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The prediction of student performance and the analysis of students’ learning behaviour play an import-
ant role in enhancing online courses. By analysing a massive amount of clickstream data that captures
student behaviour, educators can gain valuable insights into the factors that influence students’ academic
outcomes and identify areas of improvement in courses. In this study, we developed ClickTree, a tree-
based methodology, to predict student performance in mathematical problems in end-unit assignments
based on students’ clickstream data. Utilising extensive clickstream data, we extracted a novel set of
features at three levels, including problem-level, assignment-level and student-level, and we trained a
CatBoost tree to predict whether a student will successfully answer a problem in an end-unit assignment
or not. The developed method achieved an Area under the ROC Curve (AUC) of approximately 79%
in the Educational Data Mining Cup 2023 and ranked second in the competition. Our results indicate
that students who performed well in end-unit assignment problems engaged more with in-unit assign-
ments and answered more problems correctly, while those who struggled had higher tutoring request
rates. We also found that students face more difficulties with “check all that apply” types of problems.
Moreover, Algebra II was the most difficult subject for students. The proposed method can be utilised
to improve students’ learning experiences, and the insights from this study can be integrated into math-
ematics courses to enhance students’ learning outcomes. The code and implementation is available at
https://www.kaggle.com/code/nargesrohani/clicktree/notebook.

Keywords: student performance prediction, educational data mining, mathematics, learning behaviour,
learning analytics.

1. INTRODUCTION

In recent years, massive amounts of log data have been collected from students’ interactions with
online courses, providing researchers with valuable information for analysing student behaviour
and its impact on academic performance (Yi et al., 2018; Aljohani et al., 2019). By examin-
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ing clickstream data, educators can gain deeper insights into students’ study habits, navigation
patterns, and levels of engagement (Wen and Rose, 2014; Li et al., 2020; Matcha et al., 2020;
Rohani et al., 2022; Rohani et al., 2024). This knowledge helps identify areas where students
may be struggling or be disengaged, allowing for timely intervention and personalised support
(Matcha et al., 2020; Matcha et al., 2019). Moreover, clickstream data analysis enables edu-
cators to identify effective learning patterns, strategies, and types of educational resources that
influence student performance (Aljohani et al., 2019; Rohani et al., 2022; Rohani et al., 2024).

By using the power of educational data mining and artificial intelligence, teachers can use
knowledge tracing approaches to monitor students’ understanding levels and predict their fu-
ture performance, such as their grades (Wang et al., 2023). Students’ performance can be pre-
dicted by analysing their past learning activities, particularly their responses to previous as-
sessments (Wang et al., 2023). Knowledge tracing can provide insights about student learning
behaviour that can help teachers optimise their teaching approaches in line with students’ needs
(Wang et al., 2023). Moreover, this knowledge can provide students with personalised feedback
that can enhance the student learning experience and ultimately improve their outcomes (Schu-
macher and Ifenthaler, 2018; Jang et al., 2022; Koedinger et al., 2013). In line with this aim,
the Educational Data Mining (EDM) Cup 2023 (Prihar and Heffernan, 2023) was launched as
a competition to predict students’ end-unit-assignment scores in math problems collected from
the ASSISTments online platform (Heffernan and Heffernan, 2014). The EDM Cup provided
access to a very big clickstream dataset, including millions of student actions, as well as cur-
riculum data, to predict students’ end-unit-assignment scores based on their actions during in-
unit assignments (Prihar and Heffernan, 2023).

In related work, there are two main types of student performance prediction tasks: program-
level and course-level (Cui et al., 2019; Namoun and Alshanqiti, 2021; Liu et al., 2023).
Program-level approaches focus on predicting student dropouts or graduation probabilities from
a degree program, while course-level approaches aim to predict students’ scores, grades, or
pass/fail status in specific courses (Lemay and Doleck, 2022). For instance, in a program-level
prediction study, Oztekin (Oztekin, 2016) developed a hybrid educational data mining approach
utilising decision trees, artificial neural networks, and support vector machines to predict the
probability of college degree completion. Their findings revealed that factors such as the av-
erage fall term score, housing status, and high school performance, significantly influenced the
prediction accuracy.

On the other hand, course-level prediction tasks often aim to identify at-risk students who
are more likely to fail and provide timely interventions to help them succeed (Akçapınar et al.,
2019; Akram et al., 2019). In other words, predictive analysis at the course-level offers valuable
insights for enhancing teaching and learning, enabling instructors to understand student beha-
viour, design effective instruction, and provide targeted support for individual courses (Akram
et al., 2019; Oliva-Cordova et al., 2021). For instance, in a previous study (Rohani et al., 2023),
we proposed a model that combines Markov chain and neural networks to utilise a range of
student activities, including student interactions with video lectures in a Massive Open Online
Course (MOOC), in order to predict final student performance after seven days of first engaging
with the course. Additionally, we provided students with automatic personalised feedback at an
early stage.

In recent years, clickstream data has gained significant attention as a valuable source for
course-level performance prediction (Rohani et al., 2023; Kőrösi and Farkas, 2020). This type
of data captures students’ learning behaviours, such as accessing different educational resources
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or taking assessments that offer rich information regarding student interaction within the online
course environment (Yürüm et al., 2023; Baker et al., 2020). However, converting millions of
clickstream data entries into meaningful features that can accurately predict student performance
is challenging (Prihar and Heffernan, 2023; Kőrösi and Farkas, 2020; Asadi et al., 2023).

There are two approaches to utilising clickstream data for performance prediction: using raw
data (Asadi et al., 2023; Kőrösi and Farkas, 2020) or employing feature engineering (Rohani
et al., 2023). The first method involves employing deep learning methods, which can automat-
ically extract useful features for prediction from raw data. For example, Gábor Kőrösi et al.
(Kőrösi and Farkas, 2020) utilised Recurrent Neural Networks (RNNs) to predict student per-
formance at the end of a MOOC, leveraging raw clickstream data from 130,000 students. They
showed that their method can accurately predict student performance on Stanford Lagunita’s
MOOC dataset without the need for hand-crafted features. Another study with a similar object-
ive conducted an analysis using a larger number of datasets for their evaluation (Asadi et al.,
2023). Asadi et al. (Asadi et al., 2023) proposed a method employing graph neural networks
to predict student performance by directly analysing raw, multi-dimensional clickstream data
without relying on feature extraction. They applied their methodology on 23 MOOCs and, upon
evaluation, they found that it has comparable performance to models that use features engineered
by humans. In a more recent study, Al-azazi and Ghurab (Al-azazi and Ghurab, 2023) developed
a methodology called Artificial Neural Network and Long Short-Term Memory (ANN-LSTM)
which is a type of RNN methods. They trained their model on clickstream data of a MOOC to
predict student performance at an early stage of the course. The proposed ANN-LSTM achieved
an accuracy of approximately 70%, outperforming traditional machine learning methods such
as Decision Trees, K-nearest neighbours, and even deep learning methods including RNNs and
Gated Recurrent Units. The authors (Al-azazi and Ghurab, 2023) discussed that although deep
learning methods such as ANN-LSTM can be trained on raw clickstream data, deep learning
techniques require powerful computational resources (high processing power and memory) to
preprocess the data and prepare it for feeding into the model. The training step of deep learn-
ing methods takes a long time, and often it is time-consuming to find the best hyperparameters
(Al-azazi and Ghurab, 2023). Deep learning techniques are also black-box methods that are not
easy to interpret and explain, although they can automatically extract nonlinear features (Liang
et al., 2021; Al-azazi and Ghurab, 2023; Asadi et al., 2023; Kőrösi and Farkas, 2020).

Given the difficulty in interpreting deep learning-based methods (Swamy et al., 2023), their
long training time (Pramod et al., 2021), high computational cost (Pramod et al., 2021), and
in some cases lower or equal accuracy compared to traditional predictive models (Asadi et al.,
2023), some studies prefer to manually craft easily understandable features from clickstream
data (Rohani et al., 2023; López Zambrano et al., 2021; Namoun and Alshanqiti, 2021). They
then utilise traditional and simple models to predict student performance (Rohani et al., 2023;
López Zambrano et al., 2021; Namoun and Alshanqiti, 2021). For example, Brahim (Brahim,
2022) proposed a predictive model that used a total of 86 new statistical features extracted from
log data of a computer engineering course from the Digital Electronics Education and Design
Suite (DEEDS) platform. These data were systematically grouped into three categories based on
various criteria: (1) type of activity, (2) timing statistics, and (3) count of peripheral activities.
These features were preprocessed during the feature selection process and only the most impact-
ful ones were considered for training the model. Their machine learning model was designed to
predict whether a student’s performance would be either low or high. The study employed five
widely recognised traditional machine learning classifiers: Random Forest, Support Vector Ma-
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chine, Naı̈ve Bayes, Logistic Regression, and Multi-Layer Perceptron. Their findings showed
that the random forest classifier gave the most accurate prediction, achieving a classification
accuracy and F1-score of 97%.

In another study, Qiu et al. (Qiu et al., 2022) introduced a novel pipeline for extracting
various behavioural features from clickstream data in order to predict student performance.
Their pipeline involves several steps: feature extraction, feature selection, feature fusion, and
prediction. To find the best set of features, they classified learning behaviours into multiple
categories, ranging from learning preparation behaviours to knowledge acquisition behaviours.
Afterwards, they selected eight features to be used for prediction after applying a variance fil-
tering threshold. Finally, they utilised various traditional machine learning classifiers, including
Support Vector Machines, Naı̈ve Bayes, K-Nearest Neighbours, and SoftMax, to predict stu-
dent performance based on 6,272 learners in The Open University Learning Analytics Dataset
(OULAD). Their model shows both mobility and stability and among all models, Naı̈ve Bayes
achieved the highest accuracy (over 90%) in all evaluation scenarios.

Although previous studies attempted to identify a set of useful features and accurate models
for performance prediction, extracting meaningful features from raw clickstream data remains
a challenge (Prihar and Heffernan, 2023; Baker et al., 2020). Further research is necessary to
process the high volume of raw clickstream data across various disciplines and transform it into
meaningful features capable of accurately predicting student outcomes.

This study introduces ClickTree, a tree-based model employing clickstream data, for pre-
dicting students’ scores on each mathematical problem of end-unit assignments based on their
actions during in-unit assignments. The main contribution of this study is to calculate a novel set
of features from millions of student actions in the ASSISTments platform. In other words, a set
of features at the student, assignment, and problem levels were extracted to predict student per-
formance with high accuracy. The CatBoost tree algorithm was applied to the extracted features,
and the model achieved an Area under the ROC Curve (AUC) score of approximately 79% on
test data. ClickTree ranked second in EDM Cup 2023 (Prihar and Heffernan, 2023), demonstrat-
ing its potential for accurately predicting students’ outcomes in math courses. Additionally, we
explored students’ outcomes in different problem types and topics to identify areas of challenge
for the students. Furthermore, the learning behaviours of successful students were compared to
those of struggling students, with the aim of uncovering different behavioural patterns between
the two groups.

The research questions in this study are:

1. Can artificial intelligence predict math students’ end-unit assignment scores with high
accuracy using clickstream data?

2. Which are the most important features in the math course for predicting students’ scores?

In addition to the above research questions, we also explored types of math problems and sub-
jects that were more difficult for students, as well as differences in behavioural patterns of strug-
gling students compared to successful students in math.

The rest of this paper is organised as follows: Section 2 describes the data provided in
EDM Cup 2023 and discusses key aspects of the ClickTree method, including feature extraction,
prediction and validation. Section 3 presents the results of our analysis with regard to the above
research questions, including the evaluation of the ClickTree method and comparison with state-
of-the-art approaches. We discuss the implications of this study in Section 4 and provide some
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suggestions for improving online education in math courses. We conclude the paper and present
future work in Section 5.

2. MATERIAL AND METHOD

In this section, we explain the ClickTree methodology used to answer RQ1 (see Figure 1 for a
visual overview of ClickTree). It should be noted that basic statistics (e.g. mean and variance)
and visualisations (e.g. bar charts) were employed for the rest of the analysis.
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Figure 1: Overview of the ClickTree method. 1: Student clickstream data, showing their ac-
tions during interactions with in-unit assignments, were used to calculate a set of novel features
at three levels, including student-level, assignment-level, and problem-level. 2: Features with a
correlation higher than 90% were removed from the list of input features for the classifier. 3: A
prediction is generated for a student’s score in a particular problem within an end-unit assign-
ment, utilising the selected features as input for the CatBoost classifier.

2.1. DATA DESCRIPTION

The dataset provided in the Educational Data Mining Cup 2023 (Prihar and Heffernan, 2023)
contains student clickstream data from the ASSISTments online learning platform (Heffernan
and Heffernan, 2014). The dataset includes information about the curricula, assignments, prob-
lems, and tutoring offered to the students. ASSISTments is an online tutoring platform that
provides access to math problems designed by teachers specifically for students. These prob-
lems can be solved by students during school hours or as part of their homework assignments. If
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students encounter difficulties in solving the problems correctly, they have the option to request
hints and guidance (Prihar and Heffernan, 2023).

In addition to assisting students in their learning journey, ASSISTments also serves as a tool
to assess student performance and record their actions (Heffernan and Heffernan, 2014; Prihar
and Heffernan, 2023). Following is an explanation of the tables available in the dataset:

• Action logs: This table includes students’ interactions with in-unit assignments. For ex-
ample, requesting a hint, or answering a problem within an in-unit assignment correctly
or incorrectly. Note that each in-unit assignment can include multiple problems.

• Training Unit-test Scores: This table contains the binary scores of each student on end-
unit assignment problems. End-unit assignments can be considered as final exams, and
there are multiple in-unit assignments that students participate in before submitting their
end-unit assignments. This table includes students’ binary scores on each problem within
an end-unit assignment.

• Evaluation Unit-test Scores: This table contains the same kind of information as the
training unit test scores but for the evaluation set of data. This allows for having both
training and testing datasets for training and testing the predictor model.

• Assignment Details: This table includes information regarding all assignments, including
both in-unit and end-unit assignments. For example, this table shows the sequence of
problems in each assignment.

• Sequence Details: This table contains the sequence of problems and information regard-
ing each sequence. For instance, the topic, subject, and grade of those problems.

• Problem Details: This table includes characteristics of each individual problem, for ex-
ample, the BERT vector of the problem.

More information about the dataset is publicly available on the EDM Cup 2023 Kaggle 1 webpage
(Prihar and Heffernan, 2023).

For this study, the dataset was collected from middle school students who used ASSIST-
ments during the academic years of 2019-2023. The log data includes 36,296 students, 56,577
in-unit assignments and 57,361 problems.

For the purpose of the competition, the data consists of end-unit assignments given to each
student, with each end-unit assignment having a list of related in-unit assignments previously
completed by the same student. To put it simply, each end-unit assignment can be considered
as a final exam, consisting of multiple problems (questions) that students should answer. Before
attempting the end-unit assignment, students can practice by attempting related in-unit assign-
ments, for which they have the option to request a hint, explanation or the correct answer. We
aim to analyse in-unit assignment behaviours to predict whether a student will answer a question
in the end-unit assignment correctly or not.

Table 1 shows an example of data extract for a student, Sa. The “Student-id” column shows
a unique ID for each corresponding student. The “in-unit-assignment-log-id” demonstrates the
identifier of the in-unit assignments that the corresponding student completed before solving

1https://kaggle.com/competitions/edm-cup-2023

6
37 Journal of Educational Data Mining, Volume 16, No 2, 2024

https://kaggle.com/competitions/edm-cup-2023


Table 1: Example extract from the ASSISTments dataset after merging the tables. The problem-
id column represents identifiers of problems within end-unit assignments. The full dataset con-
tains many students, and each student can have multiple pairs of end-unit assignments and prob-
lems. Each end-unit assignment is associated with multiple in-unit assignments that students
engage with through their interactions (action columns). By merging all the information into
one table, we can see each student’s activities within different in-unit assignments, along with
the corresponding end-unit assignments and the final grades for each problem in the end-unit
assignments.

student-id in-unit-assignment-log-id actions end-unit-assignment-log-id problem-id score

S a in x
assignment-started,
wrong-response,
answer-requested

end w P h 1

S a in x
assignment-started,
wrong-response,
answer-requested

end w P f 0

S a in y
problem-started,
correct-response,
continue

end r P c 0

the end-unit assignment problems. The “action” column shows the set of actions that a stu-
dent carried out in the in-unit assignment before taking the end-unit assignment. The “end-
unit-assignment-log-id” is the identifier of the end-unit assignment, which can include multiple
problems. The “problem-id” column shows the identifiers of problems in end-unit assignments.
Our goal is to predict the “score” column, which indicates students’ performance in problems
within end-unit assignments. It was set to 1 if the student successfully completed an open-ended
response problem or submitted the correct answer on their initial attempt without accessing any
tutoring. Otherwise, the score was set to 0.

In other words, in the dataset provided by the competition, there are one or more in-unit
assignments assigned to students that the students attempt before taking the end-unit assign-
ment. These in-unit assignments contain a list of problems with various tutoring options, such
as requesting hints, explanations, or the full answer. Each row in the dataset corresponds to a
problem within an end-unit assignment. In the training set, there are a total of 226,750 rows,
with 42% of them having a score of 0 and 58% with a score of 1. The validation set has the
same label ratio, containing 225,689 rows. The test set comprises 124,455 rows, with unknown
scores. We created the validation set in a way that it includes half of the students from the train-
ing set and there is no overlap between the students in the training and validation set. The test
set was provided by the competition.

The clickstream data of students in in-unit assignments can include several possible actions.
A student can start and finish an assignment or a problem, give a correct or wrong answer,
submit an open response, continue to the next problem, resume the assignment, and depending
on the available tutoring options, they may request a hint, explanation, or full answer to be
displayed. Additionally, students may also ask for a live chat session with a tutor or request a
video explaining the skill required to solve the problem.

Furthermore, each problem is associated with its text content represented by the BERT em-
bedding (Prihar and Heffernan, 2023; Devlin et al., 2019), along with a description of its skill
code as additional information. The problems can be categorised into 10 different types:
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• Number: The answer should include only a number, with no letters or mathematical
symbols.

• Algebraic Expressions: The answer may consist of a combination of numbers, letters,
and mathematical symbols.

• Numeric Expression: The answer should contain numbers and symbols.

• Check All That Apply: The student must select a subset of answers from a given set.

• Multiple Choice: The student must choose one answer from a set of options.

• Exact Match (case sensitive, ignore case): The student is required to submit an answer
that precisely matches the correct answer. In the case of “ignore case,” the distinction
between lowercase and uppercase letters is not considered for the correct answer.

• Exact Fraction: The answer should be a fraction where both the numerator and denomin-
ator must match the correct answer exactly. It is important to note that even if the student’s
answer can be simplified to the correct fraction, it would be considered incorrect in this
problem type if it does not exactly match the desired fraction.

• Ordering: The task is to arrange a given set in the correct order.

• Ungraded Open Response: The student is asked to upload their answer as plain text or
possibly provide a voice or video explanation.

Another important feature is the “sequence,” which represents a set of problems that can be
assigned to students by a teacher. Each end-unit or in-unit assignment has a sequence of prob-
lems, with each sequence having 5 levels (of which only 4 levels were used in this study). The
first level specifies the curriculum, with values including the Kendall Hunt Illustrative Mathem-
atics curriculum or the Engage New York mathematics curriculum (Prihar and Heffernan, 2023).
The second level indicates the grade and subject (16 categories), while the third level denotes the
unit within the sequence (136 categories). The fourth level specifies the particular subject within
the unit (1609 categories). For example, the sequence levels 1, 2, 3, and 4 of an assignment are
Kendall Hunt Illustrative Mathematics, Grade 7, Introducing Proportional Relationships, and
Spanish Assessments respectively.

There is another categorical feature called problem skill description (487 categories), which
provides brief information about the skills required to solve the corresponding problem. More
information about the dataset and descriptions of the aforementioned information can be found
in (Prihar and Heffernan, 2023).

2.2. FEATURE EXTRACTION

The clickstream data contains raw features that reflect students’ learning actions in in-unit as-
signments, making it an excellent source for extracting meaningful features correlated to their
performance. After preliminary exploration of the dataset (results are available at https://
www.kaggle.com/code/nargesrohani/clicktree/notebook), we extracted vari-
ous types of features based on the possible action that a student can take. It should be noted that
all the features presented below were calculated separately for each action (e.g. problem start,
problem finish, and so on).
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• Assignment-level, action counts: To calculate this feature, we explored the action logs
of in-unit assignments associated with a specific end-unit assignment and calculated the
count of each action (e.g. starting assignment, finishing assignment, continue and so on)
performed during those in-unit assignments. The value of this feature remains the same
for all problems within the same assignment. As an example, let us calculate this feature
for the “hint requested” action. Suppose that we have the following sequence of actions:

Sa inx Ph endw problem started
Sa inx Po endw hint requested
Sa inx Pc endw hint requested
Sa iny Ph endw wrong response
Sa inz Ph endw hint requested
Sa inj Po endr hint requested
Sb ink Pv endm hint requested
Sb int Pn endm hint requested

where S, in, P , and end represent the identifiers of a student, an in-unit-assignment, a
problem within that in-unit-assignment, and an end-unit-assignment respectively. Then
the feature for the “hint requested” action for the end-unit-assignment endw equals 3.

• Student-level, action counts: Since a student may have completed multiple in-unit as-
signments, it is worth taking into account the count of each action performed by a student.
It is important to note that the value of this feature remains constant for all rows in the
dataset where the same student is involved in the assignment. For instance, the value of
this feature is 4 for the “hint requested” action of student Sa based on the aforementioned
sequence of actions for student Sa.

• Assignment level, In-unit average action counts: For every in-unit assignment associ-
ated with an end-unit assignment, we calculated the total count of a specific action and
then computed the average across all the in-unit assignments linked to that end-unit as-
signment. Consider again the aforementioned sequence of actions. The corresponding
in-unit assignments for endw are inx, iny, and inz, having the total hint requested ac-
tion counts of 2, 0, and 1 respectively. Therefore, the value of this feature for the “hint
requested” action of endw is equal to (2 + 0 + 1)/3 = 1.

• Problem-level, average action counts: Given that the problems within an assignment
can vary in difficulty, it is important to take into account the difficulty of each assign-
ment/problem and how students typically respond to them. This includes considering the
likelihood of students providing correct or incorrect responses, as well as their tendency
to request hints for those problems. Therefore, for each end-unit assignment, we followed
a number of steps to calculate its difficulty based on the included problems.

Firstly, for each possible action and problem within an in-unit assignment of an end-unit
assignment, we calculate the total count of a specific action (e.g., hint requested) for that
specific problem across the entire clickstream data. For instance, based on the above-
provided sequence of data for student Sa, problem Ph and the “hint requested” action, the
output is equal to 1 because the hint was requested once for Ph in the entire dataset. This
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Figure 2: Algorithm for calculating problem-level average action count features.

number reflects the general difficulty of the problem, regardless of specific students or
assignments.

Next, for each in-unit assignment, we calculate the average of the values obtained for each
problem within the in-unit assignment. For example, the in-unit assignment inx consists
of the problems Ph, Po, Pc with the total hint requested action counts of 1, 2, 1 in the
entire clickstream data, so the output value of this step for the “hint requested” action of
inx would be (1 + 2 + 1)/3 = 4/3. This calculation is applied to all in-unit assignments
within an end-unit assignment, resulting in one number corresponding to each in-unit
assignment. The output values indicate assignments’ difficulty based on the problems
they contain.

Finally, we calculate the average count of these numbers across all the in-unit assign-
ments associated with a particular end-unit assignment. This process provides an overall
assessment of the end-unit assignment’s difficulty, considering the difficulties of its cor-
responding in-unit assignments (see Figure 2).

• Problem-level, problem-weighted in-unit average: When a student provides a correct
response to a problem, the significance of this action can vary depending on the difficulty
of the problem or, in other words, based on the proportion of students who typically gave
the correct response to that problem. To capture this significance, it is useful to incorporate
a weighted measure that considers the importance of any action within a problem.

We defined the following simple function, D(x), with x as an input to calculate the im-
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portance of an action for a problem:

D(x) =

{
1
x

x ̸= 0

0 x = 0
(1)

We applied the function D to the number of occurrences of action a within problem p,
replacing x with Na(p). The calculation follows the below formula, where u refers to a
end-unit assignment, r refers to a in-unit assignment within the end-unit assignment u,
and N denotes the number of occurrences. For example, Na(p) represents the number of
times action a occurred withing problem p. The following formula multiplies a weight,
calculated by Formula (1), by the frequency of an action within a problem within an in-
unit assignment of an end-unit assignment.

D(Na(p))×Na(u, r, p). (2)

The final feature is calculated by averaging the above measure across all problems within
an in-unit assignment, and then across all in-unit assignments within an end-unit assign-
ment (similar to the previous features explained in Figure 2). The measure is designed to
be smaller, according to the definition of the D function, Formula (1), when the action is
more insignificant. It should be noted that this feature takes the importance of an action
for a problem into account by considering the overall impact of the action based on the
students who carried it out. However, the previous feature, Problem-level average action
counts, focused on the importance of an action based on the included problems and their
difficulties in an assignment, because each assignment contains different problems.

• Problem-level performance: This feature was calculated similarly to the two previous
features, but the focus here is only on wrong and correct answering actions. For a given
in-unit assignment r within an end-unit assignment u, and a problem p, the following
function (correct and wrong answering actions were considered as a value in Formula (2))
measures the performance of a student in a problem inside an assignment:

χ(u, r, p) = D(Ncorrect(p))×Ncorrect(u, r, p)−D(Nwrong(p))×Nwrong(u, r, p) (3)

To give a measure of their performance inside an in-unit assignment, sum χ(u, r, p) over
all problems p inside the assignment. At the end, it takes the average of the student’s per-
formance throughout the in-unit assignments corresponding to the end-unit assignment.

• Other features: We have utilised a total of five categorical features in our analysis,
namely, “problem type” and “sequence levels 1 to 4”. Additionally, we have included
the first 32 principal components of the BERT embedding of the unit problems as addi-
tional features.

During the feature selection phase, we eliminated features that had a Pearson correlation
higher than 90% (further information about the extracted and removed features can be found at
https://www.kaggle.com/code/nargesrohani/clicktree/notebook).
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2.3. PERFORMANCE PREDICTOR

The scores of students in problems within end-unit assignments were predicted by the CatBoost
classifier (Prokhorenkova et al., 2018) using the novel set of features explained above. Cat-
Boost is an efficient modification of gradient boosting methods (Friedman, 2001; Shyam et al.,
2020) that has the ability to handle categorical features without having the curse of dimension-
ality and target leakage issues (Prokhorenkova et al., 2018; Jabeur et al., 2021; Shyam et al.,
2020). CatBoost consists of two main steps (Prokhorenkova et al., 2018; Shyam et al., 2020;
Hancock and Khoshgoftaar, 2020): 1 - Pre-processing step: This step involves the efficient con-
version of categorical features into numerical values known as Ordered Target Statistics (OTS)
(Prokhorenkova et al., 2018). This conversion ensures that the categorical information is effect-
ively incorporated into the model during training. 2 - Gradient boosting step (Friedman, 2001;
Hancock and Khoshgoftaar, 2020): In this step, both the numerical features and the Target Stat-
istics (TS) values of categorical features are used as input to build a gradient boosting model.
This model utilises the decision trees model as the base predictors, leveraging the combined
information from numerical and categorical features (Prokhorenkova et al., 2018; Hancock and
Khoshgoftaar, 2020).

These steps are further elaborated in the subsequent subsections by providing a more detailed
explanation of how the CatBoost classifier predicts student performance based on the set of
numerical and categorical features. Comprehensive information about the CatBoost classifier
and gradient boosting methodology can be found in (Prokhorenkova et al., 2018; Hancock and
Khoshgoftaar, 2020; Shyam et al., 2020).

2.3.1. Computing Ordered Target Statistics

In general, one-hot encoding or numerical encoding is typically employed to preprocess cat-
egorical features and use them in training models (Chapelle et al., 2014; Micci-Barreca, 2001;
Seger, 2018). However, when dealing with high-cardinality features, such as the problem skill
feature in our dataset, which has 345 different categories, one-hot encoding becomes infeasible
(Prokhorenkova et al., 2018; Shyam et al., 2020). On the other hand, the TS method (Prokhoren-
kova et al., 2018; Hancock and Khoshgoftaar, 2020) involves mapping categories to a reduced
number of clusters based on their expected target value and then applying one-hot encoding to
these clusters (Prokhorenkova et al., 2018; Micci-Barreca, 2001). Nevertheless, this method suf-
fers from target leakage (Prokhorenkova et al., 2018). To overcome this issue, CatBoost adopts
a permutation-based approach to compute ordered TS that solves the issue with target leakage
and overfitting (Prokhorenkova et al., 2018).

The computation of the OTS value for a categorical feature in the ith sample relies only on
the targets (binary values of students’ scores) of previously seen samples (samples 1, · · · , i−1),
and does not depend on the target of the ith sample (Prokhorenkova et al., 2018). This eliminates
the problem of target leakage (Prokhorenkova et al., 2018). The technique that CatBoost uses
to fit data to the base tree models is by making an arbitrary order so as to manage overfitting
(note that CatBoost does not take any temporal order in the data into account.) (Prokhorenkova
et al., 2018; Hancock and Khoshgoftaar, 2020). A permutation σ is applied to the samples (each
pair of problem and end-unit assignment) to introduce an artificial order. Let xi

k denote the ith
categorical feature for the kth problem-assignment pair. The TS value for xi

σ(k) is denoted as
x̂i
σ(k) and is calculated using Formula (4). In simple language, the sigma permutation function in

Formula (4) shuffles the data to prevent overfitting. The function randomly reorders the dataset
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by changing any inherent order that might cause the model to learn patterns. The output of this
function is the same dataset but with the order of the data points changed.

x̂i
σ(k) =

∑i−1
j=1 1xi

σ(k)
=xi

σ(j)
.yσ(j) + αP

∑i−1
j=1 1xi

σ(k)
=xi

σ(j)
+ α

(4)

Here, α > 0 represents a weight parameter, and P denotes the average target (score) value
across all training samples. To address the issue of higher variance in OTS values among pre-
ceding samples compared to later samples when using a single permutation, multiple random
permutations (s permutations) were applied to the problem-assignment pairs. For each permuta-
tion σr (where r ∈ 1, · · · , s), the corresponding x̂i

σr(k)
values were calculated and used in the

design of the gradient boosting model (Prokhorenkova et al., 2018; Hancock and Khoshgoftaar,
2020).

Let us explain each variable in the formula in more detail:
x̂i
σ(k): This variable shows the output OTS value for the ith categorical feature (for example

problem skill feature), specifically for the kth problem-assignment pair. It is the estimated ex-
pected target value for the sample’s categorical feature based on previously seen samples.∑i−1

j=1 1xi
σ(k)

=xi
σ(j)

: This part of the formula sums up the occurrences of the categorical feature
xi
σ(k) being equal to the categorical feature of previous samples xi

σ(j), where j ranges from 1 to
i−1. It counts how many times the same category has been observed before the current sample.

1xi
σ(k)

=xi
σ(j)

equals to 1 if the categorical feature of the ith sample (xi
σ(k)) is equal to the

categorical feature of the jth previous sample (xi
σ(j)), and 0 otherwise.

yσ(j): This represents the score (0 or 1) value of the jth pair of problem and end-unit assign-
ment in the permutation σ. It’s the actual score value corresponding to the jth pair of problem
and end-unit assignment.

α: A weight parameter that controls the influence of the average score (our target) value P in
the calculation (we set it to the default value, which is 0.1). It adjusts the impact of the average
score value relative to the sum of individual score values.

P : It denotes the average score value across all pairs of problem and end-unit assignments
in the training data. It provides a baseline expectation for the score value, helping to normalise
the contributions of individual target values in the calculation. To explain it through an example,
suppose we have the following data:

Categorical feature “Problem type” with categories: “Ordering”, “Matching” and “Mul-
tichoice” Target variable indicating student scores in pair of assignments and problems: 1 (pass)
or 0 (fail). And let us consider calculating x̂1

σ(1) for the first problem-assignment pair with ”Or-
dering” as the problem type:∑i−1

j=1 1xi
σ(k)

=xi
σ(j)

: Since this is the first sample, there are no previous samples to consider,
so this part is 0. yσ(j): If, for example, the score value for the first sample is 0, then yσ(j) = 0. α:
This is a predefined parameter that can be adjusted during model training to control the influence
of the average target value. The default value for this variable is set to 0.1.

2.3.2. Building Gradient Boosting Models

The CatBoost classifier applies a Gradient Boosting algorithm with Decision Trees (GBDT) as
base predictors to predict the binary score of problem-assignment pairs (Prokhorenkova et al.,
2018), in our case indicating whether a student answered the problem of the end-unit assignment
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correctly or not. The process includes building the base tree predictors and then making the final
prediction by aggregating all the base predictors.

During model construction, decision trees (Mr), were built based on numerical features and
OTS features computed using the methodology explained in section 2.3.1. Each tree is grown
in a leaf-by-leaf manner, considering various features and combinations of features at each split
that capture the relationship between categorical features, such as problem skills, and the target
variable (student score) across different permutations, ensuring robustness in modelling. Given
the infeasibility of considering all possible combinations of features, a greedy selection process
was employed to select feature combinations (Prokhorenkova et al., 2018). In each split, the
criterion for split was selected such that it minimises the loss function defined in Formula (5).

L2 = −
n∑

i=1

wi · (ai − gi)
2 (5)

Here, L2 is the squared error loss function used in the gradient boosting model, which
measures the discrepancy between the predicted score and the actual score for each problem-
assignment pair. wi is the weight assigned to the ith problem-assignment pair, which accounts
for both the output score weight (w(y)

i ) and the input score weight (w(x)
i ). It determines the

importance of each problem-assignment pair in the model training process. For each problem-
assignment pair xi with score yi, the weight wi was computed by multiplying the score weight
(output weight: w

(y)
i ) and the problem-assignment weights (input weight: w

(x)
i ). ai is the pre-

diction of the tree for the ith problem-assignment pair. It represents the model’s prediction of
the score variable for the given problem-assignment input. gi is the gradient of the loss func-
tion based on the tree prediction. It shows the sensitivity of the loss function to changes in
the predicted scores. The problem-assignment weights were randomly assigned using Bayesian
bootstrap (Rubin, 1981) with a bagging temperature of 0.2, and the output class weights were
calculated based on Formula (6).

w
(y)
i =

√√√√maxKc=1(
∑

yj=cw
(x)
j )

∑
yj=yi

w
(x)
j

(6)

Where w
(y)
i is the score weight assigned to the ith problem-assignment pair, which accounts

for the distribution of problem-assignment pairs across different classes. It aims to balance the
contribution of two score classes (0 and 1) in the model training process. K is the number
of classes in the score variable that is equal to 2. w

(x)
j is the input weight assigned to the jth

problem-assignment pair. As mentioned above, it reflects the importance of each assignment-
problem pair in the model training process. yi is the target score for the ith problem-assignment
pair, indicating whether the pair was solved correctly or not by the student.

Each tree is constructed leaf by leaf until it reaches the maximum depth or the maximum
number of leaves, whichever occurs sooner. The overall loss function for the model is cross-
entropy (CE) (De Boer et al., 2005), as defined in Formula (7).

CE = −
∑n

i=1wi(yi log(pi) + (1− yi) log(1− pi))∑n
i=1 wi

(7)

Here, yi represents whether the ith problem-assignment pair is solved correctly or not, and
pi is the prediction of the model. The model was trained using stochastic gradient Langevin
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boosting with posterior sampling (Ustimenko and Prokhorenkova, 2021).
After constructing decision trees M1, ..., Ms based on OTS values computed using per-

mutations σ1, ..., σs, an additional permutation σ∗ was used to compute OTS values for the
final prediction and to determine the leaves in the trees. The final prediction for each problem-
assignment pair is computed by boosting the predictions of all the models. To avoid overfitting,
early stopping is enabled, meaning that the model stops learning when its performance on the
validation data does not improve. This approach allows for saving the best-performing model
on the validation data, which is subsequently used as the final model for predicting problem-
assignment results in the test data.

2.4. VALIDATION

The validation set was constructed to ensure that it includes half of the students from the dataset,
and there is no overlap between the students in the training and validation sets. Consequently,
every row in the validation set corresponds to a student who is not present in the training data.

To optimise the performance of the CatBoost classifier, we performed hyperparameter tun-
ing within specified ranges. The hyperparameters we focused on were as follows: ‘depth’ with
options [3, 1, 2, 6, 4, 5, 7, 8, 9, 10], ‘iterations’ with options [250, 100, 500, 1000], ‘learn-
ing rate’ with options [0.03, 0.001, 0.01, 0.1, 0.2, 0.3], ‘l2 leaf reg’ with options [3, 1, 5, 10,
100], ‘bagging temperature’ with options [0.03, 0.09, 0.25, 0.75], and ‘random strength’ with
options [0.2, 0.5, 0.8]. The objective of this tuning process was to increase the AUC value on the
validation data. After the initial tuning, we manually fine-tuned the selected hyperparameters.

The best hyperparameters that were ultimately chosen for the model are as follows: n iterations
= 5000, learning rate = 0.01, use best model = True, l2 leaf reg = 200, depth = 10, score function
= ‘L2’, langevin = True, grow policy = ‘Lossguide’, auto class weights = ‘SqrtBalanced’, eval metric
= ‘AUC’, posterior sampling = True, bootstrap type = ‘Bayesian’, bagging temperature = 0.2,
sampling unit = ‘Object’, and early stopping rounds = 100. Other parameters are set as default.

The implementation was carried out using Python 3, along with the following libraries:
numpy 1.19.5, pandas 1.3.4, boost 1.1.1, xgboost 1.7.5, and sci-kit-learn 0.24.2. The code was
executed on a computer with 8 CPU cores and 16 GB of RAM. The code is available at:
https://www.kaggle.com/code/nargesrohani/clicktree/notebook

3. RESULTS

In this section, we present the results of our analysis regarding the research questions, including
the evaluation of the ClickTree method. We also compare the performance of the method with
other traditional machine learning algorithms.

3.1. WHICH PROBLEMS WERE MORE DIFFICULT FOR STUDENTS?

Among the different types of problems, ‘Exact match (ignore case)’ with an average score of
0.38, ‘Check all that apply’ with an average score of 0.40, and ‘Ordering’ with an average score
of 0.42 had a lower average scores compared to other types of problems (Figure 3.a). This
indicates that they were more difficult for students.

Figure 3.b displays the 15 most challenging problems based on the skills required. Problems
that require estimating length (average score of 0.06), Line plot - 5th grade fraction (average
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score of 0.12), measuring length using unit pieces (average score of 0.13), and histograms (av-
erage score of 0.14) were found to be more difficult compared to other problem skills.

Based on Figure 3.c, which presents the average scores among different sequence levels/subjects
of the assignments, Algebra II with an average score of 0.42, Algebra I with an average score of
0.48, and Geometry with an average score of 0.50, were more challenging for students.

Furthermore, when examining problem subtopics in Figure 3.d, Module 2 - descriptive stat-
istics (average score of 0.22), Unit 6 - multiplying and dividing multi-digit numbers (average
score of 0.25), Unit 1 - scale drawings (average score of 0.25), and Unit 5 - multiplicative com-
parison and measurement (average score of 0.26) were found to be more difficult for students.

3.2. LEARNING BEHAVIOR OF SUCCESSFUL STUDENTS VS STRUGGLING STUDENTS

Based on our analysis (see Table 2), students who answered the end-unit assignment problems
correctly (i.e. successful students) had a higher number of ‘continue selected’, ‘correct re-
sponse’, ‘problem finished’, and ‘problem started’ actions in in-unit assignments compared to
students who could not answer the end-unit assignment problems correctly (i.e. struggling stu-
dents). On the other hand, struggling students had a higher number of requests for hints and
answers. This implies that students who struggle can be identified during their interactions with
the in-unit assignments before they take the final end-unit assignment. However, it is important
to note that aside from the ‘answer requested’ action, which exhibits a small-to-moderate effect
size for the difference, the effect size for the other actions is small. We employed the t-test
and Cohen’s D effect size measure to determine whether the means of in-unit action counts for
struggling and successful students are significantly different. Actions with a p-value lower than
0.05 and Cohen’s d higher than 0.10 are considered and shown in bold in Table 2.

Table 2: The mean of in-unit action counts for each group of students. A successful student is one
who answered the problem correctly, while a struggling student is one who could not answer the
problem correctly. Actions exhibiting a statistically significant difference between the struggling
and successful groups, as determined by both p-value and effect size, are shown in bold.

Action Struggling students Successful students p-value, Cohen’s d
answer requested 18.16 11.28 0.00, 0.29
assignment finished 11.10 12.32 3.79e-220, 0.10
assignment resumed 7.97 8.09 0.08, 0.01
assignment started 13.56 14.38 3.19e-77, 0.06
continue selected 101.18 117.97 0.00,0.19
correct response 78.43 93.16 0.00, 0.13
explanation requested 0.61 0.33 5.04e-179, 0.09
hint requested 2.24 1.31 0.00, 0.13
open response 33.74 37.14 5.12e-97, 0.06
problem finished 112.48 130.51 0.00, 0.12
problem started 114.88 132.51 0.00, 0.11
wrong response 40.61 33.90 0.00, 0.14
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Figure 3: a: Average score of students in different types of problems. b: The 15 most dif-
ficult problem skills required for solving a problem (only included skills with more than 100
occurrences in the whole dataset). c: Average score of students across different assignment top-
ics/units. d: The 15 most difficult particular problem subjects (with more than 100 occurrences
in the whole dataset).
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3.3. CLICKTREE METHOD EVALUATION AND COMPARISON

The ClickTree method achieved an AUC of 0.78844 on the test data and ranked second in the
EDM Cup 2023 with only a 0.001 difference from the first-ranked method.

Before using the CatBoost classifier, we applied different traditional classification methods
to the extracted features in order to find a model with higher accuracy in predicting students’ end-
unit scores. Table 3 presents a comparison with traditional machine learning methods, as well
as other techniques that have been previously employed in related work for student performance
prediction, such as neural networks (Rohani et al., 2023) and ANN-LSTM (Al-azazi and Ghurab,
2023).

Table 3: The results of different methods trained on the training set and tested on the validation
set. For all classifiers except ANN-LSTM, we used our set of extracted features as input. For
ANN-LSTM we used the code provided by the authors.

Method AUC AUPR Accuracy Precision Recall Train time Test time
ClickTree 0.80 0.84 0.73 0.73 0.71 26 mins less than 1 sec
XGBoost (Chen and Guestrin, 2016) 0.78 0.82 0.72 0.72 0.72 4 mins less than 1 sec
Decision Tree 0.73 0.78 0.69 0.68 0.67 8 secs less than 1 sec
Random Forest 0.76 0.80 0.70 0.70 0.67 2 mins 2 secs
Logistic Regression 0.69 0.74 0.66 0.64 0.63 5 secs less than 1 sec
Neural networks (Rohani et al., 2023) 0.77 0.80 0.71 0.71 0.69 14 mins 12 secs
ANN-LSTM (Al-azazi and Ghurab, 2023) 0.51 0.58 0.57 0.29 0.50 one week 10 hrs

The CatBoost classifier outperformed all other models across all criteria except training time.
The ClickTree method achieved an AUC of 80% on the validation data, while XGBoost, Random
Forest, Decision Tree, Logistic Regression, Neural networks and ANN-LSTM achieved AUC
values of 78%, 76%, 74%, 69%, 77%, and 51%, respectively. One can conclude that tree-
based methods were more appropriate for the dataset. It should be mentioned that since we had
categorical features, the CatBoost classifier, which is well-known for handling categorical data
very well (Shyam et al., 2020; Hancock and Khoshgoftaar, 2020), seems to be more suitable
and accurate. To use categorical features in the classification by the rest of the methods, we had
to employ the numerical label encoding approach to convert the categorical values into unique
numerical values (Pedregosa et al., 2011). We also tried using one-hot-encoding (Pedregosa
et al., 2011), which converts each categorical variable into a binary vector. This had lower
accuracy compared to the numerical encoding approach. Therefore, we selected the numerical
label encoding approach to handle categorical features for those methods.

Let us now discuss further how the different methods compare to each other, by considering
a range of other perspectives, such as accuracy, training time, computational cost, interpretab-
ility, and human effort. In terms of training time, simpler methods like logistic regression and
decision trees were the fastest (less than 1 minute) and needed minimal computational resources.
Although ClickTree had a higher training time (26 mins) due to boosting several decision trees
and using the OTS technique, its training time is still reasonable. Conversely, ANN-LSTM had
a significantly longer runtime for both training and testing. It is also costly to tune hyperpara-
meters of deep learning methods (we used the default values reported by (Al-azazi and Ghurab,
2023) study). ANN-LSTM failed to achieve high accuracy, probably due to its oversight in con-
sidering features at different levels. This demonstrates the value of feature extraction. Although
feature engineering before model training may be time-consuming and need human effort, this
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Figure 4: Top 10 most important features for the CatBoost classifier based on the information
gain.

time and effort is moderate in comparison to the time required for ANN-LSTM to fit on a new
dataset and run on it. Regarding interpretability, traditional machine learning methods, such
as logistic regression and decision trees are more straightforward to interpret, while neural net-
works and ANN-LSTM are not due to their black-box nature (Swamy et al., 2023).

In conclusion, usually, there is a trade-off between high accuracy and other factors, and the
selection of the method depends on the dataset and the aim of prediction (Tuvshinjargal and Kim,
2022). In this study, the inclusion of features at different levels (i.e. student, assignment and
problem) and the effective utilisation of categorical features were important for achieving high
accuracy in EDM Cup 2023. ClickTree showed the best accuracy, acceptable training time and
interpretability, and fast test time which makes it the best methodology for predicting problem
scores of end-unit assignments in this dataset.

3.4. FEATURE IMPORTANCE

Upon analysing the importance of each feature in increasing the ClickTree predictive model ac-
curacy, we identified the 10 most important ones (see Figure 4). The most important feature is
sequence folder path level 3, which represents the subject of the assignment problem. The next
most important features are problem level performance, average answer request, weighted an-
swer request, problem type, BERT features calculated from the questions’ text, average assign-
ment finished, total continue of the assignments, and total answer request, respectively (features
explained in Section 2.2).
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4. IMPLICATIONS AND RECOMMENDATIONS

Previous studies (Rohani et al., 2023; Schumacher and Ifenthaler, 2018; Jang et al., 2022;
Koedinger et al., 2013) have shown that using computational methods to predict students’ per-
formance can assist in providing timely feedback and support to enhance students’ outcomes.
ClickTree contributes to this body of work and can be employed not only on the ASSISTments
platform but also on other online platforms to predict students’ performance, thereby helping
teachers in delivering tailored feedback and guidance to students.

Similarly to previous studies (Yu and Li, 2011; Choi et al., 2017; Kearns, 2012), our results
reveal that certain types of problems are more challenging for students. In particular, problem
types such as “Exact match (ignore case),” “Check everything relevant,” and “Ordering” exhibit
lower average correct scores, indicating greater difficulty. The challenge in designing effective
assessments on online platforms is discussed in the literature (Kearns, 2012), and previous stud-
ies note that students use different cognitive processes and demonstrate varying performance
based on the question type (Yu and Li, 2011; Choi et al., 2017). For instance, (Riggs et al.,
2020; Kearns, 2012) suggest providing preparation exercises for each question type to prepare
students for the actual exams. Accordingly, in our analysed course, for the “Exact matching
(ignore case)” problem type, additional practice or guided examples can be offered to enhance
student understanding of the skills required for this specific problem type.

Also, problems that required skills such as estimating lengths, line plots, measuring lengths
by unit pieces, and histograms were found to be more difficult for students. This finding is
also mentioned in (Tan Sisman and Aksu, 2016), which discusses students’ misconceptions
and errors while solving tasks involving length, area, and volume measurement. To facilitate
learning these concepts, virtual manipulation, an interactive visual representation of dynamic
objects implemented on the web, can aid in understanding mathematics involving measurement
and length. Previous studies have discussed the benefits of this teaching approach for math
students (Moyer-Packenham and Westenskow, 2013).

In line with existing literature that discusses the difficulty of algebra and geometry for high
school students (Özerem, 2012; Sugiarti and Retnawati, 2019; Chow, 2011), this study also iden-
tifies Algebra II, Algebra I, and Geometry as more challenging than other subjects for students.
Therefore, by understanding the origin of the difficulty (e.g., a lack of necessary background
knowledge), new teaching strategies and resources can be designed to effectively teach these
topics (Chow, 2011). For instance, offering creative examples, practice, and interactive activit-
ies (Kartika et al., 2019), specifically focusing on the challenging topics (algebra and geometry),
can help facilitate student training. Our findings may enable educators to devote more attention
and instructional resources to the challenging subjects (algebra and geometry) and sub-subjects
(estimating length, line plots, and histograms), ensuring that students receive appropriate sup-
port and instruction where needed most (Chow, 2011; Pardo et al., 2019).

Additionally, analysis of students’ behaviour reveals significant differences between suc-
cessful and struggling students, which is in line with related literature (Hirose, 2018; Matcha
et al., 2019). Successful students, who correctly answer the end-unit assignment problems tend
to attempt more questions. Struggling students seek more hints and answers, which is in accord-
ance with the help-seeking learning strategy (Newman and Schwager, 1995). This also implies
that struggling students can be identified early based on their interactions with in-unit assign-
ments (Rohani et al., 2023). Providing timely personalized support and interventions for these
students can enhance their performance in end-unit assignments (Matcha et al., 2019; Rohani
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et al., 2022; Rohani et al., 2023). Additionally, offering self-directed learning strategies and
helpful online tutorials about learning strategies to support students’ independent learning could
be beneficial (Matcha et al., 2020; Matcha et al., 2019; Rohani et al., 2023; Cheng, 2011).

To summarise, the aforementioned insights and suggestions from this study can help identify
struggling students and implement better teaching approaches to address areas where students
face difficulties. The ClickTree method can be used across a range of disciplines to predict
students’ final exam scores based on their previous interactions with the course. This can be
beneficial for educators, enabling them to provide tailored feedback to students before their
final exams. Additionally, insights such as students’ difficulties in measuring length can help
math educators improve their teaching methods in challenging areas. Algebra topics need more
attention, and using creative examples might benefit students.

5. CONCLUSION AND FUTURE WORK

We developed ClickTree, a method for predicting students’ performance on each problem within
a math assignment by utilising features extracted from clickstream data. ClickTree calculates
a novel set of features at problem-, student- and assignment-levels. After that, it utilises the
CatBoost classifier to predict students’ scores in answering the end-unit assignment problems.
The developed method achieved an AUC of approximately 79% on test data and ranked second
in EDM Cup 2023 with only about a 0.001 difference from the first-ranking submission. Our
results show that tree-based methods with a boosting approach had higher accuracy for this
dataset compared to other machine learning and deep learning methods, which is also discussed
in literature (Ibrahim et al., 2020; Shyam et al., 2020; Hancock and Khoshgoftaar, 2020). The
inclusion of multiple levels of features was effective in improving model accuracy, and the BERT
vectors, which represent the text of the questions, were also important features for prediction.

Our analysis also reveals that students who started and completed more problems, as well as
those who answered more questions correctly during the in-unit assignment, were more likely
to answer the final assignment of the unit correctly. On the other hand, struggling students had
a higher rate of requesting answers or hints for the problems. We also investigated the types
and subjects of problems that were more challenging for students. The results demonstrate that
the type of problems where a student must select a subset of answers from a given set (i.e.
‘Check all that apply’) was more difficult for students, and topics such as Algebra II, descriptive
statistics, and multiplying and dividing multi-digit numbers were more challenging for students.
By considering the insights provided in this paper, course instructors can focus on improving
the course and assignments in the subjects (e.g. Algebra and Geometry) and problem areas (e.g.
length estimation) that were difficult for students.

While ClickTree achieved high accuracy in predicting student performance using click-
stream data, it is important to acknowledge a number of limitations. We only evaluated the
method on one dataset; therefore, it is essential to note that the generalisability of the developed
method should be evaluated using various courses and datasets in future research. Furthermore,
our methodology relied on predefined features extracted from clickstream data that may not be
applicable to other datasets where limited raw data about student behaviour is available. Future
studies should focus on developing a pipeline that can operate on every type of dataset with
available features and dynamically decide about the feature engineering phase.
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