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We propose a novel approach to address the issue of college student attrition by developing a hybrid model 

that combines a structural neural network with a piecewise exponential model. This hybrid model not only 

shows the potential to robustly identify students who are at high risk of dropout, but also provides insights 

into which factors are most influential in dropout prediction. To evaluate its effectiveness, we compared the 

predictive performance of our hybrid model with two other survival analysis models: the piecewise 

exponential model and a hybrid model combining a fully-connected neural network with a piecewise 

exponential model. Additionally, we compared it to five other cross-sectional models: Ridge Logistic 

Regression, Lasso Logistic Regression, CART decision tree, Random Forest, and XGBoost decision tree. Our 

findings demonstrate that the hybrid model outperforms or performs comparably to the other models when 

predicting dropout among students at the University of Delaware in Spring 2020, Spring 2021, and Spring 

2022. Moreover, by categorizing predictors into three distinct groups—academic, economic, and social-

demographic—we discovered that academic predictors play a prominent role in distinguishing between 

dropout and retained students, while other predictors may indirectly influence predictions by impacting 

academic variables. Consequently, we recommend implementing an intervention program aimed at 

identifying at-risk students based on their academic performance and activities, with additional consideration 

for economic and social-demographic factors in customized intervention plans. 

Keywords: college dropout, structural neural network, piecewise exponential model, interpretable hybrid 

model 
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1. INTRODUCTION

College dropout continues to be a significant concern for higher education institutions (Albreiki 

et al., 2021; Aulck et al., 2016; Cannistra et al., 2022). Data from the National Center for 

Education Statistics (NCES) reveals that approximately 40% of first-time, full-time degree-

seeking undergraduate students at 4-year degree-granting institutions fail to obtain a bachelor’s 

degree within six years at the same institution. Alarmingly, around 20% of these students drop 

out within their first year (NCES, 2022). The consequences of dropout are substantial, leading 

to wasted resources for students, institutions, and society as a whole. Students who discontinue 

their college education not only waste their time but also the tuition and fees they have paid and 

the loans they have borrowed, and tended to have lower income and an increased risk of living 

in poverty (Bouchrika et al., 2023). Concurrently, institutions suffer losses in terms of resources 

dedicated to these students, as well as potential tuition revenue and future alumni donations. On 

average, institutions lose approximately $10 million in tuition revenue annually due to attrition 

(Raisman, 2013). Furthermore, both federal and state governments waste their appropriations to 

institutions and grants to students, with an estimated expenditure of $9 billion between 2003 

and 2008 on students who withdrew within their first year (Schneider, 2010). 

Two main approaches have been developed to address the issue of college dropout: theory-

driven and data-driven approaches (Cannistra et al., 2022). The theory-driven approach focuses 

on constructing conceptual models to comprehend the underlying reasons for dropout. It 

considers students’ decisions to discontinue their education as an interplay of various factors, 

including family background, demographic characteristics, academic performance, social 

integration, organizational determinants, personal satisfaction, and institutional commitment 

(Bean, 1980; Spady, 1970; Tinto, 1975). By developing these conceptual models and analyzing 

observed data, specialized recommendations can be derived to mitigate attrition (Bean, 1980). 

In contrast, the data-driven approach emphasizes dropout prediction. Statistical and machine 

learning models are utilized to forecast students’ academic performance and/or identify those 

who are at risk of dropping out (Aulck et al., 2016; Baker & Yacef, 2009;  Heredia-Jimenez et 

al., 2020). However, this approach often involves a trade-off between interpretability and 

predictability. Recent studies have proposed various methods to improve the interpretability of 

predictive models (Agarwal et al., 2021; Baranyi et al., 2020; Cohausz et al., 2022; Kopper et 

al., 2021). 

Our study aims to integrate the strengths of both approaches, as educational institutions 

require both explanatory insights and predictive capabilities to develop effective intervention 

plans for reducing attrition (Wagner et al., 2023). We predict the dropout risks of students who 

are currently enrolled at the start of an academic semester, more specifically, whether they will 

fail to enroll for the subsequent semester. This allows the student advising team sufficient time 

to develop and implement effective intervention strategies throughout the semester and assists 

the Budget Office to estimate the tuition revenue from the current students. To model college 

students’ dropout risks, we employ a piecewise exponential model (Kopper et al., 2021; 

Friedman, 1982). This model is well-suited for analyzing longitudinal processes in students’ 

academic careers, which involve time-varying factors and effects associated with dropout risks. 

While this classic survival analysis model offers interpretability, it may not provide optimal 

predictive performance. To enhance predictability, we introduce a neural network model into 

the piecewise survival analysis to capture the hazard, which transitions from a linear 

combination of variables in traditional survival analysis to a nonlinear function of the variables. 
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However, fully-connected neural network models pose challenges to interpretability due to their 

black-box nature. To address this dilemma, we employ a structural neural network (Fan et al., 

2022; Köhler and Langer, 2021; Schmidt-Hieber, 2020), where we impose a structure inspired 

by theoretical frameworks of student attrition onto the neural networks. Specifically, we 

categorize variables into three groups: academic, economic, and socio-demographic. Variables 

within each category interact with each other, forming hidden layers that generate a final neuron 

representing the category. In total, three final neurons are generated. These final neurons are 

then linearly combined to predict the hazard, which is subsequently converted into dropout 

probabilities. Consequently, our model not only provides a list of students with a high risk of 

dropout but also identifies whether students are more likely to dropout due to academic 

performance (Stinebrickner & Stinebrickner, 2014), financial burden (Cai & Fleischhacker, 

2022), or social integration (Stage, 1989).  

The primary objective of this study is to address two key research questions that will 

contribute to the design of an effective intervention plan for attrition reduction:  

1. Does the utilization of a structural neural network enhance predictive performance

compared to traditional survival analysis models that employ linear hazards? 

2. Which category or categories of variables impact(s) the prediction of students’ dropout

risks? 

2. LITERATURE REVIEW AND CONCEPTUAL FRAMEWORK

Extensive academic research has been conducted on college student dropout, employing both 

theory-driven and data-driven approaches. The theory-driven approach aims to establish a 

theoretical foundation and develop conceptual models to comprehend students’ dropout 

decisions. Tinto (1975) formulated a theoretical model based on Durkheim’s suicide theory 

(Durkheim, 2005) and a cost-benefit analysis, which sought to explain dropout decisions 

through the interaction between individuals and institutions. The model suggested that factors 

such as family background, individual characteristics, and pre-college schooling influence 

individuals’ integration within the academic and social systems of colleges, subsequently 

impacting their commitment to educational goals and institutional commitment. Lower levels 

of commitment were found to be associated with higher dropout probabilities. Bean (1980) 

developed a causal model inspired by turnover models in work organizations, positing that the 

interaction between students’ background characteristics and organizational factors affects their 

satisfaction, institutional commitment, and ultimately dropout probabilities. The model was 

empirically tested using multiple regression and path analysis, utilizing questionnaires returned 

by 1,195 new freshmen. Gender-specific recommendations were provided to reduce attrition. 

Similarly, Spady (1970) developed a sociological model of the college dropout process, drawing 

from Durkheim’s suicide theory (Durkheim, 2005). Spady argued that family background 

influences students’ academic potential and normative congruence, subsequently impacting 

their grade performance, intellectual development, and friendship support. The interaction of 

these factors influences social integration, ultimately leading to dropout decisions. These 

conceptual models have provided theoretical guidance for subsequent empirical studies (Aina 

et al. 2022; Deike 2003; Márquez-Vera et al. 2016). 

Our conceptual framework draws inspiration from Tinto's theoretical model (Tinto, 1975) 

and aims to capture the longitudinal process of dropout risk accumulation. We posit that 

students' dropout risks are determined by their goal commitment and institutional commitment, 

which are influenced by the interplay of academic integration, economic integration, and social 
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integration. Academic integration is shaped by factors such as college cumulative GPA, the 

number of classes with a grade below D, the number of credits registered, and engagement in 

multiple majors. Pre-college schooling indicators, such as high school GPA and the number of 

Advanced Placement (AP) credits, also contribute to academic integration. Economic 

integration is influenced by variables including expected family contribution (EFC), outstanding 

balance, and the amount of financial aid received in the form of grants, scholarships, and loans. 

Social integration encompasses factors such as eligibility for Pell Grants (whether total family 

income is less than or equal to $50,000 U.S.) and being a first-generation college student, as 

well as demographic characteristics including gender and racial ethnicity. Importantly, the 

dropout risk of a student evolves each semester, reflecting the changing dynamics of the three 

integrations. These changes stem from time-varying factors like academic performance and 

financial aid, the evolving processes that generate the integrations, and the dynamic interactions 

among them. 

The data-driven approach, as an alternative, emphasizes prediction, specifically the 

identification of students at high risk of dropout as candidates for targeted intervention and 

remedial programs (Quadri and Kalyankar, 2010). Various statistical and machine learning 

methods have been employed in this approach. Almarabeh (2017) compared five classification 

methods, including Naïve Bayes, Bayesian network, decision tree with ID3, decision tree with 

C4.5, and multilayer perceptron neural network, to predict the dropout risks of 225 students 

using 10 predictors. The Bayesian network model exhibited the best performance across various 

error measures, such as accuracy, true positive rate, false positive rate, and F-score. Similarly, 

Sandoval-Palis et al. (2020) compared logistic regression and neural network models to predict 

the dropout risks of 2,097 students in an engineering university in Ecuador, using four 

predictors, regime, leveling course type, application grade, and vulnerability index, where 

regime, leveling course type, and application grade were academic factors, and vulnerability 

index was derived from 25 socio-economic variables. The neural network models outperformed 

logistic regression models in terms of accuracy and AUC score. However, despite their high 

predictive power, neural network models are challenging to interpret due to their black-box 

nature.  

Regression and decision tree models are preferred when the predictive performance is 

satisfactory, as their interpretability can aid institutions in establishing effective intervention 

policies. Wagner et al. (2023) compared three explainable methods and two ensemble methods 

to predict degree dropout in a middle-sized German university. The explainable methods are 

decision trees, K-nearest neighbors, and logistic regression, and the ensemble methods are 

AdaBoost and Random Forest. Among these, logistic regression was found to exhibit the best 

overall predictive performance. Nevertheless, the study also highlighted that these models did 

not equally excel in predicting student subpopulations, particularly concerning gender and 

specific study programs. Quadri and Kalyankar (2010) proposed a hybrid method for dropout 

prediction in an Indian institution, combining decision trees to identify relevant predictors, such 

as parents’ income and previous semester’s grades, with logistic regression for predicting 

students’ dropout risks. Aulck et al. (2016) utilized regularized logistic regression, Random 

Forest, and K-nearest neighbors to predict the attrition of 32,538 students from the University 

of Washington, finding that regularized logistic regression performed the best. Strong predictors 

included GPA in math, English, chemistry, and psychology classes. Heredia-Jimenez et 

al. (2020) employed Random Forest to predict at-risk students across 65 undergraduate 

programs in a public engineering-oriented university in Ecuador. They obtained reliable 

predictions by excluding socio-demographics and pre-college entry information, relying solely 

on academic information as predictors. Ameri et al. (2016) compared the performance of 
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multiple methods, such as logistic regression, adaptive boosting, decision tree, Cox regression, 

and time-dependent Cox regression, in predicting dropout at Wayne State University. Time-

dependent Cox regression was identified as the best method due to its ability to incorporate 

time-varying predictors, demonstrate superior predictive performance, and predict the timing of 

dropout events. 

Recent research efforts have focused on enhancing the interpretability of data-driven models 

in predicting college student attrition. For instance, Baranyi et al. (2020) utilized deep neural 

networks and gradient boosted trees for dropout prediction while attempting to interpret the 

models using techniques like permutation importance and SHAP importance. Márquez-Vera et 

al. (2016) introduced an Interpretable Classification Rule Mining (ICRM) algorithm based on 

IF-THEN rules to predict high school dropout early on. They compared this approach with 

classical classification methods and data resampling techniques, suggesting its use in an early 

warning system. Cohausz (2022) proposed a three-step framework that includes identifying 

important features, understanding counterfactuals, and uncovering causal relations. This 

framework combines machine learning interpretability techniques with social science-based 

causal reasoning. Agarwal et al. (2021) introduced Neural Additive Models (NAMs), which 

combine deep neural networks with generalized additive models to improve accuracy while 

maintaining interpretability. Their experiments demonstrated that NAMs outperformed 

traditional models and were competitive with state-of-the-art interpretable models like 

Explainable Boosting Machines (EBMs) and Gradient Boosted Trees. Kopper et al. (2021, 

2022) presented an approach that combines deep neural networks with piecewise exponential 

models, resulting in inherently interpretable models capable of processing unstructured data 

sources. 

3. DATA AND VARIABLES

In accordance with our conceptual framework, we collected data encompassing academic, 

economic, and socio-demographic aspects from the enterprise data warehouse of the University 

of Delaware (UD). UD, a public research university, has an undergraduate population of 

approximately 18,000 students. The dataset under examination comprises information from 

40,440 undergraduate students who commenced their journey as first-time full-time students 

during the fall semesters between 2012 and 2021. Appendix A provides a detailed breakdown 

of student headcounts by cohort and by semester. The raw data tables have been thoughtfully 

curated into a final dataset for analysis, structured as a student-semester file, with each row 

representing a student in a particular semester. The final dataset is stored in an encrypted shared 

drive of the Office of Institutional Research and Effectiveness at UD. Student IDs that serve as 

unique identifiers are not used in the analysis. No linking list has ever been created or maintained 

that might connect study data to specific individuals.   

Students were tracked until the end of their third year or until dropout occurred. Only fall 

and spring semesters were considered for tracking purposes, and dropout was defined as not 

being graduated after the current semester and not re-enrolling in the next semester. Table 1 

provides a description of the dependent and independent variables, along with their means (and 

standard deviations for numeric variables) for each semester. The dependent variable indicates 

whether a student is enrolled in the next semester, with a value of 1 representing dropout and 0 

representing enrollment. It is imperative to note that our dataset is imbalanced, particularly 

concerning the dependent variable. The average dropout rate increased from the first semester 

(0.033) to the second semester (0.047) and then gradually decreased in the subsequent four 
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semesters: 0.025, 0.023, 0.013, and 0.01 from the third to the sixth semester, respectively. The 

pronouncedly low dropout rates pose a significant challenge in identifying students at a high 

risk of dropout. 

Our dataset comprises thirteen academic variables, consisting of four binary variables and 

nine numeric variables. In the first fall semester, all students were full-time students, and the 

majority remained full-time throughout their academic journey. During the first semester, 16.9% 

of students were in the University Study program, which allowed them to explore and choose 

majors later. As students progressed to their sophomore and junior years, the percentage of 

students in the University Study program gradually decreased to 0.9% by the sixth semester. In 

the first semester, no students had a double major, but the percentage of students with a double 

major increased to 14.4% by the sixth semester. 

Due to the data collection process on the census day of each semester (two weeks after the 

semester starts), students' academic standing status was not available in the first semester. There 

were 6.4% of students in probation status in the second semester, and the proportion gradually 

decreased to 1.3%. Similarly, these variables are not available in the first semester: College 

GPA, DFW (class grades being D, F or Withdraw) Count, Listener Count, Academic Standing, 

and Total Credit. In addition, the Total Credit, Total Minor Credit, Total Transfer Credit, and 

Total Advanced Placement (AP) Credit variables were standardized by the typical 120 credits 

required for graduation, and the Registered Credit variable was standardized based on the typical 

total of 15 credits taken in one semester. For example, total credit rate being 0.25 means that a 

student has 30 (0.25x120) credits in total as of the census day of a semester, and registered credit 

rate being 0.8 means that a student registered 12 (0.8x15) credits in a semester. 

From the second semester to the sixth semester, the average cumulative GPA increased from 

3.103 to 3.229, the average DFW class count decreased from 0.371 to 0.249, the average 

Listener class count decreased from 0.062 to 0.034, and the average total credit rate increased 

from 0.18 to 0.716. From the first semester to the sixth semester, the average registered credit 

rate decreased from 1.02 to 0.991, the average total minor credit rate increased from 0.001 to 

0.048, the average total transfer credit rate increased from 0.017 to 0.026, and the average total 

AP credit rate increased from 0.034 to 0.04. The average high school GPA varied slightly 

between 3.758 and 3.766 due to changes in the student population each semester. 

All economic variables are numeric and standardized by the cost of attendance (COA). For 

instance, a grant/scholarship rate of 0.2 indicates that 20% of the COA is covered by grants and 

scholarships. Among the six semesters, the average Expected Family Contribution (EFC) rate 

varied between 0.819 and 1.005, the average grant/scholarship rate varied between 0.165 and 

0.228, the average Parent Loan for Undergraduate Students (PLUS) parent loan rate varied 

between 0.036 and 0.053, the average student loan rate varied between 0.128 and 0.147, the 

average work-study aid rate varied between 0.003 and 0.006, and the balance varied between -

0.012 and -0.016. The balance for the first semester is not available as of the census day. 

All social variables, except for Age, are binary variables. From the first semester to the sixth 

semester, the average age increased from 18.023 to 20.442, the proportion of Pell Grant 

recipients decreased from 15.1% to 12.6%, the proportion of first-generation college students 

decreased from 12.8% to 11.8%, the proportion of male students varied between 40.0% and 

40.5%, the proportion of Delawarean students increased from 31.7% to 32.7%, the proportion 

of African American students decreased from 5.2% to 4.6%, the proportion of Asian students 

varied between 5.1% and 5.3%, the proportion of Hispanic students decreased from 9% to 8.2%, 

and the proportion of White students increased from 72.8% to 74.4%. 
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Table 1: Description and mean (standard deviation) of input and output variables by semester; 

standard deviation is only calculated for numeric variables. 

Description 1st  2nd 3rd 4th 5th 6th 

Output 

Variable 

Dropout Whether a student did not 

enroll next semester 

0.033 0.047 0.025 0.023 0.013 0.01 

Academic 

Variable 

Full-time 

status 

Whether a full-time 

student 

1 0.995 0.994 0.993 0.992 0.988 

University 

Study 

Whether in University 

Study (US) program 

0.169 0.15 0.099 0.052 0.019 0.009 

Double 

major 

Whether a student has 

double major 

0 0.036 0.081 0.116 0.136 0.144 

College 

GPA 

Cumulative college GPA N/A 3.103 

(0.692) 

3.143 

(0.586) 

3.18 

(0.535) 

3.197 

(0.509) 

3.229 

(0.488) 

DFW count Count of classes with 

final grade being D (D+, 

D, D-), F, or W 

(withdraw) in last 

semester 

N/A 0.371 

(0.849) 

0.311 

(0.758) 

0.326 

(0.775) 

0.265 

(0.709) 

0.249 

(0.696) 

Listener 

count 

Count of audit (Listener) 

classes in last semester 

N/A 0.062 

(0.25) 

0.059 

(0.255) 

0.045 

(0.239) 

0.042 

(0.22) 

0.034 

(0.204) 

Academic 

standing 

Whether a student is in 

probation status 

N/A 0.064 0.039 0.028 0.017 0.013 

Total credit Amount of total credits 

out of 120 

N/A 0.18 

(0.083) 

0.308 

(0.092) 

0.447 

(0.103) 

0.574 

(0.113) 

0.716 

(0.121) 

Registered 

credit 

Amount of credits taken 

in the current semester 

out of 15 

1.02 

(0.077) 

1.014 

(0.103) 

1.014 

(0.107) 

1.003 

(0.114) 

1.009 

(0.123) 

0.991 

(0.139) 

Total minor 

credit 

Amount of credits earned 

from winter/summer 

terms out of 120 

0.001 

(0.005) 

0.008 

(0.016) 

0.013 

(0.022) 

0.026 

(0.032) 

0.032 

(0.037) 

0.048 

(0.045) 

Total 

transfer 

credit 

Amount of total transfer 

credits out of 120 

0.017 

(0.045) 

0.017 

(0.045) 

0.017 

(0.044) 

0.022 

(0.047) 

0.022 

(0.046) 

0.026 

(0.049) 

Total AP 

credit 

Amount of total AP 

credits out of 120 

0.034 

(0.06) 

0.035 

(0.061) 

0.037 

(0.062) 

0.038 

(0.063) 

0.039 

(0.064) 

0.04 

(0.064) 

HS GPA High school GPA 3.759 

(1.265) 

3.766 

(1.285) 

3.758 

(1.373) 

3.763 

(1.389) 

3.755 

(1.467) 

3.755 

(1.382) 

Economic 

Variable 

EFC Expected family 

contribution (EFC) out of 

cost of attendance (COA) 

0.997 

(1.488) 

1.005 

(1.487) 

0.849 

(1.137) 

0.855 

(1.147) 

0.819 

(1.052) 

0.824 

(1.065) 

Grant Total grant/scholarship 

obtained out of COA 

0.22 

(0.211) 

0.228 

(0.217) 

0.185 

(0.199) 

0.194 

(0.206) 

0.165 

(0.19) 

0.175 

(0.198) 

PLUS loan Loan borrowed by parent 

out of COA 

0.047 

(0.165) 

0.053 

(0.174) 

0.04 

(0.155) 

0.049 

(0.17) 

0.036 

(0.145) 

0.045 

(0.161) 

Student loan Loan borrowed by 

student out of COA 

0.128 

(0.182) 

0.135 

(0.198) 

0.129 

(0.183) 

0.142 

(0.206) 

0.131 

(0.181) 

0.147 

(0.205) 
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Description 1st  2nd 3rd 4th 5th 6th 

Work study Financial aid in work 

study out of COA 

0.006 

(0.016) 

0.005 

(0.015) 

0.003 

(0.013) 

0.003 

(0.013) 

0.003 

(0.012) 

0.003 

(0.013) 

Balance Outstanding balance out 

of COA 

N/A -0.013

(0.054)

-0.012

(0.051)

-0.014

(0.055)

-0.011

(0.049)

-0.016

(0.059)

Social 

Variable 

Pell Whether a student 

received federal Pell 

Grant 

0.151 0.147 0.134 0.132 0.126 0.126 

First 

Generation 

Whether a first-

generation college 

student 

0.128 0.124 0.121 0.119 0.119 0.118 

Male Whether a male student 0.405 0.404 0.403 0.4 0.404 0.402 

Residency Whether a Delawarean 

student 

0.317 0.317 0.324 0.323 0.327 0.327 

Age Age in the current 

semester 

18.023 

(0.554) 

18.449 

(0.651) 

19.021 

(0.516) 

19.446 

(0.572) 

20.018 

(0.518) 

20.442 

(0.571) 

African 

American 

Whether an African 

American student 

0.052 0.051 0.049 0.048 0.047 0.046 

Asian Whether an Asian student 0.052 0.052 0.051 0.051 0.052 0.053 

Hispanic Whether a Hispanic 

student 

0.09 0.089 0.086 0.085 0.082 0.082 

White Whether a White student 0.728 0.73 0.735 0.739 0.743 0.744 

4. STATISTICAL MODEL

Our statistical model is designed to integrate the theory-driven and data-driven approaches, 

resulting in an "information-driven" framework (Cannistra et al., 2022). The proposed model, a 

piecewise exponential model with structural neural network (PEM-SNN), combines a structural 

neural network and a piecewise exponential model to predict dropout probabilities following a 

similar conceptual approach to Kopper et al.'s work (2021, 2022). However, our neural network 

is tailored to align with the conceptual framework inspired by Tinto's theoretical model (Tinto, 

1975). This piecewise exponential model is designed to predict dropout probability using a 

hazard function generated by the structural neural network. The hazard function is a linear 

combination of three integrations, each of which represents a separate group of variables related 

to academic, economic, and social factors. For instance, the academic integration is derived 

solely from academic variables. We introduce the PEM-SNN in Section 4.3 after introducing 

the development of two more basic alternative models and follow it with sections on loss 

function construction and model training and evaluation.  

4.1. PIECEWISE EXPONENTIAL MODEL 

We begin with a standard piecewise exponential model (PEM), a type of discrete event history 

analysis that provides interpretable coefficients. An event occurs if a student drops out from the 

institution they are currently enrolled in by the end of the third year. Otherwise, the student is 

considered to be “censored” or “survived”. For a student 𝑖 in a semester 𝑗, Equation (1) defines 

the logarithm of the hazard function 𝑙𝑜𝑔(ℎ𝑖[𝑗]) to be the sum of baseline hazard ℎ0[𝑗] and a
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linear combination of the student attributes 𝑋0𝑖[𝑗], where 𝛽0[𝑗] represent the coefficients to be

estimated for corresponding input variables. The cumulative hazard, calculated as the product 

of the hazard function and the semester length (𝐿𝑒𝑛[𝑗]), is used to derive the logarithm of the 

survival function (𝑆𝑖[𝑗]) in Equation (2), where 𝐿𝑒𝑛[𝑗] = 1 for all semesters and included here

for adaptability in other settings where the academic calendar may be more varied. Finally, the 

student’s dropout probability in the semester (𝜃𝑖[𝑗]) is calculated as one minus the survival

function, as shown in Equation (3). While this model allows us to estimate the influence of each 

input variable on the hazard function and, subsequently, the dropout probability, it is important 

to note that it assumes a log-linear relationship between the hazard function and the input 

variables. To account for potential nonlinear relationships between these variables, we will 

introduce nonlinearity in our subsequent model. Figure 1 contains a graphic illustration of this 

PEM model. 

𝑙𝑜𝑔(ℎ𝑖[𝑗]) = ℎ0[𝑗] + 𝛽0[𝑗]𝑋0𝑖[𝑗]  (1) 

𝑙𝑜𝑔(𝑆𝑖[𝑗]) = −ℎ𝑖[𝑗]𝐿𝑒𝑛[𝑗]        (2) 

𝜃𝑖[𝑗] = 1 − 𝑆𝑖[𝑗]       (3) 

Figure 1: A diagram of a Piecewise Exponential Model (PEM-Linear) 

4.2. PIECEWISE EXPONENTIAL MODEL WITH FULLY-CONNECTED NEURAL 

NETWORK 

In this section, we introduce a fully-connected neural network (NN) to estimate the hazard 

function in a piecewise exponential model; sacrificing interpretability for potentially more 

predictive power. The hazard function is generated from a hidden layer of neurons in this PEM-

NN model as shown in Equation (5), and the hidden neurons are generated from the input 

variables as shown in Equation (4). The survival function and dropout probability can be 

calculated in the same way from Equations (2) and (3). Notably, the inclusion of the neural 

network introduces nonlinearity into the model, driven by the sigmoid activation function (σ) 

employed in Equation (4). The prediction performance could be improved PEM-NN compared 

to PEM, because the neural network structure could capture more complex relationships 

between 𝑋0𝑖[𝑗] and ℎ𝑖[𝑗]. However, it’s essential to acknowledge that the PEM-NN model

comes with a trade-off. For instance, when identifying a group of students at high risk of 

dropout, discerning the specific reasons behind this elevated risk becomes intricate. 

Consequently, devising precise and strategic intervention plans based on the model's output 
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becomes a challenging endeavor. Therefore, we need a model to balance interpretation and 

prediction. Figure 2 provides a graphical representation of this model for further insights into 

the PEM-NN model's architecture and visualization. 

𝑋1𝑖[𝑗] = 𝜎(𝛼0[𝑗] + 𝛽1[𝑗]𝑋0𝑖[𝑗])  (4) 

𝑙𝑜𝑔(ℎ𝑖[𝑗]) = ℎ0[𝑗] + 𝛽2𝑋1𝑖[𝑗]        (5) 

Figure 2: A diagram of a hybrid model of a fully-connected neural network and a piecewise 

exponential model (PEM-NN) 

4.3. PIECEWISE EXPONENTIAL MODEL WITH STRUCTURAL NEURAL NETWORK 

Our proposed new model seeks to balance interpretation and prediction and we design it using 

a structural neural network (SNN) as follows. In this PEM-SNN model, the input variables 

𝑋0𝑖[𝑗]  are grouped into three categories, 𝑋0𝑖
𝐴𝑐𝑎𝑑[𝑗]  representing academic activities and

performance, 𝑋0𝑖
𝐸𝑐𝑜𝑛[𝑗] related to financial aid and financial burden, and 𝑋0𝑖

𝑆𝑜𝑐𝑙[𝑗] representing

family background and demographic characteristics. From the input layer, a hidden layer 

𝑋1𝑖
𝐴𝑐𝑎𝑑[𝑗] is generated from 𝑋0𝑖

𝐴𝑐𝑎𝑑[𝑗] using Equation (6), and an academic neuron 𝑋2𝑖
𝐴𝑐𝑎𝑑[𝑗] is

then generated from the hidden layer using Equation (7). Similar transformations occur for an 

economic neuron, 𝑋2𝑖
𝐸𝑐𝑜𝑛[𝑗], and a social neuron, 𝑋2𝑖

𝑆𝑜𝑐𝑙[𝑗], as shown in Equations (8) to (11).

The final three neurons for each integration form the second hidden layer, and the hazard 

function is the output of the neural network. Equation (12) defines the logarithm of the hazard 

function ℎ𝑖[𝑗] as the sum of the baseline hazard ℎ0[𝑗] and a linear combination of the three

neurons. The academic integration is represented by 𝛽2
𝐴𝑐𝑎𝑑[𝑗]𝑋2𝑖

𝐴𝑐𝑎𝑑[𝑗] , the economic

integration by 𝛽2
𝑆𝑜𝑐𝑙[𝑗]𝑋2𝑖

𝑆𝑜𝑐𝑙[𝑗], and the social integration by 𝛽2
𝑆𝑜𝑐𝑙[𝑗]𝑋2𝑖

𝑆𝑜𝑐𝑙[𝑗].
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𝑋1𝑖
𝐴𝑐𝑎𝑑[𝑗] = 𝜎(𝛼0

𝐴𝑐𝑎𝑑[𝑗] + 𝛽0
𝐴𝑐𝑎𝑑[𝑗]𝑋0𝑖

𝐴𝑐𝑎𝑑[𝑗])  (6) 

𝑋2𝑖
𝐴𝑐𝑎𝑑[𝑗] = 𝜎(𝛼1

𝐴𝑐𝑎𝑑[𝑗] + 𝛽1
𝐴𝑐𝑎𝑑[𝑗]𝑋1𝑖

𝐴𝑐𝑎𝑑[𝑗])  (7) 

𝑋1𝑖
𝐸𝑐𝑜𝑛[𝑗] = 𝜎(𝛼0

𝐸𝑐𝑜𝑛[𝑗] + 𝛽0
𝐸𝑐𝑜𝑛[𝑗]𝑋0𝑖

𝐸𝑐𝑜𝑛[𝑗])  (8) 

𝑋2𝑖
𝐸𝑐𝑜𝑛[𝑗] = 𝜎(𝛼1

𝐸𝑐𝑜𝑛[𝑗] + 𝛽1
𝐸𝑐𝑜𝑛[𝑗]𝑋1𝑖

𝐸𝑐𝑜𝑛[𝑗])  (9) 

𝑋1𝑖
𝑆𝑜𝑐𝑙[𝑗] = 𝜎(𝛼0

𝑆𝑜𝑐𝑙[𝑗] + 𝛽0
𝑆𝑜𝑐𝑙[𝑗]𝑋0𝑖

𝑆𝑜𝑐𝑙[𝑗])  (10) 

𝑋2𝑖
𝑆𝑜𝑐𝑙[𝑗] = 𝜎(𝛼1

𝑆𝑜𝑐𝑙[𝑗] + 𝛽1
𝑆𝑜𝑐𝑙[𝑗]𝑋1𝑖

𝑆𝑜𝑐𝑙[𝑗])  (11) 

𝑙𝑜𝑔(ℎ𝑖[𝑗]) = ℎ0[𝑗] + 𝛽2
𝐴𝑐𝑎𝑑[𝑗]𝑋2𝑖

𝐴𝑐𝑎𝑑[𝑗]

+𝛽2
𝐸𝑐𝑜𝑛[𝑗]𝑋2𝑖

𝐸𝑐𝑜𝑛[𝑗] + 𝛽2
𝑆𝑜𝑐𝑙[𝑗]𝑋2𝑖

𝑆𝑜𝑐𝑙[𝑗]              (12) 

Figure 3 illustrates the structure of the hybrid model. The input layer consists of three blocks 

of variables, which are described in detail in Section 3. The academic input block comprises 

thirteen variables, the economic input block includes six variables, and the social input block 

contains nine variables. Each input block generates an individual block of neurons in the first 

hidden layer. The second hidden layer consists of three neurons in total, with each neuron 

representing one integration: academic, economic, and social. These neurons serve as the 

intermediate representation of the input variables before generating the hazard function. 

The output layer represents the hazard function, which, in turn, generates the survival 

function and dropout probability using Equations (2) and (3). It’s important to note that the input 

variables for different integrations do not interact with each other until the process of generating 

the hazard function. By enforcing this structured design, we ensure that the interactions among 

input variables are captured at the appropriate stage and thus we are able to easily interpret 

which category of variables contribute the most to the prediction. If we were to remove this 

designed structure and allow all input variables to interact with each other from the beginning, 

the structural neural network would resemble the more traditional fully connected neural 

network. Conversely, if we were to remove the two hidden layers and directly generate the 

hazard function as a linear combination of all input variables, this hybrid model would reduce 

to the simpler piecewise exponential model. 

We implement this sparsely connected neural network structure using the Flux package 

(v0.13.14) (Innes et al., 2018) in Julia. In a nutshell, the whole network structure is a “chain” in 

Flux, which is “joined” by six sub-chains, each for one semester. In a chain for a semester, three 

individual chains are used to transform the three groups of input variables into three neurons, 

and the three neurons generate the hazard function neuron. Actual model code can be found at 

https://github.com/Farlein/College_Dropout/tree/main.  

Journal of Educational Data Mining, Volume 16, No 1, 2024
289

https://github.com/Farlein/College_Dropout/tree/main


Figure 3: A diagram of a hybrid model of a structural neural network and a piecewise 

exponential model 

4.4. CONSTRUCTING THE LOSS FUNCTION 

Suppose student 𝑖 was enrolled in semester 𝑗 with input variables 𝑋0𝑖[𝑗], the loss function in a

piecewise exponential model depends on whether the student dropped out by the end of the 

semester: 

𝐿𝑖[𝑗] = {
−𝑆𝑖[𝑗] (Retained)

−𝑆𝑖[𝑗]ℎ𝑖[𝑗] (Dropout)
 (13) 

We can write the two cases in one equation. Let 𝑦𝑖  be the dependent variable, with 1 

indicating a student dropped out and 0 indicating the student remained enrolled in the next 

semester. The loss function can be written as 

𝐿𝑖[𝑗] = −ℎ𝑖
𝑦𝑖[𝑗]𝑆𝑖[𝑗]  (14) 

Therefore, the logarithm of the loss function is 

 𝑙𝑜𝑔𝐿𝑖[𝑗] = −𝑦𝑖[𝑗]𝑙𝑜𝑔(ℎ𝑖[𝑗]) − 𝑙𝑜𝑔(𝑆𝑖[𝑗])       
Following from Equations (2) and (1), the logarithm of the loss function can be rewritten as: 

 𝑙𝑜𝑔𝐿𝑖[𝑗] = −𝑦𝑖[𝑗]𝑙𝑜𝑔(ℎ𝑖[𝑗]) + ℎ𝑖[𝑗]𝐿[𝑗] 

      = −𝑦𝑖[𝑗](ℎ0[𝑗] + 𝛽[𝑗]𝑋0𝑖[𝑗]) + 𝑒𝑥𝑝(ℎ0[𝑗] + 𝛽[𝑗]𝑋0𝑖[𝑗])𝐿𝑒𝑛[𝑗]      (15)
Where 𝐿𝑒𝑛[𝑗] is the length of semester 𝑗 and is set to be 1 for all semesters, regardless of 

some semesters may last slightly longer than the others. Our dependent variable is imbalanced, 
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because less than 4% of students would drop out in a semester for those who spent their time 

for at most three years at UD. To address this challenge, we add a hyperparameter 𝑤 to the loss 

function to make the dropout observations weight more than the others, so the logarithm of loss 

function becomes 

𝑙𝑜𝑔𝐿𝑖[𝑗] = −𝑤 ∗ 𝑦𝑖[𝑗](ℎ0[𝑗] + 𝛽[𝑗]𝑋0𝑖[𝑗]) + 𝑒𝑥𝑝(ℎ0[𝑗] + 𝛽[𝑗]𝑋0𝑖[𝑗])𝐿𝑒𝑛[𝑗]   (16)

For the PEM-NN models, using Equations (4) and (5) to derive ℎ𝑖[𝑗], the loss function

becomes 

 𝑙𝑜𝑔𝐿𝑖[𝑗] = −𝑤 ∗ 𝑦𝑖[𝑗]𝑙𝑜𝑔(ℎ𝑖[𝑗]) + ℎ𝑖[𝑗]𝐿𝑒𝑛[𝑗] 

= −𝑤 ∗ 𝑦𝑖[𝑗](ℎ0[𝑗] + 𝛽2𝑋1𝑗) + 𝑒𝑥𝑝(ℎ0[𝑗] + 𝛽2𝑋1𝑗)𝐿𝑒𝑛[𝑗] 

= −𝑤 ∗ 𝑦𝑖[𝑗](ℎ0[𝑗] + 𝛽2𝜎(𝛼0[𝑗] + 𝛽1[𝑗]𝑋0𝑖[𝑗]))       

+𝑒𝑥𝑝(ℎ0[𝑗] + 𝛽2𝜎(𝛼0[𝑗] + 𝛽1[𝑗]𝑋0𝑖[𝑗]))𝐿𝑒𝑛[𝑗]  (17) 

For the PEM-SNN models, using Equation (12), the loss function becomes 

𝑙𝑜𝑔𝐿𝑖[𝑗] = −𝑤 ∗ 𝑦𝑖[𝑗]𝑙𝑜𝑔(ℎ𝑖[𝑗]) + ℎ𝑖[𝑗]𝐿𝑒𝑛[𝑗] 

= −𝑤 ∗ 𝑦𝑖[𝑗](ℎ0[𝑗] + 𝛽2
𝐴𝑐𝑎𝑑[𝑗]𝑋2𝑖

𝐴𝑐𝑎𝑑[𝑗]

+𝛽2
𝐸𝑐𝑜𝑛[𝑗]𝑋2𝑖

𝐸𝑐𝑜𝑛[𝑗] + 𝛽2
𝑆𝑜𝑐𝑙[𝑗]𝑋2𝑖

𝑆𝑜𝑐𝑙[𝑗])

+exp (ℎ0[𝑗] + 𝛽2
𝐴𝑐𝑎𝑑[𝑗]𝑋2𝑖

𝐴𝑐𝑎𝑑[𝑗] 

+𝛽2
𝐸𝑐𝑜𝑛[𝑗]𝑋2𝑖

𝐸𝑐𝑜𝑛[𝑗] + 𝛽2
𝑆𝑜𝑐𝑙[𝑗]𝑋2𝑖

𝑆𝑜𝑐𝑙[𝑗])𝐿𝑒𝑛[𝑗]  (18) 

Where 𝑋2𝑖
𝐴𝑐𝑎𝑑[𝑗], 𝑋2𝑖

𝐸𝑐𝑜𝑛[𝑗] and 𝑋2𝑖
𝑆𝑜𝑐𝑙[𝑗] are derived from Equations (6) to (11).

4.5. MODEL TRAINING AND EVALUATION 

To predict student dropouts in a semester, we begin by partitioning the data into training and 

test sets. Specifically, 90% of the data from before the semester under consideration, organized 

by student ID, is allocated to the training dataset, while the remaining 10% is held out for further 

analysis of the trained models. The data pertaining to the semester in question constitutes our 

test dataset. We then employ a systematic three-step process. The first step is hyperparameter 

tuning. The PEM models require a weight hyperparameter denoted as 𝑤 in the loss function, 

while the PEM-NN and PEM-SNN models necessitate the specification of 𝑤 and the number of 

neurons within the hidden layers. To ascertain these values, we employ a ten-fold cross-

validation procedure on the training dataset. In our case, 𝑤 is set to 1.4, giving higher weight to 

dropout observations in the loss function. For the hidden layer of the PEM-NN models, we fix 

the number of neurons at 11. In the case of the PEM-SNN models, which include three separate 

groups of neurons (one from each group of variables), we set the number of neurons to 11 for 

each group. 

In the second step, we train our models using the entire training dataset, incorporating the 

hyperparameter values obtained in the previous step. Following the training, we calculate the 

hazard function, survival function, and dropout probability, utilizing Equations (1) to (3). 

Subsequently, we need to establish threshold probabilities to make binary predictions on 
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whether a student will dropout. If the predicted dropout probability surpasses a given threshold, 

the outcome is predicted as 1 (dropout); otherwise, it is classified as 0 (retained). Given the 

variations in dropout probability prediction based on the progress in students’ academic careers, 

we determine six distinct threshold probabilities. This is because, for the same dropout 

probability, a student may be predicted to dropout if they are in their first semester but not in 

their sixth, or vice versa. We employ grid search to identify the optimal threshold probabilities. 

In the final step, we apply the trained models along with the selected threshold probabilities 

to the test dataset to make predictions. During the testing stage, we assess the models’ predictive 

performance using the F1-score metric. The F1-score is the harmonic mean of precision and 

recall, where a higher precision implies a higher proportion of interventions directed towards 

students who truly require help and a higher recall indicates that a larger proportion of dropout 

students would be covered by the interventions. The PEM-Linear model is run once using an 

Ipopt solver in a Julia package JuMP (v1.10.0) (Lubin et al. 2023), while PEM-NN and PEM-

SNN models are run 30 times using a Julia package Flux (v0.13.14) (Innes et al. 2018) using 

Adam optimization algorithm with a learning rate of 0.01, and the exponential decay rates for 

the first-momentums and second-momentums are 0.9 and 0.999. This distinction was necessary 

because a global optimization could only be found for the PEM-Linear model. For each student 

in the test dataset, a student is predicted to have high dropout risk if more than half of the runs 

(i.e., more than 15 runs) indicate the student will dropout. We calculate the F1-score based on 

the predictions and the actual outcomes. Additionally, we conduct a comparative analysis 

involving the three PEM-related models (PEM-Linear, PEM-NN, and PEM-SNN) and five 

cross-sectional models: Ridge Logistic Regression (Ridge), Lasso Logistic Regression (Lasso), 

CART decision tree (CART), Random Forest (RF) and XGBoost decision tree. Unlike survival 

analysis, which considers a student’s academic trajectory as a continuous, longitudinal process, 

these cross-sectional methods treat each semester of a student's academic career as an 

independent event. The first three models, Ridge, Lasso, and CART, offer inherent 

interpretability, similar to survival analysis models. In contrast, the latter two models, RF and 

XGBoost, are based on ensemble learning and typically require post hoc interpretation 

techniques. The cross-sectional models are constructed using well-established R packages with 

their default settings. We also perform 30 runs for each cross-sectional model to obtain an 

average prediction performance. Ridge Logistic Regression and Lasso Logistic Regression 

models are built using a R package glmnet (4.1-8) with regularization parameters selected from 

10-fold cross-validation, CART models are built using a R package rpart (v4.1.21), Random

Forest models are built using a R package randomForest (v4.7-1.1) with 500 trees and each tree

has 5 input variables, and XGBoost is built using a R package gbm (v2.1.8.1) with ten-fold

validation to select the best model.

5. RESULTS AND DISCUSSION

5.1. PREDICTIVE PERFORMANCE 

Table 2 presents a comparison of eight models with respect to their F1-scores for predicting 

dropout students during the Spring semesters of 2020, 2021, and 2022. These models include 

three PEM-related models (PEM-Linear, PEM-NN, and PEM-SNN) and five cross-sectional 

models (Ridge, Lasso, CART, RF, and XGBoost). For all three Spring semesters, it's important 

to note that Lasso fails to converge, and CART classifies all students as enrolled, rendering their 

F1-scores unavailable. In Spring 2020, the model with the highest F1-score is XGBoost (0.189), 
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followed by PEM-SNN (0.172), PEM-NN (0.164), PEM-Linear (0.163), RF (0.138), and Ridge 

(0.126). In Spring 2021, PEM-Linear exhibits the highest F1-score (0.233), followed by PEM-

SNN (0.193), XGBoost (0.183), PEM-NN (0.144), Ridge (0.122), and RF (0.091). In Spring 

2022, XGBoost again achieves the highest average F1-score (0.266), followed by PEM-SNN 

(0.247), Ridge (0.246), PEM-NN, PEM-Linear (0.244), PEM-NN (0.227), and Ridge (0.224). 

Thus, it becomes evident that PEM-SNN demonstrates good predictive performance compared 

to other PEM-related models and cross-sectional models, consistently ranking as the second-

best performer across all three years, highlighting its robustness and potential as a predictive 

tool for identifying students at risk of dropout. Although XGBoost generally exhibits superior 

predictive performance, our PEM-SNN model provides easier interpretability, due to its 

structured design that categorizes predictors. 

The F1-scores obtained in our study are lower than those reported in related works on student 

retention and dropout (e.g., Ameri et al., 2016; Aulck et al., 2019; Baranyi et al., 2020; Manrique 

et al., 2019; Sandoval-Palis et al., 2020). We attribute these lower scores to the imbalanced 

nature of our dependent variable. Generally, the rarer the target outcome, the more challenging 

it is to achieve high predictive performance. For instance, in Manrique et al., the dropout rate is 

13.6% (three times higher than our dataset) and their F1-scores ranged from 0.5 to 0.78, while 

in Sandoval-Palis et al. the dropout rate is 72.8% (eighteen times higher than our dataset) and 

their F1-score is 0.85, confirming the impact of data imbalance on predictive performance. 

Table 2: Comparison of F1-scores of eight models in three semesters 

Spring 2020 Spring 2021 Spring 2022 

PEM-Linear 0.163 0.233 0.244 

PEM-NN 0.164 0.144 0.227 

PEM-SNN 0.172 0.193 0.247 

CART N/A N/A N/A 

Lasso N/A N/A N/A 

RF 0.138 0.091 0.224 

Ridge 0.126 0.122 0.246 

XGBoost 0.189 0.183 0.266 

Table 3: Comparison of F1-scores from PEM-SNN models among student groups in three 

semesters 

Spring 2020 Spring 2021 Spring 2022 

Semester 2nd 0.187 0.253 0.273 

4th 0.128 0.093 0.223 

6th 0.196 0.091 0.137 

Gender Female 0.133 0.133 0.279 

Male 0.208 0.257 0.224 

Pell Yes 0.213 0.233 0.311 

No 0.157 0.177 0.226 

The subsequent sections of this chapter will focus on the results derived from the PEM-SNN 

models. Table 3 shows the F1-scores obtained from the PEM-SNN models for various student 

groups during the Spring semesters of 2020, 2021, and 2022. The F1-scores exhibit variations 
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among different student groups. In Spring 2020, among students from different cohorts, those 

in their 6th semester achieve the highest F1-score (0.196), followed by students in their 2nd 

semester (0.187), and those in their 4th semester (0.128). However, as we progress to Spring 

2021 and 2022, the F1-scores exhibit a declining trend as students advance in their academic 

careers. Specifically, students in their 2nd semester consistently exhibit the highest F1-scores, 

while those in their 6th semester consistently exhibit the lowest. Moreover, we analyze the 

performance of the PEM-SNN models concerning two student attributes, Gender (Male and 

Female) and Pell Grant eligibility. We use these two factors as examples to check whether the 

models perform similarly for students with different demographic characteristics and socio-

economic status. In Spring 2020 and Spring 2021, F1-scores for female students are lower than 

those for male students, but this pattern reverses in Spring 2022. In contrast, the results for Pell 

Grant recipients remain consistent over the three Spring semesters, with F1-scores consistently 

higher for Pell Grant recipients compared to non-Pell students. These findings, i.e., that 

predictive performance varies among student groups, are similar with what was reported by 

Wagner et al. (2023) and further study is needed to understand the cause of the difference. 

5.2. CONTRIBUTION OF THE THREE INTEGRATIONS 

The neural network structure of the PEM-SNN models allows us to dissect the contribution of 

each group of variables to dropout prediction. We use the results from Spring 2022’s PEM-SNN 

models as an illustrative example to interpret these contributions. Figure 4 visually represents 

histograms of the predicted logarithm of hazard (log(h)) alongside the corresponding academic 

integration, economic integration, and social integration. The x-axes represent log(h), academic 

integration, economic integration, and social integration, respectively. The y-axes represent the 

normalized count (i.e., probability density) of each column. The scale of y-axis varies for each 

sub-figure, because the distribution of the underlying metric varies. A lower scale of y-axis 

indicates a sparser distribution, e.g., log(h) and academic integration, and a higher scale of y-

axis indicates a more concentrated distribution, e.g., economic integration and social integration. 

In these histograms, log(h) represents the sum of a baseline hazard and the three integrations 

according to Equation (12), while the integrations are derived from individual groups of 

variables following Equations (6) to (11). These values are averaged across 30 runs.  

Two key observations emerge from these histograms. First, the PEM-SNN models generate 

distinct distributions of log(h) for retained and dropout students. Log(h) values for retained 

students tend to be smaller than those for dropout students, aligning with the logic that smaller 

log(h) values correspond to lower dropout probabilities. Second, the academic integration 

emerges as the most influential factor in distinguishing between retained and dropout students. 

Similar to log(h), the distributions of academic integrations differ between the two groups, with 

academic integrations of retained students generally being smaller than those of dropout 

students. In contrast, the distributions of economic and social integrations exhibit significant 

overlap between retained and dropout students, suggesting that these two integrations contribute 

less to dropout prediction. These observations hold true for Spring 2020 and Spring 2021 as 

well. However, it’s important to note that while this analysis provides insight into the relative 

importance of these integrations, it doesn’t offer sufficient information for colleges to design 

customized intervention plans to reduce students’ dropout risks. It merely indicates that 

academic integration plays a crucial direct role in predicting high dropout risk; the extent to 

which academic struggles arise from other factors, such as financial stress or a lack of social 

support, is not estimatable in this model (Cohausz et al. 2023). 
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Figure 4: Histograms of log(hazard), academic integration, economic integration, and social 

integration in Spring 2022 

5.3. TRACKING AT-RISK STUDENTS 

In addition to predicting student dropout in the test dataset, we also apply the trained PEM-SNN 

models to the hold-out dataset to observe typical patterns of dropout probabilities. As explained 

in Section 4, the hold-out dataset comprises approximately 10% of data from all available 

semesters leading up to the semester of the test dataset. On average, the dropout probabilities 

for retained students are approximately 0.013, while dropout students exhibit an average 

probability of 0.101. Interestingly, many dropout students have predicted probabilities of zero 

for all semesters in the hold-out dataset, indicating that they initially appear likely to continue 

their enrollment but subsequently experience a dramatic decline in their academic performance, 

leading to dropout. For those dropout students with predicted probabilities higher than zero, 

many of them have at least one semester with a high dropout risk (dropout probability > 0.5), 

irrespective of whether it is their last semester or not. These findings highlight the dynamic 

nature of dropout risk, where students' circumstances and risks can change over time. 

6. LIMITATIONS AND FUTURE WORK

Our study is constrained by several limitations. First, this study is limited to a single educational 

institution and covers data from Fall 2012 to Spring 2022. As a result, the findings may not be 

directly applicable to other institutions or different time periods. Dropout risks at other 

institutions may be directly influenced by economic or social factors. It is essential to exercise 

caution when generalizing the results beyond the scope of this study. Second, we do not 

differentiate between students who drop out entirely from higher education and those who 

transfer to another institution. These two groups of students may have varying reasons for 
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leaving their current institution. Building separate models to predict dropout risks for each group 

could potentially enhance predictive performance and provide more nuanced insights into the 

specific causes of attrition. Third, similar to the findings of Wagner et al. (2023), our models 

exhibit differential performance in predicting dropout risks for various student subpopulations, 

such as gender and Pell Grant eligibility. This suggests that the models may not be equally 

effective in identifying at-risk students across all demographic or socioeconomic groups, 

highlighting the need for further investigation and model refinement. Fourth, the imbalance in 

our dataset, stemming from the rarity of dropout cases, poses significant challenges to achieving 

more accurate predictions, as evidenced by the relatively low F1-scores. 

Future research can address these limitations and explore several avenues for improvement. 

First: modifying the input variables and network structure of the PEM-SNN models to 

investigate which academic variable(s) contribute more significantly to the academic 

integration. This analysis can help identify the specific academic metrics that exert a more 

substantial influence on dropout risk. By pinpointing these metrics, institutions can focus their 

monitoring efforts on areas that have a higher impact on student outcomes. Second: extending 

the analysis to explore how economic and social factors affect the prediction of academic 

integration. Understanding the interactions between economic and social factors and their 

influence on academic integration can provide valuable insights. For instance, recognizing that 

first-generation college students may face unique challenges and have distinct risk factors can 

inform targeted interventions and support programs. Third: validating the developed models on 

datasets from different institutions or time periods to assess their generalizability. This external 

validation can help determine the extent to which the models' predictive capabilities hold across 

diverse educational settings. Fourth: developing tailored models for specific student 

subpopulations, acknowledging that different demographic or socioeconomic groups may 

exhibit distinct risk profiles. By customizing models to these groups, institutions can enhance 

their ability to identify and support at-risk students effectively. 

7. CONCLUSION

In this study, we have introduced a hybrid model, PEM-SNN, which combines a structural 

neural network with a piecewise exponential model, with the goal of addressing student attrition 

in colleges. Our hybrid model not only shows the potential to robustly identify the students at 

high risk of dropout but also provides insights into the direct contributions of academic, 

economic, and social factors. We applied the model to predict dropout occurrences during the 

Spring semesters of 2020, 2021, and 2022 at the University of Delaware. The results consistently 

demonstrated that the PEM-SNN model exhibits the 2nd best predictive performance compared 

to two other PEM-related models and five cross-sectional models while providing enhanced 

interpretability. This indicates that the PEM-SNN model is a valuable tool for the student 

advising team, providing a list of at-risk students who require focused attention and support. 

Among the three integrations incorporated into our model, academic integration emerged as 

the most influential factor in distinguishing between dropout and retained students, as evidenced 

by the results generated by the PEM-SNN models. Retained students tended to have lower 

academic integration values compared to dropout students, resulting in reduced hazard and, 

consequently, lower dropout probabilities. In contrast, economic and social integrations 

displayed similar distributions between dropout and retained students, suggesting that they do 

not directly contribute to dropout prediction. However, it is important to note that these 

economic and social factors may be very important through the indirect impact they have on 
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academic performance.  Thus, it remains important to consider a holistic approach when 

designing customized intervention plans for at-risk students, taking into account the 

interconnected nature of these factors. 

In conclusion, our hybrid model, PEM-SNN, represents a valuable tool in the ongoing effort 

to reduce student attrition in higher education. By leveraging predictive analytics, institutions 

can identify at-risk students early and enabling timely interventions to enhance student success 

and retention. However, it is essential to continue refining and expanding these models, taking 

into account the unique characteristics of different institutions and student populations. 

Ultimately, such efforts can contribute to higher graduation rates and improved educational 

outcomes for all students.  
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8. APPENDICES

8.1. APPENDIX A 

Table A.1 provides an overview of the headcount flow for the ten cohorts across different 

semesters. The smallest cohort, Fall 2020, consisted of 3,711 first-time full-time students, while 

the largest cohort, Fall 2017, comprised 4,258 students. The headcount of each cohort gradually 

decreased over the semesters due to dropout. Blank cells in the table indicate that the 

corresponding cohort had not reached that particular semester. 

Table A.1: Cohort headcount flow by semester 

Cohort\Semester 

Sequence 

1st 2nd 3rd 4th 5th 6th 

Fall 2012 3,806 3,677 3,490 3,398 3,308 3,284 

Fall 2013 3,794 3,660 3,438 3,340 3,244 3,197 

Fall 2014 4,168 4,035 3,835 3,735 3,642 3,569 

Fall 2015 4,092 3,944 3,725 3,644 3,538 3,497 

Fall 2016 3,943 3,807 3,576 3,479 3,385 3,297 

Fall 2017 4,285 4,116 3,827 3,708 3,582 3,481 

Fall 2018 4,242 4,091 3,849 3,732 3,658 3,609 

Fall 2019 4,136 3,934 3,705 3,621 3,554 3,484 

Fall 2020 3,711 3,573 3,389 3,267 3,171 3,117 

Fall 2021 4,263 4,079 3,852 3,775 

Table A.2 presents the headcounts for each semester between Fall 2012 and Spring 2022, 

organized by cohort. Each semester featured up to three cohorts: freshman, sophomore, and 

junior. Senior cohorts were excluded from the analysis as they had already completed their third 

year or exceeded the sixth semester. The initial semesters do not have three cohorts due to the 

absence of data before the Fall 2012 cohort. 

Table A.2: Headcounts between Fall 2012 and Spring 2022 by cohort 

Semester \ Cohort Freshman 

Cohort 

Sophomore 

Cohort 

Junior 

Cohort 

Total 

Fall 2012 3,806 3,806 

Spring 2013 3,677 3,677 

Fall 2013 3,794 3,490 7,284 

Spring 2014 3,660 3,398 7,058 

Fall 2014 4,168 3,438 3,308 10,914 

Spring 2015 4,035 3,340 3,284 10,659 

Fall 2015 4,092 3,835 3,244 11,171 

Spring 2016 3,944 3,735 3,197 10,876 

Fall 2016 3,943 3,725 3,642 11,310 

Spring 2017 3,807 3,644 3,569 11,020 
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Semester \ Cohort Freshman 

Cohort 

Sophomore 

Cohort 

Junior 

Cohort 

Total 

Fall 2017 4,285 3,576 3,538 11,399 

Spring 2018 4,116 3,479 3,497 11,092 

Fall 2018 4,242 3,827 3,385 11,454 

Spring 2019 4,091 3,708 3,297 11,096 

Fall 2019 4,136 3,849 3,582 11,567 

Spring 2020 3,934 3,732 3,481 11,147 

Fall 2020 3,711 3,705 3,658 11,074 

Spring 2021 3,573 3,621 3,609 10,803 

Fall 2021 4,263 3,389 3,554 11,206 

Spring 2022 4,079 3,267 3,484 10,830 
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