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Language proficiency diagnosis is essential to extract fine-grained information about the linguistic knowl-
edge states and skill mastery levels of test takers based on their performance on language tests. Different
from comprehensive standardized tests, many language learning apps often revolve around word-level
questions. Therefore, knowledge concepts and linguistic skills are hard to define, and diagnosis must be
well-designed. Traditional approaches are widely applied for modeling knowledge in science or math-
ematics, where skills or knowledge concepts are easy to associate with each item. However, only a
few works focus on defining knowledge concepts and skills using linguistic characteristics for language
knowledge proficiency diagnosis. In addressing this, we propose a framework for language proficiency
diagnosis based on neural networks. Specifically, we propose a series of methods based on our frame-
work that uses different linguistic features to define skills and knowledge concepts in the context of the
language learning task. Experimental results on a real-world second-language learning dataset demon-
strate the effectiveness and interpretability of our framework. We also provide empirical evidence with
comprehensive experiments and analysis to prove that our knowledge concept and skill definitions are
reasonable and critical to the performance of our model.

Keywords: cognitive diagnosis, language proficiency, linguistic skill, concept definition, skill modeling.

1. INTRODUCTION

Language proficiency diagnosis is one of the critical fundamental technologies supporting lan-
guage education and has recently gained popularity in many language learning applications.
Identifying the learners’ latent proficiency level to higher accuracy is crucial in providing per-
sonalized materials and adaptive feedback (Avdiu et al., 2019). In practice, with the diagnostic
results, systems can provide further support, such as learning planning, learning material recom-
mendation, and computerized adaptive testing. Most importantly, it can help second-language
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Figure 1: An example of cognitive diagnosis.

learners to place themselves in the correct learning space or level, especially when they are new-
comers or have taken a long break from using the application, during which they might have
forgotten a lot or, conversely, have advanced in the target language (Robertson, 2021).

Many cognitive diagnosis methods have been proposed for the knowledge proficiency di-
agnosis of learners. Figure 1 shows a simple example of a cognitive diagnosis system, which
consists of learners, question items, knowledge concepts, and learner responses (scores). Specif-
ically, a learner interacts with a set of questions and leaves their responses. Moreover, human
experts usually label each question item with several knowledge concepts. Then, the goal is
to infer their knowledge proficiency based on the interactions. Therefore, a cognitive diagno-
sis system can be abstracted as a learner-question-concept interaction modeling problem, and
most previous works focus on learner-question interaction models or learner-concept interaction
models (Gao et al., 2021). For example, traditional methods like Item Response Theory (IRT)
(Lord, 1980; Embretson and Reise, 2013), Multidimensional IRT (MIRT) (Reckase, 2009), and
Matrix Factorization (MF) (Mnih and Salakhutdinov, 2007) try to model the learner-question in-
teraction and provide learner latent traits (e.g., ability level) and the question features (e.g., dif-
ficulty level). Other works such as Deterministic Inputs, Noisy-And gate (DINA) (De La Torre,
2009) try to build the learner-concept interaction instead of learner-question interaction. Unlike
learner-question interaction models, learner-concept interaction models could infer the learner’s
traits in detail for each knowledge concept contained in the question item by simply replacing
the question with their corresponding concepts. Although great successes have been made, tra-
ditional methods have some limitations, which decay their effectiveness. Also, these approaches
are widely applied for modeling knowledge in science or mathematics and ignore characteristics
of language learning, which makes it a significant research challenge to infer the mastery level
of learners’ language proficiency.

A critical drawback of traditional methods is that they can only exploit the response results
and ignore the actual contents and formats of the items and cannot effectively utilize the rich in-
formation hidden within question texts and underlying formats (Liu et al., 2019). For instance,
IRT and MIRT focus only on analyzing learners’ responses to determine the characteristics of
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a question, such as its difficulty level, and the actual knowledge concepts being assessed in the
question are not incorporated into these models. Most traditional methods were proposed for
scale-based tests, where a group of examinees is tested using the same small set of questions.
This ensures the completeness of response data, as each examinee is expected to answer every
question. However, the data collection process for these traditional tests, such as paper-based
exams, tends to be labor-intensive. Additionally, the diversity and breadth of question items are
often constrained, given that all examinees are presented with the same examination paper. In
contrast, for learning applications nowadays, the data might be collected via different scenes,
such as offline examinations and online self-regulated learning, and the distribution of response
data can be of high volume but very sparse due to the large total number of items and limited
questions attempted by the learners (Wang et al., 2020). Therefore, neglecting contents and
formats leaves traditional methods no possibility to utilize the relationships of different items.
Hence, they cannot generalize item parameters to unseen items (Robertson, 2021), while for
language proficiency diagnosis, previous studies have shown that the information of questions
is significantly related to item parameters, such as the difficulty level. For example, charac-
ter length and corpus frequency are proven to be essential factors for predicting the difficulty
level of questions (Culligan, 2015; Settles et al., 2020), while the average word and sentence
lengths have been used as key features to predict text difficulty (Beinborn et al., 2014; Robert-
son, 2021). Also, studies have indicated that different question formats impact the difficulty
level and explanatory power in predicting receptive skills (Kremmel and Schmitt, 2016). For the
same vocabulary, different question formats are often used collectively to assess different skills,
such as reading, writing, listening, and speaking skills, and many assessments have a mixture
of item types. Consequently, it is essential to consider the format information of the items and
their influence on different traits when building a language proficiency diagnosis model.

Another critical challenge is defining and using linguistic skills for diagnosing language pro-
ficiency. Although many approaches are widely applied for proficiency diagnosis, they have yet
to be frequently applied to data generated in language learning settings. Instead, they have been
primarily applied to science, engineering, and mathematics learning contexts, where skills or
knowledge concepts are well-defined and easy to associate with each item. Most works use
manually labeled Q-matrix to represent the knowledge relevancies of each question. For exam-
ple, a math question: 6×9+3 = () examines the mastery of two knowledge concepts: Addition
and Multiplication. Thus, the Q-matrix for this question could be labeled as (1, 1, 0, ..., 0), where
the first two positions show this question test Addition and Multiplication concepts, and other
positions are labeled with zero, indicating other knowledge concepts are not included. However,
proficiency diagnosis in language learning is different from other domains since linguistic skills
are hard to define (Ma et al., 2023a; Zylich and Lan, 2021). Unlike the comprehensive nature of
standardized tests like TOEFL, many English learning apps often focus on simplistic word-level
questions, which are easy to design and fast to answer by learners. However, defining knowledge
concepts to extract intricate insights from seemingly basic word-level questions and providing
detailed diagnoses remains a significant challenge.

To address these challenges, which have yet to be well explored in the research community,
we propose a framework for language proficiency diagnosis, which could capture the learner-
question interactions more accurately based on data mining and neural networks. In addition,
we use linguistic features of words extracted by natural language processing tools, such as mor-
phological and semantic features, to define knowledge concepts and skills related to vocabulary
and grammar knowledge shared between words. Extensive experimental results on a real-world
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second-language learning dataset demonstrate our proposed framework’s effectiveness and in-
terpretational power. We also provide empirical evidence with ablation testing to prove that our
knowledge concept and skill definitions are reasonable and critical to the performance of our
model. The results show that using linguistic features to refine knowledge concepts and skills
improves performance over the basic word-level model. We also explore the relationship be-
tween different question formats and, in turn, their effect on vocabulary proficiency diagnosis.
This paper is an extension of our previous conference paper (Ma et al., 2023b). Compared to
our previous paper, we present more detailed experiment results in this paper. We also add a
more comprehensive analysis and visualization of results to investigate the impact of question
formats and the key factors that influence performance.

The remainder of this article is organized as follows. First, we will review the related work.
Then, we introduce our task and present the framework in detail. Also, we introduce different
ways to define knowledge concepts and skills. Next, we introduce the dataset and experimental
settings in Section 4 and report the results in Section 5. Finally, we discuss the results and the
limitations of our work in Section 6 and conclude the paper in Section 7.

2. RELATED WORK

2.1. COGNITIVE DIAGNOSIS

Cognitive diagnosis is a fundamental task, and many classical cognitive diagnosis models have
been developed in educational psychology, such as IRT, MIRT, and DINA. IRT (Lord, 1980;
Embretson and Reise, 2013) is a widely used method and has been applied in educational testing
environments since the 1950s (Embretson and Reise, 2013). It applies the logistic-like item
response function and provides interpretable parameters. In its simplest form, IRT could be
written as:

P (X ij = 1) = σ(θi − βj),

where P is the probability of the learner i answering the item j correctly, σ is a logistic-like
function, θ and β are unidimensional and continuous latent traits, indicating learner ability and
item difficulty, respectively. Besides the basic IRT, other IRT models extend the basic one by
factoring in other parameters, such as the item discrimination or guessing parameter.

IRT has proven to be a robust model. However, it only provides an overall latent trait for
learners, while each question usually assesses different knowledge concepts or skills, and a
single ability dimension is sometimes insufficient to capture the relevant variation in human re-
sponses. By extending the trait features into multidimensions, Reckase (2009) proposed MIRT,
which tries to meet multidimensional data demands by including an individual’s multidimen-
sional latent abilities for each skill. Although IRT and MIRT are powerful for assessing learner
abilities based on their responses, the latent trait vectors they provide are often abstract and not
directly interpretable in a practical educational context. For instance, a high latent trait score in
a mathematics assessment might indicate a general mathematical ability, but it doesn’t specify
areas of strength or weakness in a way that is actionable for a learner’s self-assessment (Cheng
et al., 2019; Wang et al., 2023).

By characterizing learner features (e.g., ability) and item features (e.g., difficulty), IRT builds
learner-question interaction and provides an overall latent trait for learners. However, real-world
questions usually assess different knowledge concepts or skills, and an overall trait result is in-
sufficient (Ma et al., 2022). To provide detailed results on each knowledge concept or skill, other
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works try to build learner-concept interaction directly. For example, DINA (De La Torre, 2009)
models the learner-concept interaction by mapping questions to corresponding concepts/
skills directly with Q-matrix, which indicates whether the knowledge concept is required to
solve the question. Unlike IRT, θ and β are multidimensional and binary in DINA, where β
came directly from Q-matrix. Two other parameters, guessing g and slipping s, are also con-
sidered. The guessing parameter reflects the likelihood that a student will correctly answer an
item by guessing despite not having the required skills or knowledge. In contrast to guessing,
the slipping parameter represents the probability that a student with the required skills or knowl-
edge for a particular item will answer incorrectly. This could happen due to various reasons,
such as making careless mistakes, misinterpreting the question, or temporary confusion. The
DINA formula is written as follows:

P (Xij = 1) = gj
1−ηij(1− sj)

ηij , ηij =
K∏

k=1

θik
βjk ,

where the latent response variable ηij indicates whether the learner has mastered all the required
knowledge to solve the question. And the probability of the learner i correctly answering item
j is modeled as the compound probability that the learner has mastered all the skills required
by the question without slip or does not master all the required skills but makes a successful
guess. Although DINA has made significant progress and shows its advantage compared to
IRT in specific scenarios, it ignores the features of questions and simply replaces them with
the corresponding knowledge concepts/skills, thus leaving useful information from questions
underexploited.

2.2. MATRIX FACTORIZATION

Besides the traditional models, the other line of studies has demonstrated the effectiveness of
MF for predicting learner performance by factorizing the score matrix, which was originally
widely used in recommendation systems (Chen et al., 2017). Studies have shown that predicting
learner performance can be treated as a rating prediction problem since learner, question, and
response can correspond to user, item, and rating in recommendation systems, respectively.

Toscher and Jahrer (2010) applied several recommendation techniques in the educational
context, such as Collaborative Filtering (CF) and MF, and compared them with traditional re-
gression methods for predicting learner performance. Along this line, Thai-Nghe and Schmidt-
Thieme (2015) proposed multi-relational factorization models to exploit multiple data relation-
ships to improve the prediction results in intelligent tutoring systems. In addition, Desmarais
(2012) used Non-negative Matrix Factorization (NMF) to map question items to skills, and the
resulting factorization allows a straightforward interpretation of a Q-matrix. Similarly, Sun et al.
(2014) proposed a method that uses Boolean Matrix Factorization (BMF) to map items into la-
tent skills based on learners’ responses. Wang et al. (2020) proposed a Variational Inference
Factor Analysis framework (VarFA) and utilized variational inference to estimate learners’ mas-
tery level of each knowledge concept.

Despite their effectiveness in predicting learner performance, the latent trait vectors in MF
are not interpretable for cognitive diagnosis, i.e., there is no clear correspondence between ele-
ments in trait vectors and specific knowledge concepts. Also, these works have considered only
learners and question items and ignored other information that may also be useful.
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2.3. DEEP-LEARNING BASED MODELS

With the recent surge in interest in deep learning, many works have begun to use deep learning
to address some of the shortcomings of traditional cognitive diagnosis models (Huang et al.,
2020; Liu et al., 2018; Tong et al., 2021; Tong et al., 2022).

Traditional methods are often based on simple linear functions, such as the logistic-like func-
tion in IRT or the inner product in matrix factorization, which may not be sufficient. To improve
precision and interpretability, some previous works focus on interaction function design and use
neural networks to learn more complex non-linear functions. For example, Wang et al. (2020)
proposes a Neural Cognitive Diagnosis (NCD) framework for Intelligent Education Systems,
which leverages neural networks to learn the interaction function automatically.

Some researchers focus on incorporating the content representation from question texts into
the model by neural networks, which is difficult with traditional methods. Cheng et al. (2019)
proposed a general Deep Item Response Theory (DIRT) framework that uses deep learning
to estimate item discrimination and difficulty parameters by extracting information from item
texts. Wang et al. (2023) applied neural networks to extract two typical types of information
in the question text: knowledge concepts and extra text-related factors. Furthermore, Song
et al. (2023) utilized semantic information in the cross-modal contents of exercises for modeling
student performance. Their results indicated that using such content information benefited the
model and significantly improved its performance.

Other deep-learning models try to incorporate dependency relations among knowledge con-
cepts to enhance diagnosis performance. For example, Wang et al. (2021) proposed a model
based on neural networks and aggregate knowledge relationships by converting all knowledge
concepts into a graph structure. Ma et al. (2022) proposed the Prerequisite Attention model for
Knowledge Proficiency (PAKP) to explore the prerequisite relation among knowledge concepts
and use it for inferring knowledge proficiency. Li et al. (2022) proposed a Bayesian network-
based Hierarchical Cognitive Diagnosis Framework (HierCDF) to incorporate knowledge at-
tribute hierarchy when assessing students. Recent work proposed the Relation map driven Cog-
nitive Diagnosis (RCD) (Gao et al., 2021) model by comprehensively modeling the learner-
question interactions and question-concept relations. Their model performed better than tradi-
tional works considering only learner-question interactions (e.g., IRT) or only question-concept
interactions (e.g., DINA).

When looking into studies about language proficiency assessments, the application of Nat-
ural Language Processing (NLP) has recently become increasingly prevalent. Techniques such
as word embedding (e.g., word2vec), Recurrent Neural Networks (RNNs), and Bidirectional
Encoder Representations from Transformers (BERT) have been instrumental in extracting and
interpreting semantic information from texts, and they are essential for applications of assessing
language abilities. For example, studies have investigated the relationship between test items
and language features to predict the item’s difficulty or even automatically generate new items.
Susanti et al. (2016) proposed a system to generate questions pertaining to vocabulary. Factors
such as the reading passage difficulty, semantic similarity between the correct answer and dis-
tractors, and distractor word difficulty level are all considered in this system. Beinborn et al.
(2014) used NLP techniques to predict c-test difficulty at the word-gap level, combining pho-
netic and text complexity factors. Loukina et al. (2016) conducted a study to investigate which
textual properties of a question affect the difficulty of listening items in an English language
test. Settles et al. (2020) used a Markov chain language model and unigram language model
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to induce linguistic features and then used machine learning models to estimate item difficulty
directly. Benedetto et al. (2021) used pre-trained BERT models to estimate the difficulty of
multiple-choice language questions. Other studies try to estimate learners’ knowledge states.
For example, Ma et al. (2023a) models and predicts learners’ knowledge by considering their
forgetting behavior and linguistic features in language learning. Pre-trained word embeddings
are used in their model to extract semantic and morphological features. There is an increas-
ing amount of work that uses machine learning and NLP approaches for language proficiency
assessments. However, most of these studies focus on generating question items or predicting
learners’ responses using linguistic features extracted by NLP methods, and few directly use
linguistic features to define knowledge concepts and skills. Also, these studies failed to consider
question formats’ influence on different receptive skills.

In summary, although deep learning models have been widely explored nowadays, they have
been primarily applied to learning contexts such as math, algebra, or science, where skills or
knowledge concepts are well-defined and easily associated with each item. Therefore, these
methods cannot be directly used in the language learning area, and linguistic skills need to be
well-defined for language proficiency diagnosis. In addition, except for the work by Wang et al.
(2023), other works mentioned above failed to consider question formats, which are essential
for language-learning questions and may significantly influence the question difficulty level and
learner’s performance.

3. PROPOSED METHOD

We first give the definition of our problem in Section 3.1. Then, we present our proposed frame-
work in Section 3.2.

3.1. PROBLEM FORMULATION

Like every test, there are two basic elements: user and item, where a user represents a learner,
and an item represents a question. We use L to denote a set of learners, Q to denote a set of
questions, and s to denote the learner-question interaction score. Learner question records are
represented by R = {(l, q, s)| l ∈ L, q ∈ Q, s ∈ {0, 1}}, which means learner l responded to
question q and received the score s. Each score s is in {0, 1} where 1 indicates the question is
correctly answered while 0 is the opposite.

Given enough question-records data R of learners, our goal is to build a model to mine
learners’ proficiency through the task of performance prediction.

3.2. FRAMEWORK

Generally, for a cognitive diagnostic system, three parts need to be considered: learner, ques-
tion item, and interaction function. As shown in Figure 2, we propose a cognitive diagnostic
framework with deep learning to obtain the learner parameter (proficiency) and item parameters
(discrimination and difficulty). Specifically, for each response log, we use one-hot vectors of
the corresponding learner, question, and the knowledge concepts vector of the question as in-
put. Then, we obtain the diagnostic parameters of the learner and question. Next, the model
learns the interaction function among the learner and item parameters and outputs the probabil-
ity of correctly answering the question. After training, we get the learner’s proficiency vectors
as diagnostic results.
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Figure 2: Overview of the proposed framework.

3.2.1. Item parameters

The item’s characteristics are calculated in the item network to represent the traits of a specific
item. Our model uses two parameters from the Two-Parameter Logistic IRT model (Van der
Linden and Hambleton, 1997), i.e., discrimination and difficulty. The discrimination a ∈ (0, 1)
indicates the ability of an item to differentiate among learners whose knowledge mastery is high
from those with low knowledge mastery, and difficulty b ∈ (0, 1)1×K indicates the difficulty
of each knowledge concept examined by the question, where K is the number of knowledge
concepts.

As mentioned, two elements influence the item’s characteristics for a vocabulary question:
the target word and the specific item format. Then the item is represented by integrating the
one-hot word embedding vector w and one-hot item format embedding f .

i = w ⊕ f , (1)

where ⊕ is the concatenation operation. After obtaining item representation using the word em-
bedding and item format, we input it into two networks to estimate the question discrimination
a and knowledge difficulty b. Specifically:

a = σ(Fa(i)), (2)

b = σ(Fb(i)), (3)

where Fa and Fb are discrimination and difficulty networks, respectively, and σ is the sigmoid
function.
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3.2.2. Learner parameter

In the learner network, the proposed method characterizes the traits of learners, which is closely
related to the proficiency of various knowledge concepts or skills tested in the question and
would affect the learner’s performance. Specifically, each learner is represented with a profi-
ciency vector θ = (θ1, θ2, . . . , θn), where θi ∈ [0, 1] represents the degree of proficiency of a
learner on a specific knowledge concept or skill i and the goal of our cognitive diagnosis model
is to mine learners’ proficiency through the task of performance prediction. The proficiency
vector is obtained by multiplying the learner’s one-hot representation vector l with a trainable
matrix A. That is:

θ = l×A. (4)

3.2.3. Prediction of learner response

INTERACTION LAYER The proposed method predicts a learner’s response performance to a
question as a probability. We input the representations of the learner parameter and question
parameters (i.e., item discrimination and knowledge difficulty, respectively) into an interaction
function to predict the learner’s probability of answering the specific question correctly.

The interaction function simulates how learner parameters interact with question parameters
to get the response results. For example, IRT uses a simple logistic-like function as the interac-
tion function. Based on previous works (Ma et al., 2022; Wang et al., 2020; Wang et al., 2023;
Wang et al., 2021), we use a neural network to learn a more complex non-linear interaction
function to boost the model. Specifically, the input of the interaction function can be formulated
as follows:

x = a (θ − b) ⊙ kc, (5)

where kc is the knowledge concept or skill vector that indicates the relationship between the
question and knowledge concepts or skills, which is usually pre-labeled by experts and obtained
directly from Q-matrix. We discuss how we define the knowledge concepts or skills in Section
3.3. The operator ⊙ is the element-wise product, and x indicates the learner’s performance on
each concept about the question. We then use a three-layer feed-forward neural network Fi to
learn the non-linear activation function and output the probability p that the learner answers the
question correctly. It can be formulated as follows:

p = σ(Fi(x)). (6)

Following previous works (Wang et al., 2020; Wang et al., 2023; Wang et al., 2021), we re-
strict each weight of Fi to be positive during the process of training to ensure the monotonicity
assumption, which assumes that the probability of learners answering the exercise correctly
increases monotonically with the degree of mastery on each knowledge concept about the ques-
tion. Next, we used the sigmoid function for output binary learner responses (e.g., 0 or 1).

GUESS AND SLIP ADJUSTMENT We noticed that many question items in the dataset are
multiple-choice items, which makes it highly possible for the learners to guess the correct answer
even if they do not master the knowledge concept or slip even though they know the answer. To
obtain better results, we add a guessing parameter g ∈ [0, 1] and a slipping parameter s ∈ [0, 1]
to adjust the performance results, where g indicates the probability that a learner did not master
the knowledge concepts but guessed the correct answer and s indicates the probability that a
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learner masters the knowledge concepts but did not answer correctly. The guessing and slipping
parameters can be formulated as follows:

g = σ(Fg(i ⊕ l)), (7)

s = σ(Fs(i ⊕ l)), (8)

where Fg is the guessing and Fs is the slipping networks, respectively. To compute the final
probability that a learner answers the question correctly, we apply adjustments of the guessing
parameter and slipping parameter on the probability estimation, which can be expressed as:

y = g + (s− g)× p. (9)

3.2.4. Model learning

We use the binary cross-entropy loss function for the proposed method. The learner scores 1
when she/he answers the item correctly and 0 otherwise. For learner i and question j, let yij be
the actual score for learner i on question j, and ŷij be the predicted score. Thus, the loss for
learner i on question j is defined as:

L = yijlogŷij + (1 − yij )log(1 − ŷij ). (10)

Using Adam optimization (Kingma and Ba, 2014), all parameters are learned simultaneously by
directly minimizing the objective function. After training, the value of θ is what we get as the
diagnostic result, which denotes the learner’s knowledge proficiency.

3.3. DEFINING KNOWLEDGE CONCEPTS AND SKILLS

The knowledge concept or skill vector indicates the relationship between question items and
knowledge concepts/skills, which is fundamentally essential as we need to diagnose the degree
of proficiency of a learner corresponding to a specific knowledge concept/skill. As for each
question, the knowledge concept/skill vector c = (c1, c2, c3, . . . ck), ci ∈ {0, 1} represents if a
specific knowledge concept/skill is required to solve the question, in which ci = 1 indicates that
the knowledge concept/skill is included in the question and conversely, ci = 0 indicates it is not
included.

Usually, skills or knowledge concepts are pre-labeled by experts, and the vector c can be
directly obtained from the pre-given Q-matrix. However, the knowledge concept/skill is difficult
to define for language learning compared to other learning contexts such as science, engineering,
and mathematics. Conventional models treat all question items nested under a particular word
as equivalent. However, even for the same word, the ability of learners to comprehend a specific
word can be divided into different levels. Some researchers define ’word knowledge’ as different
components, including spelling, word parts, meaning, grammatical functions, the associations a
word has with other words, and collocation to describe the totality of the learner’s knowledge of
a specific word in a language (Nation, 2001; Ma et al., 2023a). Thus, different items may refer
to the same word if the word is used differently in multiple contexts (e.g., used as different parts
of speech) or if different components of the word are tested. It is essential to consider these
when building vocabulary proficiency diagnosis models.

The following subsections introduce several methods for defining knowledge concepts/skills
in vocabulary proficiency diagnosis using different linguistic features. We also provide more
detailed results on diagnosing associated knowledge concepts/skills.
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Table 1: An example subwords Q-matrix.

Words Knowledge Concept
active actual actor act -tive -tual -ual -tor -or · · ·

active 1 0 0 1 1 0 0 0 0 · · ·
actual 0 1 0 1 0 1 1 0 0 · · ·
actor 0 0 1 1 0 0 0 1 1 · · ·

...
...

...
...

...
...

...
...

...
...

...

3.3.1. Words as knowledge concepts

The simplest way to label knowledge concepts in an item is to use the unique words as lexical
knowledge concepts. A language-learning system could have many lexical knowledge concepts
(e.g., many unique words), and actually, many questions are designed based on a word. There-
fore, we use the word that is tested in the question as the knowledge concept, and only one
knowledge concept will relate to a question item of this type.

3.3.2. Sub-words as knowledge concepts

In reality, multiple knowledge concepts are often required to successfully solve a problem, and
using the tested word as the only knowledge concept for a question item may not be enough.
For example, to achieve proficiency in a compound word, it often necessitates mastery of its
constituent sub-words. In order to label multiple knowledge concepts in an item, we identify
sub-words that comprise a word and treat each sub-word as an additional knowledge concept.
Sub-words can be viewed as morphological features of an original word, which may indicate the
relationships of different words and reinforce the knowledge related to gender agreement, pre-
fixes, suffixes, compound words, etc. Inspired by the work of Zylich and Lan (Zylich and Lan,
2021), we apply a sub-word tokenizer to identify sub-words contained in each word automati-
cally. As shown in Table 1, we formulate a Q-matrix to apply the sub-word knowledge concepts
for each word. For example, the word ‘active’ could have additional knowledge concepts ‘act’
and ‘-tive’.

3.3.3. Semantically similar words as knowledge concepts

Previous works indicated that cross-effects commonly exist in language learning (Ma et al.,
2023a; Zylich and Lan, 2021). That is, during the exercise process of a learner, when an ex-
ercise of a particular knowledge concept is given, she/he also applies the relevant knowledge
concepts to solve it. Specifically, in language learning, it seems that knowledge pertaining to
semantically-similar words related to the word being tested is helpful in answering the question.

To obtain semantic similarities of words, we first embedded each word into a 300-dimensional
vector using pre-trained fastText word embeddings (Grave et al., 2018) and calculated the cosine
similarity scores between each pair of words to get a matrix of values that indicate the similar-
ities of each word. Using this similarity matrix, all the similar words in the dataset that have
cosine similarity larger than a threshold α with the current word can be counted as additional
knowledge concepts required to solve the question. The threshold α is used to control the de-
gree of semantic similarity, for example, only highly semantically similar words can be used as
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Table 2: Summary of question formats and required skill(s).

Format&Skill Q-matrix Vector
Format Skill Q1 Recognition Q2 Listening Q3 Spelling Q4 Reading

F1 Recognition 1 0 0 0
F2 Recognition 1 0 0 0
F3 Recognition, Listening 1 1 0 0
F4 Recognition, Spelling 1 0 1 0
F5 Reading 0 0 0 1

knowledge concepts in the Q-matrix if α is large, and if α = 1, this model reduces back to the
basic word-level model that only uses the current word as the knowledge concept. Otherwise, if
α = 0, all other words with non-negative similarity to the current word are treated as knowledge
concepts.

3.3.4. High-order skills

We formulated several methods for defining knowledge concepts in language proficiency diag-
nosis using different linguistic features, such as additional morphological and semantic concepts.
However, the ability to solve vocabulary questions can sometimes depend on several high-order
skills rather than on whether the learner knows the word. Following previous works (Kilickaya
et al., 2019; Ma et al., 2022; Yao and Schwarz, 2006), we also consider defining skills instead
of knowledge concepts in language proficiency diagnosis.

Here we propose two different methods to label skills in language proficiency. The most
basic way we can choose to label a skill is by the question format. Figure 3 shows five different
question formats in our dataset (more detailed information on the data can be found in Section
4.1). Moreover, if a learner correctly answers a particular type of question, we can assume
that she/he has a high skill in this question format. However, there will only be a single skill
associated with each item, and it is not explainable enough if we use the question format as
skills. To have a better interpretation, as summarized in Table 2, for each question format (see
Figure 3), we defined some high-order language skills (i.e., Recognition, Listening, Spelling,
Reading) required to tackle a specific question format based on some of the evidence from the
literature (Kilickaya et al., 2019; Kremmel and Schmitt, 2016; Ma et al., 2022; Stæhr, 2008).

4. EVALUATION

4.1. DATASET

Our real-world dataset came from one of Japan’s most popular English-language learning appli-
cations, and most of the users are Japanese students. The dataset includes 9,969,991 learner-item
interactions from 2,014 users, and each row includes a user id, item id, question format, and re-
sponse result (0 or 1). There are 1,900 English words in the dataset, and each word has five
different question formats collectively assessing different skills, resulting in 9500 items.

As shown in Figure 3, there are five different question formats to collectively assess reading,
writing, listening, and speaking skills of vocabulary learning in our dataset. Below are the
descriptions of the five question formats. Format 1: Multiple-choice, choose the correct Japanese
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Figure 3: Examples of different question formats.

Figure 4: Distribution of question formats and response pie chart.

description of the English word. Format 2: Multiple-choice, choose the corresponding English
word given the Japanese description. Format 3: Multiple-choice, listen to an English word, and
choose the corresponding Japanese description. Format 4: Typing, type in letters to form the
correct English word given the Japanese description. Format 5: Multiple-choice, choose the
appropriate English word to fill in the blank of the sentence.

Moreover, some basic statistics of the dataset and response distributions are depicted in
Figure 4. We notice an imbalance in the response data for different question formats, primarily
influenced by the learning content designs, such as lessons and practice sessions within the
application. Formats 1 and 2 are the most common in the datasets, accounting for 38% and
32%, respectively. Additionally, while the correctness rates are high across all question formats,
there is a noticeable variance. The average correctness rate for the dataset is 77%, with format
4 achieving the highest average correctness rate of 91% and format 1 presenting the lowest at
71%. This variation indicates differing levels of difficulty and learner engagement with each
question format.
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4.2. EXPERIMENTAL SETTINGS

4.2.1. Evaluation metrics

The performance of a cognitive diagnosis model is hard to evaluate as we cannot obtain the
true knowledge proficiency of learners directly. Usually, the models are evaluated by predicting
learner performance in most cognitive diagnosis works. Following previous works, we evaluated
by comparing the predicted responses with the ground truth, i.e., the actual response by the
learners.

To set up the experiment, the data were randomly split into 80%/20% for training and test
purposes, respectively. We filtered out the learners who had answered less than 50 questions
so that every learner could be diagnosed with enough data. Like previous works (Cheng et al.,
2019; Wang et al., 2023; Wang et al., 2021), we use Prediction Accuracy (ACC), Area Under
Curve (AUC), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as metrics.
The larger the values of ACC and AUC, and the smaller the values of MAE and RMSE, the
better the results are.

4.2.2. Comparison

We named our model as Vocabulary Proficiency Diagnosis Model (VPDM) and compared our
models using different knowledge concepts and skill definitions with several existing models
given below.

• DINA (De La Torre, 2009): DINA is a cognitive diagnosis method that models learner concept
proficiency by a binary vector.

• IRT (Embretson and Reise, 2013): IRT is a classical baseline method that models learners’
and questions’ parameters using the item response function.

• MIRT (Reckase, 2009): Extending from IRT, MIRT can model the multidimensional latent
abilities of a learner.

• PMF (Fusi et al., 2018): Probabilistic matrix factorization (PMF) is a factorization method
that can map learners and questions into the same latent factor space.

• NMF (Lee and Seung, 2000): Non-negative matrix factorization (NMF) is also a factorization
method, but it is non-negative, which can work as a topic model.

• NCD (Wang et al., 2020): NCD is a recently proposed method that uses neural networks to
learn more complex non-linear learner-question interaction functions.

Among these baselines, IRT, MIRT, and DINA are widely used methods in educational psy-
chology. PMF and NMF are two matrix factorization methods from the recommendation system
and data mining fields. NCD is a recently proposed model based on deep learning.

4.2.3. Parameter settings

We implemented our model and other baselines in PyTorch 1. The model was trained with a
batch size of 256. We used Adam optimizer with a learning rate of 0.001. The dropout rate is
set to 0.2, and early stopping is applied to reduce overfitting.

1The code is available at https://github.com/BoxuanMa/Vocabulary-Proficiency-Diagnosis-Model
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Table 3: Performance comparison. In the table, an upward arrow indicates that a higher value is
better. Conversely, a downward arrow signifies that a lower value is better.

Model ACC ↑ AUC ↑ MAE ↓ RMSE ↓
DINA 0.756 0.704 0.348 0.446
IRT 0.770 0.721 0.317 0.400
MIRT 0.768 0.728 0.311 0.399
NMF 0.768 0.722 0.355 0.405
PMF 0.771 0.731 0.328 0.398
NCD 0.772 0.734 0.316 0.397
VPDM-Word 0.773 0.736 0.309 0.396
VPDM-Subword 0.772 0.736 0.310 0.396
VPDM-Semantic 0.773 0.736 0.308 0.396
VPDM-FormatSkill 0.773 0.742 0.309 0.395
VPDM-LangSkill 0.773 0.742 0.308 0.395

5. RESULTS

5.1. PERFORMANCE PREDICTION

The overall results on all four metrics are shown in Table 3 for all baseline methods and our
models predicting learners’ performance. VPDM-Word, VPDM-Subword, VPDM-Semantic,
VPDM-FormatSkill, and VPDM-LangSkill are our models using words, sub-words, semanti-
cally similar words, question formats, and language skills as knowledge concepts/skills, respec-
tively. We observe that our models perform better than all other models, indicating the effective-
ness of our framework. Among other baseline models, we noticed that the performance of NCD
is comparable to our models and better than educational psychology methods (i.e., DINA, IRT,
and MIRT) and matrix factorization methods (i.e., NMF and PMF), which demonstrates that
leveraging deep learning could model the learner-question interactions more accurately than
other conventional models.

In comparing our models, the performance of the VPDM-Word, VPDM-Subword, and VPDM-
Semantic models are comparable. In contrast, VPDM-LangSkill and VPDM-FormatSkill mod-
els perform better than others, indicating that more broadly defined skills/knowledge concepts
of an item are better. In the following subsections, we will introduce our investigations to gain a
deeper understanding of the differences among our models.

5.2. ABLATION STUDY

To investigate how the guessing and slipping adjustment layer affects model performance, we
conducted some ablation experiments to compare the results. Table 4 shows the comparison
results of the experiments on our mixed-format dataset. We observed that the performance im-
proves when using the guessing parameter, and the model with guessing and slipping parameters
obtained the best performance. It is reasonable as many items are multiple-choice in our dataset.
In addition, we noticed that adding the slip and guessing parameters substantially improves some
models’ performance. This might imply that the Q-matrix is not specified appropriately in those
models, though no formal rules exist to test this assumption (De La Torre and Douglas, 2004).
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Table 4: Results of the ablation study. In the table, an upward arrow indicates that a higher value
is better. Conversely, a downward arrow signifies that a lower value is better.

Model Adjustment ACC ↑ AUC ↑ MAE ↓ RMSE ↓

Word
- 0.765 0.655 0.343 0.412
G 0.771 0.735 0.311 0.397

G&S 0.773 0.736 0.309 0.396

Subword
- 0.766 0.661 0.343 0.412
G 0.772 0.734 0.317 0.397

G&S 0.772 0.736 0.316 0.396

Semantic
- 0.766 0.705 0.327 0.404
G 0.772 0.734 0.310 0.397

G&S 0.773 0.736 0.308 0.396

Format
- 0.772 0.733 0.319 0.399
G 0.773 0.740 0.312 0.395

G&S 0.773 0.742 0.309 0.395

LangSkill
- 0.770 0.735 0.315 0.397
G 0.773 0.741 0.311 0.395

G&S 0.773 0.742 0.308 0.395

In the comparison of the models that remove the guessing and slipping adjustment layer,
the performance of the basic VPDM-Word model is the worst. As we expected, the knowledge
assessed by a word item is not just simply related to the tested target word in the question.
Moreover, the results confirm that the item’s format carries meaning and is related to different
traits, even though the questions with different formats are all designed for the same word.

As for sub-word and semantic models, which use additional morphological or semantic
knowledge concepts along with the tested target word, we observed improvements compared to
the basic word-level model. One possible explanation is that the use of additional morphological
or semantic knowledge concepts results in more items that share skills with each other, enabling
the model to capture more interactions between learners and different words and reinforce the
knowledge related to gender agreement, prefixes, suffixes, compound words, etc. (Zylich and
Lan, 2021). For example, a closer inspection of the items revealed that even learners who are

Figure 5: Comparative performance of semantically similar words as knowledge concepts via
cosine similarity.
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Table 5: Results of the ablation study for different question formats.

Format Model
Word Subword Semantic

ACC AUC MAE RMSE ACC AUC MAE RMSE ACC AUC MAE RMSE

F1
- 0.718 0.668 0.374 0.436 0.718 0.683 0.378 0.433 0.718 0.674 0.373 0.435
G 0.723 0.711 0.364 0.426 0.723 0.711 0.365 0.427 0.724 0.713 0.364 0.426

G&S 0.725 0.713 0.363 0.426 0.726 0.715 0.363 0.425 0.726 0.715 0.361 0.425

F2
- 0.731 0.669 0.369 0.428 0.734 0.679 0.364 0.426 0.733 0.672 0.364 0.428
G 0.735 0.705 0.350 0.421 0.735 0.703 0.356 0.422 0.737 0.706 0.353 0.421

G&S 0.737 0.706 0.351 0.421 0.736 0.708 0.351 0.421 0.737 0.707 0.349 0.420

F3
- 0.888 0.685 0.188 0.308 0.888 0.703 0.164 0.308 0.888 0.699 0.164 0.308
G 0.888 0.731 0.180 0.302 0.889 0.729 0.190 0.303 0.889 0.730 0.187 0.304

G&S 0.888 0.732 0.180 0.302 0.889 0.732 0.172 0.303 0.889 0.732 0.172 0.303

F4
- 0.907 0.628 0.146 0.290 0.907 0.698 0.142 0.287 0.907 0.699 0.142 0.284
G 0.907 0.736 0.146 0.281 0.907 0.731 0.143 0.282 0.907 0.732 0.143 0.284

G&S 0.908 0.736 0.147 0.281 0.907 0.737 0.150 0.280 0.908 0.745 0.143 0.279

F5
- 0.866 0.715 0.217 0.329 0.866 0.716 0.220 0.328 0.866 0.711 0.222 0.329
G 0.866 0.730 0.216 0.327 0.866 0.729 0.213 0.326 0.866 0.731 0.213 0.326

G&S 0.866 0.731 0.215 0.327 0.866 0.731 0.212 0.326 0.866 0.732 0.207 0.326

familiar with the word ‘break’ but do not know ‘breakthrough’ still have a good chance of
answering some ‘breakthrough’ related items correctly. Figure 5 shows that varying the thresh-
old parameter α in the VPDM-Semantic model does not influence the performance drastically.
However, when we remove the guess and slip adjustment layer, we found that the performance
of the model increases with the decreases of α, and the model performs best when α = 0, which
means that all other words that have non-negative similarity with the current word are treated as
knowledge concepts. This result is in agreement with previous works, that an item designed to
measure one trait may also require some level of other traits (Yao and Schwarz, 2006), and the
proficiency of similar knowledge concepts can affect each other (Gao et al., 2021). Specifically
for language learning settings, it is important to focus not only on the interactions with the same
word but also on interactions with other semantically similar words when predicting the degree
of mastery of the target word (Ma et al., 2023a).

Finally, VPDM-LangSkill and VPDM-FormatSkill models obtain better performance than
other models, indicating that more broadly defined skills and knowledge of an item are better in
this task. For VPDM-FormatSkill model, one prevalent hypothesis is that items with different
formats measure different traits or dimensions, and factors could be hypothesized to form on
the basis of item format (Traub, 1993). That is, the item’s format might also be meaningful
and related to different traits or dimensions as suggested by previous works (De La Torre and
Douglas, 2004). For VPDM-LangSkill model, the results show that learners’ knowledge acqui-
sition is influenced by high-order features (language abilities in this case). It greatly reduces the
complexity of the model in cases where it is reasonable to view the examination as measuring
several general abilities in addition to the specific knowledge states.
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Figure 6: Distribution of the number of responses per learner.

5.3. IMPACT OF DIFFERENT FORMATS

Many assessments have a mixture of item types (same as our dataset) since results based on a
single format only reflect the knowledge unique to the specific format and might be misleading.
To illustrate the performance of our models on different item formats, we separated the mixed-
format dataset into different parts that only include different specific item formats, so we could
conduct experiments to evaluate questions with a specific format. The number of responses
completed per learner is shown in Figure 6, and the comparison results are shown in Figure 7.
Note that we did not test VPDM-LangSkill and VPDM-FormatSkill models here as they are
intended for the mixed-format dataset. Overall, the results indicate that our model consistently

Figure 7: Comparison among different question formats.
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outperforms all other models for different single-format datasets. Furthermore, we observe that
the prediction performance is affected by the question format, which highlights the fact that
different question formats assess different traits.

We also conducted ablation experiments to compare the results for different single-format
datasets. Table 5 shows the comparison results of the experiments. Similar to the results for
the mixed-format dataset, we noticed performance improvement when using the guessing and
slipping parameters. The model that includes both guessing and slipping parameters achieved
the best performance for different formats. Among models removing the guessing and slipping
adjustment layer, the VPDM-Word model showed the worst performance. VPDM-Subword
and VPDM-Semantic models, utilizing added morphological or semantic knowledge concepts
alongside the target word, outperformed the basic word-level model.

In addition, we noticed intriguing findings across different formats. For example, VPDM-
Subword and VPDM-Semantic outperformed the VPDM-Word model significantly after the
guess and slip adjustment layer was removed for format 4, compared to other formats. This
finding is particularly noteworthy because format 4 requires learners to type the word, and the
results are more likely to be influenced by related morphological and semantic knowledge con-
cepts such as prefixes, suffixes, and compound words. Conversely, for format 5, the performance
of VPDM-Subword and VPDM-Semantic are almost the same as the VPDM-Word model, with
or without the guess and slip adjustment layer. The possible explanation is, format 5 assesses
broader comprehensive reading skills, requires learners to choose the correct word to fill the
blank of a sentence, and does not directly test the target word itself. Therefore, the morpholog-
ical and semantic knowledge concepts related to the target word may not be substantial enough
to help learners understand the meaning of the entire sentence and correctly answer the question.
That is, if learners fail to grasp the meaning of the complete sentence, they may not be able to
provide the correct response, even if they possess knowledge of the target word.

This result highlights the critical role of the item’s format and how it influences the required
knowledge in the question. Understanding this relationship between item format and knowl-
edge requirements could potentially inform the design of more effective and efficient language
learning assessments and improve learners’ overall performance.

5.4. PARAMETER ANALYSIS

After training the model, we visualize the item and learner parameters to understand our models
better. For multi-dimensional parameters, t-SNE (Van der Maaten and Hinton, 2008) is used to
project them to 2-D points.

5.4.1. Item parameters

Figure 8 shows the difficulty visualization result of VPDM-Word, VPDM-LangSkill, and VPDM-
FormatSkill models, colored with each vector by the corresponding question format. The results
show that the distribution of the difficulty parameter vector is closely related to the correspond-
ing question format for each model, even for the basic VPDM-Word model. As for VPDM-
LangSkill and VPDM-FormatSkill models, since the high-order skills are defined by question
formats, we can see that questions are clearly clustered by corresponding formats.

We also present the discrimination, guess, and slip parameters, as shown in Figure 9. We
can observe the obvious differences between question formats. Generally, the discrimination
parameters of format 5 are larger than others as it assesses broader comprehensive skills than
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Figure 8: Difficulty visualization result of VPDM-Word model, VPDM-FormatSkill model, and
VPDM-LangSkill model.

Figure 9: Distribution of discrimination, guess, and slip parameters.

other formats. The guess parameters are high across all formats due to the multiple-choice
nature of the questions. Moreover, slip parameters are high for format 3 and format 4. These
visualized results are consistent with the intuitive fact that it is much easier to slip for typing
word questions.

5.4.2. Learner parameter

To further observe the relationship between learner parameter and performance, we visualize
the learner parameter vectors of VPDM-LangSkill model and VPDM-FormatSkill model using
t-SNE and color each vector by the corresponding learners’ average response score in Figure 10.
The distribution of learner parameter vectors for two models is closely related to their average
scores, where we could observe that the points follow specific patterns instead of scattering
randomly. The average scores gradually increase from right to left for both two models.
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Figure 10: Proficiency visualization by the average score.

5.5. INTERPRETATION OF THE DIAGNOSIS

We visualized the diagnostic reports and evaluated the interpretation of the VPDM-LangSkill
model as it is the most practical one with good performance. This visualization helps learn-
ers recognize their knowledge state intuitively and assists test developers in designing question
items effectively. As shown in Figure 11, we randomly sampled a learner and depicted the pro-
ficiency diagnosed by IRT and VPDM-LangSkill. We selected IRT here because it is a widely
used method and has been implemented in the application. Specifically, we use a radar chart to
show the proficiency of a learner on concepts diagnosed by IRT, and VPDM-LangSkill. Each
point on the radar diagram represents the mastery level of a specific trait. The red and blue
lines denote the proficiency diagnosed by IRT and VPDM-LangSkill (scaled to (0, 1)), respec-
tively. From the results, we can see that IRT only provides an overall unidimensional latent
trait, and the proficiency for all concepts is identical. Therefore, it is not explainable enough
to guide learners’ self-assessments. As for the VPDM-LangSkill model, it can provide better
interpretable insight for multidimensional traits (i.e., in our case, recognition, listening, spelling,
and reading).

6. DISCUSSION

Language proficiency diagnosis plays an important role in the field of language learning, which
aims to identify the level of knowledge of a learner through his or her learning process peri-
odically and can be used to provide personalized materials and feedback in language-learning
applications. Distinguishing from the comprehensive nature of standardized assessments like
TOEFL, many English learning applications only provide word-level questions. Despite their
apparent simplicity, these questions present a challenge in terms of defining detailed knowl-
edge concepts and providing comprehensive diagnoses. In contrast to fields such as science or
mathematics, where skills or knowledge concepts are well-defined and easy to associate with
each item, the task of associating linguistic characteristics with skills and concepts for language
knowledge proficiency diagnosis using word-level questions still needs to be explored. To tackle
this issue, we propose a novel framework for language proficiency diagnosis based on neural
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Figure 11: Visualization of a sample diagnostic report.

networks. Within this framework, we propose a series of methods based on our framework that
use different linguistic features to define skills and knowledge concepts in the context of the
language learning task. Experimental results on a real-world second-language learning dataset
demonstrate the effectiveness and interpretability of our framework. We also provide empirical
evidence with comprehensive experiments and analysis to prove that our knowledge concept and
skill definitions are reasonable and critical to the performance of our model.

Our main findings are as follows. First, we formulated several methods for defining knowl-
edge concepts in language proficiency diagnosis using different linguistic features, such as addi-
tional morphological and semantic concepts. The results show that incorporating additional
morphological and semantic features of each word improves the models. As expected, the
knowledge assessed by a word item is not just related to the tested target word in the question.
Second, we explored various approaches to provide broadly defined skills instead of knowledge
concepts in language proficiency diagnosis. These models perform better than other specifi-
cally defined linguistic feature-level knowledge concept models. This result indicates that more
broadly defined skills of an item are better in this task as high-order language abilities influence
learners’ knowledge acquisition. It is reasonable to view the language examination as measur-
ing several general abilities in addition to the specific knowledge states, even for the word-level
questions. Furthermore, the results confirm that the item’s format carries meaning and is re-
lated to different traits, even though the questions with different formats are all designed for the
same word. This result highlights the critical role of the item’s format and how it influences
the required knowledge in the question. Understanding this relationship between item format
and knowledge requirements could potentially inform the design of more effective and efficient
language learning assessments and improve learners’ overall performance.

Our results can provide helpful data-driven insights into better language learning experi-
ences. Concept definition and skill modeling for cognitive diagnosis in language learning ex-
plored in this paper can benefit question designers and learners.
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6.1. LIMITATION AND FUTURE WORK

There are some limitations in this work. Firstly, the learner base of the dataset is limited to
learners of the same language background, and the response data for different question formats
is imbalanced. This might decrease the generalization of this work. We plan to test other datasets
in future work. In addition, we only consider the target word tested in the question. However,
some questions are multiple-choice, and some questions test contextual usage as the learner
needs to fill in a sentence with the correct target word. Therefore, additional features such as
context information and distractors in the question should also be considered as they influence
the learner’s performance. Also, it is likely that the five item formats explored in this work over-
index on language reception skills rather than production skills (i.e., writing and speaking). In
going forward, we need to test more question formats and include additional linguistic skills to
expand the capabilities of our model in future work. Finally, with a deeper observation of the
results, we noticed that sometimes different models provide distinct parameters and diagnostic
results as knowledge concepts are defined differently. This raises the question of the reliability
of these results and how to appropriately apply the diagnosed outcomes. As our models are data-
driven, proficiencies diagnosed by different models are not strictly guaranteed to be comparable
(Wang et al., 2023). The explanation and usage of diagnosed proficiencies should be further
explored. We leave the comparison of diagnosed proficiencies from different trained models
and the validation of their credibility for future exploration.

7. CONCLUSION

In this work, we proposed a framework for language proficiency diagnosis, which could capture
the learner-question interactions more accurately using neural networks. Within this framework,
we proposed a series of methods based on our framework that incorporates different linguistic
features to define skills and knowledge concepts for each word in the context of a language
learning task.

Experimental results of cognitive diagnosis on real-world second-language learning dataset
showed that the proposed approach outperforms existing approaches with higher accuracy and
increased interpretability. We also provided empirical evidence with ablation testing and param-
eter analysis to prove that our knowledge concept and skill definitions are reasonable and critical
to the performance of our model. We expect this work will provide valuable implications for
language-learning applications.
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