
Analysis of Student Pair Teamwork Using
GitHub Activities
Niki Gitinabard
Allobee Inc.
niki.gitinabard@gmail.com

Zhikai Gao
NC State University
zgao9@ncsu.edu

Sarah Heckman
NC State University
sarah heckman@ncsu.edu

Tiffany Barnes
NC State University
tmbarnes@ncsu.edu

Collin F. Lynch
NC State University
cflynch@ncsu.edu

Few studies have analyzed students’ teamwork (pairwork) habits in programming projects due to the
challenges and high cost of analyzing complex, long-term collaborative processes. In this work, we ana-
lyze student teamwork data collected from the GitHub platform with the goal of identifying specific pair
teamwork styles. This analysis builds on an initial corpus of commit message data that was manually
labeled by subject matter experts. We then extend this annotation through the use of self-supervised,
semi-supervised learning to develop a large-scale annotated dataset that covers multiple course offerings
from a second-semester CS2 course. Further, we develop a series of predictive models to automatically
identify student teamwork styles. Finally, we compare trends in students’ performance and team selec-
tion for each teamwork style to see if any of them reflected better student outcomes or different trends of
help-seeking among students. Our analysis showed that applying self-supervised semi-supervised meth-
ods helps us to label larger subsets of data automatically and maintains and even sometimes improves the
performance of the fully supervised models on a held-out validation set. Our analysis also showed that
members of teams in which all members have significant contributions tend to have better performance
in class, but their help-seeking behaviors are not significantly different.

Keywords: teamwork, GitHub, undergraduate, self-supervised Learning, help-seeking

1. INTRODUCTION

As teamwork has become a crucial part of many undergraduate CS courses, analyzing the pat-
terns in students’ teamwork becomes increasingly important both to monitor students’ work and
to scaffold good collaborative practices. Teamwork is common in professional settings and of-
fering students the chance to engage in teamwork through their learning gives them the chance to
gain important experience that can transfer to a professional setting (Feichtner and Davis, 1984;
Reid and Wilson, 2005). However, students, particularly beginner students, are unfamiliar with
the concept of teamwork and can struggle with collaboration (Feichtner and Davis, 1984). While

1
32 Journal of Educational Data Mining, Volume 15, No 1, 2023



instructor supervision and occasional interventions may help to smooth the students’ teamwork
experience, it can be difficult for instructors to offer such support due to large class sizes and
the often irregular work schedules that students keep. In order to provide effective guidance it
is necessary for instructors to understand how students work in teams, what behaviors support
good learning, and how those behaviors are exhibited in immediate and observable features such
as code commits rather than delayed formats such as self-evaluations. Automated models of col-
laborative practices can be used to support instructors in triaging student teams, guide immediate
feedback, and support insights into other essential behaviors including help-seeking.

Consistent with Social Learning Theory, we believe that in collaborative learning contexts
all team members should make significant contributions to the project in order to derive a ben-
efit from the interaction. Social Learning Theory, as defined by Bandura and Walters (1977),
highlights the four significant principles for successful collaborative learning: attention, repro-
duction, retention, and motivation. In their view, some of the principal benefits of collaborative
learning come through examples provided by ones’ peers. Similar to worked examples of prob-
lem solving skills (e.g. Van Gog and Kester (2012)), these peer examples can provide efficient
opportunities for students to learn problem solving skills. According to Bandura and Walters
however, the benefit of these examples is mediated by the extent to which students pay attention
to the work of their peers and their ability to reproduce it; as well as the extent to which they
retain those examples for later use and are motivated to commit to the work. Teams that are
fractious, unbalanced, or where one student monopolizes the work can be demotivating, and can
deny all members the opportunity to learn from their peers. Moreover, even teams that partition
the work equally but do not share actions, may be less effective because they deny even com-
mitted peers the chance to learn from one another. Consequently, in order for students to benefit
from peer work they should maintain an equal exchange of effort that avoids isolation. Thus,
guided by Social Learning Theory we hypothesize that students participating in team projects
where each member makes significant contributions to the project will perform better, not only
in that specific project, but ultimately in the class as a whole.

In this research, we seek to address this hypothesis by analyzing students’ contributions to
and performance in CS2 courses that rely on multiple team projects. Prior research in Soft-
ware Engineering has identified different ways to measure project contributions. Parizi et al.,
for example, defined measures such as the total number of commits, total additions, and the
amount of time spent and provided those to the course instructors for performance assessment
of individual students in team projects (Parizi et al., 2018). While these metrics are easy to cal-
culate, the authors argue that all of them should be taken into account, as well as the difficulty
of the subtask that the team member is working on, which requires manual evaluation of these
metrics by an expert. However, as Lima et al. (2015) noted, project leaders believe that eval-
uating participation in projects is time-consuming and has no established criteria. As a result,
we first need to define different teamwork styles and automatically categorize student teams to
evaluate how students performed in different team environments. In our analysis, we chose to
focus on students’ commit behaviors and help-seeking. While prior research on student teaming
(e.g. Perera et al. (2009)) has shown that ticketing behavior can be a useful indicator of team
structure in advanced classes with longer-term projects, the students in our courses make no use
of the ticketing features in their development environment, nor do they consistently use other
platforms for organization. The students in these courses are new to CS and the use of ticketing
is not covered in this or prior classes. As such the shared commits represent the best record of
their coordination.

2
33 Journal of Educational Data Mining, Volume 15, No 1, 2023



Using the commit messages we defined three teamwork styles based in part on the work
of Coman et al. (Coman et al., 2014). The first type of teams works on different parts of the
projects together, with all of the team members involved in each of the different activities such
as implementation and testing. Coman et al. described this type of collaborative teaming as
cases where the team members focus on the shared goals and work together to achieve them.
The second type of teams partitioned the work by type of task, with all members making signifi-
cant contributions and thus, each member specializing in one activity. One commonly observed
case among such teams was those where one member engaged in feature development and an-
other authored test cases. Coman et al. called this cooperative teaming where members have
distinct sub-goals and support one another as needed (Coman et al., 2014). In the cases that we
observed, students defined such goals based on the different parts of the grading rubric such as
implementing features or covering the code by test cases. While this kind of work division may
be productive, it can also indicate unhealthy team dynamics such as a lack of trust between team
members over the quality of the work or unbalanced interactions that exclude some members
from implementation decisions (Salomon and Globerson, 1989; van der Duim et al., 2007). This
behavior may also indicate that students have, or believe they have, special skills or experience
in some areas and not in others. While this may be positive as students bring their talents, to
bear it may also mean that some team members fail to gain experience with crucial skills such as
test writing or design. In many structured collaboration arrangements such as Process Oriented
Guided Inquiry Learning (POGIL) or Pair Programming, this kind of division is incorporated.
However, students are directed to rotate in such settings to allow all members gain equal expe-
rience. Finally, in our class, as in many other project-based courses, we observed a third more
concerning pattern of solo-submitters where one member submitted the majority of the work on
GitHub and the other member did little or none (less than 10%). This pattern is also sometimes
termed as having a ”free-rider” (Salomon and Globerson, 1989; van der Duim et al., 2007).
Prior research has shown that a relative balance of contributions in a team can lead to better
team performance and higher member satisfaction (Seers, 1989). While it is possible that the
team members did communicate offline and share work equally via other means, these teams
did not practice effective collaboration via the version control system, which is a learning goal
for the course. For this study, we did not differentiate between solo-submitters teams and those
that communicated offline, because we did not have information about their offline activities.

For our analysis, we used data from six offerings of a CS2 course on Java programming for
CS majors. More information on this course and the covered topics are mentioned in the Dataset
section. We analyzed students’ GitHub behavior to first, classify their commits into the different
aspects of the project work such as “implementing features” or “testing” using the information
in the commit messages. We then defined several features based on their number of commits and
amount of code changes in each aspect of the work to classify students’ teamwork styles into
one of the three teamwork styles of “Collaborative”, “Cooperative”, or “Solo-Submit”. Some
examples of the defined features are “percentage of implementation commits” by each team
member or the “number of testing code lines” submitted by each member. Finally, we analyzed
and compared the teams in each category based on their member performance and help-seeking
to understand the differences between these teamwork styles.

3
34 Journal of Educational Data Mining, Volume 15, No 1, 2023



We can organize our work into the following four steps:

• S1. Automatically classify student commit messages into the different kinds of activities
involved in projects using commit message texts and self-supervised learning.

• S2. Use the features defined based on commit texts and student activities to identify
Collaborative, Cooperative, and Solo-submitting teams by self-supervised learning.

• S3. Analyze and compare the performance of the Students in Collaborative, Cooperative,
and Solo-submit teams.

• S4. Analyze and compare the help-seeking behaviors of the students in Collaborative,
Cooperative, and Solo-submit teams.

The findings of this study will help us to better understand student teamwork in early pro-
gramming courses and how that teamwork interacts both with the team formation, student’s
help-seeking, and changes in the course structure. This work will also advance our understand-
ing of how to model teaming behavior with minimal annotation. This will help facilitate future
work on the design of effective team interactions in courses and the development of student- and
instructor-facing scaffolds for team projects.

2. BACKGROUND

Prior researchers have analyzed student habits in programming projects and identified patterns
that can distinguish between higher and lower-performing students (Ahmadzadeh et al., 2005;
Uchida et al., 2002; Spacco et al., 2015; Lin et al., 2016; Vihavainen et al., 2013; Carter et al.,
2015; Carter et al., 2017; Blikstein, 2011; Watson et al., 2014; Hosseini et al., 2014; Chao,
2016). Research has shown that lower-performing students spend more time on solving pro-
gramming problems (Ahmadzadeh et al., 2005; Uchida et al., 2002; Spacco et al., 2015; Murphy
et al., 2009), while higher performers typically analyze the code more logically, and spot issues
much faster (Uchida et al., 2002; Lin et al., 2016). Some visualization tools are also designed
and used to analyze these activity patterns and make suggestions to the students such as Retina
tool (Murphy et al., 2009). More recent work has focused on logs from version control systems
used by students to analyze their behavior (Glassy, 2006; Reid and Wilson, 2005; Murphy et al.,
2009; Mierle et al., 2005). While these studies provide a great insight into students’ study and
work habits, they are mainly focused on their individual work and consider neither the role they
play in a team nor the impact of team behaviors on students’ learning.

At the same time there has long been interest in analyzing students’ teamwork behaviors,
particularly in CS courses, to understand this impact (Näykki et al., 2014; Van den Bossche
et al., 2006; Barr et al., 2005; Oakley et al., 2004; Wen et al., 2017; Feichtner and Davis, 1984;
Lee, 2009). However, much of this work has used student surveys and instructor evaluations and
very few look into their online activities (Kim et al., 2012; Liu et al., 2004; Ganapathy et al.,
2011; Seers, 1989). Notable exceptions are the work of Seers who examined the equitability
of student contributions and argued for balanced teams, and the work of Kay et al. (Kay et al.,
2006; Perera et al., 2009) who conducted a detailed analysis of group work in an advanced
CS course using analysis of students’ engagement with version control, ticketing systems, and
shared documentation. Informed by the Big 5 theory Kay et al. sought to identify patterns of
behavior that were associated with desirable traits such as leadership and mutual performance

4
35 Journal of Educational Data Mining, Volume 15, No 1, 2023



monitoring (Perera et al., 2009) and to develop visualizations that could inform facilitators (Kay
et al., 2006). Their research focused on advanced students who participated in teams of 5-6 over
a 12-week course. As a consequence, their students were better prepared for group work and
faced different challenges with interaction. The work we describe here, by contrast, is focused
on students in early stage courses who interact over a shorter period of time and primarily make
use of a single observable platform, version control.

While group work is an important component of learning at all levels students in introductory
courses, like the ones we examine here, can be ill-prepared for it. Several issues can arise
from this inexperience (Feichtner and Davis, 1984). These include some members “ganging
up” in the team and excluding others from the work or members being “free-riders” (Salomon
and Globerson, 1989; van der Duim et al., 2007) or “social loafers” who do not participate
in the work. One pattern often observed in student teams with diverse skill sets is that higher
performers may believe that they work better than their teammates and as a result, they may give
up on collaboration (Lee et al., 2017). Indeed some students often referred to as “lone wolves”
prefer to work alone from the start and their inclusion in a team can have a negative impact on all
the members and the project outcome (Barr et al., 2005). Many of these negative patterns may
be visible if we assess member contributions regularly. Past researchers have sought to evaluate
this balance using a range of methods including cross-platform analysis of student engagement
(Perera et al., 2009), counting total contributions (Hoegl and Gemuenden, 2001; Seers, 1989), or
using richer methods including self-assessment surveys and video recording (Perera et al., 2009;
Näykki et al., 2014). These latter approaches, while informative, are often time-consuming and
impractical in larger courses yielding delayed information at best.

Some prior research on student teaming has also taken place in courses where the instructors
grade the students’ teamwork (Main and Sanchez-Pena, 2015; Northrup and Northrup, 2006;
Imbrie et al., 2005) following performance models in industry (Parizi et al., 2018; Nguyen and
Chua, 2016; Lima et al., 2015). While these evaluations include different aspects of work and
are often reliable, they can also be subjective, difficult to automate, and time-consuming (Lima
et al., 2015). Further, they are ill-suited for interventions as they are completed well after the
interactions take place. This is also true of peer evaluations which are used in larger courses
but which typically occur at the end of the projects (Van den Bossche et al., 2006; Wen et al.,
2017; Feichtner and Davis, 1984; Lee, 2009; Lee et al., 2017; Oakley et al., 2004; Perera et al.,
2009). These peer reviews can often be unreliable, particularly for assessing students’ relative
contributions (Feichtner and Davis, 1984). As a consequence, these evaluations are ill-suited
either for monitoring ongoing projects in larger classes or for supporting any early intervention
to improve team behaviors before it is too late.

Kim et al. and Liu et al. defined several metrics to track student activities and progress while
working on team projects (Kim et al., 2012; Liu et al., 2004). These metrics were extracted
from version control system logs and built on basic metrics including key events such as docu-
ment creation, number of editors and edits, and final length (Kim et al., 2012), the total number
of revisions, and average work days (Liu et al., 2004). They suggested these reports to assist
instructors in regular team evaluations and not as a stand-alone tool. More recent studies have
moved towards automated approaches such as extracting students’ share of work from Version
Control Systems (Ganapathy et al., 2011; El Asri et al., 2017). Ganapathy et al. (2011) used
the number of documents edited by several group members as a measure to assess team collab-
orations and found that teams with more involved members tend to get a better outcome. While
El Asri et al. (2017) used the number of commits and lines of code for measuring contributions

5
36 Journal of Educational Data Mining, Volume 15, No 1, 2023



and showed that these measures significantly predict member contributions. Thus, work on the
automated evaluation of teamwork quality is relatively new and such evaluations are still far
from being completely automated. In this work, we focus on taking the automated analysis of
teamwork a step further and more hands-off.

3. DATASET

The work reported here is based upon data from six offerings of a CS2 Java Programming
course at NC State for majors during fall semesters from 2015 to 2020. Topics covered in this
course include object-oriented design, testing, composition, inheritance, state machines, linear
data structures, and recursion. This course was offered in person by two instructors from 2015 -
2019 with some small sections being offered online. In the Fall of 2020, this course was moved
online due to the COVID pandemic. Prior to 2020 all of the course offerings included two mid-
term exams (Tests 1 and 2), one final exam, multiple lab sessions, and 2-3 larger programming
projects. In Fall 2020, the three exams were replaced by 15 quizzes that were given online over
the course of the semester. The students in this year were permitted to re-take the quizzes as
needed to improve their grades. For the sake of consistency however, we use their first quiz
grades in our analysis before re-takes.

During 2015 - 2018, the course included three programming projects, the first of which was
done individually, the second could be done individually or in a team of two, and the final was
completed as a pair. While the project details varied somewhat over the years the difficulty of
each project remained comparable. All of the Project 2 assignments in our dataset required stu-
dents to implement some form of a Finite State Machine (FSM) containing at least five major
classes, two I/O classes, and six state classes. Project 3, on the other hand, was centered on
implementing and applying linked lists to manage data. The project required them to implement
6-7 major classes, two I/O classes, and five data structure-related classes. Project 2 tasks typi-
cally required 1200-1300 lines of code to complete while Project 3 required over 1400. In 2019
the number of projects in the course was reduced to two, with one being completed individually
and one as a team. In all offerings, the students were permitted to request specific teammates
or to have one assigned by the instructors. When teams were assigned the instructors used stu-
dents’ prior individual work (exams and individual projects) to pair individuals with similar skill
levels. For all of the team projects, the students were first required to draft a high-level design
of the system and a test plan individually before they are assigned to teams. If a student fails
to submit their individual work they will not be assigned to a team and must complete the full
task alone. The final implementation and testing are done based on a design provided by the
instructor. More information about these courses is included in Table 1.

Students in this course use the Eclipse IDE for coding tasks and their projects were graded
based on the teaching staff and their own test cases, code coverage from their test cases (Ja-
coco), maintaining specific coding style (SpotBugs, PMD, CheckStyle), and documentations
(JavaDoc) (Heckman and King, 2018). The students also used Piazza as a discussion forum as
well as GitHub version control system to share a code-base with their teammates and to sub-
mit their code for grading. When the students made changes to the code, they were able to
store the changes by “committing” their code. In GitHub, making a commit means generating a
checkpoint with a label explaining the changes called a “commit message”. Then, the students
uploaded these changes to the GitHub server by “pushing” the commits.

6
37 Journal of Educational Data Mining, Volume 15, No 1, 2023



Table 1: Per-Class statistics in our dataset.

Class 2015 2016 2017 2018 2019 2020
Total Students 181 206 203 247 248 278
Teaching Assistants 9 9 9 11 14 17
In-person Instructors 2 2 2 2 2 1
Remote Instructors 2 2 2 2 2 2
Average Grade 79.7 79.9 79.48 79.96 81.1 71.9
Project 2 pairs 39 46 58 49 69 71
Total Project 2 pair programming commits 0 89 10 10 2 109
Project 3 pairs 76 90 88 109 - -
Total Project 3 pair programming commits 0 81 8 13 - -
Avg commits per repository 110 43 59 56 68 56
Max commits per repository 325 209 339 247 377 264

Student repositories on GitHub were connected to a Jenkins server, which evaluated their
code every time they pushed new changes. Jenkins is a continuous integration system that in
this case is set up to download the current version of the code every time it is pushed and run the
teaching staff test cases on the code. The system uses a web-based platform to show the students
immediate feedback about the number of failed tests and the topic of them. Students cannot see
the exact test cases. However, some of the hints include the test scenario so that students can
write their own version of the teaching staff test. This was done more frequently in more recent
years. The students could submit their codes to get feedback as often as they needed. In these
classes, the team repositories had between 11 and 317 commits with an average of 122.8 and a
median of 120.5. In this study, we focus on the students’ activity logs on GitHub to automatically
classify their teamwork habits and coding behaviors.

4. METHODS

4.1. S1. AUTOMATICALLY CLASSIFYING COMMIT MESSAGES

Since our focus in this work is on the students’ teamwork, we focused our analysis on the
commit messages of student pairs in Projects 2 and 3, where students worked in pairs. We
partitioned student commit actions into seven groups based upon their impact on the project.
The categories were Implementation (I), Writing test cases (T), Bug fixing (B), Style fixing (S),
Documentation (D), Merge (M), and Other (O). We randomly selected and manually tagged
1198 commit messages (approximately 1% of the total) from our dataset classifying them into
these seven categories representing the grading rubric. The tagging was done by a graduate
student who had acted as a TA for this course multiple times and was familiar with the structure
of the projects. The distribution of these commit types among the manually tagged commits and
one example of each category are shown in Table 2.

As part of the course, the students were taught about pair programming and were specifically
asked to mention it in their commit messages after 2016. We searched for relevant keywords
(i.e. “pair” as well as the whole word “pp” as some students abbreviated it to identify pair
programming commits) to find commit messages mentioning pair programming. We were able

7
38 Journal of Educational Data Mining, Volume 15, No 1, 2023



Table 2: The distribution and an example of different commit types among manually tagged
data.

Commit Type Count Example
Implementation 433 Added Constructors for inner classes
Test Cases 209 More test cases
Bug Fixes 323 Fixed logout
Documentation 42 Added Javadoc to the class
Style 57 Fixing PMD errors
Merge 44 Merge branch ’master’ of ...
Other 90 asdf

to identify a total of 322 commits among all the student commits mentioning pair programming,
220 from Project 2, and 102 from Project 3.

We then used a cascade model to classify the commit messages as shown in Figure 1. Some
of these categories were easily identified by specific keywords. For example, merge commit
messages are often auto-generated and always have the word “merge” in them, documentation
commits often mention specific keywords such as “document” or “Javadoc”, style-related com-
mits often mention the relevant static analysis tools used in class like “PMD” or “CheckStyle”,
and a majority of commits that do not match any of our categories and belong in the “Others”
do not include any meaningful English words, which can be easily detected by checking the
commit message against English word corpus.

We first removed English stop-words and lemmatized the text in the commit messages and
split camel-case words to identify trends in Java file names such as “Model1Test.java”. We also
added course-specific keywords to the acceptable English corpus, such as BBTP (black box test
plan) or TS tests (teaching staff tests). To reduce the noise in our data and increase the accuracy
of our models, we used static keyword matches to label merge, documentation, style, and other
category commits which had fewer examples compared to the other categories and only kept the
commits that were not tagged as these categories for being tagged as other types of commits. For
the remaining tags (i.e. Implementation, Test cases, Bugfix), we used a bag of words approach
and defined TF-IDF features with a maximum of 300 features and an N-gram range of 1 to 10
for each commit based upon all of the commit messages in the data. Following that, we trained
binary classifiers (supervised) based on the manually labeled subset of the commit messages and
used those models to predict the labels for the remaining dataset. After completing this process
however, we realized that a large number of the commit messages (55%) remained unlabeled
and were incorrectly categorized as Other. This far exceeded the distribution of Other com-
mits in our randomly selected labeled subset (7%). In order to address this, we decided to use
self-supervised semi-supervised learning to extend this training set using a combination of man-
ually and automatically-labeled data. More details about this approach are discussed in Section
4.2. We then used the final auto-labeled data to define features for classification of student teams.

4.2. SELF-SUPERVISED SEMI-SUPERVISED LEARNING

Semi-supervised models use large amounts of unlabeled data together with labeled data to de-
velop better classifiers (Nigam et al., 2006). This approach is becoming more popular as unla-

8
39 Journal of Educational Data Mining, Volume 15, No 1, 2023



Figure 1: Cascade model for commit classification.

beled data becomes easier to collect while labeling data remains time-consuming and expensive
(Nigam et al., 2006). These methods have been common for classifications in domains with
large amounts of unlabeled data and smaller numbers of labeled data such as text and image
classifications (Zhai et al., 2019; Miyato et al., 2016; Nigam et al., 2006). More recently, ed-
ucational research has also incorporated different semi-supervised techniques for the students’
performance prediction (Kostopoulos et al., 2015; Livieris et al., 2018; Livieris et al., 2019), but
they have not previously been applied in analyzing students’ teamwork.

Several approaches have been suggested for improving the classification models using unla-
beled data such as Expectation-Maximization (EM), self-training, co-training, and graph-based
methods (Nigam et al., 2006). Each of these methods fits a different kind of classification prob-
lem (Zhu, 2005). For example, if features naturally split into two sets co-training would be a
good match. Since we are using a complex cascade model and our labels are not limited to
two groups we selected self-training which is a more general and effective method for complex
models (Zhu, 2005). In self-training (Nigam et al., 2006), we first train a classifier using labeled
data. This classifier is then used to generate labels for the remaining unlabeled data. We then use
both sets of data to re-train the classifier, with this process being repeated over several iterations
to get better classifiers. At each iteration, we test the classifier against a held-out validation set
to make sure quality is maintained going forward.

Our goal in using self-training was to increase the amount of labeled data after classifica-
tion. Since our models work in a cascade iteration mode and only label positive samples, having
a high precision was our priority to ensure labeled data included in the next iteration has high

9
40 Journal of Educational Data Mining, Volume 15, No 1, 2023



Figure 2: An overview of the self-supervised model used in this work.

confidence. For example, if a commit is selected as implementation, we want to have high confi-
dence that it actually is an implementation commit. As long as we keep labeling correct subsets
as positive and keep increasing the labeled set, leaving some of the validation set unlabeled at
each iteration is not concerning. The models evolve on each iteration and it is likely that the
similar values to those missed in the validation set were labeled in a different iteration. As a
result, we may observe a slight drop in our model’s performance, but as long as the precision
remains consistently high, we can consider the selected tags to be reliable. Additionally, since
the general performance of the models was not always the highest in the later iterations, we
decided to keep the newly labeled samples of each iteration and remove them from future un-
labeled data instead of using the final model to label all the data. This approach allowed us
to ensure that lower values of recall in the models did not affect the overall labels and as long
as our models were confident about a data-point at some iteration, they are labeled correctly.
Since the auto-labeled data at each iteration was much larger than the manually labeled data,
we decided to randomly select a subset from different labels in each iteration to not reduce the
effect of expert-labeled data. The selection size was a function of the original training-set size.
By trying different numbers, we found that using auto-labeled data up to three times the size of
expert-labeled data reach the optimal modeling performance. An overview of the model used
for commit classifications is shown in Figure 2.

We compared a series of popular text classifiers to identify the best performing model among
them. The models used were: Rocchio (Joachims, 1996), Naive Bayes (NB) (Rish et al.,
2001), K-Nearest Neighbors (KNN) (Manocha and Girolami, 2007), Logistic Regression (LR)
(Van Houwelingen et al., 1988), Stochastic Gradient Descent (SGD) (Gardner, 1984), and Logis-
tic Regression with Bagging (Breiman, 1996). We compared their performance with a baseline
model (the best performing model among them at the first iteration, not including auto-labeled
data). While trying different machine learning methods we noticed that different models labeled

10
41 Journal of Educational Data Mining, Volume 15, No 1, 2023



different amounts of data in each self-supervised iteration and some models labeled data in
fewer iterations than others. Because of this difference and the variance in model performances
across iterations, we needed an approach to calculate the overall performance of these models
and compare them across machine learning methods.

Typically, a validation set is used for calculating the performance of self-supervised models,
assuming that because of the random selection of the labeled subset, the models would perform
similarly on the larger unlabeled data. We used a similar approach, by selecting a validation
subset through 5-fold cross-validation in each iteration to calculate the performance of the model
in that iteration. Then, we used all the training data to train a classifier and label the remaining
unlabeled data. To calculate the overall performance of the models over several iterations, we
took the following approach.

First, assume we have model Mk at iteration k, which has a confusion matrix (CMk) includ-
ing True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) values.
We can calculate the rates of each confusion matrix cell as follows, where TPR, FPR, TNR, and
FNR show rates of TP, FP, TN, and FN consecutively:

TPRk =
#TPk

#V alidationSet
TNRk =

#TNk

#V alidationSet

FPRk =
#FPk

#V alidationSet
FNRk =

#FNk

#V alidationSet

Then, because of random selection of the validation set, we can assume that the models
would perform similarly on the unlabeled set and thus, these rates would be similar in the auto-
labeled subset. We can calculate the confusion matrix for that subset in iteration k (CFak), using
the size of the labeled data at that iteration (Sk):

TPak = TPRk × Sk TNak = TNRk × Sk

FPak = FPRk × Sk FNak = FNRk × Sk

Then, if the model labels all data over n iterations, we can calculate the final confusion
matrix (CMf ) as shown below:

TPf =
n∑

k=0

TPak TNf =
n∑

k=0

TNak

FPf =
n∑

k=0

FPak FNf =
n∑

k=0

FNak

Finally, we calculate the precision, recall, and F1-score of the model over n iterations:

Precisionf =
TPf

TPf + FPf

Recallf =
TPf

TPf + FNf

F1f =
2× Precisionf ×Recallf
Precisionf +Recallf

11
42 Journal of Educational Data Mining, Volume 15, No 1, 2023



4.3. S2. AUTOMATICALLY CLASSIFYING STUDENT TEAMS

As mentioned in Section 1, we labeled the teamwork style of the students who both worked on
similar parts of the project as collaborative (e.g. both doing some implementation and some
testing), while the teams where members both had significant contributions but worked on sep-
arate parts of the project (e.g. implementation and test) were labeled cooperative. There were
also teams where one student did the majority of work and the other student either did no work
or made a small amount of changes. We labeled those teams solo-submitting.

To identify the students’ teamwork style, we randomly selected 150 repositories (about 27%
of all the teams) from each offering of the course and manually tagged them as collaborative,
cooperative, and solo-submit. The tagging was done by two subject matter experts (SME), ex-
perienced TAs who are familiar with the course material and grading criteria, one of whom
has acted as a TA for this course multiple times. First, a sample of 20 repositories was tagged
by both SMEs independently and evaluated for agreement (κ = 0.88) and then the remaining
repositories were tagged separately. Some of these teams were related to students who dropped
the course or had more than two members submitting on them. After removing those teams, a
total of 138 labeled teams remained. As mentioned before, the students were able to get feed-
back on their code by pushing it to GitHub and checking it with the teaching staff test cases.
As a result, there are many cases where the students wanted to try different fixes and submitted
many commits with small changes continuously until they could pass the tests. Thus, the SMEs
were asked to focus on the amount of work done by each student in each category, rather than
the number of commits. To make the tagging process more consistent, we added more specific
definitions for the different teamwork styles. A team where both members contributed between
30%-70% to at-least two common parts of the project was considered to be collaborative. The
teams where one member did the majority of work in some parts and the other member worked
mostly on other parts were considered cooperative. If one member did the majority of work in
most parts and the other member did not work as much, the team was labeled as solo-submit.
The final manual labelling yielded 84 teams that were labeled collaborative, 34 that were labeled
Cooperative and 20 that were Solo-Submit.

Identifying students’ teamwork style by manual tagging requires a great deal of expert time
and it is often difficult to come to an agreement among different experts. As a consequence, we
focused on identifying students’ teamwork style automatically using features from their GitHub
submissions, as well as their prior individual performance (exam 1 and project 1) and the way
they chose their team (i.e. self-selected vs. assigned by the instructor). This approach is also
consistent with our long-term goal to monitor students’ teamwork styles to provide adaptive
scaffolding for group work. During an interview, one of the instructors suggested that she con-
sidered students with prior individual grades below 60 to be at-risk. Consequently, we added
new binary features reflecting the team members’ risk as well. Overall, we calculated the fol-
lowing features for each team member, sorting the team members such that the student with the
fewest total lines of code committed to the project would be designated user 0, and the student
with the most would be user 1. Our final set of features included:

• The total number of commits for each user in the whole project as well as the number of
commits in each category (Implementation, Testing, Debugging, Documentation, Merge,
Style, and Other). These features can show the students’ contribution as the number of
commits to the whole project and to the different areas.

12
43 Journal of Educational Data Mining, Volume 15, No 1, 2023



• The percentage of commits for each user in the whole project and in different categories.
This feature can distinguish between two commits in a team with a total number of 20
commits vs. in another team with a total of 100 commits.

• The total number of additions, deletions, files changed, and amount of change (i.e.
additions + deletions) for each user in the whole project and by category. Additions and
deletions in GitHub are measured by the lines of code each user changes in a specific
commit.

• The average amount of additions, deletions, files changed, and amount of change per
commit for each user in the whole project as well as each category.

• The percentage of each students’ additions, deletions, files changes, and amount of change
in the whole project as well as each category. Similar to the percentage of commits, this
can normalize the amount of change for each team based on their total amount of activities.

• The total and average length of commit messages for each user in the whole project and
each category. This feature can distinguish between the members who write details about
their changes and the ones who submit quick commits with not much explanations for
them.

• The total number of pair programming commits by each user as well as the total for the
whole project. While using the total amount of pair programming is more intuitive, we
believe that if all the pair programming is done on one person’s computer, it might provide
some information about the dynamics of their teamwork.

• Prior individual performance for each user (i.e. exam 1 and project 1 grades). Both exam
1 and project 1 occur at a similar time and before project 2 and project 3.

• Risk label (grade < 60). We added each student’s risk label for exam 1 and project 1 as
separate features, as well as one overall risk label for the team which shows whether or
not any member of the team could be considered at-risk based on exam 1 or project 1.

• The team’s selection method as a label “selected” which shows whether the students in
this team requested to work together or if they were assigned by the instructor.

We ultimately defined 188 features which we normalized for our analysis. We used Recur-
sive Feature Elimination (RFE) feature selection to select the most effective features and avoid
over-fitting our models using the 15 top features. We then applied a similar cascade approach
to the one used for commit classifications for this task. Because the manually-labeled data was
imbalanced with Collaborative teams dominating the other two we opted to use over-sampling
to balance our dataset. We tested different machine learning methods including Decision Tree,
Logistic Regression, Decision Tree with Ada Boosting, and Decision Tree with Bagging. We
did not use more complex models such as Random Forests and Naive Bayes as our preliminary
experiments showed that they were sensitive to imbalanced data and thus unreliable with the
Solo-submit and cooperative groups.

After the first round of classifications, depending on the model chosen, between 70 to 150
teams remained unlabeled. We then applied the same self-training method as mentioned in
Section 4.2 to label the remaining data. We calculated the performance similarly for each model

13
44 Journal of Educational Data Mining, Volume 15, No 1, 2023



type and used the teamwork style labels generated at this stage for our next round of analysis. We
then repeated the training process without including the previous grades as features, to develop
a robust model. The new models not including prior performance of students, if found robust,
are more suitable, especially for courses without previous grade data.

4.4. S3. COMPARING STUDENTS BY TEAM TYPE

Having classified the teams we then turned to analyze the impact of the teamwork style and
team formation on the students’ class performance. To that end, we grouped the students by
team style and compared the average performance of the students in these groups and then used
pairwise Mann-Whitney p-values among the students’ performance in these groups. The Mann-
Whitney U test is a non-parametric test to check the null hypothesis that a random member of
a list is greater than a random member of another list (MacFarland et al., 2016). We chose
a non-parametric test since the distribution of our data is non-normal. We used the students’
final course grades and final exam grades for their final performance and their Exam 1 and
Project 1 grades to reflect their prior individual performance. We also compared the students’
improvement through the semester using the Normalized Learning Gain formula as shown below
and compared that among the different groups as well. If a student had scored 100 on exam 1,
their improvement was considered 0.

Improvement =
Final Exam− exam1

100− exam1

4.5. S4. HELP-SEEKING BEHAVIORS BY TEAM TYPE

To compare the differences in help-seeking behaviors among Collaborative, Cooperative, and
Solo-submit teams we first calculated the number of help-seeking activities on My Digital Hand
(MDH) and Piazza for each student. MDH activities reflect when students join the queue for
online or in-person office hours, make requests, receive help, and leave the session. Piazza ac-
tivities, by contrast, reflect cases where students ask and answer questions in the online forum.
For each team, we calculated the summation of two members’ Piazza activity and MDH activity
as the team’s activity. Then, we used Kruskal- Wallis ANOVA tests to see if teams with different
collaboration styles tend to have different help-seeking frequencies on Piazza, MDH, or in gen-
eral. We also calculated the Pearson correlation between MDH and Piazza activities to assess
whether teams that are more active on Piazza also attend office hours more frequently.

We further analyzed the team members’ activities separately to determine if the member that
is more active on MDH also asks more questions on Piazza. We categorized student teams by
whether it is the same member being more active on MDH and Piazza, and performed a χ2

test to see whether this categorization correlated with the three teamwork styles. Similarly, we
categorized the team by two member’s help-seeking tool preferences and performed a chi-square
test to see if the teams’ help-seeking preferences differ significantly between the Collaborative,
Cooperative, and Solo-submit teams.

14
45 Journal of Educational Data Mining, Volume 15, No 1, 2023



Table 3: Classification performance for static models.

M S D O
F1-score 1.000 0.966 0.868 0.748
Recall 1.000 0.977 0.920 1.000
Precision 1.000 0.955 0.821 0.597

5. RESULTS AND DISCUSSION

5.1. S1. AUTOMATICALLY CLASSIFYING COMMIT MESSAGES

Because we used static methods for classifying the Merge (M), Style (S), Documentation (D),
and Other (O) commit events, the performance of these models were fixed after the first iteration
of the classifications. These values are shown in Table 3. Ultimately we found that these models
were successful at identifying these kinds of commits. Accurately classifying the Other category
was more challenging due to the wide variety of commit messages associated with them, some
were considered other because they did not fit in other categories while still others were simply
unclear about what they submitted at all. Some examples are shown below.

• the man was happy
• Jenkins try
• trim attempt 1
• sad
• Change in line 192/133

When classifying the Implementation (I), Testing (T), and Bugfix (B) commits, by contrast,
we first compared the average performance of different models after iteration 0 and selected the
best model as our supervised baseline, which in this case was the Rocchio model. This model
works based on data Centroids and often works well in spaces where classes in data look like
spheres. In this case, spheres and being close to a centroid would mean having or not having
specific sets of words and phrases. The overall performance of different self-supervised models
in classifying different labels after convergence is shown in Figures 3a, 3b, 3c. While the vari-
ation in model performance was small, our results show that the SGD model outperformed the
other models in most cases (i.e. predicting one of B or T) and performed similarly to other cases
(i.e. predicting I). These results also show that based on F1-score and precision, the selected
self-supervised model performed better than the baseline. Not all the self-supervised models
performed better or even similar to the baseline. This is in alignment with what was noted by
Zhu (2005); ”if the structure of the problem and the model assumptions are not well-matched,
the models might degrade in performance”. But they also noted that ”detecting such cases in ad-
vance is an open question”. It is interesting to note that the Rocchio algorithm outperformed the
others on the first round and thus was selected as the baseline model and that it clearly degraded
during the training process thus indicating that the model was not robust in self-training.

We show the number of labeled examples from each model in Figure 3d. In all the cases
we observed, the amount labeled in each iteration decreases after the first two iterations but
the models sometimes took different routes forward. Some models such as Naive Bayes, la-
beled smaller numbers in each iteration and took more iterations to converge (14 iterations for

15
46 Journal of Educational Data Mining, Volume 15, No 1, 2023



(a) Implementation prediction (b) Bugfix prediction (c) Testing prediction

(d) Labeled samples in each iteration
(e) Change of SGD model performance over it-
erations

Figure 3: Summary of commit classifiers.

Naive Bayes), while others such as Rocchio labeled most of the data in the first two iterations.
However, these trends do not seem to correlate with the model performance. As we observe,
Rocchio and Logistic Regression had similar patterns in labeling data but Logistic Regression
performed better over time compared to Rocchio. Considering the performance of each model
over different iterations, we observe that the performance increases slightly in the first round
of self-training and remains largely steady with very small changes after that. An example is
shown in Figure 3e which is the change of F1-score over time for the SGD classifier. In this
figure, I represents the performance of the classifier predicting Implementation commits, where
B and T represent classifiers for Bugfix and Testing commit prediction consecutively.

The distribution of different commit messages over all the data is shown in Table 4. These
distributions show us that a large portion of the students’ commits belongs to implementation
and fixing bugs. Having very few style-based or documentation and tests commits shows that the
students often fix style issues or add documentation and tests for the projects in fewer attempts.
This is mostly because they can check style errors and code coverage on their local platforms
and submit once done while adding features to their code and getting a functional version of
the project that passes all the teaching staff test cases is often challenging for the students and
takes many attempts. As a reminder, part of the students’ grade in these classes was passing the
teaching staff test cases that they did not have access to. The tests were deployed on a Jenkins
server connected to the students’ GitHub repositories. Thus, the students needed to make the
changes and submit their code to the GitHub repositories connected to Jenkins servers to check
how the project was doing on those tests and whether or not the issues were fixed.

16
47 Journal of Educational Data Mining, Volume 15, No 1, 2023



Table 4: The distribution of different commit types auto-labeled commits.

Label Percentage in auto-labeled data
Implementation 0.39
Bugfix 0.23
Testing 0.21
Merge 0.002
Style 0.04
Documentation 0.03
Other 0.09

Table 5: Distribution of the different teamwork styles.

Count Ratio
SME tagged
Collaborative 84 0.60
Cooperative 34 0.24
Solo-submit 23 0.16
All Data
Collaborative 376 0.71
Cooperative 114 0.21
Solo-submit 43 0.08

5.2. S2. AUTOMATICALLY CLASSIFYING STUDENT TEAMS

The distribution of the different teamwork styles in the tagged by expert data and all data is
shown in Table 5. Similar to commit classification in Section 5.1, we first chose our baseline
as the best performing model on average at the first iteration before self-training. In this case,
Decision Tree with Bagging performed best and was selected. The performance comparison
of different models for predicting Collaborative, Cooperative, and Solo-submitting teams are
shown in Figures 4a, 4b, and 4c accordingly. As these figures show, many of the self-trained
models performed as well or better than the baseline model. We observe that the recall of the
models often got lower after several iterations of self-training. However, since in our cascade
model we only label positive examples and leave the remaining samples for the next iteration,
we believe that as long as the precision remains high (meaning the amount of false positives is
low) the usability and accuracy of the labeled items will not be affected by the lower recall.

Taking a closer look at the number of labeled samples in each iteration in Figure 4d, we can
see that labeling students’ teamwork took fewer iterations (on average 3.5 iterations for different
classifiers) compared to labeling commit messages (on average eight iterations). This difference
might be due to a larger variety of students’ commit message texts compared to their activities
or because of the lower rate of manually labeled data to the unlabeled data in commit messages.

The changes in model performance that we observed over several iterations show larger
fluctuations when compared to commit classification. This difference might relate to the lower
general performance of these models compared to commit classifiers, which can introduce more
errors to the models initially. However, if we consider the models’ overall performance count-

17
48 Journal of Educational Data Mining, Volume 15, No 1, 2023



(a) Performance of models pre-
dicting collaboration

(b) Performance of models pre-
dicting cooperation

(c) Performance of models pre-
dicting solo-submission

(d) Number of classified teams in each iteration
(e) Change of Decision Tree with Bagging
model performance over iterations

Figure 4: Summary of teamwork style classification.

ing for the number of labeled examples in each iteration (Figures 4a, 4b, 4c), we can see that
in general, the selected models’ performance remained close to our baseline. Thus, the degra-
dation did not affect the overall performance of the models drastically, especially because this
performance drop has been related to the models’ recall in most cases. Thus, we believe that the
labels generated by these models are as reliable as the labels generated by the original model,
with more coverage. These models show that we can effectively identify the students’ teamwork
style, using automatically generated features from their commit history and their contributions
to the different parts of the project. Using predictive models, the defined features, and self-
supervised learning makes it easier and faster for the instructors to find the teams with harmful
teamwork habits at early stages of the project and design proper interventions to enhance the
students’ teamwork style.

We removed the previous grade features and repeated the training process, and the perfor-
mance for those resulting models are in Figures 5a, 5b, and 5c. Compared with the previous
model, when predicting the collaboration or the solo-submission, the F1, Recall, or Precision
score generally stays at the same level both before and after the feature removal. However, the
models excluding previous grade features performed significantly worse when predicting coop-
eration. The F1 and recall score both went down by over 10 percent. We also witnessed a large
number of false negative cases in those models, which could explain why the recall is so low.
This result indicates that previous grade features are linked to forming a cooperation work style.
Thus, it is necessary to include them as features when we build the classifier for teamwork style.

18
49 Journal of Educational Data Mining, Volume 15, No 1, 2023



(a) Performance of models pre-
dicting collaboration

(b) Performance of models pre-
dicting cooperation

(c) Performance of models pre-
dicting solo-submission

(d) Number of classified teams in each iteration
(e) Change of Decision Tree with Bagging
model performance over iterations

Figure 5: Performance of the team classification by style, excluding previous grades.

Finally, we used the auto-labeled data from the cascade model for the next stage of our
analysis. The distribution of the different teamwork style groups is shown in Table 5. These
numbers show that most of the students in these classes worked collaboratively and together on
different parts of the project. However, on average in 15% of the projects the students divided
the work and worked almost separately. In about 10% of the projects, one of the members did
not have a significant contribution to the submissions. This does not necessarily mean that the
inactive member did not do work, since it is possible that they exchanged their code offline and
one of the members was responsible for submitting it. It still is against using GitHub in the class,
since the students were supposed to learn how to use version control systems and how to share
the code using them.

5.3. S3. COMPARING STUDENTS BY TEAM TYPE

We compared the students’ final exam grades between the three categories. The average and
median grades for different groups in classes before 2020 are shown in Table 6. We focus this
analysis on the data before 2020 because in that year the structure of the class changed radically
due to COVID moving from in-person to remote instruction. This presented challenges for
collaborative projects and led to major changes in the exams, grading, and review policies. Thus
any broad comparison of performance would be inconsistent. Therefore we will first look at the
overall trends in all classes before 2020 and then analyze 2020 separately.

On average the collaborating and cooperating groups had higher performance when com-
pared to the solo-submitting groups on both the team projects and the individual exams. Mann-

19
50 Journal of Educational Data Mining, Volume 15, No 1, 2023



Whitney tests showed that these differences were statistically significant. The Mann-Whitney
p-values for pair-wise comparison of these groups are shown in Table 7 and show that the collab-
orating and cooperating students performed significantly better and were able to improve more
in class than the solo-submitters. When we focus on the improvement scores (FinalExam−Exam1

100−Exam1
)

by contrast, the collaborating and cooperating teams had comparable improvement scores to
the solo-submitting teams, but with much higher median values suggesting that they included a
wider variation overall.

As our tables show the solo-submitters begin with lower initial performance and, as a group,
have the lowest average final exam grade and the lowest median improvement, though not the
lowest average compared to each of the other groups and these differences were significant.
Comparing the cooperating and collaborative groups showed us that the final course grade of
the collaborative group was significantly higher. However, the difference might be due to the
fact that the students in the cooperative group had significantly lower grades in exam 1 and those
grades were part of their final course grade. Looking at the students’ grade improvements shows
us that the students in the cooperating group had very similar improvement to the collaborating
group and their final exam grades were also not significantly worse. Thus, it seems like there is
no visible difference between the improvements of the collaborators and the cooperators, but it
is clear that more of the initially better performing students chose to work collaboratively.

Table 6: The average performance of students in different categories before 2020.

Collaborating Cooperating Solo-submitting
Avg Median Avg Median Avg Median

Project 1 79.58 86.54 77.19 84.82 61.30 69.26
Exam 1 80.26 82.00 77.45 79.50 72.76 71.50
Project 2 90.27 94.18 89.17 93.33 79.56 90.01
Project 3 71.20 87.76 71.94 86.92 69.03 87.73
Final Exam 88.09 93.00 86.40 92.50 75.88 86.50
Final Grade 87.65 90.00 85.92 89.00 76.84 83.00
Improve 0.34 0.56 0.31 0.59 0.31 0.37

Table 7: Mann-Whitney pair-wise p-values before 2020, values less than 0.05 are shown in bold.

Collaborators vs. Cooperators vs. Collaborators vs.
Cooperators Solo-submitters Solo-submitters

Project 1 0.25253 0.00024 0.00001
Exam 1 0.00736 0.01480 0.00010
Project 2 0.10502 0.00359 0.00010
Project 3 0.46206 0.48409 0.44566
Final Exam 0.24537 0.00476 0.00065
Final Grade 0.02903 0.00158 0.00001
Improve 0.49767 0.03404 0.03156

20
51 Journal of Educational Data Mining, Volume 15, No 1, 2023



(a) Student grades within solo style teams (b) Box plot of grade distribution

Figure 6: Student’s performance of solo style teams.

Given the variation in how students performed within the solo-submitting groups, we opted
to examine the performance of the students within the teams. Table 8 shows the relative per-
formance of the students within the solo-submitting teams. As this table shows the active sub-
mitting student performed substantially better than their teammates on both Project 1 and the
final course grade, and generally better on both exams. Figure 6 provides a visual comparison
of the final grades. As this figure shows the inactive students were substantially worse than their
active peers. These performance differences in the Project 1, Final exam and Final grade were
statistically significant (p < 0.01) by Mann-Whitney tests. As our results also show even the
active students performed worse than students in the cooperative and collaborative teams though
the difference was smaller. This is consistent with our hypothesis.

These results are consistent with our hypothesis as guided by Social Learning Theory. As
suggested by Social Learning Theory, the students can learn in social environments by paying
attention to their peers, reproducing their work, being continuously engaged in the team process,
and being motivated (Bandura and Walters, 1977). We hypothesized that a significant amount

Table 8: Performance within the solo-submitting groups.

Solo(submitter) Solo(non-submitter)
Avg Median Avg Median

Project 1 73.5 75.5 55.0 59.0
Exam 1 73.59 72.00 71.93 71.00
Project 2 79.56 90.01 79.56 90.01
Project 3 69.03 87.73 69.03 87.73
Final Exam 79.50 89.00 70.90 74.00
Final Grade 87.33 88.00 66.34 72.00
Improve 0.29 0.36 0.22 0.27

21
52 Journal of Educational Data Mining, Volume 15, No 1, 2023



Table 9: The average performance of students in different categories during Fall 2020.

Collaborating Cooperating Solo-Submitter Team
Avg Median Avg Median Avg Median

Project 1 86.97 92.54 86.67 91.98 77.89 92.94
Project 2 92.15 94.91 89.59 92.82 95.00 96.00
Final Grade 80.13 84.50 78.91 84.50 80.77 85.00

of contributions is needed from both team members so that they can have the conditions for
Social Learning Theory and as a result, the students with more effective teamwork behaviors
improve more over their courses. The results in this section support our hypothesis since not only
the members of solo-submitting teams performed lower in the course, but also their individual
improvements were significantly lower than each of the other two groups.

Examining the students’ performance in 2020 however, shows us different trends. As the
scores and comparisons in tables 10 and 11 show, there is no noticeable difference between the
different types of teams. One likely explanation for this difference may be the remote nature
of the class and the fact that students did not have as much of a chance to know each other and
collaborate compared to when they were on campus. Additionally, the presence of the Covid-19
pandemic may have affected the students’ habits and behaviors. More research is needed to
address the effects of Covid-19 on student study and work habits.

Table 10: The average performance of students in different categories during Fall 2020.

Solo (submitter) Solo (non-submitter)
Avg Median Avg Median

Project 1 77.89 92.94 77.89 92.94
Project 2 95.00 96.00 95.00 96.00
Final Grade 91.30 88 70.24 72.50

Table 11: Mann-Whitney pair-wise p-values during Fall 2020.

Collaborators vs. Cooperators vs. Collaborators vs.
Cooperators Solo-submitters Solo-submitters

Project 1 0.425 0.486 0.465
Project 2 0.473 0.183 0.148
Final Grade 0.462 0.373 0.292

We were also interested in knowing if the students are persistent in their teamwork styles
or if they move from one type of engagement to another in different projects over a single
semester. To analyze this, we looked into students in the years 2015-2018, which had 2 team
projects. We looked into the students who transferred from one style in Project 2 to another in
Project 3. The number of these transitions and their frequency across all the students starting
in each style is shown in Table 12. The percentage shows the portion of each teamwork style
in Project 2 transferring to another in Project 3. These numbers show that a larger portion of

22
53 Journal of Educational Data Mining, Volume 15, No 1, 2023



Table 12: Students’ change of teamwork styles from Project 2 to Project 3.

Transfer Type # Changing Students Proportion of Changing Students per Initial Style
Collaborative to Cooperative 30 0.05
Collaborative to Solo-submit 6 0.01
Cooperative to Collaborative 30 0.17
Cooperative to Solo-submit 2 0.01
Solo-submit to Collaborative 17 0.26
Solo-submit to Cooperative 13 0.20

students in Solo-submitting groups transfers to other styles. While the number of transfers is
similar, the percentage is higher in the Solo-submitting group because of their overall smaller
size. Another large portion of changes happens between Collaborative groups and Cooperative
ones, with similar numbers of changes but a larger percentage of Cooperative teams changing
for the next project. Overall, the students in collaborative and cooperative styles do not seem to
change to the Solo-submission style. These changes can show that many students do not enjoy
the solo-submission style and try to change it for the next project.

To understand the role of team selection in teamwork style, we compared the ratio of se-
lected teams among different styles. Our observations showed that 80% of the collaborative
teams, 76% of the cooperative teams, and 46% of the solo-submitting teams had selected their
teammates. If we compare the ratio of collaborative, cooperative, and solo-submitting teams in
selected vs. assigned teams, we observe that collaborative teams have the highest ratio in both
groups. Among selected teams, 73% worked collaboratively, 21% worked cooperatively, and
5% worked in a solo-submitting style, with 1% remaining unlabeled. Among assigned teams,
58% worked collaboratively, 21% worked cooperatively, and 18% worked as solo-submitters,
with 3% remaining unlabeled. Thus, our analysis showed that the solo-submitting teams have a
majority of assigned team members, and while collaboration is the most common style among
both selected and assigned groups, the students who are assigned to teams have a higher rate
of solo-submission and a lower rate of collaboration compared to the ones who selected their
teammates. This shows that the students are more likely to contribute equally to the teams they
selected, compared to the teams they are assigned to.

5.4. S4.HELP-SEEKING BEHAVIORS BY TEAM TYPE

For each student in each team, we calculated the number of help-seeking activities in the cor-
responding team project. The distribution of the help-seeking activity is shown in Figure 7.
For both help-seeking approaches, the majority of the students did not make any requests at all.
In order to identify any correlation between the team style and the help-seeking frequency, we
first calculated the summation of both members’ MDH activities, the summation of their Piazza
activities, and the summation of all activities. We then performed a Kruskal-Walis ANOVA
(Kruskal and Wallis, 1952) test on these three measures between the three types of student
teamwork styles. Corresponding p-values are 0.211, 0.403, and 0.376. We found no evidence
showing that the different teamwork styles have any correlation with the members’ help-seeking
behavior. Also, we calculated the Pearson’s correlation coefficient between the teams’ total
number of MDH activities and Piazza activities and observed no correlation between them (p-

23
54 Journal of Educational Data Mining, Volume 15, No 1, 2023



(a) Total count of student team project office
hours activity

(b) Total count of student team project Piazza
activity

Figure 7: Distribution of help-seeking activity.

value=0.48). This observation suggests that our hypothesis about the teams more active on MDH
also being more active on Piazza is incorrect.

We were also curious about the relative help-seeking behaviors within the teams. If one
member is more active than another in help-seeking, is it the same person for both MDH and
Piazza? For example, if students A and B are on the same team and student A makes more MDH
requests, does A also make more Piazza requests? In our research, we call the teams with the
same member most active on MDH and Piazza as stay-same, and the teams with each member
most active on a different platform as change-opposite. In the majority of teams, at least one
member had no activity on either platform. Among both active teams, we identified a total of 63
stay-same teams (16.3%) and 51 change-opposite teams (13.0%). Therefore, If one member was
more active than the other on MDH, it did not necessarily mean that the member was also active
on Piazza. Also, to check if this inner team help-seeking style (stay-same vs. change-opposite)
has any correlation with the teamwork styles (collaborate, cooperate, and solo-submit), we per-
formed a χ2 test on those two categorizations. With the result p-value of 0.38, we observed no
correlation between those two types of team categorization.

Finally, we investigated whether different teamwork styles have different help-seeking pref-
erences. We categorized students by their most frequently used platform. Because the number of
Piazza posts is usually more than MDH requests, we used the normalized counts to compare the
activities on Piazza and MDH. Therefore, each student either prefers MDH, prefers Piazza, or
has No Preference (NP). By considering both team member preferences, we categorized teams
into six different types, as shown in Figure 8. We then performed a χ2 test between them, and
with a p-value of 0.127, we observed that the teamwork styles have no correlation with the team
members’ help-seeking preferences within teams.

24
55 Journal of Educational Data Mining, Volume 15, No 1, 2023



Figure 8: Member preference within each team.

6. LIMITATIONS AND FUTURE WORK

Using the model performance on a small subset of data for estimating the model performance
on unlabeled data is a common approach in evaluating semi-supervised models. This approach,
while it is reliable, does build on the assumption that since the labeled subset provides a sufficient
and unbiased example for the unlabeled data, the models would perform similarly. This assump-
tion is a potential weakness of our evaluation method. Another risk of using self-supervised
learning for classification tasks is the fact that the model keeps learning from the data it has
already labeled. While this approach can increase the coverage and accuracy of the models, it
is also possible for errors in the models to propagate across iterations. We worked to limit this
propagation by limiting the use of auto-labeled data in training. Another possible approach was
to only include labeled samples with high prediction confidence. However, we observed that the
approach increased the chances of overfitting the models in our case.

In this work, the analysis of student teams is done solely based on their online submissions
and not based on self- or peer-evaluations. Moreover, the models that we use to classify the
teamwork styles rely in part on the student’s prior work. We chose to focus on this data because
it is what the instructors will have access to while a course is taking place. However, as a
consequence of this decision, it does mean that we are relying on prior information, and it is
possible that we are missing some offline interactions. This may affect our models and future
findings based on them. Including coded self- and peer-evaluations and comparing them to
the labeled teamwork styles may provide us with useful insights about the reliability of these
models, and we may incorporate that into future work.

One area for future work will be to offer these identified patterns to the course instructors
in an adaptive support platform, so they can observe different patterns and possible red flags
in their classes and plan interventions if necessary. For the classifications to be useful, we will
need to classify students’ early submissions. Further investigation is needed to ensure that the
early submissions reflect similar patterns to all submissions.

25
56 Journal of Educational Data Mining, Volume 15, No 1, 2023



7. CONCLUSIONS

Social Learning Theory suggests that people can learn from each other if they have the mo-
tivation and the opportunity to observe and reproduce each other’s work. In this study, we
hypothesized that based on this theory, the students who have uneven contributions to the team
projects have a lower chance of learning from each other, whether they are the ones who do
most of the work or the ones that contribute less. Our results partially supported this showing
that students in the solo-submitting groups prior to 2020 both performed worse than their peers
in other groups with the submitting student performing better than their non-submitting peer
but still gaining less. To analyze different styles in students’ teamwork, we manually labeled
138 GitHub repositories of student projects in two offerings of a Java introductory course for
CS majors as “Collaborative”, “Cooperative”, or “Solo-submit”. We then used several measures
based on student activities on GitHub, their prior performance, and whether they chose their
teammates to automatically label all the student repositories in these classes. Finally, we com-
pared the performance and help-seeking of the students who were members of collaborative,
cooperative, and solo-submit teams and observed that the students in solo-submit teams had sig-
nificantly lower final course performance, lower final exam grade, and less improvement from
exam 1 to the final exam, compared to each of the other groups. These findings supported our
hypothesis based on Social Learning Theory that the students in teams with uneven distribution
of the work have a lower chance to learn from each other and improve in the course. We did
not observe any significant difference between the help-seeking habits of students in different
teamwork styles.

The number of students commit messages across these projects was high (a total of 112K),
and our labeled subset was about 1% of the unlabeled set. Self-supervised learning helped us
improve our models’ coverage over the data and reduce the amount of commits remaining un-
labeled from 50-90K (by supervised learning using different classifiers) to less than 4K while
maintaining high precision in selecting the labels. Prior work has also shown very small subsets
of labeled data can be effective in predicting labels of large datasets, especially in text classifica-
tion where the amount of unlabeled data can get as high as millions (Yarowsky, 1995). Labeling
students’ teamwork patterns was also time-consuming and we had 150 labeled teams from a
total of about 700. Using self-supervised learning, we increased the number of labeled teams
from 380-470 (by supervised learning) to less than 10 while maintaining similar precision to
supervised baselines.

The students in these classes were not graded for their amount of contributions on GitHub,
nor were they directed to organize their teams in a particular way. As a result, they were able to
split the work among themselves based on their choices, and what we observed here was their
natural behaviors. This makes the findings in this study more likely to apply to other classes
since the students’ teamwork styles were not directed by the course structure. The findings of
this study can be used to design adaptive support platforms for the instructors to observe a sum-
mary of students’ activities and possible red flags in their behavior, such as solo-submitting. The
instructors can then plan interventions in a timely manner to help students to better engage with
team projects in the class. For instance, when dealing with a solo-submitting team, the instructor
could intervene by asking both members why they chose not to collaborate effectively, whether
the main contributor refused to distribute more work to the inactive student, whether the inactive
student feels insecure about taking more responsibility, or it was just caused by bad communi-
cation? Then the instructor can explain why this work style is harmful and provide suggestions

26
57 Journal of Educational Data Mining, Volume 15, No 1, 2023



based on the situation. They could suggest the main contributor reduce their tasks or encourage
the inactive student to take more responsibility; moreover, encouraging the team to work on the
project together physically, like pair programming, could also help them build a more robust
and healthy teamwork style. Our results also indicated that a cooperative or collaborative work
style did not affect the project’s success; thus, there is no need for the instructor to intervene
physically with those teams.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation under grant # 1714538 “Developing
Integrated Teaching Platforms to Enhance Blended Learning in STEM” PI Collin F. Lynch,
Co-PIs Tiffany Barnes, and Sarah Heckman.

REFERENCES

AHMADZADEH, M., ELLIMAN, D., AND HIGGINS, C. 2005. An analysis of patterns of debugging
among novice computer science students. In Proceedings of the 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education. ITiCSE ’05. Association for Computing
Machinery, 84–88.

BANDURA, A. AND WALTERS, R. H. 1977. Social learning theory. Vol. 1. Prentice-hall Englewood
Cliffs, NJ.

BARR, T. F., DIXON, A. L., AND GASSENHEIMER, J. B. 2005. Exploring the “lone wolf” phenomenon
in student teams. Journal of Marketing Education 27, 1, 81–90.

BLIKSTEIN, P. 2011. Using learning analytics to assess students’ behavior in open-ended programming
tasks. In Proceedings of the 1st International Conference on Learning Analytics and Knowledge.
LAK 2011. Association for Computing Machinery, 110–116.

BREIMAN, L. 1996. Bagging predictors. Machine learning 24, 2, 123–140.

CARTER, A. S., HUNDHAUSEN, C. D., AND ADESOPE, O. 2015. The normalized programming state
model: Predicting student performance in computing courses based on programming behavior. In
Proceedings of the eleventh annual International Conference on Computing Education Research.
ICER’15. Association for Computing Machinery, 141–150.

CARTER, A. S., HUNDHAUSEN, C. D., AND ADESOPE, O. 2017. Blending measures of programming
and social behavior into predictive models of student achievement in early computing courses. ACM
Trans. Comput. Educ. 17, 3 (Aug.).

CHAO, P.-Y. 2016. Exploring students’ computational practice, design and performance of problem-
solving through a visual programming environment. Computers & Education 95, 202–215.

COMAN, I. D., ROBILLARD, P. N., SILLITTI, A., AND SUCCI, G. 2014. Cooperation, collaboration and
pair-programming: Field studies on backup behavior. Journal of Systems and Software 91, 124–134.

EL ASRI, I., KERZAZI, N., BENHIBA, L., AND JANATI, M. 2017. From periphery to core: a temporal
analysis of github contributors’ collaboration network. In Collaboration in a Data-Rich World, L. M.
Camarinha-Matos, H. Afsarmanesh, and R. Fornasiero, Eds. Springer International Publishing, 217–
229.

FEICHTNER, S. B. AND DAVIS, E. A. 1984. Why some groups fail: A survey of students’ experiences
with learning groups. Organizational Behavior Teaching Review 9, 4, 58–73.

27
58 Journal of Educational Data Mining, Volume 15, No 1, 2023



GANAPATHY, C., SHAW, E., AND KIM, J. 2011. Assessing collaborative undergraduate student wikis
and svn with technology-based instrumentation: Relating participation patterns to learning. In 2011
ASEE Annual Conference & Exposition. ASEE Conferences, 22.233.1 – 22.233.10.

GARDNER, W. A. 1984. Learning characteristics of stochastic-gradient-descent algorithms: A general
study, analysis, and critique. Signal Processing 6, 2, 113–133.

GLASSY, L. 2006. Using version control to observe student software development processes. Journal of
Computing Sciences in Colleges 21, 3, 99–106.

HECKMAN, S. AND KING, J. 2018. Developing software engineering skills using real tools for automated
grading. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education.
SIGCSE ’18. Association for Computing Machinery, 794–799.

HOEGL, M. AND GEMUENDEN, H. G. 2001. Teamwork quality and the success of innovative projects:
A theoretical concept and empirical evidence. Organization Science 12, 4, 435–449.

HOSSEINI, R., VIHAVAINEN, A., AND BRUSILOVSKY, P. 2014. Exploring problem solving paths in a
java programming course. In Proceedings of the 25th Workshop of the Psychology of Programming
Interest Group, B. du Boulay and J. Good, Eds. 65–76.

IMBRIE, P., IMMEKUS, J. C., AND MALLER, S. J. 2005. Work in progress-a model to evaluate team
effectiveness. In Proceedings Frontiers in Education 35th Annual Conference. IEEE, T4F–12.

JOACHIMS, T. 1996. A probabilistic analysis of the rocchio algorithm with tfidf for text categorization.
Tech. rep., Carnegie-mellon univ pittsburgh pa dept of computer science.

KAY, J., MAISONNEUVE, N., YACEF, K., AND REIMANN, P. 2006. The big five and visualisations of
team work activity. In Intelligent Tutoring Systems: 8th International Conference, ITS 2006, Jhongli,
Taiwan, June 26-30, 2006. Proceedings 8, M. Ikeda, K. D. Ashley, and T.-W. Chan, Eds. Springer,
Springer Berlin Heidelberg, 197–206.

KIM, J., SHAW, E., XU, H., AND ADARSH, G. 2012. Assisting instructional assessment of under-
graduate collaborative wiki and svn activities. In Proceedings of the 5th International Conference of
Educational Data Mining, K. Yacef, O. Zaı̈ane, A. Hershkovitz, M. Yudelson, and J. Stamper, Eds.
International Educational Data Mining Society, 10–16.

KOSTOPOULOS, G., KOTSIANTIS, S., AND PINTELAS, P. 2015. Estimating student dropout in distance
higher education using semi-supervised techniques. In Proceedings of the 19th Panhellenic Con-
ference on Informatics, K. N. N, A. Demosthenes, and N. Mara, Eds. Association for Computing
Machinery, 38–43.

KRUSKAL, W. H. AND WALLIS, W. A. 1952. Use of ranks in one-criterion variance analysis. Journal of
the American Statistical Association 47, 260, 583–621.

LEE, H.-J. 2009. Peer evaluation in blended team project-based learning; what do students find impor-
tant? In Proceedings of E-Learn 2009: World Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education, T. Bastiaens, J. Dron, and C. Xin, Eds. Association for the Ad-
vancement of Computing in Education (AACE), 2838–2842.

LEE, H.-J., KIM, H., AND BYUN, H. 2017. Are high achievers successful in collaborative learning? an
explorative study of college students’ learning approaches in team project-based learning. Innovations
in Education and Teaching International 54, 5, 418–427.

LIMA, J., TREUDE, C., FILHO, F. F., AND KULESZA, U. 2015. Assessing developer contribution with
repository mining-based metrics. In 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 536–540.

28
59 Journal of Educational Data Mining, Volume 15, No 1, 2023



LIN, Y.-T., WU, C.-C., HOU, T.-Y., LIN, Y.-C., YANG, F.-Y., AND CHANG, C.-H. 2016. Tracking
students’ cognitive processes during program debugging-an eye-movement approach. IEEE Transac-
tions on Education 59, 3, 175–186.

LIU, Y., STROULIA, E., WONG, K., AND GERMAN, D. 2004. Using cvs historical information to un-
derstand how students develop software. In Proceedings of the International Workshop on Mining
Software Repositories, Edinburgh, Scotland, A. E. Hassan, R. C. Holt, and A. Mockus, Eds. IET,
32–36.

LIVIERIS, I. E., DRAKOPOULOU, K., MIKROPOULOS, T. A., TAMPAKAS, V., AND PINTELAS, P. 2018.
An ensemble-based semi-supervised approach for predicting students’ performance. In Research on
e-Learning and ICT in Education: Technological, Pedagogical and Instructional Perspectives, T. A.
Mikropoulos, Ed. Springer International Publishing, 25–42.

LIVIERIS, I. E., DRAKOPOULOU, K., TAMPAKAS, V. T., MIKROPOULOS, T. A., AND PINTELAS, P.
2019. Predicting secondary school students’ performance utilizing a semi-supervised learning ap-
proach. Journal of Educational Computing Research 57, 2, 448–470.

MACFARLAND, T. W., YATES, J. M., MACFARLAND, T. W., AND YATES, J. M. 2016. Mann–whitney
u test. Springer, 103–132.

MAIN, J. B. AND SANCHEZ-PENA, M. 2015. Student evaluations of team members: Is there gender
bias? In 2015 IEEE Frontiers in Education Conference (FIE). IEEE, 1–6.

MANOCHA, S. AND GIROLAMI, M. A. 2007. An empirical analysis of the probabilistic k-nearest neigh-
bour classifier. Pattern Recognition Letters 28, 13, 1818–1824.

MIERLE, K., LAVEN, K., ROWEIS, S., AND WILSON, G. 2005. Mining student cvs repositories for per-
formance indicators. In Proceedings of the 2005 International Workshop on Mining Software Repos-
itories. Association for Computing Machinery, 1–5.

MIYATO, T., DAI, A. M., AND GOODFELLOW, I. 2016. Adversarial training methods for semi-
supervised text classification. arXiv preprint arXiv:1605.07725.

MURPHY, C., KAISER, G., LOVELAND, K., AND HASAN, S. 2009. Retina: Helping students and
instructors based on observed programming activities. In Proceedings of the 40th ACM Technical
Symposium on Computer Science Education. SIGCSE’09. Association for Computing Machinery,
178–182.

NÄYKKI, P., JÄRVELÄ, S., KIRSCHNER, P. A., AND JÄRVENOJA, H. 2014. Socio-emotional conflict
in collaborative learning-a process-oriented case study in a higher education context. International
Journal of Educational Research 68, 1–14.

NGUYEN, T. AND CHUA, C. 2016. Predictive tool for software team performance. In 2016 23rd Asia-
Pacific Software Engineering Conference (APSEC), A. Potanin, G. Murphy, S. Reeves, and J. Diet-
rich, Eds. IEEE, 373–376.

NIGAM, K., MCCALLUM, A., AND MITCHELL, T. M. 2006. Semi-supervised text classification using
em. In Semi-Supervised Learning, O. Chapelle, B. Schölkopf, and A. Zien, Eds. Adaptive Computa-
tion and Machine Learning. MIT Press, 31–51.

NORTHRUP, S. G. AND NORTHRUP, D. A. 2006. Multidisciplinary teamwork assessment: Individual
contributions and interdisciplinary interaction. In Proceedings. Frontiers in Education. 36th Annual
Conference. IEEE, 15–20.

OAKLEY, B., FELDER, R. M., BRENT, R., AND ELHAJJ, I. 2004. Turning student groups into effective
teams. Journal of Student Centered Learning 2, 1, 9–34.

29
60 Journal of Educational Data Mining, Volume 15, No 1, 2023



PARIZI, R. M., SPOLETINI, P., AND SINGH, A. 2018. Measuring team members’ contributions in soft-
ware engineering projects using git-driven technology. In 2018 IEEE Frontiers in Education Confer-
ence (FIE). IEEE, 1–5.

PERERA, D., KAY, J., KOPRINSKA, I., YACEF, K., AND ZAÏANE, O. R. 2009. Clustering and sequential
pattern mining of online collaborative learning data. IEEE Transactions on Knowledge and Data
Engineering 21, 6, 759–772.

REID, K. L. AND WILSON, G. V. 2005. Learning by doing: Introducing version control as a way to
manage student assignments. In Proceedings of the 36th SIGCSE Technical Symposium on Computer
Science Education. SIGCSE ’05. Association for Computing Machinery, 272–276.

RISH, I. ET AL. 2001. An empirical study of the naive bayes classifier. In IJCAI 2001 Workshop on
Empirical Methods in Artificial Intelligence. Vol. 3. 41–46.

SALOMON, G. AND GLOBERSON, T. 1989. When teams do not function the way they ought to. Interna-
tional Journal of Educational Research 13, 1, 89–99.

SEERS, A. 1989. Team-member exchange quality: A new construct for role-making research. Organiza-
tional Behavior and Human Decision Processes 43, 1, 118–135.

SPACCO, J., DENNY, P., RICHARDS, B., BABCOCK, D., HOVEMEYER, D., MOSCOLA, J., AND DU-
VALL, R. 2015. Analyzing student work patterns using programming exercise data. In Proceedings
of the 46th ACM Technical Symposium on Computer Science Education. SIGCSE’15. Association for
Computing Machinery, 18–23.

UCHIDA, S., MONDEN, A., IIDA, H., MATSUMOTO, K.-I., AND KUDO, H. 2002. A multiple-view anal-
ysis model of debugging processes. In Proceedings International Symposium on Empirical Software
Engineering. ISESE’02. IEEE, 139–147.

VAN DEN BOSSCHE, P., GIJSELAERS, W. H., SEGERS, M., AND KIRSCHNER, P. A. 2006. Social and
cognitive factors driving teamwork in collaborative learning environments: Team learning beliefs and
behaviors. Small Group Research 37, 5, 490–521.

VAN DER DUIM, L., ANDERSSON, J., AND SINNEMA, M. 2007. Good practices for educational software
engineering projects. In 29th International Conference on Software Engineering (ICSE’07). IEEE,
698–707.

VAN GOG, T. AND KESTER, L. 2012. A test of the testing effect: acquiring problem-solving skills from
worked examples. Cognitive Science 36, 8, 1532–1541.

VAN HOUWELINGEN, J., LE CESSIE, S., ET AL. 1988. Logistic regression, a review. Statistica Neer-
landica 42, 4, 215–232.

VIHAVAINEN, A., LUUKKAINEN, M., AND KURHILA, J. 2013. Using students’ programming behavior
to predict success in an introductory mathematics course. In Proceedings of the 6th International
Conference on Educational Data Mining (EDM 2013), S. K. D’Mello, R. A. Calvo, and A. Olney,
Eds. International Educational Data Mining Society, 300–303.

WATSON, C., LI, F. W., AND GODWIN, J. L. 2014. No tests required: comparing traditional and dy-
namic predictors of programming success. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education. SIGCSE’14. Association for Computing Machinery, 469–474.

WEN, M., MAKI, K., DOW, S., HERBSLEB, J. D., AND ROSE, C. 2017. Supporting virtual team for-
mation through community-wide deliberation. Proceedings of the ACM on Human-Computer Inter-
action 1, CSCW, 109.

YAROWSKY, D. 1995. Unsupervised word sense disambiguation rivaling supervised methods. In Pro-
ceedings of the 33rd Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, 189–196.

30
61 Journal of Educational Data Mining, Volume 15, No 1, 2023



ZHAI, X., OLIVER, A., KOLESNIKOV, A., AND BEYER, L. 2019. S4l: Self-supervised semi-supervised
learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE,
1476–1485.

ZHU, X. J. 2005. Semi-supervised learning literature survey. UW Madison CS: Technical Report 1530
https://pages.cs.wisc.edu/˜jerryzhu/pub/ssl_survey.pdf.

31
62 Journal of Educational Data Mining, Volume 15, No 1, 2023

https://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf

