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We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the
correctness of students’ responses to questions using historical clickstream data. This model combines
the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Rec-
ommender Systems. By leveraging clickstream data, Wide & Deep IRT provides precise predictions of
answer correctness while enabling the exploration of behavioral patterns among different ability groups.

Our experimental results based on a real-world dataset (EDM Cup 2023) demonstrate that Wide &
Deep IRT outperforms conventional IRT models and state-of-the-art knowledge tracing models while
maintaining the ease of interpretation associated with IRT models. Our model performed very well in the
EDM Cup 2023 competition, placing second on the public leaderboard and third on the private leader-
board. Additionally, Wide & Deep IRT identifies distinct behavioral patterns across ability groups. In the
EDM Cup 2023 dataset, low-ability students were more likely to directly request an answer to a question
before attempting to respond, which can negatively impact their learning outcomes and potentially indi-
cates attempts to game the system. Lastly, the Wide & Deep IRT model consists of significantly fewer
parameters compared to traditional IRT models and deep knowledge tracing models, making it easier to
deploy in practice. The source code is available via Open Science Framework.1

Keywords: wide & deep learning, item response theory, knowledge tracing, student modeling.

1. INTRODUCTION

Modeling a student’s knowledge or ability based on their interaction with a learning platform is
an essential task for today’s learning systems. For instance, a tutoring system based on mastery
learning must assess students’ understanding of a concept before advancing to the next one
(Ritter et al., 2016). Similarly, a test preparation application needs to evaluate students’ abilities

1https://osf.io/8vcfd/
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in order to suggest suitable items (Loh et al., 2021). Personalized language learning platforms
require an analysis of each student’s rate of forgetting to recommend timely vocabulary review
(Settles and Meeder, 2016; Lindsey et al., 2014). Additionally, colleges need to track students’
academic progress to identify those at risk of falling behind, allowing instructors to intervene
promptly (Pistilli and Arnold, 2010). A widely accepted approach, knowledge tracing, tackles
this issue as a sequential prediction problem, aiming to accurately predict the correctness of
a student’s answer to the immediate subsequent question based on their historical interactions
with the learning platform. This approach, which can be traced back to Corbett and Anderson
(1994), has attracted significant research interest in recent years due to the rise in popularity
of online learning platforms. Recent advancements in this field predominantly center around
incorporating novel deep learning models (Ghosh et al., 2020; Nakagawa et al., 2019; Piech
et al., 2015; Pu et al., 2020; Zhang et al., 2017).

However, it remains unclear whether predicting the correctness of a student’s response to
the next question is the best approach to modeling their ability, because the correctness of a stu-
dent’s response is not influenced only by their ability. For example, low engagement behaviors,
such as rapid guessing (Wise, 2017), may negatively impact students’ immediate performance;
however, these behaviors are not reliable indicators of low abilities. Hence, if two models have
equal capacity to model students’ ability, but one can infer students’ engagement based on their
most recent question-answering performance while the other cannot, then the model capable of
inferring engagement is considered superior for the knowledge tracing task. This holds true even
if both models are equally capable of modeling student ability. Scruggs et al. (2020) and (2023)
articulated a similar argument, emphasizing that it is more crucial to measure the volume of
knowledge students retain after using the learning system, rather than their immediate success
within the system. They discovered that models excelling at the knowledge tracing task do not
necessarily perform well at modeling students’ abilities, which are estimated based on post-test
scores after using a learning environment.

We propose that predicting students’ performance on a post-test offers a more accurate model
of students’ abilities than merely predicting the correctness of their next answer. This approach
could help eliminate factors that fluctuate over time, such as engagement. However, this method
relies heavily on the availability of high-quality data that includes post-test information. In this
study, we utilize a recent dataset, the EDM Cup 2023, which provides students’ clickstream data
from math unit assignments and test assignments as post-test data. The availability of click-
stream data makes EDM Cup 2023 especially valuable, as previous research has demonstrated
the value of clickstream data in modeling student behaviors that correlate with their learning
outcomes (Agudo-Peregrina et al., 2014; Baker et al., 2020; Cohen, 2017; Crossley et al., 2016;
Macfadyen and Dawson, 2010; You, 2016).

We introduce a novel model, Wide & Deep Item Response Theory (IRT), designed to predict
a student’s post-test performance. Wide & Deep IRT combines the strengths of traditional IRT
models with the flexible ‘Wide & Deep Learning for Recommender Systems’ (Cheng et al.,
2016). The IRT component of the model enables accurate estimation of students’ abilities, while
the deep learning component effectively utilizes clickstream data. This model has demonstrated
its proficiency by placing second on the public leaderboard and third on the private leaderboard
of the EDM Cup 2023 competition.

In addition to providing accurate predictions of post-test question correctness, our model
offers valuable insights into behavioral patterns across different ability groups. This allows us to
gain a deeper understanding of behaviors that may contribute to suboptimal learning outcomes.
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Specifically, with the Wide & Deep IRT model, students in the lowest math ability group were
four times more likely to immediately request answers to questions than students from other
groups. Moreover, these students requested answers three times faster than their counterparts.
Remarkably, in approximately 21.80% of instances, they requested an answer within 3 seconds
after a question was presented to them. This rapid response time led us to suspect that these
low-ability students might have been gaming the system. The brief duration suggests that they
were not making a genuine effort to solve the problems.

Throughout the remainder of this manuscript, we use the terms ‘item’ and ‘question’ in-
terchangeably to denote a question posed to a student on a learning platform. Similarly, ‘item
response’ and ‘question answer’ are used interchangeably to indicate the response a student pro-
vided to a given question. We use the term ‘ability’ to denote a student’s proficiency in a specific
skill. This term, frequently utilized within the realm of item response theory research, equates to
the concepts of ‘knowledge state’ and ‘mastery of skills’ that are often used in knowledge trac-
ing literature. We opt to use this single term consistently throughout the manuscript to enhance
clarity and coherence.

2. RELATED WORKS

2.1. KNOWLEDGE TRACING

Knowledge tracing is a method frequently utilized in the field of intelligent tutoring systems to
model a student’s evolving skills and ability over time. The approach stems from the work of
Corbett and Anderson (1994) that aimed to model students’ evolving ability while learning to
write short programs. Their work introduced Bayesian Knowledge Tracing (BKT), in which a
student’s knowledge state or ability for each skill is binary: either learned or unlearned. BKT as-
sumes that a student will correctly respond to a question if they have mastered the relevant skill
and do not make a mistake (slip) while responding, or if they happen to guess the answer cor-
rectly by chance. Pardos and Heffernan (2011) attempted to improve BKT’s predictive accuracy
by incorporating item difficulty into the model. They proposed that this could be achieved by fit-
ting item-specific guessing and slipping rates. The authors found that BKT with item difficulty
performed better than the original model, but only with certain datasets. Similarly, Yudelson
et al. (2013) attempted to enhance BKT by adding student-specific parameters. The original
BKT assumed every student had the same initial ability and learning rate. The authors explored
individualizing these parameters and found that a student-specific learning rate fit the data con-
siderably better, while student-specific initial ability provides only marginal improvement.

Knowledge tracing models have evolved significantly since the introduction of BKT. The
work of Piech et al. (2015) on Deep Knowledge Tracing (DKT) is arguably one of the most
important landmarks in this progress. Rather than explicitly assuming how a student’s ability
evolves over time and how each skill influences their question-answering accuracy, the authors
framed this as a pure sequential prediction problem. They applied Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) to data to learn how a student’s ability evolves
over time and how this impacts their question-answering performance. The authors found that
the DKT model significantly outperformed BKT across a range of public datasets. This progress
sparked extensive research on using deep learning models to improve knowledge tracing. Ye-
ung and Yeung (2018) discovered an inconsistency in DKT where the model’s estimates of a
student’s skill could decrease despite the student excelling in the skill. To address this, they
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introduced a regularized DKT to ensure consistent estimation. Zhang et al. (2017) proposed the
use of an autoencoder (Hinton and Salakhutdinov, 2006) to compress question-level features into
a dense vector, which is then used as input to the DKT models. Zhang et al. (2017) introduced
Dynamic Key-Value Memory Networks (DKVMN), which employed a modified memory aug-
mented neural network (MANN) (Graves et al., 2016) to replace the LSTM cell in DKT. Unlike
LSTM, which compresses a student’s ability across all skills into a single vector, MANN uses a
matrix to more effectively represent a student’s ability. Each vector within the matrix represents
the ability associated with a specific skill.

Recent developments in knowledge tracing models exhibit two significant trends. The first
trend is the shift from an RNN-based approach to an approach based purely on attention (Vaswani
et al., 2017). In this line of research (Choi et al., 2020; Pandey and Karypis, 2019; Pandey and
Srivastava, 2020; Pu et al., 2020; Ghosh et al., 2020; Pu et al., 2021; Shin et al., 2021), a stu-
dent’s abilities are not compressed into a vector until the inference stage. That is, these models
calculate students’ abilities only when predicting response correctness based on their past per-
formance on similar questions. The similarity between historical and target questions is captured
through the attention mechanism. The second trend aims to improve the representation of ques-
tions. This can be achieved by either learning the embedding of a question from its text (Liu
et al., 2021; Tong et al., 2020), or the relationship between the underlying skills targeted by the
question (Liu et al., 2020; Nakagawa et al., 2019; Song et al., 2022).

Knowledge tracing is the prevailing method for estimating students’ abilities in intelligent
tutoring systems. Therefore, we include knowledge tracing models as baselines for the Wide
& Deep IRT model. However, since knowledge tracing is primarily designed to predict the
correctness of a student’s answer to the next question, we propose a straightforward approach
that uses knowledge tracing models to predict the correctness of students’ post-test questions in
the experimental section.

2.2. ITEM RESPONSE THEORY

Item Response Theory (IRT) is a widely used psychometric framework in educational and psy-
chological research for analyzing test item responses. IRT is based on the idea that test items
have varying levels of difficulty and discrimination, while individuals possess different levels of
latent traits. IRT estimates the parameters for each item within a scale, allowing differentiation
between a person’s response to the item and their underlying level of the latent traits (or ability)
being measured (Hambleton et al., 1991). In contrast, Classical Test Theory requires contextual
interpretation that considers characteristics of both the test and test-takers.

IRT models estimate several measurement properties for both items and respondents. The
latent trait, θi, represents a respondent’s ability, which is a theoretical construct that cannot be
directly observed or measured, but is inferred from their pattern of responses to the test items.
Item difficulty, bj , refers to the point on the latent trait continuum where the probability of a
correct response is 50%. Higher difficulty indicates greater challenge and requires a higher level
of ability to provide a correct response. Item discrimination, aj , refers to the ability of an item
to distinguish individuals with varying levels of the latent trait being measured. Items with more
discrimination parameters are more informative and can effectively differentiate individuals with
varying levels of the latent construct. In IRT models, each individual’s response to an item is
influenced by their θi value and the item parameters, such as item difficulty and discrimination.

IRT models have evolved with variants based on the number of parameters estimated. The
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one-parameter logistic (1-PL) IRT model (Rasch, 1961), also known as the Rasch model, as-
sumes constant item discrimination and estimates item difficulty. The 2-PL model (Lord, 1952;
Birnbaum, 1968) estimates both item difficulty and discrimination. The 3-PL model (Lord,
1980) extends the 2-PL model by incorporating a guessing parameter, ci, to account for the
probability of guessing correct responses when the latent trait is low. This parameter is par-
ticularly useful for multiple-choice items, where individuals have a probability of guessing the
correct answer. Finally, the 4-PL model introduces an upper asymptote parameter, di, to capture
the probability of slipping even at very high trait levels (Baker and Kim, 2004; Embretson and
Reise, 2013).

IRT models provide a powerful framework for understanding the relationship between item
responses and latent traits in various domains. In educational assessment, IRT is utilized for test
development and calibration, and to identify problematic items (Embretson and Reise, 2013;
Baker, 2001). It is also valuable in computerized adaptive testing, where item difficulty is dy-
namically adjusted based on estimated trait levels, leading to more precise assessments (Lin-
den et al., 2000). In psychology, IRT aids in constructing reliable scales and assessing latent
traits (Embretson and Reise, 2013). IRT is also employed in health sciences to develop patient-
reported outcome measures (PROMs) and health-related quality of life assessments (Cella et al.,
2010; Jefford et al., 2017).

With recent advancements in deep learning and artificial intelligence, researchers have ex-
plored the integration of IRT principles within deep learning models, which exhibit superior per-
formance. Cheng et al. (2019) proposed Deep Item Response Theory (DIRT), which involves
using a proficiency vector to represent student proficiency and dense embedding to represent
question texts and knowledge concepts. They used the item response function to predict student
performance, and their experimental results on real-world data demonstrate the effectiveness
and interpretability of DIRT. Tsutsumi et al. (2021b) introduced Deep-IRT, which does not as-
sume that abilities are randomly sampled from a normal distribution. Their study showed that
Deep-IRT provides more accurate estimates of individuals’ abilities compared to conventional
IRT models.

Yeung (2019) proposed integrating IRT models with DKVMN (Zhang et al., 2017) to predict
the correctness of students’ answers to the next question. This approach retains the prediction
power of DKVMN while benefiting from the interpretability of IRT. Tsutsumi et al. (2021a) fur-
ther improved this integration by introducing two independent networks: a student network and
an item network. Their results show improved prediction power of DKVMN while preserving
the interpretability of IRT.

In this paper, we present a new approach in alignment with the ongoing trend of merging IRT
with deep learning models. Our aim is to augment the widely-used ‘Wide & Deep Learning for
Recommender Systems’ (Cheng et al., 2016). The author of the original model argued that deep
neural networks can effectively capture complex feature interactions and generalize to unseen
feature combinations through dense embeddings for sparse features. However, these networks
may overgeneralize when dealing with high-dimensional sparse features that exhibit rare co-
occurrences in the data. To address this challenge, the model uses the output of the deep neural
network as an input to a generalized linear model. This generalized linear model is the ‘wide
component’ and the deep neural network is the ‘deep component.’

‘Wide & Deep Learning for Recommender Systems’ serves as a suitable base model for
several reasons. First, it maintains substantial traction within the field of recommender systems
research. Second, it can process any input feature. Lastly, it can address the challenge posed by
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sparse student-item interactions when predicting students’ responses to future items.
In our approach, we integrate ’Wide & Deep Learning for Recommender Systems’ with IRT

through two key modifications. Initially, we transition the wide component into a conventional
IRT model, incorporating item difficulty parameters (βj) and guessing parameters (cj) as sparse
features. Subsequently, we apply the deep component to each user-item response and compute
the mean of all deep component outputs to estimate a student’s ability (θi). Detailed insights into
our model can be found in section 4. Through empirical evaluations conducted on the real-world
dataset, EDM Cup 2023, we demonstrate that our approach not only enhances the performance
of conventional IRT models, but also preserves their interpretability.

3. DATA

The dataset used in this study is from the EDM Cup 2023 competition2 hosted on Kaggle. This
dataset is a byproduct of K-12 students engaging with the ASISSTments3 learning platform for
their mathematics schoolwork and examinations. As illustrated in Figure 1, the mathematics
curriculum on ASISSTments is divided into discrete units, each encompassing a set of closely
interconnected mathematical topics. As part of the pedagogical process within each unit, teach-
ers assign homework to students, referred to as ‘in-unit assignments’ in the dataset. Upon com-
pletion of a unit, teachers assess students’ comprehension and acquisition of unit skills through
‘unit test assignments.’ Our goal is to develop an accurate prediction model capable of predict-
ing whether a student can correctly respond to each item in the unit test assignments based on
their performance in the corresponding in-unit assignments. The clickstream data recorded by

Figure 1: In EDM Cup 2023 dataset, a student learns math units on the ASSISTMent platform. In
each unit, a student finishes multiple assignments during the learning process. These assignments
are referred as ‘in-unit assignments’. And at the end of the unit, a student completes a test
assignment for the unit.

2https://www.kaggle.com/competitions/edm-cup-2023
3https://new.assistments.org/
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the ASISSTments platform as students engaged with the in-unit assignments are included in the
EDM Cup 2023 dataset. This clickstream data primarily comprises timestamped actions. Table
1 presents a comprehensive breakdown of the actions, highlighting those most pertinent to the
learning activities. Beyond clickstream data, the dataset maps students’ test assignments to the
corresponding in-unit assignments, and provides detailed information about each item as well
as comprehensive metadata about the assignments.

Table 1: Student actions while answering in-unit items. Actions not related to learning or assess-
ment are not included (e.g., ‘item started’ and ‘item finished’)

Action % in all actions
correct response 61.14%
wrong response 26.93%

answer requested 10.29%
hint requested 1.25%

explanation requested 0.36%
skill related video requested 0.02%

live tutor requested <0.01%

Table 2 provides descriptive statistics for the dataset, which includes 34,652 students, 607,236
in-unit assignments and 53,615 test assignments. The in-unit assignments contain a total of
57,235 distinct items, while the unit test assignments contain another 1835 items. There are no
overlapping items between in-unit assignments and unit test assignments. Clickstream data are
provided for in-unit assignments, but not for unit test assignments. Therefore, when predicting
whether a student will correctly answer an item in the unit test assignments, we use only the
clickstream data from the corresponding in-unit assignments as input features.

Table 2: Data statistics. For in-unit assignments, we follow the common practice to treat an item
response as correct if the student succeeds at the first attempt without any help.

Statistics In-Unit
Assignments

Unit Test
Assignments

(With Item Scores)

Unit Test
Assignments

(No Item Scores)
# of students 34,652 27,224 7,761

# of assignments 607,236 42,343 11,272
# of items 57,235 1,835 1,471

# of item responses 5,634,383 452,439 124,455
# of actions 22,924,203 NA NA
% correct 67.51% 58.55% NA

The assignments in the dataset are classified into three distinct categories: in-unit assign-
ments, test assignments with item scores, and test assignments without item scores. The test
assignments with item scores were provided by the competition host to train models during the
competition. Test assignments without item scores were used by the competition host to score
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Table 3: Frequency of action sequences for in-unit items

Action Sequence % in all Action Sequences Cumulative %
correct response 67.51% 67.51%

wrong response, correct response 9.61% 77.12%
answer requested, correct response 5.94% 83.06%
wrong response, answer requested,

correct response 4.55% 87.61%

wrong response×2, answer requested,
correct response 2.48% 90.09%

wrong response×2, correct response 2.34% 92.43%
wrong response×3, answer requested,

correct response 1.87% 94.30%

wrong response×3, correct response 0.61% 94.92%
wrong response 0.50% 95.42%

help requested, correct response 0.37% 95.79%
Others 4.21% 100%

models on the public and private leaderboards. Table 2 presents the statistics of each category
of assignments. Our predictive model employs the in-unit assignments as input and trains and
learns its parameters using the test assignments with item scores. The test assignments with-
out item scores are used for model evaluation. We used the Kaggle competition leaderboard to
retrieve model performance without gaining access to the item scores in the test assignments.

4. FEATURE ENGINEERING

This section describes the features used as inputs for the Wide & Deep IRT model. These
features, extracted from students’ in-unit assignments item responses, have been validated by
existing literature for their applicability and effectiveness in education contexts.

4.1. CLICKSTREAM DATA: STUDENT ACTIONS

Clickstream data provide valuable information on students’ learning behaviors. Previous studies
have used clickstream data to reveal various behavioral patterns, including gaming the system
(Baker et al., 2008), engagement and procrastination (Agudo-Peregrina et al., 2014; Lim, 2016;
Park et al., 2018; You, 2016), and the use of trial-and-error approaches (Juhaňák et al., 2019).
In this study, we focus on a subset of clickstream data produced while students responded to
items on in-unit assignments. Each piece of clickstream data represents an action pertinent to
learning or assessment, recorded as students responded to the items. Table 1 catalogs all actions
employed by the model, along with their prevalence in the dataset. Actions associated with
requests for assistance, namely ‘hint requested,’ ‘explanation requested,’ ‘skill-related video
requested,’ and ‘live tutor requested,’ are relatively rare and conceptually similar. Therefore,
they are grouped together as a single action cluster labeled ‘help requested.’ It is important to
note that ‘answer requested’ is excluded from this cluster, as it signifies the student’s decision to
abandon solving the problem rather than seeking to simplify it. Different methods of encoding
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a student’s action sequence were explored in this study, and detailed descriptions are provided
below.

4.1.1. One-hot Encoding of Action Sequence

We arranged students’ actions while answering a particular item chronologically, thereby gener-
ating an action sequence. As shown in Table 3, 67.51% of the time, students correctly responded
to an item on the first attempt, and 9.61% of the time, they figured out the answer after one fail-
ure. Interestingly, the ten most common action sequences account for 95.79% of all action
sequences identified in our dataset. Given this skewed distribution, we applied one-hot encod-
ing specifically to these ten predominant sequences, converting each into a unique binary vector
where only a single bit is ‘on’ (or 1) and the rest are ‘off’ (or 0). Each unique vector represents
one particular action sequence.

We consolidate less frequent action sequences outside the top ten into a single category
labeled ‘other.’ This approach allowed us to focus on the most prevalent action sequences while
acknowledging the presence and potential impact of the less frequent ones. By doing so, we
ensured a comprehensive yet manageable representation of students’ action sequence data in
our study.

4.1.2. Bag of Words and Term Frequency-Inverse Document Frequency

While one-hot encoding provides a way to engineer an action sequence as a feature, it has
limitations when dealing with infrequent action sequences, as they are coded as ‘other.’ This
approach may result in the loss of potentially valuable data. Alternatively, assuming that the
order of actions within an item may have limited informational value, we used Bag of Words
(BoW) in conjunction with Term Frequency-Inverse Document Frequency (TF-IDF) features to
extract insights from student action data.

BoW is a popular text representation method in natural language processing that disregards
the order of words when creating a vector representation. In the vanilla BoW, each entry of the
text vector represents the frequency of a word in the text for all words in a corpus (a collection
of texts). Alternatively, TF-IDF features are often used to capture not only word frequency in
the text, but also the rarity of individual words in the corpus.

Just as text is a sequence of words, a student’s action sequence is a sequence of actions.
Given that there are only seven types of actions in the data (as shown in Table 1), we can
represent a student’s action sequence as a seven-dimensional vector. Each entry in the vector
represents the TF-IDF feature for that action.

The TF-IDF feature has two components: term frequency and inverse-document frequency.
The term frequency component is computed as follows:

tftd =
ftd∑

t′∈d ft′d

The term frequency, denoted as tftd, represents the frequency of a specific term or word,
ftd, within a document, and this value is normalized by the document’s length, given by

∑
ft′d.

By considering each action as a ‘term’ and the collection of actions a student performs when
responding to an item as a ‘document’, tftd effectively quantifies the frequency of a particular
action a student executes for an item, scaled by the total number of actions.
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idft = log(
N

1 + nt

)

Inverse document frequency, idft, gauges the prevalence of a term across all documents.
Here, N denotes the total number of documents in the dataset, while nt represents the number
of documents containing the term t. When applied to student actions, each sequence of student
actions is treated as a unique ‘document’. Consequently, N becomes the overall quantity of
student action sequences, and nt represents the count of action sequences incorporating a spe-
cific action. Therefore, idft quantifies the relative prevalence of an action across all student item
action sequences.

tf -idftd = tftd ∗ idfd
Finally, the TF-IDF score is obtained by multiplying tftd and idft. A student action has a

high TF-IDF score if the action is infrequently observed across all student action sequences, yet
recurrent within the specific action sequence under consideration.

4.1.3. Recurrent Neural Network encoding of action sequence

Recurrent neural networks (RNNs) have wide-ranging applications in handling sequential data,
including sentiment analysis (Dong et al., 2014), knowledge tracing (Piech et al., 2015), trans-
lation (Sutskever et al., 2014), acoustic modeling (Sak et al., 2014), and various other domains.
In this study, we employ Long Short-Term Memory (LSTM), a specific variant of RNN, to en-
code student action sequences. The choice of LSTM stems from its ability to capture long-term
dependencies in the input sequences effectively.

We analyzed the dataset to determine an appropriate length for the action sequences. Based
on our findings, we set the maximum action sequence length to eight, as a significant majority
(99.71%) of the action sequences fell within this range. When an action sequence exceeded
this predetermined threshold, we truncated the sequence by removing excess actions from the
beginning of the sequence. When the length of an action sequence was less than eight, we
appended a special ‘padding’ action to the left of the sequence until it reached the predetermined
threshold. This step ensured that all sequences considered in the analysis adhered to the defined
length criterion, thus maintaining consistency throughout the analysis. For example, to use
LSTM to encode the action sequence: ‘wrong response, answer requested, correct response’,
we first transformed each action into a dense vector using an embedding layer, the weights of
which were learned during the training process. Since the action sequence had less than eight
actions, we added five padding actions to the left. Subsequently, the padding action vectors and
each action-embedded vector were inputted into the LSTM cell. The last output of the LSTM
cell was then utilized as the embedding for the entire action sequence.

Although padding on the left side of a sequence causes the LSTM to have a different state
when the first action takes place, empirical studies have shown that it performs better than adding
padding tokens to the right side of a sequence (Dwarampudi and Reddy, 2019). In our exper-
iment, we also found that padding on the left side slightly outperforms padding on the right
side.
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4.2. ITEM BERT EMBEDDING

Bidirectional Encoder Representations from Transformers (BERT), developed by Google in
2018, is a language representation model that employs multiple layers of bidirectional trans-
former encoders (Devlin et al., 2019). The BERT model is pre-trained on two main tasks:
predicting masked words using the surrounding context and predicting whether sentence A im-
mediately follows sentence B. When applied to a new task, BERT undergoes a fine-tuning phase
where the model is trained on task-specific inputs and outputs.

Previous research has demonstrated that a fine-tuned BERT model excels in a plethora of
natural language processing tasks, including text classification (Sun et al., 2019), question an-
swering (Qu et al., 2019), and sentiment analysis (Hoang et al., 2019), among others. In the field
of education, fine-tuned BERT has shown promise in predicting the difficulty of multiple-choice
items effectively (Benedetto et al., 2021), and pre-trained BERT features have been found useful
in automating essay scoring (Beseiso and Alzahrani, 2020). However, a separate study revealed
that fine-tuned BERT did not outperform traditional methods in the context of essay scoring
(Mayfield and Black, 2020).

In this study, while item text is not directly available in the data, a variant of the pre-trained
BERT embedding for item text is provided. Specifically, the text of all items generates a set of
BERT embeddings, from which the 32 principal components are extracted to capture the most
important information.

The percentage of students successfully answering an item, herein referred to as ‘item suc-
cess rate’, provides valuable insights into the difficulty level of an item. It allows the model to
distinguish between successful responses to more complex tasks and to simpler ones, with the
former indicating a higher level of ability. This measure has been instrumental in gauging the
item difficulty parameter in conventional IRT models. Previous research in knowledge tracing
has used it as a feature to enhance model efficacy (Zhang et al., 2020).

In this study, we define ‘item success rate’ as the proportion of students who can correctly
answer the item on their initial attempt without any assistance. This definition aims to address
the observation that an overwhelming majority of students provide correct answers to in-unit
assignment items after several attempts or with some assistance (e.g., hints). If we were to use
their eventual success rate as a measure of item success rate, it could underestimate the item’s
difficulty. Furthermore, we excluded items categorized as ‘ungraded open response’ due to the
lack of scoring data for these responses in the dataset.

However, developing this feature presents challenges. A significant fraction of items (33.04%)
was attempted by a maximum of only 20 students. Figure 2 (a) illustrates the frequency of at-
tempts for items in the dataset. Items with fewer attempts tend to have less precise item success
rate estimates compared to those with higher frequencies. To assess the precision of the item
success rate, we assumed that every student had an independent and identical probability of
correctly answering an item, thereby disregarding their mathematical aptitudes. Under this as-
sumption, the item success rate follows an asymptotic normal distribution, in accordance with
the Central Limit Theorem (Kwak and Kim, 2017). Specifically, the standard error of the item
success rate is computed as sj√

mj
, where sj represents the sample standard deviation for item j

and mj represents the number of times item j appears in the training data. Figure 2 (b) illus-
trates the distribution of the standard error of item success rate. For items with a standard error
exceeding 0.125 4, we replaced the item success rate with the skill success rate.

4A standard error of 0.125 implies that the 95% confidence interval for item success rate is approximately 0.5
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Figure 2: (a) In-unit item response frequency, (b) the distribution of the standard error of item
success rate after removing items that are either all correct or all incorrect

4.3. IN-UNIT ASSIGNMENT ITEM SUCCESS RATE

4.4. ASSIGNMENT RECENCY

Previous studies (Khajah et al., 2016; Ghosh et al., 2020; González-Brenes et al., 2014) have
empirically established the significant role that recency plays in predicting future item response
success. Models such as BKT (Corbett and Anderson, 1994) show marked improvement when
recency effects are factored in via the inclusion of forgetting parameters (Khajah et al., 2016).
Similarly, attention-based knowledge tracing models see enhancements when information about
the timing of response attempts is incorporated (Pu et al., 2020). It has thus become standard
practice to employ mechanisms like RNNs or time and positional embeddings to address recency
in knowledge tracing models.

Recency effects can influence learning outcomes through several channels. The first is
through the process of forgetting, where previously acquired skills are lost over time, render-
ing distant item successes less relevant for predicting future success. The second is through the
process of learning. It is plausible that a student, despite previous failures to provide a correct
response to an item, has since mastered the requisite skills, a development reflected in correct
response to recent items related to that skill. Consequently, recent items are a more reliable in-
dicator of a student’s current ability than past items. The third channel, as identified by Khajah
et al. (2016), is that the recency effect captures the impact of students’ time-varying engagement.

To integrate recency effects into the model, we introduce an ‘assignment recency’ feature,
rk, representing the number of assignments between an in-unit assignment item k and a unit test
item j. For instance, if an in-unit assignment item k appeared in the last assignment prior to the
unit test, then rk = 0. If item k appeared in the second to last assignment, rk = 1. This feature
captures the recency of an in-unit assignment item k relative to a unit test item j.

4.5. MISSED HOMEWORK

A significant body of research in the fields of education and economics has investigated the
association between homework and academic achievement. Cooper et al. (2006) conducted a

wide
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comprehensive synthesis of studies from 1987 to 2003, revealing consistent evidence for a pos-
itive impact of homework on academic performance across various research design types (e.g.,
random experiments, multiple regression studies, and bivariate correlation). Recent studies have
further expanded upon this finding by considering the nuanced effects of different homework
characteristics. Keith et al. (2004) found that out-of-school homework had a substantial influ-
ence on course grades, while in-school homework did not exhibit the same effect. A more recent
meta-analysis by Fan et al. (2017) specifically examined the relationship between homework and
achievement in math and science, revealing an overall small yet positive association. Addition-
ally, with the increasing prevalence of online homework platforms, studies have compared the
effectiveness of online versus traditional homework. Magalhães et al. (2020) conducted a meta-
analysis of 31 studies, indicating that while 15 studies showed no significant differences, nine
studies reported better results with online homework, one study showed the opposite, and six
studies reported mixed outcomes. These findings suggest that online homework is at least as
effective as the traditional format in terms of student achievement.

Given the compelling empirical evidence regarding the effect of homework on grades, we
believe that assigned but not attempted in-unit assignment items are valuable for predicting the
correctness of students’ responses to unit test items. The occurrence of missing assignment items
is quite common in the dataset, with 23.07% of assigned in-unit assignment items remaining
unanswered by students.

5. WIDE & DEEP IRT

We formally describe the prediction problem here. We use xik to denote the item response fea-
tures generated when student i responds to item k on the in-unit assignment. We use ni to notate
the number of in-unit assignment items student i answered. Thus, the sequence, xi0, xi1, ..., xini

represents all item response features student i generated while completing in-unit assignments.
We aim to infer if a student can correctly answer each unit test item, qj . We use yij ∈ {0, 1}

to denote the correctness of the response provided by student i for unit test item j. We aim to
estimate the probability P (yij = 1|xi0, xi1, ..., xini

, qj). To tackle this problem, we propose a
novel model, Wide & Deep IRT, which draws inspiration from both the success of IRT and the
Wide & Deep model used in recommendation systems (Cheng et al., 2016). The Wide & Deep
IRT model consists of two components: a wide component and a deep component.

5.1. WIDE COMPONENT

Figure 3 provides a visualization of the wide component, which is essentially a 1-PL IRT (Rasch)
model with an optional guessing parameter for multiple-choice items. For a non-multiple-choice
item:

pij =
1

1 + e−θi+βj

where pij is the probability that student i correctly answers item j on a unit test, θi represents
student i’s ability in related math concepts and βj represents item j’s difficulty.

If item j is a multiple-choice item, we include a guessing parameter for each item:

pij = cj + (1− cj)
1

1 + e−θi+βj
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Figure 3: Architecture for the Wide & Deep IRT model. The wide component is a Rasch model
with an optional guessing parameter for multiple-choice items. Each deep component is a three-
layer neural network.

where ci represents the probability of correctly guessing the answer of a multiple-choice item j
from an average student.

To model a student’s ability, θi, we leverage a deep learning component. This is accom-
plished by leveraging features drawn from students’ actions during in-unit assignments and
characteristics of the in-unit assignment items.

5.2. DEEP COMPONENT

The deep component leverages a suite of features described in section 4. These features include:
the student’s action sequence, item BERT embedding, in-unit assignment item success rate,
assignment recency, and missed homework. These features are derived from students’ in-unit
assignment item responses to capture their mathematical ability.

θi = f(xi0, xi1, ..., xini
)

In the above formula, xik represents the item response features for student i and an in-unit
assignment item k. Details about item response features have been elaborated in the ‘Feature
Engineering’ section. The function f is approximated via a three-layer neural network structured
as follows:

h0
ik = ReLU(W0xik + b0)

h1
ik = ReLU(W1h

0
ik + b1)

θi =
1

ni

(W2h
1
ik + b2)
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In these equations, W∗ and b∗ represent learned weights, h∗
ik denotes values in the corre-

sponding hidden layer, and ReLU represents the rectified linear unit activation function (Nair
and Hinton, 2010). Here, ni indicates the number of in-unit assignment items student i attempted
before answering the unit test items. Dropout layers (Srivastava et al., 2014) have been inserted
between hidden layers to mitigate the potential risk of overfitting.

The model’s training process relies on the binary cross-entropy loss function, expressed as:

L = − 1

N

∑
yij log(pij) + (1− yij) log(1− pt+1)

In this equation, yij is assigned a value of 1 if a student i answers a unit test item j correctly, and
0 otherwise.

6. EXPERIMENT

We compared the Wide & Deep IRT model, conventional IRT models, and deep knowledge
tracing models using the EDM Cup 2023 dataset. Table 2 presents descriptive statistics for the
data. We used unit test assignments without item scores along with their corresponding in-unit
assignments as our testing data. We randomly selected 90% of the test assignments with item
scores and their corresponding in-unit assignments as training data. The remaining 10% of
unit test assignments with item scores and their corresponding in-unit assignments were used as
validation data. This data division aligned with the setup of the EDM Cup 2023 competition,
where the competition host evaluated models using unit test assignments without item scores
on the public and private leaderboards. Consequently, we are able to calculate the leaderboard
scores for all models.

In accordance with the competition setup, the unit test assignment serves as the sampling
unit. This means that a unit test assignment is exclusively present in either the training or test
data, but not in both. However, since students may have taken multiple unit test assignments, it
is possible for students to appear in both training and test data. Overall, 333 students appear in
both the training and test datasets. This dual presence has minimal impact on the final results,
as less than 1% of all students are implicated. Furthermore, since we use in-unit assignments as
model inputs and correctness of responses to unit test assignment items as outputs, there are no
overlaps in inputs and outputs between the training, validation, and test data.

We used the training data to learn parameters for the models, the validation data for early
stopping and hyperparameter tuning, and the test data for model evaluation. Consistent with the
competition, we used area under the curve (AUC) as the evaluation metric. As the exact unit
test items used to determine the public and private leaderboards were unknown, we relied on
Kaggle submissions to calculate the AUC for the models. The Wide & Deep IRT was used in
the competition, and its scores appear on the competition leaderboards 5. However, the baseline
models were submitted after the competition, so those scores do not appear on the leaderboards.

6.1. WIDE & DEEP IRT

The Wide & Deep IRT model was implemented in Tensorflow (Abadi et al., 2016) and trained
using the Adam optimizer (Kingma and Ba, 2015). The learning rate was set at 0.001, with

5https://www.kaggle.com/competitions/edm-cup-2023/leaderboard
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a batch size of 1028. The model was trained for a maximum of 100 epochs, with early stop-
ping employed if the validation loss did not improve for five consecutive epochs. The drop-out
rate was adjusted from the set {0.2, 0.4, 0.6}, while the hidden size h was varied from the set
{4, 8, 16, 32}.

The features of students’ in-unit assignment item responses were adjusted to a uniform
length. We set the maximum length of the unit item response sequence to 200. We padded
sequences shorter than 200 by adding zeroes to the left, and truncated sequences longer than
200.

6.2. CONVENTIONAL IRT

Conventional IRT models only accommodate binary outcomes for an item response, implying
that an answer can be classified only as correct or incorrect. However, a student’s response to an
in-unit assignment item is typically characterized by a series of actions. To align these actions
with the binary format required by conventional IRT models, we defined a response as correct
if and only if a student correctly responded to an item on their first attempt without seeking
assistance.

Conventional IRT models require a significant volume of responses to an item before they
can yield precise estimates of item difficulty. An unreliable estimate of item difficulty can in-
troduce inaccuracies when assessing a student’s mathematical competence. As illustrated in
Figure 2 (a), a considerable proportion of in-unit assignment items had only been attempted by
a handful of students. To address this issue, we excluded in-unit assignment items encountered
too infrequently to provide reliable difficulty estimates. We tested a variety of thresholds for
determining the rarity of an item, including 20, 40, and 60.

Conventional IRT estimates students’ abilities based on the correctness of their item re-
sponses. However, we lacked access to this data for unit test assignments. Therefore, we esti-
mated the abilities of students in the testing set based on the correctness of their item responses
to unit assignment, and did the same for the training and validation sets.

6.3. DEEP KNOWLEDGE TRACING

Deep knowledge tracing models are primarily designed to predict the correctness of the re-
sponse to the next item based on historical item responses, rather than inferring the correctness
of post-test item responses. To overcome this limitation, we inserted 199 responses from in-
unit assignment items to the left of each unit test assignment item, as if they were answered
immediately prior to it. Deep knowledge tracing models were then trained to predict response
correctness for the next item based on this sequence. However, during evaluation, we only used
its predictions for unit test assignment items.

We chose Deep Knowledge Tracing (DKT) (Piech et al., 2015) and Context Aware Knowl-
edge Tracing (AKT) (Ghosh et al., 2020) as our baseline knowledge tracing models. DKT is
the first model to have employed deep learning in the knowledge tracing task. AKT is a recent
model that incorporates attention and has achieved state-of-the-art outcomes in multiple public
datasets.

Knowledge tracing models typically use the correctness of an item response as the primary
input. Similar to the conventional IRT model, we define an item response as correct if a student
answers it correctly on the first attempt without seeking assistance. These knowledge tracing
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models, which rely solely on the correctness of item responses from unit assignments, serve as
our baseline models.

Additionally, to ensure a fair comparison between the Wide & Deep IRT and deep knowledge
tracing models, we made simple adaptations to the knowledge tracing models to enable them to
incorporate clickstream features for each item response. We employed a strategy akin to the one-
hot encoding of action sequences used in Wide & Deep IRT: for each of the top 10 most frequent
action sequences, we assigned an embedding vector e ∈ Rh, where h is the hidden dimension
configured for DKT and AKT. Both DKT and AKT have an input vector xj that represents a
student’s item response tuple (qj, cj) where qj is the jth question, and cj is the correctness of
the student’s response. We combined this input vector with the clickstream action sequence
embedding and added it to the model. Specifically, DKT and AKT use x̃j = xj + ej instead of
xj as the vector representing each student’s item response. Figure 4 illustrates the adaptation to
DKT. Figure 5 shows the adaptation to the knowledge encoder of AKT.

Figure 4: Adding clickstream features as inputs to the DKT model.

Similar to Wide & Deep IRT, we trained both models for up to 100 epochs and used the
validation dataset for early stopping. For DKT, we set the hidden state dimension to either 128
or 256. For AKT, we set the hidden state dimension to either 128 or 256 and the dropout rates to
either 0.1 or 0.2. For the remaining hyperparameters, we used the default settings in the original
authors’ code6.

7. RESULTS

7.1. MODEL PERFORMANCE

Table 4 presents the models’ results on the test data. The Wide and Deep IRT model delivers the
best performance across both test datasets. The three traditional IRT models and the AKT model

6https://github.com/arghosh/AKT
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Figure 5: Adding clickstream features as inputs to the AKT model. We only show the knowledge
encoder as it is the only modified part. The question encoder and knowledge retriever is identical
to the original model. For simplicity, the monotonic attention mechanism in knowledge encoder
is not shown. xi refers to Rasch model-based embedding for the ith interaction. In the original
paper, the authors denote the Rasch model-based embedding as yi. For consistency of notation
in our paper, we changed that to xi.

Table 4: Model performance on the test dataset. 50% of the test dataset are used in public
leaderboard, and the other 50% are used in the private leaderboard.

Models Test AUC
public leaderboard

Test AUC
private leaderboard

Rasch 0.76348 0.76452
2-PL IRT 0.76986 0.77314
3-PL IRT 0.77239 0.77005

DKT 0.70129 0.66737
DKT + Clickstream 0.69757 0.66669

AKT 0.77659 0.76246
AKT + Clickstream 0.77578 0.76301
Wide & Deep IRT 0.79073 0.78625
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Table 5: Model test AUC comparing to other teams in the EDM Cup 2023. 49 teams participated
in the competition.

Models # of teams with better
public leaderboard score

# of teams with better
private leaderboard score

Rasch 7 6
2-PL IRT 6 6
3-PL IRT 6 6

DKT 15 39
DKT + Clickstream 15 39

AKT 5 7
AKT + Clickstream 5 7
Wide & Deep IRT 1 2

yield slightly lower test AUCs, but they serve as robust baselines. However, DKT significantly
underperforms the other models. A possible explanation is that DKT is the only model that
operates at the skill level. Therefore, it cannot estimate the difficulty of a unit test item, which
turns out to be crucial in determining a student’s item response correctness.

To our surprise, adding clickstream features to the DKT or AKT model does not signif-
icantly improve performance compared to the original versions of the models. One possible
explanation is that deep knowledge tracing models are optimized to predict students’ immediate
future performance, and the ways in which clickstream features influence short- and long-term
performance may differ. Thus, knowledge tracing models might only capture the patterns of
clickstream features relevant to short-term performance, which could differ from their impacts
on students’ long-term performance. Meanwhile, since the Wide & Deep IRT model is trained
to predict students’ long-term performance, it is able to accurately identify the patterns of click-
stream features that affect students’ long-term performance.

Table 5 compares each model’s performance to other teams in the EDM Cup 2023 com-
petition. The Wide & Deep IRT model outperforms the majority of other teams. Intriguingly,
only a handful of teams, specifically 6 to 7, are able to surpass the test AUCs achieved by any
of the conventional IRT models. For deep knowledge tracing models, AKT (with or without
clickstream features) achieved a high ranking on the leaderboard, with only 5 teams achieving
better scores for the public test data, and 6 teams achieving better scores for the private test data.
However, DKT (with or without clickstream features) only achieved a mediocre ranking on the
public leaderboard and proved to be one of the weaker models based on its score on the private
leaderboard.

Table 6 examines the contribution of each feature to the model’s performance by removing
the corresponding feature while retaining the others. It is evident that the student action sequence
significantly influences model performance. Removing this feature results in a decrease in test
AUC from 0.78073 to 0.73705 on the public leaderboard, and from 0.78625 to 0.74418 on the
private leaderboard. The contributions of the in-unit assignment item success rate, assignment
recency, and missed homework features are relatively marginal compared to the action sequence
feature. Removing any one of these features leads to an average decrease in model performance
by approximately 0.0019 and 0.0040 on the public and private leaderboards, respectively. Inter-
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Table 6: Ablation study removing a single feature from the model at a time while keeping the
other features unchanged to examine the impact of the feature on model test AUC for public and
private leaderboards.

Removed Feature Test AUC
public leaderboard

Test AUC
private leaderboard

score difference score difference
click data: student actions 0.73705 -0.05368 0.74418 -0.04207

item BERT embedding 0.79212 +0.00139 0.78643 +0.00018
in unit item success rate 0.78815 -0.00258 0.78237 -0.00388

assignment recency 0.78902 -0.00171 0.78267 -0.00358
missed homework 0.78945 -0.00128 0.78184 -0.00441

estingly, removing the BERT embedding results in an increase in model performance, suggesting
that the BERT embedding introduces only noise into the model. This could be due to the use of
the principal components of the BERT embedding, which might result in the loss of some in-
trinsic information. Additionally, although previous research has highlighted the value of BERT
embeddings in revealing item information, this typically involves fine-tuning the BERT model
for the prediction task, rather than using the pre-trained embeddings. Unfortunately, due to a
lack of item text data, we were unable to fine-tune the BERT model.

Table 7 further examines Wide & Deep IRT’s performance using different encoding strate-
gies for student action sequences. The results show that different approaches yielded comparable
results. The LSTM encoding performed well on the public leaderboard, while BoW with TF-
IDF features dominated the private leaderboard. Interestingly, order-preserving encodings (i.e.,
one-hot encoding and LSTM) marginally outperform the order-agnostic approach (i.e., BoW)
on the public leaderboard, but fell short on the private leaderboard. This suggests that the se-
quence order may have varying influence on different action sequences. Unfortunately, without
knowing how the EDM Cup 2023 test data were divided between the public and private leader-
boards, it remains unclear which action sequences are more affected by the order. Overall, all
three encoding strategies are equally efficient on this dataset.

Table 7: Model test AUC under different student action sequence encoding strategies

Action Sequence
Encoding Strategy

Test AUC
public leaderboard

Test AUC
private leaderboard

Onehot 0.79073 0.78625
BoW with TF-IDF 0.78859 0.78699

LSTM (state dimension = 8) 0.79211 0.78578

In term of model size, Wide & Deep IRT requires the fewest parameters. The Wide &
Deep IRT reported in Table 4 only requires approximately 5,200 parameters (the first hidden
layer of the deep component comprises 16 dimensions, the second has 8 dimensions, and the
final layer contains just one dimension). Despite their conceptual simplicity, conventional IRT
models require learning a large number of item difficulty and student ability parameters. The
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Figure 6: Math ability estimation for the most frequent 12 units. A math unit can be seen as a
group of closely related math skills. As in the math curriculum, a unit usually aligns to one or
more domains (skill clusters) defined in the Common Core State Standards.

parameter counts for a Rasch model ranges from 69.8 thousand to 77.4 thousand depending
on the threshold used to exclude rare items appearing on unit assignments. This significant
difference in parameter count arises because the Wide & Deep IRT model does not require a
student parameter for each student, nor does it need to learn an item parameter for every item in
the unit assignments. Deep knowledge tracing models involve a larger number of parameters.
DKT and AKT reported in Table 4 have 1.1 million and 3.5 million parameters respectively.
Similar to conventional IRT, deep knowledge tracing models need to learn embeddings for in-
unit assignment items or associated skills. However, Wide & Deep IRT does not require this,
resulting in significantly fewer parameters. When model performance is comparable, a lighter
model is preferred due to faster training and deployment times.

7.2. STUDENT BEHAVIOR AND MATH ABILITY

Wide & Deep IRT estimates students’ math ability for each unit, as shown in Figure 6, which
displays the distribution of student mathematical abilities across the most frequently engaged
units. Units in the ASSISTments framework typically align with one or more domains defined
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by the Common Core State Standards.7 To illustrate, the unit ‘Sums and Differences to 100’
corresponds to the domains ‘Number and Operations in Base Ten’ and ‘Operations and Alge-
braic Thinking’ for second-grade learners. This suggests that teachers could utilize this model
to assess individual students’ math abilities, enabling them to provide personalized remediation
plans for those who struggle with certain math units while performing well in others. Further-
more, teachers could apply this model to evaluate the overall math proficiency of their classes
across various units and tailor their teaching plans accordingly. For instance, they might allocate
additional time to units when a significant portion of the class is estimated to have lower math
abilities, or they may need to reevaluate their teaching strategies for units when many students
are facing difficulties.

Using the Wide & Deep IRT’s estimation of student math ability allows us to observe student
behavior patterns across varying ability groups. Figure 7 visualizes the distribution of behaviors
across these groups. Students are divided into five groups based on their math ability, each
representing 20% of the total student population. Group zero consists of students in the lowest
20% of math ability, while group four includes those in the top 20%.

The y-axis denotes the likelihood of undertaking a specific action sequence when responding
to an item. Each bar plot corresponds to a different action sequence, as defined in Table 3. For
instance, the top left bar plot represents the ‘correct response’ action sequence, indicating that a
student correctly answered an item on their first attempt without assistance.

This visualization reveals that students in group zero (lowest math ability) had roughly a
20% probability of answering an item correctly on their first attempt without assistance. As
expected, this probability increases for students in higher ability groups. Specifically, for group
four (the highest math ability), the likelihood reaches around 80%.

Remarkably, the bar plot in the first row and third column reveals that students in the lowest
ability group were over four times more likely to engage in the ‘answer requested, correct re-
sponse’ action sequence than any other group. This suggests that students with the lowest math
ability are more inclined to request the answer to a question before even attempting to resolve
the problem. The final bar plot illustrates that students in the lowest ability group were also
over three times more likely to engage in the ‘help requested, correct response’ action sequence
compared to students in other groups. This indicates their greater tendency to seek assistance
before attempting to answer the question. Lastly, as shown in the final bar plot on the first row,
students with the least math ability are more than twice as likely to request the answer following
their initial failed attempt to answer the question compared to their peers in other groups.

While one interpretation could be that lower-ability students are gaming the system by
quickly requesting answers and hints, it is also possible that these students are struggling with
the questions and lack the necessary knowledge to answer them, prompting them to request
answers or assistance before they attempt to respond. To investigate this issue further, we con-
sidered two additional metrics: how quickly lower-ability students requested help or the answer,
and how likely they were to seek assistance for more challenging questions. If these students
were indeed gaming the system, we would expect them to have requested answers immediately,
even for questions that are relatively straightforward.

Table 8 provides a comparative analysis of the time interval between when students first saw
the question and when they requested an answer prior to any attempts, across different ability
groups. The students in the lowest math ability group tended to request answers more quickly.

7https://www.nctm.org/ccssm/
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Figure 7: Student action patterns across different ability groups. The x-axis corresponds to
student ability groups. Students are divided into five groups according to their math abilities,
each representing 20% of all students. Group zero consists of students in the lowest 20% of math
ability, while group four includes those in the top 20%. Students’ math abilities are estimated by
the Wide & Deep IRT model. Each bar plot focuses on an action sequence. The y-axis represents
the percentage of times students from an ability group conducted this action sequence.

In extreme cases, approximately 21.80% of answer requests from this group occurred within
just 3 seconds of students viewing the question. This raises concerns about whether they had
adequate time to fully comprehend the question before requesting an answer, suggesting the
possibility that they were strategically manipulating the system. Additionally, even when these
students may have had enough time to comprehend the questions, they tended to give up and
request answers significantly faster than their peers from other math ability groups.

Since Wide & Deep IRT does not estimate item difficulty parameters for in-unit assignment
items, we utilized item success rate as a proxy for item difficulty. We divided items into five
groups based on their success rate and computed the likelihood of a student directly requesting
an answer upon encountering an item from a particular success rate group.

Figure 8 reveals the relationship between item success rate and the probability of requesting
an answer without making an attempt across different math ability groups. Overall, as item
difficulty decreases, so does the probability of students requesting the answer before attempting
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Table 8: Time to request answer across different math ability groups. Only include cases in which
a student request answer directly after the question starts. Students math ability are classified into
five groups based on Wide & Deep IRT’s estimation, each group constitutes 20 % of the students.

Math ability groups <3 seconds <5 seconds <10 seconds
Low 21.80% 39.44% 56.17%

Below Average 10.88% 22.22% 36.29%
Average 9.69% 20.20% 33.02%

Above Average 8.24% 17.60% 30.37%
High 6.88% 15.12% 27.25%

to respond. In addition, students in higher math ability groups are less likely to request answers
before attempting to respond.

Figure 8: Probability of requesting the answer before making any attempt based on students’
math ability and the item difficulty. Students’ math ability is classified into five groups based on
Wide & Deep IRT’s estimation, with each group constituting 20% of the students. Item difficulty
is classified based on the item success rate, with each group constituting 20% of the in-unit items.

Interestingly, students in the lowest math ability group were less inclined to directly request
answers when the questions were easier. Specifically, when presented with items from the easiest
group, they only directly requested an answer in 8.60% of instances. However, when presented
with items from the hardest group, their likelihood of directly requesting answers increased to
18.45% . This suggests that not all direct answer requests from students with the lowest abilities
are attempts to game the system.

8. DISCUSSION AND CONCLUSIONS

In this study, we have introduced a novel model, Wide & Deep IRT, to predict a student’s perfor-
mance on test assignments using information gathered from their in-unit assignments. We argue
that this task offers a more relevant assessment of a student’s ability than traditional knowledge
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tracing tasks. Utilizing the public dataset from EDM Cup 2023, we have demonstrated that
Wide & Deep IRT outperforms conventional IRT models and state-of-the-art deep knowledge
tracing models when predicting correctness of responses to post-test questions. Moreover, Wide
& Deep IRT placed second on the public leaderboard and third on the private leaderboard in the
EDM Cup 2023 competition, indicating its competitiveness against models employed by other
teams.

The Wide & Deep IRT model combines the strength of conventional IRT models and the
‘Wide & Deep Learning for Recommender Systems’ (Cheng et al., 2016). It not only esti-
mates student ability, but also effectively utilizes complex features derived from clickstream
data. Furthermore, our research demonstrates that this model serves as a valuable tool in explor-
ing behavior patterns across different ability groups.

Our analysis has enabled us to identify potential indicators that could be used to detect at-
tempts to game the system, such as directly requesting an answer to an easy question shortly after
viewing it. These findings could have practical implications for enhancing the student learning
experience. For instance, learning platforms could introduce countdown timers for easy ques-
tions, preventing students from requesting the answer before the timer expires. This strategy
could nudge students towards solving problems themselves since the timer would require more
time be spent on the item anyway.. Alternatively, the platform could encourage perseverance
when students request answers too quickly, reminding them to take their time. Additionally, the
system can offer progressive hints or prompts that guide students toward finding the solution.
Gradually revealing hints can scaffold the problem-solving process and encourage students to
think independently before seeking assistance. These interventions could foster a deeper learn-
ing experience and promote independent problem-solving skills.

The study has several limitations. Most importantly, while the Wide & Deep IRT framework
offers flexibility to incorporate deep features at the item response level, it does not provide clear
approaches for including individual-level features. For instance, although prior course grade is
usually a strong predictor of future academic performance, it is not clear how to best integrate
this individual-level feature into the model. Second, the work has only been evaluated using a
single dataset, making it unclear how generalizable the findings are to other datasets. Finally,
due to data limitations, our exploration was confined to the relationship between clickstream data
and future grades within the same math unit. It remains to be seen whether students’ clickstream
data across different math units exhibit distinct pattern that correspond with future grades.

In future studies, we plan to investigate how to incorporate individual-level features into the
estimation of user ability within this framework. Additionally, the amount of time a student
spends on each action could reveal more information beyond the mere sequence of actions they
take. We intend to further explore the effect of time spent on each action on their future grades
in upcoming studies.
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