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Although using demographic features for predictive models in Educational Data Mining (EDM) has to
be considered very problematic from a fairness point of view and is currently critically discussed in the
field, they are, in practice, frequently used without much deliberate thought. Their use and the discussion
around their use mostly rely on the belief that they help achieve high model performance. In this paper,
we theoretically and empirically assess the mechanisms that make them relevant for prediction and what
this means for notions of fairness. Using four datasets for at-risk prediction, we find evidence that re-
moving demographic features does not usually lead to a decrease in performance but also that we may
sometimes be wrong in aiming to achieve the most accurate predictions. Furthermore, we show that mod-
els, nonetheless, place weight on these features when they are included – highlighting the need to exclude
them. Additionally, we show that even when demographic features are excluded, some fairness concerns
relating to group fairness metrics may persist. These findings strongly highlight the need to know more
about the causal mechanisms underlying the data and to think critically about demographic features in
each specific setting – emphasizing the need for more research on how demographic features influence
educational attainment. Our code is available at: https://github.com/atschalz/edm.
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1. INTRODUCTION

One of the recent discussions in Educational Data Mining (EDM) concerns the question of
whether demographic features should be used for predictive models (Baker et al., 2023). Demo-
graphic features “refer to particular characteristics of a population [. . . ], such as age, race, gen-
der, ethnicity, religion, income, education, [. . . ]” (Salkind, 2010). Baker et al. (2023) provide
a definition of demographic features in the context of Educational Data Mining (EDM) specif-
ically, stating that they encode “information that provides context about students’ backgrounds
and experiences that they bring with them to school” and that (also outside of the context of
education) “demographic variables cannot be manipulated”.
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Whether demographic features should be included in predictive models is connected to the
fairness notion of “fairness through unawareness” (Castelnovo et al., 2022; Dwork et al., 2012).
The concept of fairness through unawareness has been discussed in the literature of fairness
in Machine Learning (ML) for a while (Mehrabi et al., 2021; Caton and Haas, 2024), and has
recently garnered attention in EDM as well (Baker et al., 2023; Yu et al., 2021; Kizilcec and Lee,
2022). The key idea behind this fairness notion is that predictive models that place importance
on demographic features are not fair because people who are otherwise equal may get different
predictions as a result (Castelnovo et al., 2022; Kizilcec and Lee, 2022). For example, suppose
we use a model to admit students to a course based on their prediction to finish the course. If
a demographic variable impacts this prediction, people who are equally well-suited according
to all other features may get a different prediction solely based on demographic characteristics.
Clearly, this happening is something that most would deem unfair, and many advocate excluding
demographic features to avoid it (Hu and Rangwala, 2020; Baker et al., 2023).

This position is not necessarily shared by every researcher. Yu et al. (2021) state that demo-
graphic features should be included and that not doing so can be “construed as subscribing to
a ‘colorblind’ ideology” (p. 98). In particular, Baker et al. (2023) argued theoretically against
the position of Yu et al. (2021) and counter that one should exclude demographic features in
most settings due to concerns for biases. Most importantly, a model trained on biased labels
may reinforce these biases, and models may not be as effective for small groups when demo-
graphic features are used1. In practice, however, it has been observed that many studies in EDM
use demographic features for their predictive models (Alturki et al., 2022; Paquette et al., 2020;
Baker et al., 2023). Alturki et al. (2022) evaluated the features most used across EDM studies
predicting student success from 2007-2018. Among the ten most used features are six demo-
graphic features (gender, age, income, nationality, marital status, employment status) – the most
common of which is gender. The implicit and sometimes explicit reasoning behind both the ar-
gument brought forward by Yu et al. (2021) as well as the frequent use of demographic features,
is that these features matter in the context of education.

It is, of course, the case that the demographic background influences educational attainment
drastically. Affluent students and students with well-educated parents perform better (Azhar
et al., 2014), and women are seen as less competent compared to their equally well-performing
male counterparts in the classroom setting (Bloodhart et al., 2020). These are just two examples
of demographic characteristics influencing educational attainment. They also highlight why
excluding them from predictive models is important – otherwise and as stated by Baker et al.
(2023) the biased data leads to biased models – but investigating their effect outside of using
them for predictive models is interesting and worthwhile.

Although the importance of demographic features for educational attainment is well known,
their impact on predictions in at-risk EDM models is uncertain. Some studies indicate that using
them influences the model’s performance (Batool et al., 2021; Daud et al., 2017), whereas other
studies indicate the opposite (Tomasevic et al., 2020; Jha et al., 2019). These mixed results led
Kizilcec and Lee to state that “it is unclear whether the inclusion of protected attributes adds
predictive value to algorithmic systems, and the merits of fairness through unawareness may be
mostly symbolic” (p. 13) (Kizilcec and Lee, 2022).

If, however, demographic features do not add anything to predictive models regarding the
performance of those models, then there can be two reasons for this. Either demographic fea-

1In addition, Baker et al. (2023) also argue against their use because it may not lead to actionable insights.
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tures do not matter at all and have no value for the prediction (which is unlikely given that their
importance is generally known), or all information that is encoded in them is also encoded in
the other predictive features, in which case new questions about fairness arise, namely whether
it is fair that those other features encode demographic information (Cohausz et al., 2024; Kizil-
cec and Lee, 2022). Because the other features encode demographic information, the average
predictions for different demographic groups will still vary when fairness through unawareness
is employed. The notion of fairness through unawareness is known for this shortcoming (Kizil-
cec and Lee, 2022). Other fairness notions, most importantly and prominently, group fairness
notions, can capture this emerging fairness problem (Kizilcec and Lee, 2022; Castelnovo et al.,
2022).

So far, however, a detailed discussion and evaluation of the role of demographic features
considering performance and fairness is missing. Therefore, this paper will investigate the ef-
fects of using and not using demographic features for prediction across four publicly available
EDM datasets that focus on at-risk prediction. In doing so, we will investigate the effects of de-
mographic features regarding both model performance and fairness. In detail, the contributions
of this paper are the following:

• We provide a discussion of causal mechanisms that may lead to demographic features
being used in predictive models and relate this to fairness concerns and notions.

• We subsequently evaluate how demographic features are used in predictive models and ar-
rive at the conclusion that we should, in most cases, remove demographic features as they
will be used by models otherwise. We also highlight that removing demographic features
does not lead to a decrease in model performance, which may be an additional incentive to
remove them, but it also leads to the question of whether we should even aim for the best
predictive performance. Even when removing the demographic features, the influence
of demographic features may persist through other features encoding information about
them, and, on occasion, removing them might even make the models more biased.

By doing so, we extend the study by Cohausz et al. (2023) that already showed that including
demographic features generally does not lead to a performance boost but did not embed this
in a fairness context. Note that our paper only focuses on at-risk and student success predic-
tion. While demographic features are also used in other areas of EDM, we believe it is better
to focus on one subset of tasks for now and thoroughly investigate this (Paquette et al., 2020).
Furthermore, note again that we are only concerned with the use of demographic features in
predictive models in this study, not with how exactly demographic features influence educa-
tional attainment. Investigating how and why demographic features matter should, of course, be
encouraged.

2. THEORETICAL CONSIDERATIONS ON DEMOGRAPHIC FEATURES AND

FAIRNESS

2.1. TYPES OF FEATURES

Before discussing the impact of demographic features, we want to briefly define and state which
features exist in EDM at-risk predictions and how we define the categories. In accordance
with Tomasevic et al. (2020), we argue that there are three major types of features in EDM:
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demographic, performance, and activity/engagement features. Additionally, we identify features
not belonging to any of the categories.

Demographic Features. Demographic features are traditionally considered to be features that
refer to characteristics of a population and are not changeable within the educational context im-
mediately (Baker et al., 2023). Typically used demographic features are gender, age, ethnicity,
nationality, or features indicating socioeconomic status, e.g., parental occupations or household
income. Furthermore, we need to consider the existence of proxy variables. As Baker et al.
(2023) write, a proxy variable “correlates sufficiently highly with a demographic variable that
using the proxy variable produces results (and bias) similar to using the demographic variable
(perhaps to a lesser degree)” (p. 39). Note, however, that variables may also exist that are highly
correlated with the demographic feature but that are not, according to Baker et al. (2023), proxy
variables because they are also on their own correlated with the target, i.e., they are mediators
that are on the path between the demographic feature and the target. The distinction between
proxy variables and mediating variables is a difficult one, however, because we usually do not
know the exact causal relationships involved. While for some features, it may be clear that they
can only be proxy variables (e.g., the zip code is a proxy for socioeconomic status and perhaps
race), this distinction may be less certain for other variables. In general, if we know that certain
variables are proxy variables, we should treat them in the same way as demographic features,
whereas mediating variables may be used differently (as we will discuss later). Furthermore,
note that the definition of demographic features is relatively strict. For example, a feature that
encodes a student’s amount of free time (which might be influenced by factors such as having a
part-time job, which is in turn influenced by socio-demographic aspects) will not be counted as a
demographic feature as the school can heavily influence it with its timetable and extracurricular
activities. Additionally, the way in which demographic characteristics influence education may
vary depending on the setting. For example, in some countries, female students may be disad-
vantaged while receiving equal treatment to their male counterparts in other countries. Given
that we evaluate the effect of demographic features across four datasets and focus on the general
influence of demographic features for predictions (not for individual features’ specific contribu-
tions), we cannot go into detail for every dataset but point out variables where the classification
may be contentious.

Performance Features. Any study-related performance measures, e.g., grades, information
on passes or fails, or percentages on assignments, are considered performance features. In other
words, any information that hints at how well a student did in the past belongs to this type.

Activity Features. Activity features are features that are study-related and show how active a
student is. Typical features of this type are, among others, participation during class, hours spent
on online learning platforms, and participation in online forums. This category also includes
extracurricular activities as long as they are performed in school.

Other Features. Most features in EDM datasets belong to one of the above categories.
Other features not belonging to either of these categories would be, e.g., the study program,
the semester a student is in, or when the course takes place. We also placed features in this
category that could be argued to be demographic features (e.g., free time, alcohol consumption)
if we employed a different definition.

As our focus is on investigating whether using demographic features is advantageous when
we also have some study-related features, we do not differentiate between activity and perfor-
mance data. For the remainder of the paper, we define study-related features as all features
related to a student’s study activity and previous performance.
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2.2. FAIRNESS NOTIONS

As mentioned in Section 1, demographic features evoke fairness concerns. When we speak
of fairness in Machine Learning (ML), we typically speak about algorithmic bias, i.e., about
models that lead to differing results for specific demographic groups (Mehrabi et al., 2021).

Rather obviously, this may happen if demographic features are assigned importance in mod-
els and, hence, one fairness notion is that these features should be removed: this is the notion of
fairness through unawareness as mentioned in the introduction (Castelnovo et al., 2022). As also
already mentioned, however, a model that conforms to fairness through unawareness does not
necessarily conform to other notions of fairness. Other notions of fairness encompass individual
fairness, causal fairness, and, most prominently, statistical group fairness measures. Individual
fairness relies on the idea that similar people, according to some distance metric, should receive
similar predictions. Not only is it a challenge for this fairness notion to define an appropriate
distance metric, but the notion additionally still has the same problem that fairness through un-
awareness also has: if other features are correlated with the demographic information, it will
still be the case that, on average, one demographic group has a smaller or higher probability to
receive a specific prediction (Castelnovo et al., 2022; Kizilcec and Lee, 2022).

Fairness concerns that become evident when considering the groups of people of specific
characteristics are captured by group fairness metrics. Specifically, when we want to consider
that the predictions still differ for different groups even when removing demographic features,
we are interested in the notion of independence (Castelnovo et al., 2022; Baker et al., 2023;
Kizilcec and Lee, 2022).

The group fairness metric that encodes the idea of independence is Demographic Parity (DP).
It states that the selection rate, i.e., the probability that the positive label is predicted, should be
equal for each demographic group (Bird et al., 2021; Mehrabi et al., 2021). This notion can be
expressed as:

P (Ŷ = 1|A = a) = P (Ŷ = 1|A = b)

Where Ŷ is the prediction, and A is the demographic feature. Note that DP does not rely on the
real target values at all; it makes no assumptions about whether the target is biased or unbiased.
This means that a biased model will be considered unfair when looking at DP, even if this bias is
also reflected in the true distribution of the target values. If we want to make sure that our model
is fair according to DP, we need to mitigate the bias using a bias mitigation strategy that ensures
that DP is met (Deho et al., 2022). However, whether we believe that a lack of independence,
i.e., DP indicating a bias, is problematic is a subjective and situation-dependent view – this is
generally true for all group fairness notions.

Another group fairness metric tightly connected to DP is that of conditional independence
expressed by the Conditional Demographic Parity (CDP) metric (Castelnovo et al., 2022). It
posits that the selection rate should not differ conditional on other legitimate features X:

P (Ŷ = 1|A = 0, X = x) = P (Ŷ = 1|A = 1, X = x), ∀x

Interestingly, fairness through unawareness and CDP may indicate a fair or unfair model in the
same cases: if we declare the legitimate features X to be all features that are not demographic,
both notions call all models fair if the models do not directly rely on demographic features. Of
course, we may decide that only certain other features are legitimate, in which case the two
notions can lead to different results. Like DP, CDP also makes no assumptions about the target.
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This lack of assumption about the target is not the case for all group fairness metrics. Sup-
pose we assume that the differences with regard to the predictions are fully justified by the actual
differences among demographic groups with regard to the true label. In that case, we should turn
to other metrics, such as predictive equality (equal false positive rates), equality of opportunity
(equal false negative rates), and equalized odds (the combination of both) (Castelnovo et al.,
2022). Each of these metrics is concerned with achieving equally accurate models for all demo-
graphic groups. They are not concerned with an equal distribution of the target classes across all
demographic groups. Therefore, if we remove the demographic features, these metrics should
not be affected as much as the general accuracy for each group will decrease or remain stable.

Hence, when we talk about the consequences of removing demographic features, we will
focus solely on DP as this metric can be affected and can show whether the fairness problems,
according to this notion, persist when removing demographic features. Still, we want to note
again that just because DP indicates a problem does not mean that this is a problem in all cases
and according to every person who judges the fairness of models (Cohausz et al., 2024).

For the sake of completion, we also want to briefly mention causal fairness. For causal
fairness to be in place, we need to make sure that a person’s prediction would not change if
they belonged to a different demographic group (Castelnovo et al., 2022; Kizilcec and Lee,
2022). As group membership also affects other features, we would need to know the exact causal
mechanisms to judge whether a change in group membership would change the prediction. As
we usually do not know the exact causal mechanisms, using this fairness notion is not feasible
(Kizilcec and Lee, 2022).

2.3. THE ROLE OF DEMOGRAPHIC FEATURES

We now discuss why demographic features may be used in models and, hence, the sources of
algorithmic bias according to DP. Algorithmic bias usually follows from models placing impor-
tance on demographic features. The importance stems from them being involved causally in the
generation of the target, which means that they are usually correlated with the target and, there-
fore, relevant for prediction (Cohausz et al., 2024). Hence, discussing how they are involved
causally in the data generation mechanism means discussing both their impact on the predic-
tive performance and the algorithmic bias of a model. Cohausz et al. (2024) recently showed
different causal relationships involving demographic features. A causal relationship between a
feature X and a feature Y means that X causes Y and is denoted as X → Y . Hence, these
relationships show how the data is generated. We will now discuss the causal relationships and
how they relate to performance and bias. As already said, note that in reality, we hardly ever
know how exactly features influence other features causally. The scenarios below showcase how
relationships could look and how they relate to DP.

The causal relationship between demographic features and the target may be a direct one,
i.e., A → Y for demographic feature A and target Y (Cohausz et al., 2024). For example,
women are perceived as less able even if they are achieving equally good or even better grades
than their male counterparts (Bloodhart et al., 2020). If women and men apply to graduate
school, it is easy to imagine that gender directly influences the admission decision. In this case,
removing the demographic features achieves fairness according to DP, as the information on the
demographic features is not encoded elsewhere. Furthermore, removing demographic features
leads to a drop in performance. However, this can also be viewed as desirable because the
target is clearly also biased (e.g., more men are truly admitted, which leads to a biased target
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distribution).
The relationship may also be indirect, i.e., A → X → Y where X is some other predic-

tive feature that acts as a mediator (Cohausz et al., 2024; Baker et al., 2023). For example,
Hill et al. (2010) found that women receive letters of recommendation with remarks that are
viewed less positively in comparison to those that men receive. As an example of these remarks,
women were more likely to receive recommendations that stress their compassion, whereas men
received more praise for their ability and scientific contribution (Hill et al., 2010). If we again
think about using the recommendation letter to predict admission, it is clear that gender will,
at least indirectly, influence the admission, as the recommendation letter also encodes this in-
formation (Pearl, 2009). Removing demographic features will not mean that DP is achieved,
and likewise, the model’s performance will not or will only slightly drop, showcasing the lim-
its of the notion of “fairness through unawareness.” In such situations, it should be questioned
whether we would still consider the model fair and whether some kind of bias mitigation needs
to be performed on X .

Of course, it is also possible that both indirect and direct causal relationships apply simulta-
neously (e.g., women are perceived as less competent, and their recommendation letters contain
less favorable attributes), in which case the DP only indicates a fairer but not fair model, and the
performance decreases a bit. The question of how to handle X then still remains. Furthermore,
it is also possible that the demographic feature is a confounder (i.e., a cause for both) for another
predictive variable X and the target, i.e., X ← A→ Y . In such a case, we may call X a proxy
variable of A, and if we know that the causal relationship looks like this, we should remove it
(Baker et al., 2023). If we do not remove X , importance will be placed on it, resulting in the
model still being biased and probably only a minor dip in performance.

For all of the cases discussed so far, the true target is also biased. As already stated, such a
setting means that our goal should no longer be to receive maximally accurate models. There
are, though, also situations where the target is not biased. Such a situation, where the target is
not biased, but the ML model might be, occurs when a demographic feature influences another
feature X that shares a known or unknown confounder with the target, i.e., A→ X ← C → Y ,
where C in the confounder (Cohausz et al., 2024). In this case, because of the correlation with Y ,
X might be used to predict the unbiased target, but it will make the prediction biased because
X is influenced by the demographic feature. Curiously, here, it could even be the case that
removing the demographic feature increases the bias according to DP (Cohausz et al., 2024). If
we include it, then it might correct the bias from the other predictive feature as doing so makes
the prediction more correct – meaning that DP will not indicate a bias. But if we exclude it, the
correction is not possible, and DP will indicate a bias. What follows is that for this scenario,
fairness through unawareness may lead to models that one may consider not fair. Accordingly,
the performance of the model will drop if we remove the demographic feature in the case where
the confounder is not known because X is biased, whereas the target is not. It will not drop if
the confounder is known as the confounder will then be used. In this scenario, because the target
is not biased, we should feel comfortable with trying to achieve a highly accurate model.

A final source of algorithmic bias may be underrepresentation. If only very few people in
our data have a specific demographic characteristic and all of them have the same value for the
target by chance, the model may overfit to this characteristic, even though other features can
explain the target (Mehrabi et al., 2021). Removing the feature will then still indicate a bias
– even though it does not really exist (Cohausz et al., 2024). It will not affect the predictive
performance, though, as the relevant information can be taken from other features.
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To summarize our theoretical considerations, demographic features can impact the predic-
tion in a multitude of ways. If we do not only have a direct connection, removing the de-
mographic features will not mitigate the bias concerns, according to DP, and it will also not
necessarily lead to a drop in performance. Removing the features is still usually a very good
idea as the models might otherwise use them. Removing demographic features is not necessar-
ily the right strategy when we have a confounder, though, that impacts both the target, which
is unbiased, and another predictive feature, which is influenced by a demographic feature. In
this case, removing the demographic feature negatively influences both performance and DP.
This latter scenario is also the only scenario for which we can certainly say that we aim for a
maximally accurate model; in the other cases, the target itself is biased, which should at least
evoke the question of whether we really should aim for highly predictive models. Regardless of
the exact scenario, it is always possible that ML models place weight on demographic features.

Before we turn to our empirical evaluation of the effects of using and not using demographic
features that we theorized about, we first want to consider existing research that focused on the
usefulness of demographic features for predictions to receive an idea of how much they matter
for performance. A detailed empirical evaluation of their impact on algorithmic bias according
to DP does not yet exist.

3. EXISTING EVIDENCE

Existing empirical research is divided on whether demographic features are useful for accurate
predictions.

3.1. DEMOGRAPHIC FEATURES ARE USEFUL FOR PREDICTIVE PERFORMANCE

Batool et al. (2021) used the popular Open University Learning Analytics Dataset (OULAD)
and two similarly structured datasets and selected only the demographic features in the datasets
to predict who will fail the courses. They report high F1 scores using Random Forests but do
not compare against baselines to validate the meaningfulness of their results. Daud et al. (2017)
predict whether a student will finish their degree based on socio-demographic features using
a dataset from several universities in Pakistan. They considered many features not typically
available and potentially extremely problematic, e.g., family expenditures. Daud et al. (2017)
report high F1 scores but do not compare this against predictions using previous performance
data. Hoffait and Schyns (2017) predict which students are at risk at the time of registration for
their degree using a dataset from Belgium. Due to their setting, they only have some previous
performance data from school and no activity information, but most of their data is demographic.
Yet, they achieve relatively high F1 scores.

3.2. DEMOGRAPHIC FEATURES ARE NOT USEFUL FOR PREDICTIVE PERFORMANCE

Tomasevic et al. (2020) also used the OULAD to predict performance and compared several
machine learning models with different sets (demographic, performance, activity) of features
against each other in a very thorough study. Usually, the prediction accuracy did not vary much
when using or not using demographic features as long as the other sets of study-related fea-
tures were used, leading them to conclude that these features were not important, although using
demographic features usually slightly improved the model. At least for this dataset, this find-
ing is very strong evidence that demographic features do not significantly add to the prediction
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accuracy. They apparently did not use all demographic features available. Al-Zawqari and Van-
dersteen (2022) used a subset of the OULAD dataset to distinguish between high-performing
and failing students. They compared F1-scores using and not using demographic data along
with activity data and found that using demographic data did not improve results much. It
should be noted that it is unclear how they selected and handled their data. Jha et al. (2019) used
the same dataset to predict failure using a variety of methods and different feature subsets. In
accordance with the other papers, they found that activity data was the most predictive feature
set. When they used activity data, it did not matter what other features were included regarding
the model’s performance. Trstenjak and Donko (2014) used data from the Information System
of Higher Education Institutions databases to predict success and rank feature importance using
several metrics such as information gain and gain ratio. They showed that most (but not all)
demographic features had very little impact and experimented with leaving some (the least im-
portant ones) of them out, which even led to slightly increased accuracy. Miguéis et al. (2018)
predicted the overall study success of students of a technical university and then looked at the
Gini-index of features. They found that performance data was more important than demographic
data.

3.3. DEMOGRAPHIC FEATURES ARE SOMEWHAT USEFUL FOR PREDICTIVE PERFOR-
MANCE

Khasanah et al. (2017) predicted overall study success with data from Indonesia. They used in-
formation gain to evaluate demographic feature importance and found that some were important,
but others were not. It should be noted that the data they had available on previous performance
and activity was rather limited. Sweeney et al. (2016) looked at the feature importance of one
large dataset as they tried to predict study success for the courses a student enrolled in the next
term. They found that demographic data were more important in the beginning when little past
performance data was available than later on. However, they had relatively few demographic
features in their dataset. Zhao et al. (2020) used admissions data to predict who will perform
well in a specific Master’s program based on admission data. Due to the nature of their setting
– that they try to learn who should be admitted to the program – their performance data is re-
stricted to data on high school and Bachelor results, and they have no activity data. Though they
make no distinction between demographic and non-demographic features, their most important
predictors show that some demographic features (gender, nationality) tend to be important while
others are not. Cortez and Silva (2008) predicted grades of Portuguese middle school students in
math and Portuguese. They found that the relative importance of previous performance scores
was higher, but socio-demographic features still mattered.

3.4. OVERALL EVIDENCE

Overall, for the case of OULAD, despite the results of Batool et al. (2021), the evidence appears
to be clear that accuracy does not increase when using demographic data along with perfor-
mance or activity data (Tomasevic et al., 2020; Jha et al., 2019). In general, studies that included
study-related features typically found demographic features to be less important. However, in
other settings with less performance data, results suggest that demographic data plays a role.
Those who explicitly investigated feature importance typically reported that it is somewhat im-
portant. Furthermore, note that only very few studies explicitly reported on feature engineering
of demographic characteristics. Yet, feature engineering is often non-trivial for demographic
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data as it often consists of (high-cardinality) categorical data.
In accordance with our theoretical considerations, the existing evidence seems to support the

following conclusions: demographic features do impact the predictions as they do lead to good
results when other data is not available. So it is generally, and as expected, not the case that they
are simply unimportant. But, when having other data, the features are no longer important when
it comes to increasing predictive performance. Yet, when looking at the feature importance
scores, some importance is still given to them even when other features are included. Both
observations indicate that an indirect relationship is at play or that the demographic features act
as a confounder and also influence other features that are, therefore, correlated with the target.

4. RESEARCH OBJECTIVE AND QUESTIONS

We now want to investigate the effects of using and not using demographic features on model
performance and fairness. Both our review of existing evidence and our theoretical consider-
ations lead us to the hypothesis that using demographic features will not increase model per-
formance as long as we have study-related features from previous performance or activity but
that they will have predictive power if we do not have study-related features. Accordingly, we
hypothesize that even if we do not include demographic features, fairness metrics might still
indicate that a bias exists as the information of at least some demographic features might be
encoded in the other predictive features.

To test our hypothesis, we formulate the following research questions:

• Research Question 1 (RQ1): Do demographic characteristics explain at least some of
the differences in student performance; in other words, do models using only demographic
features perform better than guessing? With this research question, we investigate whether
demographic features are relevant to the model performance at all, i.e., whether they even
transport relevant information. If they are not relevant, we would not even need to remove
demographic features as they would not be used. If they are helpful, though, this implies
that the target itself is biased.

• Research Question 2 (RQ2): Are demographic characteristics still helpful for model
performance if study-related information is available; in other words, do models trained
on study-related and demographic features perform better than models trained only on
study-related features? With this research question, we test whether all information that
the demographic features provide for the target is also completely encoded in other pre-
dictive features. If this is the case, removing demographic features does not affect the
performance of the model but also does not decrease fairness concerns.

• Research Question 3 (RQ3): If RQ2 is answered with no, do models trained on the whole
data learn that demographic information is irrelevant for the prediction; in other words,
do models trained on the whole data place close to zero importance on the demographic
features? With this research question, we can answer whether removing demographic
features is necessary from the perspective of fairness through unawareness. If models
place importance on demographic features, we should remove them.

• Research Question 4 (RQ4): If RQ2 is answered with no, does removing demographic
features reduce fairness concerns; in other words, does demographic parity vary between
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models with and without demographic features? With this research question, we test
whether the bias, as indicated by DP, decreases, remains stable, or even increases when
removing demographic features. The result tells us about the concerns about fairness
shown by DP, which remain even when we remove demographic features.

5. EXPERIMENTAL DESIGN

In this section, we describe our experimental setup to evaluate the formulated research questions.
We proceed by first describing the datasets and model classes used for prediction. Afterward,
the hyperparameter tuning procedure, methods to treat categorical data, and the evaluation setup
are described.

5.1. DATASETS

We use four publicly available EDM datasets. Two datasets are from online learning systems
and two from in-class education; of the latter, one is from secondary education in high schools
and one from tertiary university education.

In this subsection, we briefly describe the used datasets and the corresponding preprocess-
ing. Furthermore, we describe the assignment of features to the feature types (demographic,
performance-related, activity-related, and others) discussed in Subsection 2.1. We will use the
resulting feature subsets in Section 6 to train models for answering the research questions. An
overview of the datasets can be seen in Table 1. The summary of which features are allocated to
which feature category can be seen in Table 2.

5.1.1. Dataset of Academic Performance Evolution for Engineering Students

The dataset of academic performance evolution for engineering students (Delahoz-Dominguez
et al., 2020) consists of the academic, social, and economic information of 12, 411 Columbian
engineering students. Student performance was assessed at two points in time: in the final year
of high school and in the final year of their professional training in Engineering. We refer to
this dataset as Engineering. The first assessment evaluates five generic academic competencies:

Table 1: Description of the datasets used to evaluate the research questions.

Engineering PortSecStud xAPI-Edu OULAD
No. of samples 12411 1044 480 22437
No. of features 33 34 17 51
Performance features 5 3 0 4
Demographic features 25 17 4 6
Activity features 0 6 5 40
Other features 2 7 7 0
Categorical features 13 4 7 4
Total cardinality 3980 17 59 31
% NA 0.0 0 0.0 0.48
Target y ∈ [1..166] [1..19] [1..3] {1,2}
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Table 2: Description of the allocations of features to subsets for each dataset.

Demographic Features Study-Related Features Other Features
Engineering gender; parental, ge-

ographic, and school
information; item avail-
ability in family

first assessment on five di-
mensions (MAT, CR, CC,
BIO, ENG)

university; academic pro-
gram

PortSecStud gender; age; address; fam-
ily and school related in-
formation; paid classes;
internet access

first and second period
grade; past failures, ab-
sences; study time; ex-
tracurricular activities

lifestyle related features,
e.g. alcohol consump-
tion, romantic relation-
ships, amount of free time

xAPI-Edu gender; nationality; place
of birth; parent responsible

interaction with the e-
learning system; absences

general academic informa-
tion (e.g. semester, field of
study); parental participa-
tion

OULAD gender; region; imd band;
age band; disability; high-
est education

num of prev attempts;
avg cma; avg tma; stud-
ied credits; sum of clicks
and count of visits for each
of the 20 VLE activity
types

-

mathematics, critical reading, citizen competencies, biology, and English. The second assess-
ment evaluates critical reading, quantitative reasoning, citizen competencies, written communi-
cation, English, and the formulation of engineering projects.

As the target for predictions, we use the global score of the second performance assessment
and treat the task as a regression task. The five dimensions of the first assessment are used as
performance information. There is no information about student activity in the dataset. De-
mographic features include gender, parental education and occupation, geographic information,
school information, and whether different items, such as a car or computer, were available in
the family. Other available information is the university and the academic program a student
attends. Note that the university may be correlated with students’ socioeconomic background.
It is, however, also an interesting predictive feature outside of this (universities may also differ
in their teaching style, specialization options, etc.). Additionally, one may transfer to another
university for various reasons, which makes this a feature that can be changed within the educa-
tional context. Because of this, we leave it in the “other” category, but there may be arguments
for placing it in the demographic category, too. The identifier features, as well as all dimensions
and variants of the performance assessment besides the global score, are excluded. Further,
dataset-specific preprocessing is not necessary. Thirteen categorical features are in the dataset,
of which two are of very high cardinality (i.e., more than ten values). There are students from
3,735 schools and 134 universities.

5.1.2. Dataset of Portuguese Secondary School Student Performance

The dataset (Cortez and Silva, 2008) consists of students from secondary education in two Por-
tuguese schools (mean age: 16.7) and can be used to predict student achievement in math and
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Portuguese language courses. We refer to this dataset as PortSecStud The target is the final
course grade, which is measured on a discrete scale between 0 and 20. Some authors categorize
the grade into pass and fail for binary classification or into five levels for classification. How-
ever, we consider it a regression problem, as it better represents the nature of the problem. As
performance information, the first and second-period grades are available, as well as the number
of past class failures. Activity information consists of the weekly study time, absences, and
whether the student participated in extracurricular activities. The demographic information in-
cludes gender, age, and address, as well as school and family-related information. Furthermore,
we considered travel time from home to school, educational support from family, extra paid
classes within the course subject, and having internet access as demographic features since they
are highly influenced by socioeconomic factors and cannot be changed by the school. Other
features are lifestyle-related, such as alcohol consumption or whether the student is engaged in
a romantic relationship. Note that some may argue that a few of the features in this category
could be seen as demographic as well. Because the school might influence these features and
they are not usually listed as demographic features, we decided to use them as other features.
The datasets for the math and Portuguese courses are combined, and a feature indicating the
course has been added. Further, dataset-specific preprocessing is not necessary.

5.1.3. xAPI-Edu-Data

The Students’ Academic Performance Dataset (xAPI-Edu-Data) (Amrieh et al., 2016) consists
of 480 underage students, where most are from Kuwait (179) and Jordan (172). Data was col-
lected through a learning management system which required internet access. The target is
students’ performance in %, which is only available in groups: 0-69, 70-89, and 90-100. Hence,
we treat the task as a multi-class classification problem. There is no information about previous
student performance in the dataset. Student activity is measured according to four behavioral
aspects during interactions with the e-learning system: participation in discussion groups, vis-
iting resources, raising a hand in class, and viewing announcements. In addition, absence days
are available. Demographic features are nationality, gender, place of birth, and the parent re-
sponsible for the student. Other information includes basic academic information (e.g., course,
semester, grade level) and the parents’ participation (answering a survey, school satisfaction).
With this classification, we follow the classification by Amrieh et al. (2016), who published the
dataset. No dataset-specific preprocessing is required. The categorical features with the most
expressions are nationality, with 14 possible nationalities, and field of study, with 12 possible
subjects.

5.1.4. OULAD

The OULAD dataset is a large dataset with diverse opportunities for educational data mining
(Kuzilek et al., 2017). The data stems from the participants of online courses that adults with
diverse academic and financial backgrounds can take in the United Kingdom. The data is stored
in a relational database of five tables with information on students, assessments, courses, reg-
istrations, online learning materials, and students’ interactions with the materials. We focus on
the same prediction task with the same dataset, features, and preprocessing as Jha et al. (2019).
For predictions, we consider all students who did not drop out before the course ended to pre-
dict whether they failed or passed. As information about the previous performance, we use the
average scores achieved in previous assignments. Jha et al. (2019) conducted analyses on dif-
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ferent data subsets as well; however, they counted the so-far achieved credits and the number
of previous attempts as demographic features. This does not match our definition of demo-
graphic features, so we instead define those features as performance-related. Student activity
is obtained as two types of interaction with 20 different content types, resulting in 40 features.
The types of interaction are the sum of the clicks and the number of visits for each type of con-
tent. Content types include homepage, subpage, quiz, wiki, and other platform-related types.
As demographic features, we use gender, region, imd band (an index of deprivation of areas in
the UK), age band, and disability. There are no other features in the dataset. The performance
and activity features are extracted from the database as described by Jha et al. (2019). Similarly,
the id student, code module, module presentation, and exam score features were excluded, as
well as all students who had withdrawn before the course ended. Some mean assessment scores
and imd band categories are missing. The missing assessment scores are due to there not being
an assessment in this course. We accounted for this by adding a value representing this. As the
information on how missing values are treated is not given by Jha et al. (2019), we impute the
mean value for the mean assessment scores and define a new category for missing imd band
values.

5.2. MODELS

In our evaluation, we include two model classes, namely generalized linear models (GLMs) and
XGBoost. For regression tasks, we use lasso regression for the regularization of the models
to prevent overfitting. For classification tasks, we use logistic regression with the L2-penalty.
In the case of multi-class classification, multinomial loss is used. GLMs have the benefit of
being highly interpretable and, thus, are ideally suited for (educational) data mining. However,
they strongly assume that the target’s relationship to the features is linear. In contrast, XGBoost
is a highly flexible model capable of learning more complex relationships. For the OULAD
dataset, XGBoost has been shown to outperform competitive approaches by Jha et al. (2019).
Furthermore, for tabular datasets, XGBoost has shown superior performance compared to other
methods like neural networks far beyond the field of educational data mining (Shwartz-Ziv and
Armon, 2022; Grinsztajn et al., 2022). Thus, it can be considered the state-of-the-art model for
maximizing performance on a variety of datasets such that we do not include further models. In
addition, a simple baseline for each dataset is included, which predicts the target mean of the
training data for regression tasks and the mode for classification tasks. By comparing models
trained solely on demographic data to these baselines, we are able to answer research question
RQ1. For each dataset, we learn models for different feature subsets: using only demographic
data, using only study-related data, using study-related data and demographic data, and using all
data (i.e., also including the other features). This setup allows us to answer RQ2.

5.3. HYPERPARAMETER OPTIMIZATION

We implement a hyperparameter optimization (HPO) pipeline with 5-fold cross-validation (5CV)
for XGBoost and GLMs. For parameter tuning, we use Bayesian optimization implemented in
the hyperopt library (Bergstra et al., 2015). We chose Bayesian hyperparameter optimization
because the method searches the search space more efficiently, reduces computational cost (in
comparison to grid search), and balances exploration and exploitation well (Wu et al., 2019).
In practice, it has been found to work well for a variety of ML methods, including tree-based
methods (Wu et al., 2019). To select the best parameters the training data is split into five folds
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again, i.e., we have a nested approach. In each HPO step, a model with the current hyperparam-
eters is trained on each fold. The objective function of each step is the average performance on
the held-out datasets of each fold. Our modeling pipeline is depicted in Figure 1. Performance
is measured as the mean squared error (MSE) for regression tasks and log-loss for classification
tasks. For the GLMs, we only tune the regularization strength parameter α. The search space
for Lasso regression is defined as α ∈ [10−10, 0.5]. The search space for logistic regression is
defined as α ∈ [10−10, 1.0]. We run 50 iterations of Bayesian optimization for each model.

For hyperparameter optimization of XGBoost, we implement an algorithm to iteratively tune
different subsets of XGBoost hyperparameters using Bayesian optimization in four steps.

1. Tune the number of estimators ∈ [50..500] and the learning rate ∈ [0.001, 0.5].

2. Tune the maximum tree depth ∈ [1..18] and minimum child weight ∈ [0..10].

3. Tune both the number of columns and samples used in each tree ∈ [0.5, 1].

4. Tune the regularization parameters α ∈ [0..10], λ ∈ [1, 4] and γ ∈ [10−8, 9].

In each step, 50 iterations of Bayesian optimization are performed. To speed up the compu-
tations and terminate the training for optimization iterations with poor parameter choices more
quickly, we use early stopping on the validation data if there is no improvement after ten train-
ing iterations. Overfitting on the validation data is mitigated through the 5CV procedure as a
configuration needs to perform well on all five validation sets.

Note that our hyperparameter optimization might affect our results for RQ3, which is con-
cerned with the importance assigned to demographic features. As our hyperparameter optimiza-
tion chooses a hyperparameter configuration that considers all features, importance might be
placed on features that are not necessarily required. To ascertain that our results for RQ3 are
not simply due to the hyperparameter optimization, we also checked the results using the default
settings for a sklearn linear model and XGBoost. Doing so either produced the same patterns or
was not applicable due to bad performance, showcasing that tuning is necessary. Furthermore,
note that other machine learning methods, such as neural networks, would be more prone to
place weight on all features (Grinsztajn et al., 2022).

5.4. METHODS FOR CATEGORICAL DATA TREATMENT

All of the used datasets include categorical data. As the treatment of categorical data, in partic-
ular, high-cardinal data, can affect predictive performance in data mining tasks (Pargent et al.,
2022), we first evaluated whether our models are affected by different encoding methods. We
tested a total of five different encoding techniques, namely One-Hot-Encoding, Ordinal Encod-
ing, Target Encoding, Catboost Encoding, and Regularized Target Encoding (Micci-Barreca,
2001; Pargent et al., 2022; Prokhorenkova et al., 2018). All of the encoding methods have dif-
ferent advantages and disadvantages depending on the setting. We compared the results using
different encoding techniques and found no major differences. Hence, we ultimately decided
to use Regularized Target Encoding for the GLM models and Ordinal Encoding for the XG-
Boost models, as these encodings are specialized for these methods. The detailed results of our
evaluation can be seen in Appendix A.
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Figure 1: Data pipeline for model development and evaluation.

5.5. PREDICTIVE PERFORMANCE EVALUATION

For regression tasks, the target is normalized to zero mean and unit variance for training the
models, then the predictions are denormalized afterward to interpret the performance on the
original scale. All continuous features were normalized to zero mean and unit variance as well.
Doing so allows us to interpret GLM coefficients as feature importance scores directly. For each
configuration, we use 5-fold cross-validation (5CV) for evaluation. As an evaluation metric, we
use root mean squared error (RMSE) for regression (lower is better) and F1-score with macro
averaging for classification (higher is better). We always applied a paired t-test (significance
level < 0.05) to check whether the methods performed significantly better.

5.6. METHODS FOR DETERMINING THE IMPACT OF DEMOGRAPHIC FEATURES IN MOD-
ELS

As we investigate the use of demographic data in EDM predictions, performance is not the
only relevant metric. It is equally important to analyze the extent to which the models use de-
mographic data. If they are not used, removing them is not necessary. Hence, to answer our
research question RQ3, we analyze the feature importance of trained models with a focus on
demographic data. We analyze the learned coefficients of the linear models as well as the fea-
ture importance of the XGBoost models. As we normalized the data, the coefficients of linear
models can directly be interpreted as feature importance scores. For the linear models, we first
normalize the absolute coefficient values to sum to one. Afterward, we sum the normalized co-
efficients for the demographic features to obtain an assessment of the extent to which the models
use demographic data for predictions. For XGBoost, the feature importances reflect how often
certain features are used and how useful they are for the prediction in a single decision tree.
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Precisely, the importance of a single tree is calculated as the amount that each split improves
the performance measure, weighted by the number of samples the node is responsible for. Af-
terward, the feature importances are averaged across all of the decision trees and normalized to
sum to one.

In addition, we analyze the extent to which the utilization of demographic data affects the
actual predictions on linear models; this is considered important information in the fairness
literature (Mehrabi et al., 2021). Given a dataset with n samples and d features in a matrix
X ∈ Rn×d and a target y ∈ Rn, we apply the following procedure:

1. Train a linear model to predict the target

2. Obtain predictions as ŷ = σ(Xβ), where β is the coefficient vector of the linear model
and σ is the inverse link function depending on the target, e.g., linear for continuous and
sigmoid for binary targets

3. Remove the k demographic features from X and the respective coefficients β and obtain
predictions ỹ = σ(X:,d−kβd−k)

4. Compute score for the impact of demographic features as

(a) 1
n

∑n
i ŷi − ỹi for regression – which means that values can range from 0 to max(y)

(b) 1
n

∑n
i {1 if ŷi ̸= ỹi, 0 otherwise } for classification – which means that values can

range from 0 to 1

For regression, this corresponds to evaluating the mean absolute difference of predictions with
and without demographic features. For classification, this corresponds to evaluating the percent-
age of samples for which not using the demographic features changes the class assignment.

5.7. FAIRNESS METRICS

In order to assess whether models not using demographic features are potentially still contain-
ing biases against certain demographic groups and, thus, answer RQ4, we will – as already
discussed in Subsection 2.2 – employ the metric of demographic parity (DP). To be more pre-
cise, we decided to use the demographic parity ratio, as it allows an immediate assessment of the
bias indicated by this metric (Castelnovo et al., 2022). The parity ratio is the ratio of the smallest
selection rate and the largest selection rate of any demographic group. As mentioned in Sub-
section 2.2, the selection rate is the average probability that a member of a certain demographic
group is assigned the positive value (Bird et al., 2021). What follows is that a demographic
parity ratio value close to 1 indicates that the rates for the different groups are almost similar
and most likely no bias exists, whereas a value close to 0 indicates the opposite. In research,
a 4/5 rule, which has its origin in legal regulation, is frequently mentioned, meaning that if the
value is 0.8 or greater, we consider the model unbiased (Bird et al., 2021). The validity of this
assessment does not always hold and depends on the setting, but it is often at least a sensible
guideline. Furthermore, we want to stress again that a metric indicating a bias is nothing but a
hint that an actual fairness concern could exist – and an absence of such an indication is not a
guarantee that some kind of fairness notion is definitely achieved (Cohausz et al., 2024). This
statement is particularly true as different people may evaluate fairness differently, as already
discussed in Subsection 2.2. For this work, we are only interested in whether there is still an
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indication of a bias corresponding to the fairness notion most applicable when removing demo-
graphic features. Therefore, while we are comfortable using this metric, we will refrain from
using the word fairness during the evaluation of RQ4 and will speak of a bias indication. In
order to apply demographic parity to the models, we proceed as follows.

Handling continuous targets. DP is usually only computed for classification and not regres-
sion problems. In order to still receive information for the regression problems, we compare the
average prediction for each group (akin to the DP) by calculating the ratio. For simplicity, we
also refer to this as DP.

Handling extremely underrepresented groups. If a demographic feature contains a value
shared by only very few people (e.g., nationality) in absolute numbers (mostly a problem in the
xAPI-Edu dataset), DP might indicate strong biases, although the differences between groups
are only due to chance (e.g., everyone of a group consisting of three students passed because
they just happened to all be good students). However, it is nearly impossible to tell whether the
difference is due to chance or not. Hence, if a value has less than 20 instances, we recode it to
“other”.

Just like for the other evaluation metrics, we computed the values for each of the folds and
took the average.2

6. RESULTS

In this section, we report and discuss our results to evaluate the stated research questions. We
start with a comparison of models trained on different data subsets. Subsequently, we evaluate
the feature importance of the models using all data to assess whether demographic data is used.
Finally, we evaluate the demographic parity to see whether biases still exist.

6.1. PERFORMANCE COMPARISON OF DIFFERENT FEATURE SUBSETS

Table 3: The table shows the means and standard deviations resulting from 5CV on different data
subsets. Root mean squared error (where lower is better) is reported for Engineering and PortSec-
Stud, and F1-score (where higher is better) for xAPI-Edu and OULAD. Results per column for
methods that are not significantly different from the best method in a paired t-test (alpha=0.05)
are highlighted in bold.

Dataset Baseline Demo only Study only Demo + Study All
Engineering GLM 23.11 (0.26) 20.53 (0.3) 14.47 (0.22) 14.35 (0.25) 14.14 (0.29)
(RMSE) XGB 23.11 (0.26) 20.43 (0.34) 14.39 (0.2) 14.28 (0.23) 14.05 (0.29)
PortSecStud GLM 3.86 (0.17) 3.76 (0.11) 1.57 (0.1) 1.58 (0.1) 1.56 (0.1)
(RMSE) XGB 3.86 (0.17) 3.83 (0.15) 1.49 (0.09) 1.54 (0.14) 1.54 (0.05)
xAPI-Edu GLM 0.2 (0.02) 0.39 (0.04) 0.74 (0.03) 0.74 (0.05) 0.74 (0.06)
(F1) XGB 0.2 (0.02) 0.54 (0.03) 0.74 (0.03) 0.75 (0.05) 0.78 (0.05)
OULAD GLM 0.81 (0.0) 0.81 (0.0) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01)
(F1) XGB 0.81 (0.0) 0.81 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0)

Table 3 shows the results for different data subsets as defined in Subsection 5.1. We report
the mean of the performance metric as well as the standard deviations. Bold numbers represent

2To view the distribution of values of the demographic features, see Appendix B.

18
194 Journal of Educational Data Mining, Volume 16, No 2, 2024



statistically significant best numbers per row, indicating the best feature subsets for the dataset
and method. The columns indicate what feature subsets were used, with “All” meaning that all
feature subsets, including the “other” features, were used.

6.1.1. Predictive Capability of Demographic Features

For OULAD, no difference can be seen between the baseline (i.e., simply predicting the mode)
and using solely demographic features for prediction. Hence, predicting that every student
passes the course works equally well as training a model only using demographic features. For
the PortSecStud dataset, the improvement over the baseline (i.e., simply predicting the mean)
is small, such that the usefulness of the demographic features can also be considered small for
this dataset. For the Engineering dataset, there is a considerable improvement over the base-
line, and for the xAPI-Edu-Data, the improvement over the baseline is the largest. Hence, for
these two datasets, it can be said that demographic features impact performance. Considering
RQ1, we conclude that demographic characteristics can be used to explain differences in student
achievement. However, this conclusion does not hold in every setting and for every type of de-
mographic characteristic. Regarding fairness, it seems to be the case that demographic features
are not always but sometimes correlated with the target, meaning that the notion of fairness
through unawareness is interesting for the setting of at-risk prediction but also shows that we
perhaps should not necessarily aim for highly accurate predictions at all given the biased target.

6.1.2. The Role of Study-Related Features

For all datasets, using only study-related features achieves far better performance than using
only demographic features. Using only study-related features achieves approximately the same
performance as additionally considering demographic features in almost every setting. Only
for XGBoost on xAPI-Edu-Data and GLM on PortSecStud is there a noteworthy mean differ-
ence, although it is small in absolute values. The results for PortSecStud show that using all
information leads to the best performance. This result indicates that the “other” features are im-
portant. As these might be closely related to demographic features or might even be counted as
demographic features using a different definition, we might be inclined to say that demographic
features are important even if we have study-related features. This conclusion that demographic
information perhaps matters is only true for GLM, though. In general, these results confirm the
hypothesis that study-related information contains information about demographic characteris-
tics and that this information might be used to predict the target. What follows is that as soon
as meaningful information about the student’s activity and/or previous performance is available,
the demographic features are no longer required for accurate predictions. Hence, considering
RQ2, demographic characteristics are generally not helpful for predictive accuracy anymore if
study-related information is available. From a fairness perspective, this means that the resulting
model may still be biased even if we remove demographic features.

6.2. FEATURE IMPORTANCE OF DEMOGRAPHIC DATA

The previous subsections have provided clear evidence that demographic features are not nec-
essary for at-risk predictions when sufficient information about students’ study activities or pre-
vious performance is available from a performance point of view. However, our theoretical
considerations indicate that demographic features are likely correlated with other study-related
features and the target. Thus, it is possible that models use these demographic features when

19
195 Journal of Educational Data Mining, Volume 16, No 2, 2024



Table 4: Means and standard deviations of relative feature importances of demographic data
compared to the rest of the data in the model on different data subsets over all folds.

Dataset Demo only Demo + Study All
Engineering GLM 1.0 (0.0) 0.25 (0.03) 0.23 (0.02)

XGB 1.0 (0.0) 0.23 (0.06) 0.19 (0.09)
PortSecStud GLM 1.0 (0.0) 0.08 (0.04) 0.03 (0.02)

XGB 1.0 (0.0) 0.26 (0.04) 0.16 (0.04)
xAPI-Edu GLM 1.0 (0.0) 0.32 (0.14) 0.23 (0.1)

XGB 1.0 (0.0) 0.26 (0.03) 0.21 (0.02)
OULAD GLM 1.0 (0.0) 0.13 (0.0) 0.13 (0.0)

XGB 1.0 (0.0) 0.08 (0.0) 0.08 (0.01)

Table 5: Means and standard deviations of the effect of demographic features on the predic-
tions over all folds. For regression datasets (Engineering, PortSecStud), the mean absolute dif-
ference between predictions with and without demographic data is reported. For classification
datasets (xAPI-Edu, OULAD), the percentage of predictions that change when excluding the
demographic features from the model is reported.

Dataset Effect of demographics
Engineering 0.97 (0.07)
PortSecStud 0.28 (0.06)
xAPI-Edu 0.11 (0.05)
OULAD 0.33 (0.01)
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they are included in the training data. To further inspect whether this is the case, we analyze the
linear models’ learned coefficients and the XGBoost models’ feature importances as described in
Subsection 5.6. Table 4 states the means and standard deviations of relative feature importance
of demographic data compared to the rest of the data. These results allow us to assess how large
their influence on the prediction is. The results show that despite the fact that an equally good
model could have usually been learned for all models without demographic features, those are
still used for all models and datasets. Even for the PortSecStud dataset and the OULAD dataset,
where we previously found that demographic features do not help at all compared to the naive
baseline, the features are still used. For the XGBoost model trained on study-related and demo-
graphic data of the PortSecStud dataset, the demographic information even accounts for 26%
of the feature importance despite not being necessary to achieve the performance. This result
might be an indicator of the confounder relationship we theorized about before. The confounder
relationship would mean that while the target itself is not influenced by demographic variables,
other predictive features that are also correlated with the target are, and the models correct for
this influence by also using demographic features. For the other datasets, where demographic
data was useful, it is likely the case that demographic data is used because it can provide infor-
mation more directly than through other predictive features. Furthermore, Table 5 shows that
in every case, the utilization of demographic data directly affects the predictions of the models.
The table shows the mean absolute differences between predictions when using and not using
demographic features for the regression tasks and the percentage of instances that receive a dif-
ferent prediction for the classification tasks. For regression, the effect is not large, considering
the scales of the targets. Nevertheless, it might be important for some students or some student
subgroups that are too small to account for a large mean difference. For classification, the impact
of demographic features on actual predictions is large.

Our answer to RQ3 is that just using all features leads to models that use information from
demographic features. That, combined with the previous results of this section, shows that the
notion of fairness through unawareness is generally important to consider and that removing
demographic features makes a noticeable difference.

6.3. BIAS INDICATION THROUGH FAIRNESS METRICS

Table 6: The table reports the means and standard deviations of the demographic parity ratio of
all demographic features and then of 5CV fairness metrics results on different data subsets. The
values are rounded to the second decimal place. The smallest DP for each row is bold.

Dataset Demo only Study Only Demo+Study All
Engineering GLM 0.92 (0.02) 0.91 (0.00) 0.91 (0.01) 0.91 (0.01)

XGB 0.89 (0.02) 0.90 (0.00) 0.90 (0.01) 0.90 (0.00)
PortSecStud GLM 0.88 (0.05) 0.86(0.02) 0.86 (0.04) 0.86(0.04)

XGB 0.86 (0.02) 0.87 (0.02) 0.87 (0.03) 0.87 (0.01)
xAPI-Edu GLM 0.16 (0.04) 0.54 (0.04) 0.33 (0.02) 0.40 (0.03)

XGB 0.27 (0.05) 0.59 (0.05) 0.42 (0.04) 0.52 (0.05)
OULAD GLM 0.79 (0.01) 0.80 (0.00) 0.78 (0.00) 0.78 (0.00)

XGB 0.76 (0.01) 0.82 (0.01) 0.79 (0.00) 0.79 (0.00)
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Table 7: Feature and value pairs selected according to the following mechanism: Feature for
which the largest change occurred between Demo+Study and Study only – the Demo+Study
value and difference (+ meaning that the value increased towards Study only, - the opposite) is
reported in this order; feature with smallest and largest demographic parity ratio. The last column
shows the number of demographic features with a ratio below 0.8 for Study-only. All values were
averaged across 5CV and rounded to the second decimal place.

Dataset Largest Difference Smallest Value Largest Value N < 0.8
Engineering GLM SCHOOL NAME: 0.56 / +0.02 SCHOOL NAME: 0.58 GENDER: 0.99 1

XGB SCHOOL NAME: 0.43 / +0.05 SCHOOL NAME: 0.48 GENDER: 0.99 2
PortSecStud GLM traveltime: 0.84 / -0.02 age: 0.69 paid: 0.97 3

XGB traveltime: 0.87 / -0.07 age: 0.74 paid: 0.97 4
xAPI-Edu GLM Relation: 0.17 / +0.42 PlaceofBirth: 0.39 gender: 0.71 4

XGB Relation: 0.30 / +0.33 PlaceofBirth: 0.33 gender: 0.85 3
OULAD GLM highest education: 0.56 / +0.07 highest education: 0.63 gender: 0.97 3

XGB highest education: 0.61 / +0.04 highest education: 0.65 gender: 0.97 4

Table 6 shows the average demographic parity ratio for each model and data subset across
all demographic features. By looking at the table, we can observe two major aspects: First, most
models apart from those concerned with xAPI-Edu look rather unbiased when looking at the
demographic parity ratio – even those just using demographic features. Second, including or not
including demographic features barely makes a difference except for xAPI-Edu. The first point
can very simply be explained by the fact that most demographic features do not matter for the
predictions at all, and, therefore, there is barely a bias coming from them increasing the average.

There are, of course, other demographic features that indicate a bias for every model, as
can be seen in Table 7. The observation that models trained on xAPI-Edu indicate bias much
more strongly might be because the dataset contains only a few demographic features, but those
might almost all be very relevant for the prediction. Our second observation that removing
demographic features barely makes a difference except for xAPI-Edu might, in part, still be
because most features do not matter much at all. However, going back to our theoretical consid-
erations in Section 2.3, this result also corresponds to our idea that the effect of the demographic
features is still encoded in the other predictive features.

For Table 7, the last column shows the number of demographic features for the Study-only
subset that have a ratio below 0.8, indicating a bias. We can see that always some, but usually
not all, features indicate a bias. The second to last column shows the feature with the highest
demographic parity ratio, i.e., with the least amount of bias. Here, we can see that, interestingly,
gender is the least biased feature for three datasets, for both XGBoost and GLM. The middle left
column shows the smallest value for each dataset and indicates a bias in all cases (i.e., a value
smaller than 0.8). Interestingly, the variables with the smallest and largest values, respectively,
for GLM and XGBoost, always correspond, e.g., for PortSecStud, “age”” has the smallest value
and “paid” the largest for both GLM and XGBoost.

The first column shows the largest difference between the demographic parity ratio of the
Study-only and the Study+Demo subset. We can observe that for two datasets, Engineering
and OULAD, the smallest value already experienced the largest increase, suggesting that those
features indicating a bias benefit the most from removing the demographic features. It should
also be noted, however, that the change is not sizable enough to lift the values above the 0.8
threshold for any of the datasets. In general, the differences are not very large – with the ex-
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ception of xAPI-Edu – which, again, points to the idea that the information of the demographic
features relevant for the prediction is encoded in the other predictive features. Related to this
conclusion, xAPI-Edu might experience a stronger increase because – due to the small sample
size – the models cannot properly learn the more complicated functions to reproduce the biases
coming from the effect of demographic features on the other predictive features. A final ob-
servation is that the largest change for PortSecStud is in the opposite direction: the value for
traveltime increases when removing the demographic features indicating a larger bias for both
models. This result fits what we already theorized about, namely that for this dataset, the target
is unaffected by at least some demographic features, but other predictive features are influenced
by these demographic features and are correlated with the target through a confounder. When
including these demographic features, they correct their own influence. But when we exclude
them, the prediction is more biased. For other demographic features in this dataset, this effect
probably does not hold, considering that the overall change is not significant.

All in all, RQ4 is answered with no; there is no substantive difference with regard to demo-
graphic parity when it comes to removing demographic features. We can see that while most
demographic features do not lead to a bias indication at all, some do. For those features, remov-
ing the demographic feature usually but not always has a positive impact, but not such a large
one that we would answer RQ4 in the affirmative. This conclusion is in line with our idea that
other predictive features encode the information of relevant demographic features, meaning that
removing the demographic features has only a small effect. Notably, for PortSecStud, it might
even be the case that removing some of the demographic features leads to a more biased model.

7. DISCUSSION

Our evaluation shows that using demographic features generally does not lead to better model
performance as long as we include study-related features. If we leave demographic features in,
however, they will be used by the models. Hence, we generally advise in favor of removing
demographic features (as advised by the notion of “fairness through unawareness”). However,
doing so does not guarantee unbiased and fair models (opposing the view of “fairness through
unawareness”). Our results clearly show that at least some demographic features still have an
influence on the target when demographic features are removed. This finding conforms to our
theory presented in Subsection 2.3 that indirect, mediating effects are at play. Moreover, there
may be some features for which their removal means that the model becomes more biased in
their regard. This is because the features may not influence the target directly, but do influence
other features correlated with the target. The features correct their own influence when used in
models, but of course cannot do this if they are not included. It seems to be the case that this
happens rarely. Still, it should be considered and shows that the topic of removing demographic
features for predictive models is difficult and that fairness through unawareness does not nec-
essarily match other notions of fairness as described in Subsection 2.2. In general, we still do
advocate the removal of demographic features to prevent them from being used for predictions,
which is usually not considered fair. We will now turn to the implications our results have for
practitioners and researchers.
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7.1. THE IMPORTANCE OF DEMOGRAPHIC FEATURES FOR PREDICTION

Clearly, demographic features only sometimes make models perform better in comparison to
only having study-related information available. Yet, models use them if they are included.
What follows are two notable consequences for practitioners and researchers.

First, often, the target itself is also biased. Going back to the example presented in Section
2.3, if the target feature is admittance and men are perceived as more able, resulting in more men
being admitted, then the target contains a bias. Hence, we do not necessarily want to achieve
models with the best possible performance, as that would include bias. Usually, we chase for
better performance, but our paper indicates that this is not necessarily the best option. We
recommend that practitioners and researchers think critically about what they want their model
to be and whether it is possible that by simply trying to be as accurate as possible, biases are
reinforced.

Second, practitioners and researchers should focus on gathering and using study-related data.
These features are clearly very important, and while demographic features might also influence
these features, their usage is at least comparatively fairer, and existing biases in them can be
mitigated using bias mitigation strategies (Deho et al., 2022). Demographic features, on the
other hand, can be left out from a performance perspective. Note that in the cases for which
leaving them out leads to a decrease in performance, the true target is likely biased, reinforcing
the first point.

Leaving them out of predictive models, however, does not mean that we should not consider
them at all in the context of predictive models. As a matter of fact, it is important to collect
demographic information still and to use it to evaluate the models regarding different fairness
notions as we did in this study (Andrus et al., 2021).

7.2. THE IMPORTANCE OF DEMOGRAPHIC FEATURES FOR NON-PREDICTION MOD-
ELS

We want to highlight again that the recommendation not to include demographic features does
not mean that we should never explore the impact of them on academic achievement or that
demographic features are not important. On the contrary, it is very important to investigate how
demographic characteristics impact academic achievement so that we can intercept mechanisms
that would lead to disadvantages for certain populations (Paquette et al., 2020). We also want
to highlight that for all datasets, only a few demographic features were relevant enough for the
predictions that they produced a bias. Learning more about which features matter in which
settings and how they matter is an interesting topic worth researching.

Hence, we certainly do not want to discourage research on causal mechanisms of demo-
graphic characteristics’ impact on academic achievement. Rather, we want to highlight the
importance of thinking about demographic features. The fact that at least some other predictive
features transport information about demographic features, even if we do not include demo-
graphic features, shows the necessity to think about how demographic features are embedded in
the causal mechanisms generating the data.

7.3. THE IMPORTANCE OF DEMOGRAPHIC FEATURES FOR FAIRNESS

For fairness, our implications are less clear-cut and cannot be general. We may say that our
results do not support the claim in Yu et al. (2021) that sensitive features should be included for
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fairness reasons if the prediction accuracy itself is equal. Table 5 shows that using demographic
features changed the prediction for some students; this is an indication that the models using
demographic features are, indeed, unfair (Mehrabi et al., 2021). Therefore, leaving them in
would probably not result in an equally fair model when considering the notion of fairness
through unawareness as explained in Subsection 2.2.

However, this result does not mean that models are fair according to all notions of fairness
when removing demographic features. As we also showed in our results, models are still often
biased with regard to at least one demographic feature due to the other features being correlated
with the demographic feature, making models biased according to DP. Depending on the appli-
cation and setting, it might be necessary to take further steps, such as employing bias mitigation
strategies (Deho et al., 2022; Bird et al., 2021). At the very least, this possibility is something
that researchers and, in particular, practitioners should critically think about.

To make matters even more complicated, removing the demographic features may, in certain
settings, even make the model more biased. This surprising effect clearly highlights the need to
think about the causal mechanisms underlying our data. Regarding the causal mechanisms, we
want to point practitioners to a recent article by Cohausz et al. (2024), which depicts different
causal relationships similar to the ones discussed in Subsection 2.3 and how they affect algo-
rithmic bias as well as our perception of fairness, which may help researchers and practitioners
with thinking about fairness and deciding on courses of action on a case-by-case basis. What
we ultimately judge as fair or unfair is both context-specific and subjective.

7.4. LIMITATIONS OF OUR STUDY AND FUTURE WORK

Despite our solid results, it is important to note certain limitations. We only used four datasets
and two types of models to test our hypotheses. As these datasets are diverse (online, offline,
different countries, different levels of education), as are the model types (linear, non-linear), we
believe that our main findings are still very reliable. Nonetheless, future work should investigate
whether the findings hold when using other datasets and models.

Additionally, we did not investigate whether the models’ feature importance may change
when using different encoding methods. This may be the case when the encoding methods learn
that demographic features are not necessary for the prediction. However, given the correlation
between demographic features and the target, it is unlikely that different encodings would lead
to models not contributing importance to demographic features at all. Still, this should also be
investigated in the future.

Because it is not the major focus of our study, we have not investigated the relationship
between the importance of activity- and performance-related features. Future research could
investigate what is more important and how the two feature subsets relate to each other.

Furthermore, as already stated in the introduction, this study only concerned itself with one
task of EDM, but other problems handled in EDM research (e.g., course recommendations) also
make use of demographic features. We argue that similar studies should be conducted for other
tasks in EDM as well and hope that our paper can be an orientation to these future research
endeavors.

Finally, and as already mentioned, we think that our study highlights the need to better under-
stand the impact of demographic features on performance and activity-related features. Doing so
could also help reduce the impact of demographic features on other predictive features. There-
fore, we highly encourage research that concerns itself with modeling the causal relationships
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among those features and investigating related bias mitigation strategies.

8. CONCLUSION

In this paper, we theoretically reasoned how demographic features may impact the predictions of
ML models regarding both performance and algorithmic bias. Our subsequent empirical evalua-
tion shows strong evidence that demographic features do not typically increase a model’s perfor-
mance on at-risk prediction as long as study-related information is available. However, demo-
graphic features are still used by the models when available. Because of this, we advise leaving
out demographic features. Nonetheless, models may still be biased because non-sensitive pre-
dictive features are also correlated with the demographic features transporting their information.
This highlights the need to think critically about fairness concerns and take further measures
if necessary. In particular, our paper shows that investigating the causal mechanisms of how
demographic features impact academic achievement is worthwhile and should be encouraged,
with the aim of achieving fairer models.
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A. APPENDIX A

The results for the different encoding techniques can be found in Table 8. Clearly, all encoding
techniques perform similarly.

Table 8: Means and standard deviations of 5CV Performance results. Mean squared error is
reported for Engineering and PortSecStud and F1-score for xAPI-Edu and OULAD. Results per
row for encodings that are not significantly different from the best encoding in a paired t-test
(alpha=0.05) are highlighted in bold.

Dataset Baseline Ignore OHE Target Ordinal Catboost 5CV-GLMM
Engineering GLM 23.11 (0.26) 14.36 (0.26) 14.11 (0.29) 14.55 (0.23) 14.36 (0.25) 14.22 (0.29) 14.13 (0.29)

XGB 23.11 (0.26) 14.28 (0.25) 14.11 (0.26) 14.38 (0.23) 14.15 (0.25) 14.17 (0.28) 14.04 (0.28)
PortSecStud GLM 3.86 (0.17) 1.55 (0.1) 1.55 (0.1) 1.55 (0.1) 1.55 (0.1) 1.55 (0.1) 1.55 (0.1)

XGB 3.86 (0.17) 1.51 (0.12) 1.51 (0.08) 1.46 (0.06) 1.52 (0.06) 1.57 (0.08) 1.5 (0.06)
xAPI-Edu GLM 0.2 (0.02) 0.75 (0.06) 0.76 (0.03) 0.75 (0.06) 0.73 (0.05) 0.73 (0.09) 0.75 (0.06)

XGB 0.2 (0.02) 0.76 (0.05) 0.78 (0.04) 0.78 (0.06) 0.78 (0.08) 0.72 (0.07) 0.76 (0.02)
OULAD GLM 0.81 (0.0) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01)

XGB 0.81 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0)
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B. APPENDIX B

Appendix B shows the distribution of the values for the demographic features in all datasets.

Table 9: Distribution of the values of the demographic fea-
tures of Engineering in percent.

Feature Value Percentage
Gender Male 0.59

Female 0.41
Complete professional education 0.24

Complete Secundary 0.23
Complete technique or technology 0.10

Incomplete Secundary 0.09
Postgraduate education 0.09

Education Father Complete primary 0.07
Incomplete primary 0.06

Incomplete Professional Education 0.04
Not sure 0.04

Other 0.04
Incomplete technical or technological 0.03

Complete Secundary 0.25
Complete professional education 0.25

Complete technique or technology 0.12
Incomplete Secundary 0.09

Education Mother Postgraduate education 0.08
Complete primary 0.06

Incomplete primary 0.04
Incomplete Professional Education 0.04

Other 0.03
Incomplete technical or technological 0.03

Not sure 0.01
Independent 0.23

Technical or professional level employee 0.15
Operator 0.12

Other occupation 0.09
Occupation Father Executive 0.09

Other 0.08
Independent professional 0.07

Small entrepreneur 0.06
Retired 0.04

Entrepreneur 0.04
Auxiliary or Administrative 0.03

Home 0.01
Home 0.38

Technical or professional level employee 0.14
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Independent 0.09
Auxiliary or Administrative 0.07

Executive 0.06
Occupation Mother Independent professional 0.06

Operator 0.06
Other occupation 0.05

Small entrepreneur 0.04
Other 0.03

Entrepreneur 0.02
Retired 0.01

Stratum 3 0.33
Stratum 2 0.32

Stratum Stratum 1 0.14
Stratum 4 0.13
Stratum 5 0.05
Stratum 6 0.03

Unclassified 0.61
Level 2 0.17

SISBEN Level 1 0.17
Level 3 0.05
Other 0.01
Four 0.38
Five 0.23

Three 0.19
Six 0.09

People in House Two 0.05
Seven 0.03
Eight 0.01
Nine 0.01
Ten <0.01

Twelve or more <0.01
One <0.01

Internet Yes 0.79
TV Yes 0.85

Computer Yes 0.82
Washing Machine Yes 0.62

Oven Yes 0.69
Car Yes 0.53

DVD Yes 0.75
Fresh Water Yes 0.97

Phone Yes 0.96
Mobile Yes 0.71

Between 1 and less than 2 LMMW 0.31
Between 2 and less than 3 LMMW 0.22
Between 3 and less than 5 LMMW 0.18
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Revenue less than 1 LMMW 0.08
Between 5 and less than 7 LMMW 0.08

10 or more LMMW 0.06
Between 7 and less than 10 LMMW 0.04

Other 0.02
No 0.96

Job < 20h/week 0.02
> 20h/week 0.01

Other 0.01
School Private 0.53

Public 0.47
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Table 10: Distribution of the values of the demographic fea-
tures of PortSecStud in percent.

Feature Value Percentage
School GP 0.74

MS 0.26
gender Female 0.57

Male 0.43
16 0.27
17 0.27
18 0.21

Age 15 0.19
19 0.05
20 0.01
21 < 0.01
22 < 0.01

Address Urban 0.73
Rural 0.27

Family Size > 3 0.71
<= 3 0.29

4 0.29
2 0.28

Mother Education 3 0.23
1 0.19
0 0.01
2 0.31
1 0.25

Father Education 3 0.22
4 0.21
0 0.01

Other 0.38
Services 0.23

Mother Job At home 0.19
Teacher 0.12
Health 0.08
Other 0.56

Services 0.28
Father Job teacher 0.07

At home 0.06
Health 0.04
Mother 0.70

Guardian Father 0.23
Other 0.07

1 0.60
Travel Time 2 0.31
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3 0.07
4 0.02

School Money Support No 0.89
Family Money Support No 0.61

Paid Classes Yes 0.79
Internet Yes 0.79

4 0.49
5 0.27

Family Relationship 3 0.16
2 0.05
1 0.03
5 0.38
3 0.21

Health 4 0.17
1 0.13
2 0.12
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Table 11: Distribution of the values of the demographic features of xAPI-Edu in percent.

Feature Value Percentage
Gender Male 0.64

Female 0.36
Kuwait 0.38
Jordan 0.36

Palestine 0.06
Iraq 0.05

Lebanon 0.05
Nationality Tunisia 0.03

Saudi-Arabia 0.02
Egypt 0.02
Syria 0.01
USA 0.01
Iran 0.01

Lybia 0.01
Morocco 0.01
Venezuela < 0.01

Kuwait 0.38
Jordan 0.37

Iraq 0.05
Lebanon 0.04

USA 0.03
Saudi-Arabia 0.03

Place of Birth Palestine 0.02
Egypt 0.02

Tunisia 0.02
Syria 0.01
Iran 0.01

Lybia 0.01
Morocco 0.01
Venezuela < 0.01

Parent Responsible Father 0.59
Mother 0.41
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Table 12: Distribution of the values of the demographic fea-
tures of OULAD in percent.

Feature Value Percentage
Gender Male 0.55

Female 0.45
Scotland 0.12

East Anglian Region 0.10
London Region 0.10
South Region 0.09

North Western Region 0.09
West Midlands Region 0.08

Region South West Region 0.07
East Midlands Region 0.07

South East Region 0.06
Wales 0.06

Yorkshire Region 0.06
North Region 0.06

Ireland 0.04
A Level or Equivalent 0.43
Lower Than A-Level 0.40

Highest Education HE Qualification 0.15
No Formal 0.01

Post Graduate Qualification 0.01
20-30 0.11
30-40 0.11
10-20 0.11
0-10 0.10

IMD-Band 40-50 0.10
50-60 0.10
60-70 0.09
70-80 0.09
80-90 0.08

90-100 0.08
0-35 0.70

Age Band 35-55 0.29
>55 0.01

Disability No 0.90
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