 0.813 0.390 starting model 
0.249 519 41466.29 0.824 0.384 add recency-KC..MATHia. 
0.159 20 40341.22 0.768 0.411 drop intercept-Anon.Student.Id 
0.229 22 37052.71 0.812 0.390 add logitdec-Anon.Student.Id 
0.227 13 37049.32 0.811 0.391 drop lineafm$-KC..MATHia. 
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Figure 4: Scaled fit statistic (Z-score) changes during BIC bidirectional stepwise search for the 
AFM model start with MATHia data, 5th fold results. Values for R2 and AUC are inverted for 
comparison (lower is a better fit for all metrics). Parallel coordinates plot showing all metrics 
across the steps. 

For the BestLR start, the final model is specified in feature(component) notation; see the 
equation below.  

 
𝑙𝑜𝑔𝑓𝑎𝑖𝑙(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑙𝑜𝑔𝑠𝑢𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. .𝑀𝐴𝑇𝐻𝑖𝑎. )

+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. .𝑀𝐴𝑇𝐻𝑖𝑎. ) + 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝑃𝑟𝑜𝑏𝑙𝑒𝑚.𝑁𝑎𝑚𝑒)
+ 𝑙𝑖𝑛𝑒𝑠𝑢𝑐(𝑃𝑟𝑜𝑏𝑙𝑒𝑚.𝑁𝑎𝑚𝑒) 

 
See Table 5 and Figure 5 for the step actions that led to this final model. 

Table 5: BestLR start 5th fold results, MATHia data. Overall 5-fold CV values for the method 
were CV AUC mean(SD)= 0.811(0.0095), CV R-squared CV mean(SD) = 0.223(0.0168), CV 
RMSE mean(SD) = 0.39(0.0014). 

R2 params BIC AUC RMSE action 
0.262 626 41977.32 0.832 0.381 starting model 
0.279 627 41187.97 0.841 0.375 add linesuc-Problem.Name 
0.245 128 37408.57 0.824 0.385 drop intercept-Anon.Student.Id 
0.232 30 36970.95 0.816 0.389 drop intercept-Problem.Name 
0.243 32 36465.07 0.822 0.386 add recency-KC..MATHia. 
0.239 23 36587.35 0.819 0.387 drop logfail$-KC..MATHia. 
0.231 14 36855.56 0.815 0.389 drop logsuc$-KC..MATHia. 
0.243 16 36320.40 0.822 0.386 add logitdec-KC..MATHia. 
0.234 15 36713.46 0.818 0.388 drop logfail-Anon.Student.Id 
0.233 14 36777.16 0.817 0.389 drop logsuc-Anon.Student.Id 
0.243 16 36320.40 0.822 0.386 add logitdec-KC..MATHia. 
0.234 15 36713.46 0.818 0.388 drop logfail-Anon.Student.Id 
0.233 14 36777.16 0.817 0.389 drop logsuc-Anon.Student.Id 
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Figure 5: Scaled fit statistic (Z-score) changes during BIC bidirectional stepwise search for 
BestLR model start with MATHia data, 5th fold results. Values for R2 and AUC are inverted for 
comparison (lower is a better fit for all metrics). Parallel coordinates plot showing all metrics 
across the steps. 

For the empty start, the final model is specified in feature(component) notation; see the 
equation below.  

 
𝑝𝑟𝑜𝑝𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. .𝑀𝐴𝑇𝐻𝑖𝑎. ) + 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. .𝑀𝐴𝑇𝐻𝑖𝑎. )

+ 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐(𝐾𝐶. .𝑀𝐴𝑇𝐻𝑖𝑎. ) 
 
See Table 6 and Figure 6 for the step actions that led to this final model. 

Table 6: Empty start 5th fold results, MATHia data. Overall 5-fold CV values for the method 
were CV AUC mean(SD)= 0.812(0.006), CV R-squared CV mean(SD) = 0.226(0.0128), CV 
RMSE mean(SD) = 0.39(0.0021). 

R2 params BIC AUC RMSE action 
0.000 1 47747.32 0.500 0.454 null model 
0.165 3 39872.10 0.771 0.409 add logitdec-KC..MATHia. 
0.192 11 38701.63 0.789 0.402 add intercept-KC..MATHia. 
0.222 13 37277.59 0.808 0.393 add propdec-Anon.Student.Id 
0.236 15 36613.91 0.817 0.388 add recency-KC..MATHia. 
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Figure 6: Scaled fit statistic (Z-score) changes during BIC bidirectional stepwise search for 
empty model start with MATHia data, 5th fold results. Values for R2 and AUC are inverted for 
comparison (lower is a better fit for all metrics). Parallel coordinates plot showing all metrics 
across the steps. 

4.1.3. ASSISTments 2012-2013 Dataset 

For the empty start, the final model is specified in feature(component) notation; see the equation 
below.  
 

𝑝𝑟𝑜𝑝𝑑𝑒𝑐(𝑠𝑘𝑖𝑙𝑙) + 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐(𝑡𝑦𝑝𝑒) + 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝑠𝑘𝑖𝑙𝑙) 
 

See Table 7 and Figure 7 for the steps leading to this final model. 

Table 7: Empty start 5th fold results, ASSISTments data, shown to illustrate the search process. 
Overall 5-fold CV values for the method were CV AUC mean(SD)= 0.695(0.0154), CV R-
squared CV mean(SD) = 0.088(0.0148), CV RMSE mean(SD) = 0.437(0.0077). 

R2 params BIC AUC RMSE action 
0.000 1 125582.7 0.500 0.465 null model 
0.072 3 116500.0 0.677 0.444 add propdec-skill 
0.087 5 114737.9 0.693 0.439 add logitdec-type 
0.091 7 114178.3 0.699 0.438 add recency-skill 
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Figure 7: Scaled fit statistic (Z-score) changes during BIC bidirectional stepwise search for 
empty model start with 5% ASSISTments data, 5th fold results. Values for R2 and AUC are 
inverted for comparison (lower is a better fit for all metrics). Parallel coordinates plot showing 
all metrics across the steps. 

After this search process, we accepted the base model with propdec for skill, logitdec for 
type, and recency for skill. We did a simple crossvalidation of this model with the problem 
difficulty intercept added for the 10 difficulty levels. For this model, we added the 
problem_difficulty level, which we inferred from the held-out folds when we crossvalidated the 
model. Inspired by the approach to problem difficulty estimation adopted by IKT (Minn et al., 
2022), we chose to represent problem difficulty with 10 levels. This compression also greatly 
simplified the model search process with both stepwise and LASSO regression. The problem 
difficulty was computed by finding the mean correctness for each problem_id in the held-out 
data and then using k-means to determine nine cut points for the means. This method defined 
10 ranges, e.g. 0 to .00022, .00022 to .21, .21 to .34, etc., labeled a through j. We assigned each 
problem_id to a difficulty level according to this scheme, with problem_ids observed only four 
times being excluded and always labeled e. We assumed that any problem_ids that were unseen 
(i.e., in the held-out fold but not in the training fold) were labeled e. This method is remarkably 
similar to the method IKT used. So, we used the model from the 5th fold of the crossvalidated 
stepwise search with the 5% and used that model to fit the 95% held out remainder of the data. 
For this model, we added the problem difficulty level, which we inferred from the held-out folds 
when we crossvalidated the model. 

 
𝑝𝑟𝑜𝑝𝑑𝑒𝑐(𝑠𝑘𝑖𝑙𝑙) + 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐(𝑡𝑦𝑝𝑒) + 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝑠𝑘𝑖𝑙𝑙) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦_𝑙𝑒𝑣𝑒𝑙) 
 
Interestingly, the model was much improved by these difficulty levels, reaching near the 

levels of other methods described subsequently. The 5-fold CV in this 95 produced an AUC of 
0.7590, SD = 0.0006.  

4.2. LKT-LASSO 

 A primary goal of the LKT-LASSO analyses is to determine how well the approach can inform 
a researcher about which features are most important and guide the researcher toward a more 
interpretable, less complex, but reasonably accurate model. Figure 8 plots the relationship 
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between the number of features and AUC across 100 values of lambda ranging from a large 
penalty that would reduce all feature coefficients to zero to a very small penalty that would 
retain all features. For all datasets, there are diminishing fit benefits as the number of features 
increases (from a smaller lambda). All curves have clear inflection points, which are used to 
provide example LKT-LASSO models. At the inflection points, the coefficients for most 
features drop to zero (see Table 8). Note in Table 8 that the MATHia dataset, in particular, fits 
quite well without many parameters for individual KCs. An LKT-LASSO model with lambda 
set to the value that would retain approximately 100 features outperformed DKT, SAKT, and 
IKT on all datasets. In two of the three datasets, the LKT-LASSO models with approximately 
25 features outperformed those models. The features retained in these models appear to be the 
more robust and important features. 

 

 

Figure 8: Test AUC as a function of the number of features retained in the LKT-LASSO model. 
The benefit of additional features appears to plateau between 100 and 150 features. Most of the 
accuracy is obtained from the first 25 features. Knowledge tracing models do not need many 
features if they are research-based. The X-axis was truncated to 300 for clarity. 

The final features that remained for LKT-LASSO models near the inflection points partially 
overlapped with those found with our stepwise regression approach, as expected. Below, the top 
10 features for each dataset are listed in order of relative importance (see Tables 9, 10, and 11 
below). When the results did not agree with the stepwise results, it appears that it may be because 
a stricter lambda should be employed. For instance, a recency feature for the Problem.Name KC 
with decay parameter .1 remained in the MATHia dataset. However, it has a negative 
coefficient, which is challenging to interpret given that the negative sign implies that correctness 
probability increases as time elapses. A larger lambda value may be justified. 
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Table 8: Proportion of log of successes, log of failures, and intercepts with nonzero coefficients 
retained in LKT-LASSO100  models. *Note: No item-level intercepts, count of success, or counts 
of failure were used for ASSISTments 2012-2013 due to time constraints precluding fitting 100s 
of thousands of intercepts in our stepwise and LASSO approaches. Instead, items were clustered 
into 10 difficulty levels, as described in the IKT section above. Those difficulty level intercepts 
were strongly retained as features in the LKT-LASSO100  model. 

Feature ASSISTments2012 Cloze MATHia 
KC intercepts .077 .305 1 

KC logsuc .108 .0277 00.222 
KC logfail .097 .1388 0.111 

Item Intercepts NA* .750 0.353 
Item logsuc NA* 0.0277 0.2323 
Item logfail NA* 0.1388 0.1717 

 
For the cloze dataset, a large number of features remained even at the inflection point (~150), 

and they were missing many features we stepwise added. Inspecting the features, we saw that 
the variance stepwise captured in single terms (e.g., recency with decay parameter = .5 vs. 
multiple recency features with different decay parameters) was distributed across many terms 
in LKT-LASSO. Given that one goal of this work is to make simpler and more easily 
interpretable models for humans, we tried a larger penalty to reduce the number of features to 
~25. The resulting top 10 if these are in Table 9. This model is more interpretable to a human, 
with mostly recency features, recency-weighted proportion features, and counts of success for 
KC. While the match to stepwise is not exact, we can now see it attending to student and KC 
successes and failures with features like logitdec in the top 10. It appears that lambda values are 
a sort of human interpretability index. Larger values make the resultant models more human-
interpretable and, in this case, still create well-fitting models. Overall, the agreement between 
the approaches is encouraging evidence that these methods behave consistently. 

Table 9: Top 10 features in the cloze model when a larger lambda is imposed to reduce the total 
number of features (LKT-LASSO25 ). Resulting AUC = .8207. Bolded features were also in the 
final empty start stepwise regression model. 

Feature Standardized coefficient Feature Type 
recencyKC..Default._0.2 1.8427 Knowledge Tracing 
recencyKC..Default._0.3 1.6468 Knowledge Tracing 
 propdec0.5KC..Default. 1.1088 Knowledge Tracing 
 recency0.2KC..Cluster. 1.0361 Knowledge Tracing 

 propdec0.9Anon.Student.Id 0.9021 Knowledge Tracing 
 KC..Default.The standard deviation is -0.4604 Intercept 

 KC..Default.A __________ describes the likelihood -0.4397 Intercept 
 KC..Default.Standard deviation is the -0.4111 Intercept 

 KC..Default.The __________, or average, is a 0.3803 Intercept 
 logsucKC..Default. 0.3627506 Intercept 
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Table 10: Top 10 features in the MATHia model when a larger lambda is imposed to reduce the 
total number of features to 25 (LKT-LASSO25 ). Bolded features were also in the final empty 
start stepwise regression model. 

Feature Standardized coefficient Feature Type 
recencyKC..MATHia._0.2 1.224 Knowledge Tracing 

 interceptKC..MATHia.find y, any form-1 -1.110 Intercept 
propdec0.9KC..MATHia. 1.065 Knowledge Tracing 

interceptKC..MATHia.write expression, negative slope-1 -0.881 Intercept 
interceptKC..MATHia.write expression, negative intercept-1 -0.845 Intercept 
interceptKC..MATHia.write expression, positive intercept-1 -0.844 Intercept 

interceptKC..MATHia.write expression, positive slope-1 -0.792 Intercept 
propdec0.9Anon.Student.Id 0.742 Knowledge Tracing 

interceptKC..MATHia.enter given, reading numerals-1 0.509 Intercept 
recency0.1KC..MATHia. 0.401 Knowledge Tracing 

Table 11: Top 10 features in ASSISTments LKT-LASSO25  model. The most important 
takeaway from this table is that most of the features below were for accounting for item 
difficulty. There is no bolding here because we did not use difficulty level in the stepwise search, 
as noted. 

Feature Standardized coefficient Feature Type 
interceptdifficulty_levela -1.8476  Intercept 
interceptdifficulty_levelj 1.6598 Intercept 
interceptdifficulty_levelb -1.3164  Intercept 
interceptdifficulty_leveli 1.0191  Intercept 

propdec0.9difficulty_level 0.9598   Knowledge Tracing 
interceptdifficulty_levelc  -0.7305  Intercept 

propdec0.9type 0.7082   Knowledge Tracing 
 interceptdifficulty_levelh 0.5122   Intercept 

 recency0.1skill 0.4093  Knowledge Tracing 
interceptdifficulty_leveld  -0.4044  Intercept 

 

4.3. COMPARATIVE RESULTS 

Tables 12, 13, and 14 below show the comparative results of the models we tested. The table 
for each dataset is sorted by AUC to show the highest AUC on top. 

Table 12: ASSISTments 2012-2013 dataset model performance. Reported values are average 5-
fold cross-validated results. Values in parentheses are standard deviations. *Stepwise LKT was 
fit and 5-fold crossvalidated using 5% of the data and without problem_ids due to the search 
being prohibitively slow. The results of Stepwise LKT were used to create a version with 
difficulty_level intercepts that was crossvalidated on the remaining 95% of the data. This 
difficulty_level was also used for the LKT-LASSO model. 

Model AUC RMSE 
LKT-LASSO100  0.7879(0.0008) 0.4034(0.0002) 
LKT-LASSO25  0.7770(0.0056) 0.4091(0.0025) 

DKT 0.7726(0.0008) 0.4093(0.0005) 
IKT 0.7676(0.0019) 0.4125(0.0003) 

Stepwise LKT with difficulty level (held out 95% data CV) 0.7590(0.0006) 0.4153(0.0002) 
SAKT 0.7523(0.0070) 0.4215(0.0015) 

Stepwise LKT (5% data CV) 0.6951(0.0154) 0.4368(0.0077) 
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Table 13: Cloze dataset model performance. Reported values are average 5-fold cross-validated 
results. Values in parentheses are standard deviations. 

Model AUC RMSE 
 Stepwise LKT 0.8591(0.0047) 0.3900(0.0032) 
LKT-LASSO100  0.8574(.0046) 0.3929(.0035) 
LKT-LASSO25  0.8207(.0045) 0.4160(.0026) 

SAKT 0.8058(.0048) 0.4279(.0029) 
IKT 0.7732(.0120) 0.4393(.0059) 
DKT 0.75237(.0070) 0.4497(.0031) 

 

Table 14: MATHia dataset model performance. Reported values are average 5-fold cross-
validated results. Values in parentheses are standard deviations. 

Model AUC RMSE 
LKT-LASSO100  0.8294(0.0057) 0.3814(0.0019) 

DKT 0.8252(0.0044) 0.3845(0.0023) 
LKT-LASSO25  0.8166(0.0070) 0.3882(0.0019) 
 Stepwise LKT 0.8122(0.0060) 0.3896 (0.0021) 

SAKT 0.8058(0.0048) 0.3955(0.0025) 
IKT 0.7926(0.0137) 0.3988(0.0084) 

 

5. METHODS DISCUSSION 

5.1. STEPWISE MODEL FITTING 

5.1.1. Cloze with Stepwise 

For the cloze dataset, the models from the three starting points produce somewhat different 
results, illustrating the problem with any stepwise method due to it not being a global 
optimization. However, considering our goal is to implement these models, the result also 
suggests a solution to this local minimum problem. By using more than one starting point, we 
can identify the essential features that explain the data.  

For example, these cloze results show that the recency feature used for the KC-Default is 
particularly predictive. In this dataset, it simply means that the time since the last verbatim 
repetition (KC Default) was a strong predictor, with more recent time since the last repetition 
leading to higher performance. Successes were also important, but curiously, they matter most 
for the KC-Correct-Answer. In all cases, the log of the success is the function best describing 
the effect of the correct responses. In this dataset, this means that each time they responded with 
a fill-in word, and it was correct, they would be predicted to do better the next time that word 
was the response. The log function is just a way to bias the effect of successes to be stronger for 
early success. While the recency being assigned to the exact repetitions (KC-Default) indicates 
the importance of memory to performance, the tracking of success (as permanent effects) across 
like responses suggests that people are learning the vocabulary despite showing forgetting. 

Consistent across all three final models is also the attention to student variability modeling. 
In BestLR, the log success and failure predictors for the student in the model mean that the 
student intercept is removed in an elimination step as redundant (this is also due to the BIC 
method, which penalizes the student intercept as unjustifiably complex). Interestingly, in the 
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AFM and empty start models, we find that the propdec feature is added to capture the student 
variability after the intercept is removed since these starting models did not trace student 
performance with their start log success and failure feature, as did BestLR from the start. The 
MATHia data has the same “problem” with BestLR start because BestLR serves as enough of a 
local minimum to block the addition of terms. Practically, these features are important since 
they allow the model to get an overall estimate for the student that greatly improves the 
prediction of individual trials. 

In summary, there appears to be no great advantage to starting with a complex starting model. 
Indeed, in all cases, the BIC stepwise procedure greatly simplifies the models by reducing the 
number of coefficients. It appears that prior models produced by humans (in this case, AFM and 
BestLR) do not produce better results in the model space than simply starting with an empty 
null hypothesis for the model. Furthermore, all three start models result in final models with no 
fixed student parameters, so they should work for new similar populations without 
modifications, unlike AFM and BestLR, which relied on fixed student intercepts. 

5.1.2. MATHia with Stepwise 

Practically speaking, for the MATHia case, we also see the importance of student variability, 
recency, and correctness for KC and item for all the models. We can see that the BestLR start 
has some effect on the quantitative fit and chosen model. Most notably, while AFM and empty 
starts result in the student intercept being dropped in favor of logitdec and propdec, respectively, 
the BestLR start retains the log successes and failures predictors for the student. At the same 
time, BestLR, perhaps because it begins with the Problem.Name intercept as a term, adds more 
features for Problem.Name, such as linesuc and recency. Additionally, all the models retained 
an intercept for the KCs, and all of the models captured MATHia KC performance change with 
the logitdec feature.  

5.1.3. ASSISTments with Stepwise 

The ASSISTments data require a more hybrid approach because the dataset had 50376 
problem_ids, and the authors of this paper did not have convenient access to computers with 
enough memory/speed to accomplish the task. So, we created the 5% dataset (with 5 folds) to 
accomplish the stepwise search. Still, however, the AFM and BestLR searches were taking too 
long due to the large data size and the necessity of calculating such big models (which do not 
crossvalidate well since the data was student stratified and they tend to rely on student intercepts, 
which do not generalize when students are stratified across folds). However, we compressed the 
problem_ids and added them to the model found with the stepwise method for the 5% solution. 
We found that this caused a relatively large increase in AUC of .06, with the resulting model 
comparing well with the alternatives, as we saw in Section 4.3. This result illustrates an issue 
with using large datasets. It is not clear that when a dataset is very large, it allows a better model 
to be learned. In fact, if the model requires large datasets to find an effect, it typically implies 
the effect is not very strong or important to fit. 

5.2. LASSO MODEL FITTING 

LASSO regression (aka L1 regularization) applies an additional penalty term to the absolute 
values of the coefficients during fitting. Thus, larger coefficients will incur a larger penalty. 
Features that are highly correlated with other features may have their coefficients reduced to 
zero. It appears to be the case that relatively few variables can effectively track student learning, 
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so there is no reduction in accuracy in search of simplicity. We used a particular implementation 
of LASSO, glmnet (Friedman et al., 2010; Tay et al., 2023). Rather than attempting to solve the 
model for a particular lambda value, the entire solution space is explored. This method means 
that many values of lambda (the default is 100) are used, from the minimum value necessary to 
reduce all coefficients to zero (the largest lambda penalty) to the minimum value that will retain 
all coefficients (the smallest lambda). For instance, for the ASSISTments 2012-2013 dataset, 
lambdas ranged from 0.172 to 0.00003, with the value that retained 100 features being 0.0018.  

Fitting the LKT-LASSO models was relatively fast, with a few seconds for MATHia and 
cloze and several minutes for ASSISTments2012. Parallelization is possible since a significant 
aspect of the training is that we are fitting 100 models (1 per lambda). We implemented LKT-
LASSO such that each individual item and KC were treated as separate features with coefficients 
that could be reduced to zero. This decision is not a requirement of LASSO since groups of 
features can be considered together. However, treating them separately has the interesting effect 
of simultaneously testing the importance of the student and KC model intercept features. This 
implicit comparison can reveal redundancies in either side of the model (student or KC model) 
that warrant further scrutiny. If specific features must remain, they can also be omitted from the 
regularization process. 

The present results indicate that a linear combination of linear and nonlinear features can 
outperform popular alternatives. A linear combination of recent performance features (Galyardt 
and Goldin, 2015), temporal recency (Wixted and Ebbesen, 1997), counts of successes and 
failures (Pavlik et al., 2009), and KC/item difficulty parameters appear sufficient for knowledge 
tracing, at least for the contexts that generated the present data. Linear models have several 
practical advantages. For one, linear models allow easier explanation (and ablation) of what the 
model is using to track student performance (e.g., for ASSISTments we can say “problem 
difficulty, temporal recency, and recent performance are the most important features for 
predicting student success”, see Tables 9, 10, and 11). The ability to read off what is being 
accounted for also allows easier remediation of what is not being addressed. For instance, if the 
LKT-LASSO plot was not tracking the effect of time (Figure 10) and did not have a temporal 
feature, the solution would be obvious (add a temporal feature). Potential solutions are more 
complicated for DKT, such as updating the architecture to include an encoder layer to receive 
other inputs (Zhang et al., 2017). Although the sparkle of deep learning approaches may make 
non-technical stakeholders more likely to be interested in implementing them in products, 
managing more inscrutable deep learning models may be more complicated than logistic 
regression models. This issue is important because if the models are intended for practical 
applications, they may need to be maintained and updated regularly over years. 

6. GENERAL DISCUSSION 
The results suggest that both stepwise and LASSO methods work excellently to create, improve, 
and simplify student models using logistic regression. Both approaches agreed that recency 
features, logsuc, and recency-weighted proportion measures like propdec and logitdec were 
important. They also agreed that the number of necessary features was substantially less than 
the full models. While some have argued against stepwise methods (Smith, 2018), we think that 
stepwise methods worked relatively well here because the feature choices were not arbitrary. 
We did not simply feed in all the features we could find. Instead, we choose a set of features 
that can be theoretically justified. 
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In general, we find that relatively simple logistic regression models work as well as the latest 
variants on deep knowledge tracing. Like Gervet et al. (2020), we find that logistic regression 
competes well with complex methods and outperforms them in many cases, producing an 
explainable model. Explaining the results from these logistic regression models needs to begin 
with consideration of the individual features. Each feature being found for a model means that 
the data fits better if we assume the feature is part of the story for learning in the domain. Clearly, 
we might expect different features for different learning domains, and practically, knowing the 
features predicting learning means that we can better understand the learning. For example, 
knowing that recency is a factor or knowing that overall student variability has a big effect. An 
expert building instruction technology might also use individual features or the overall 
predictions in an adaptive learning environment to make decisions about student pedagogy or 
instruction. 

 

Figure 9: Coefficient values for the problem difficulty levels from the LKT-LASSO100 model. 
This feature was inspired by IKT's problem difficulty levels approach and was used instead of 
including intercepts per item. 

 

 

Figure 10: Student performance and model predictions as a function of elapsed time since they 
last practiced a skill in the cloze dataset on the fifth test fold. DKT (red) and SAKT (orange) 
both do not track forgetting as a function of time. The LKT-LASSO100 (blue) tracks actual 
performance (black) across time bins. IKT was not included due to some ambiguity regarding 
why some trials were dropped during feature generation (described above in the IKT section). 
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A key claim of IKT is that it is “interpretable” due to being able to separate student mastery, 
problem difficulty, and student ability (transfer ability) into separate input features. We 
replicated the efficacy of their approach of clustering items into 10 levels instead of using 
separate per-item parameters. Indeed, the best-fitting model for the ASSISTments2012 dataset 
(LKT-LASSO100) used their approach of clustering items by difficulty instead of item intercepts. 
However, examining their explanation of their model, we might wonder whether interpretable 
is enough. Specifically, AI researchers often strive for a higher standard than interpretable, and 
AI research often strives for explainability. Interpretability helps one make sense of the model's 
output for decision-making, while explainability provides a more comprehensive understanding 
of how the model arrived at a result. Explainable AI serves a critical function in learning 
technologies by fostering trust and understanding between human users and machine algorithms, 
which is particularly important in educational settings where the outcomes can significantly 
affect learners' academic and professional futures. By elucidating the decision-making process, 
educators, students, and administrators can scrutinize, validate, and even challenge the 
recommendations or assessments provided by AI, thereby ensuring ethical and accurate 
application. Others have noticed that generalized additive models (GAMs) like ours have this 
character of being straightforward to explain (Khosravi et al., 2022). 

 

Figure 11: Student performance and model predictions as a function of prior correct answers per 
skill in cloze dataset on the 5th test fold. DKT (red) does noticeably worse at predicting 
performance than SAKT and LKT-LASSO100. IKT was not included due to some ambiguity 
regarding why some trials were dropped during feature generation (described above in the IKT 
section). 

Moreover, explainability in AI can pave the way for more informed and collaborative 
decision-making in educational planning, as it allows for nuanced discussions based on how and 
why certain conclusions were derived, thereby enhancing the effectiveness and equity of 
learning environments (Khosravi et al., 2022). Given this, we might argue that IKT, with its 
mixed methods from BKT, DKT, and machine learning, would be hard to explain to users, even 
if its outputs are interpretable. It is interpretable since it can be used to infer many pedagogically 
relevant values, but it seems that it would be difficult to explain the source of these values 
clearly. In contrast, each feature in LKT is relatively easy to explain, and logistic regression may 
be the simplest AI method possible because it is an additive combination of effects. 

On some level, we might question the importance of the relationships between KCs based on 
these results. With the ASSISTments2012 dataset, the strong stepwise LKT results imply that 
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relationships among items and KCs are much less a factor in the good fits of these methods than 
is accounting for problem difficulty. This suggestion seems likely because we get a very high 
AUC CV in the held-out data despite our model having few parameters and no explicit transfer 
among KCs. Consider this graph (Figure 9) of the intercepts for the 10 levels for problem 
difficulty in the LKT models, showing the large difference between the pools. 

While DKT, SAKT, and IKT may be successful because they model relationships, LKT is 
likely successful because it captures the functional form of learning.  LKT may be doing well 
despite the importance of relationships because it captures temporal factors more effectively; 
for example, see Figure 10. LKT also traces the mean performance across repetitions of a KC 
more effectively, see Figure 11. 

We do not doubt that DKT or SAKT could be modified to address some of these issues. 
However, even if it did and matched LKT-LASSO's performance, why bother? Unless a major 
leap in performance is achieved, it might be worth considering that achieving AUC>.80 with 25 
features is evidence that LKT works excellently, and we should focus our efforts on how to use 
such models, e.g., the decision rules these models should be paired with (Eglington and Pavlik 
Jr, 2020) or the methods to create interpretable student-facing dashboards based on the model. 
 

6.1. LIMITATIONS AND FUTURE WORK 

A primary limitation of the present work is that we only included a subset of the LKT features 
already known and established theoretically. We also did not include some known features (e.g., 
spacing effects, long-term forgetting, and interactions among features). An extension of this 
work will be to include more features and a step to generate and test novel features that may be 
counterintuitive. For instance, KC model improvement algorithms could be incorporated into 
the process (Pavlik Jr et al., 2021). However, how much variance is left to explain that is not 
covered by the set of features we used? With two datasets, models with AUC > .8 were found 
using only a relatively small subset of the potential features. On the third dataset 
(ASSISTments2012), the highest AUC among the models was found with LKT-LASSO100.  

An opportunity for future work may also be to use these LKT features as components in other 
model architectures, such as Elo or deep learning approaches. Elo modeling is also particularly 
promising due to its simplicity and self-updating function (Pelánek, 2016). Elo can be adjusted 
to include KT features like counts of successes and failures (Papousek et al., 2014). However, 
standard Elo without KT features is also a strong null model since it does reasonably well 
without KT features.  

Future work might also explore how LKT-LASSO offers a convenient opportunity to 
evaluate the learner and KC model simultaneously. Within the LASSO approach, the coefficient 
of each KC can be pushed to zero, and this could be used to allow refinement of the KC model. 
A limitation of our work here is that we did not explore this further, merely observing that only 
some KCs were being assigned intercepts in the models. 

A key limitation of the stepwise method is the individuality of features resulting in local 
optima. This limitation is illustrated by how logsuc and logfail are retained in the BestLR 
MATHia model, but they are not added in any of the other models. Their retention in BestLR 
may be best, but it may also reflect the standard tendency of stepwise methods to block the 
addition of new terms (possibly better) that are collinear with prior terms. This problem may be 
unavoidable, but we think it is also an uncommon problem. The other side of the problem is that 
logsuc and logfail are not added for the student when nothing is already present. This local 
decision is because adding both requires two steps of the algorithm, while adding composite 
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features like propdec or logitdec requires one step. Since stepwise selection is based on a greedy 
step optimization, it ignores better gains that might occur in two steps when it can accomplish 
the solution pretty well in one step.  

A solution to this problem of feature grain size, in which complex features are favored 
because they contain multiple sources of variability, might be to create synthetic linear feature 
groupings that can be chosen as an ensemble for addition to the model with each step. Such a 
fix will allow us to add the combination feature logsuc and logfail (e.g., for the students) using 
two coefficients as usual, but in one stepwise step. This solution will allow the combined feature 
to compete with other terms, such as logitdec or propdec, which incorporate success and failure 
combined. More advanced methods can use factor selection, which might be applied in both 
stepwise and LASSO within LKT, such as grouping specific features together, such as KC 
models (Yuan and Lin, 2006). 

6.2. PRESETS 

To make the process of logistic regression modeling efficient yet still retain some flexibility and 
user control, our tool includes several preset feature palettes that users will have available 
instead of specifying their own list. These presets are essentially a collection of theoretical 
hypotheses about the nature of the student model, given some goal of the modeler. The presets 
include the following four presets. 

• Static - This present will contain only the intercept feature. It allows for neither dynamic 
nor adaptive solutions, essentially finding the best IRT-type model unless the item or 
KC component is not used, in which case it finds a single intercept for each student. 
Essentially, it fits the LLTM model (Fischer, 1973). 

• AFM variants (i.e., dynamic but not adaptive) – This preset fits linear and log versions 
of the additive factors model (Cen et al., 2008), including LLTM terms that represent 
different learning rates or difficulties based on KC groupings (using the $ operator in 
LKT syntax). 

• PFA and BestLR variants (dynamic and adaptive but recency insensitive) – This preset 
contains all of the above mechanisms and also includes the success and failure linear and 
log growth terms used in PFA (Pavlik Jr. et al., 2009) and BestLR (Gervet et al., 2020). 

• Simple adaptive – This catchall preset will include rPFA (Galyardt and Goldin, 2015) 
inspired terms such as logitdec and propdec, described in this paper and elsewhere 
(Pavlik et al., 2021). In addition, it will include temporal recency functions using only a 
single nonlinear parameter, the best example of which, recency, was described in this 
paper and has been previously described (Pavlik et al., 2021).  

6.3. INTEGRATING DEEP-LEARNING WITH RESEARCH-BASED FEATURES 

One takeaway from this work is that deep learning approaches like DKT struggle to discover 
fundamental features of learning and forgetting that are captured easily by counts of successes 
and failures (e.g., Pavlik Jr. et al., 2009; Roediger and Butler, 2011), elapsed time (recency) 
(e.g., Judd and Glaser, 1969; MacLeod and Nelson, 1984), and recent performance changes 
(e.g., Galyardt and Goldin, 2015; Pavlik et al., 2021). The inability of DKT to predict 
performance as a function of counts of prior successes (Figure 11) or elapsed time (Figure 10) 
indicates a significant limitation. It is worth noting that although SAKT also struggled to predict 
performance as a function of elapsed time, it did predict performance as a function of prior 
successes fairly well. The successes and failures of the different models became apparent when 
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we plotted their predictions for fundamental learning scenarios (accumulated practice and 
elapsed time). We recommend this approach whenever models are developed in the future. 
Future work should attempt to integrate the benefit of highly explainable features that lead to 
superior performance with high flexibility and reduced assumptions of deep learning 
approaches. Discovering high-level interactions among explainable features may allow deep 
learning approaches to provide an advantage over simpler, more explainable models. 

7. CONCLUSION 
As described in our introduction, an initial motivation of this work was to reconcile the tension 
between model accuracy and explainability. Surprisingly, we found that relatively simple 
regression models could be more accurate and more explainable in all tested datasets. We find 
that the first few selected features in most models produced by the stepwise procedure are both 
effective AND explainable. Articulating a theory to describe the simple models is relatively easy 
since some research-based argument can justify each feature. For example, we see the 
importance of tracing student-level individual differences in all the models, and we see the 
recency feature as indicating that forgetting occurs. The LASSO procedure largely confirms that 
the stepwise models are not far from a more globally optimal solution for our test cases and 
reveal the future of the endeavor because of the higher likelihood of a more global solution with 
LASSO despite the slightly less interpretable models. 

The present work sought to simplify the learner model-building process by creating a model-
building tool released as part of the LKT R package. Our promising results demonstrate two 
modes our tool has available to build models automatically. With the stepwise method, they can 
start with an empty model, provide sample data, and the fitting process will provide a reasonable 
model with a reduced set of features according to a preset criterion for fit statistic change. 
Alternatively, with the LKT-LASSO approach, the user provides data, and the resulting output 
will be a set of possible models of varying complexity based on a range of lambda penalties. 
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