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Analysis of programming process data has become popular in computing education research and educa-
tional data mining in the last decade. This type of data is quantitative, often of high temporal resolution,
and it can be collected non-intrusively while the student is in a natural setting. Many levels of granularity
can be obtained, such as submission, compilation, edit, and keystroke events, with keystroke-level logs
being the most fine-grained of commonly used dataset types. However, the lack of open datasets, espe-
cially at the keystroke level, is notable. There are several reasons for this failing, with the most prominent
being the challenges of deidentification that are peculiar to keystroke log data. In this paper, we present
the public release of two fully deidentified keystroke datasets that are the first of their kind in terms of
both event and metadata richness. We describe our collection technique and properties of the data along
with deidentification techniques that, while not fully relieving researchers of significant effort, at least
reduce and streamline manual work in hopes that researchers will release similar datasets in the future.
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1. INTRODUCTION

In an ITiCSE working group report on educational data mining, Ihantola et al. (2015) report that
only 5% of studies they investigated were based on open datasets. As a grand challenge, the au-
thors suggest that “future research in the area of collection of programming process data should
seek to consider how data could be collected to contain enough granularity to be meaningful,
yet be in a completely unidentifiable form” (Ihantola et al., 2015).

Making programming process data publicly available has numerous benefits, including en-
abling re-analysis studies, simplifying replication studies, and providing material for innovative
studies. As a computing sciences educational data mining (CSEDM) community, we tend to
do well in providing data collection tools to the research community, e.g., Web-CAT (Edwards
et al., 2009) and BlueJ (Brown et al., 2014), but sharing data is not as common. While it is true
that providing tools allows other researchers to collect similar data, it is also problematic for a
number of reasons: researchers at small institutions may not have the resources to collect large
datasets; virtually all tools require the adoption of certain integrated development environments
(IDEs) or other software that some departments may resist; the ethics review board process can
be daunting for theoreticians and others not accustomed to human-based empirical studies; and
some educational institutions may have instructors who are less than enthusiastic about running
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Figure 1: KeystrokeExplorer. We are making two keystroke log datasets public. These files can
be loaded into KeystrokeExplorer to see playback and other details. On the left is the playback
window. The line highlighted in green is the location of the most recent event (a press of the left
parenthesis key). On the top right is the CodeProcess chart (Shrestha et al., 2022), middle right
shows keystroke latencies, and bottom right shows the log file with selected columns.

studies in their courses. Having open datasets could have a great impact on researchers affected
by some or all of these factors.

The lack of public programming process datasets, especially keystroke log data, is perhaps
unsurprising for one reason in particular: deidentification. The process of deidentifying this
type of data is intimidating because it is more involved than simply doing a search and replace
of names with unique identifiers on a collection of files. The biggest challenge is that all edits
during the programming process, not just the final files, must be deidentified. Manually review-
ing playback of millions of keystrokes is not only daunting, but it is also error-prone.

In this paper, we discuss the release of two keystroke datasets1,2 for use by the CSEDM
community. These datasets have been used in multiple published studies (Edwards et al., 2020;
Edwards et al., 2020; Edwards et al., 2020; Edwards et al., 2020; Zavgorodniaia et al., 2021;
Shrestha et al., 2022; Edwards et al., 2022; Shrestha et al., 2022). The datasets are CSV log files
of keystrokes and other events of CS1 students while working on their programming projects.
See Fig. 1. The first of these datasets, collected in a CS1 course in 2019, has 5 million unique
events across 505 subjects and 5 assignments. It includes assignment descriptions, due dates,

12019 dataset: https://doi.org/10.7910/DVN/6BPCXN
22021 dataset: https://doi.org/10.7910/DVN/BVOF7S
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and student grades. The second dataset, collected in a CS1 course in 2021, is smaller, with 1
million events, but is richer, with all of the metadata in the 2019 dataset, plus course grades,
student high school GPAs, ACT scores, and college major. We describe the datasets, their uses
for both researchers and educators, and how to acquire them. The datasets are in the ProgSnap2
format (Price et al., 2020). To our knowledge, these are the first open datasets of their kind.

In this paper, we also discuss a data collection tool and an analysis tool that are available
to ease entry into the world of keystroke analysis. Our ShowYourWork plugin is available in
the JetBrains (PyCharm, IntelliJ) plugin marketplace. Once installed, it logs keystrokes to a file
called ShowYourWork.csv. The analysis tool is called KeystrokeExplorer3, a web-based visu-
alization tool for replay and simple analysis of keystroke logs (Fig. 1). We also have made a
Jupyter notebook available that has code for tasks that could be useful to researchers, including
submission reconstruction from keystrokes, time-on-task estimation (Edwards et al., 2022), and
various scatterplots and statistics. Both KeystrokeExplorer and the Jupyter notebook accept any
keystroke log file in the ProgSnap2 format.

In this paper, we also describe the deidentification process4 of keystroke log data. Dei-
dentification is not only complex but is also labor-intensive. The section on deidentification is
written with an eye toward making it easier for other research groups to deidentify and share
their keystroke log data. Admittedly, it still takes a lot of work, but we believe our approach
makes the process at least achievable with a reasonable amount of effort.

One motivation for making these datasets public is to enable and encourage replication stud-
ies. It has been found that only 1/3 to 1/2 of replication studies found similar findings to the
original studies among 100 articles published in top psychology venues (Collaboration, 2015).
Replication studies are neither common nor particularly valued in the computing education re-
search community (Ihantola et al., 2015; Ahadi et al., 2016). Perhaps having more data that is
easily usable will help the community to engage in more such replication work.

Specific contributions of this paper are:

• Description of two keystroke datasets that are being publicly released together with this
paper.

• Description of our deidentification process which enabled public release of the datasets.

• Description of two tools we are releasing, KeystrokeExplorer and a Jupyter notebook, to
assist in the use of these datasets.

• A review of CSEDM data and tools with emphasis on work since 2015.

• A taxonomy of the uses of CSEDM data and open problems.

This paper is organized as follows. We begin with a somewhat detailed look at recent work
that uses CSEDM data (Section 2) followed by a description of two datasets that we have made
public (Section 3). We then describe our process of deidentification (Section 4) and discuss tools
that accompany the data (Section 5). We then make concluding remarks (Section 6).

3edwardsjohnmartin.github.io/KeystrokeExplorer. The source code can be found at
github.com/edwardsjohnmartin/KeystrokeExplorer.

4The source code for our deidentification can be found at github.com/EdwardsLabUSU/
DeidentifyKeystrokes.
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2. RECENT WORK WITH CSEDM DATA

In this section, we discuss studies that use programming process data in general, and keystroke
logs specifically. These studies span a number of objectives, use varying data granularities,
and offer and take advantage of various tools. Our discussion focuses primarily on work done
from 2015 to 2022, as the survey by Ihantola et al. (2015) provides an excellent overview of
work done in the decade prior to 2015, though we do include work prior to 2015 that is either
foundational or particularly relevant to our keystroke datasets.

This section is fairly detailed. Since the two datasets that we describe in this paper are the
first of their kind to be released, we take some care in giving context and situating the data in
the CSEDM space. We first categorize the use of CSEDM data by objective, then granularity.
We then discuss tools for collecting and analyzing CSEDM data, then discuss open datasets, and
then list some open questions. We conclude this section by discussing what role the two datasets
we are releasing play relative to prior and future work.

2.1. OBJECTIVES

In this section, we discuss related work categorized by study objectives. We discuss five such
objectives: predicting course outcomes, descriptive analytics, differences in context, biometrics,
adaptive support systems, and plagiarism detection.

2.1.1. Predicting course outcomes

One of the most common objectives of educational data mining in the context of computing
education is that of predicting academic outcomes of students such as exam scores and final
grades. The most common goal is to identify struggling students early in the course, in time for
effective intervention, and to do so with data that can be collected without placing a burden on
the instructor.

Early work on predictive analytics in CSEDM included compiler error analysis. Jadud
(2006), in addition to seminal work on descriptive statistics of compiler errors in practice, for-
mulated the Error Quotient (EQ), a characterization of a student’s struggles with compiler errors.
He used the EQ to predict both exam scores and final grades. Adjustments to and improvements
of the EQ include the Watwin score (Watson et al., 2013) and the RED score (Becker, 2016).
Another line of inquiry focused on replacing or enhancing compiler features with other features,
such as using non-edit events and pauses as stand-ins for compile events to predict low- versus
high-performing students (Ahadi et al., 2015; Castro-Wunsch et al., 2017). The Normalized
Programming State Model (NPSM) uses an approximation of semantic correctness of the pro-
gram in addition to syntactic correctness (Carter et al., 2015). The same research group later
incorporated the concept of the Programming State Model (PSM), a categorization given by a
2x2 syntactic/semantic state matrix, into EQ, Watwin, and NPSM scores (Carter et al., 2017).
They also discovered that a student’s path through different programming states was predictive
of final grade (Carter and Hundhausen, 2017).

Compiler error analysis sparked increased interest in finding programming process features
beyond compiler errors that predict academic outcomes such as exam scores and final grades.
Features that have been investigated include number of statements added or removed before
each save (Kazerouni et al., 2017), number of attempts on programming exercises (Ahadi et al.,
2016; Ahadi et al., 2017; Koutcheme et al., 2022), number of keystrokes (Spacco et al., 2015),
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debugger and git events (Kazerouni et al., 2017), code submissions (Vinker and Rubinstein,
2022), success rate on programming exercises (Spacco et al., 2015; Koutcheme et al., 2022),
typing speed (Thomas et al., 2005; Leinonen et al., 2016), keystroke latencies (Edwards et al.,
2020), number of study sessions (Koutcheme et al., 2022), behavior in a block-based language
IDE (Gao et al., 2021), time-on-task approximations (Leinonen et al., 2022), when students start
their assignments relative to the due date (Edwards et al., 2009; Leinonen et al., 2021), number
of IDE hints (Estey and Coady, 2016; Estey et al., 2017), and number of posts in a social media
environment (Carter et al., 2017).

2.1.2. Descriptive analytics

While most CSEDM work attempts to predict outcomes, some work is focused solely on describ-
ing student behaviors without a predictive component other than, possibly, to predict elements
of the programming process itself.

Similar to prediction, compiler errors are a popular topic in descriptive analytics. Smith
and Rixner (2019) studied the distribution and evolution of different error types. McCall and
Kölling (2019) characterized the “severity” of compiler errors, which they define as the prod-
uct of frequency and difficulty, where difficulty is defined using time-to-fix. Other work also
looked at time-to-fix of different compiler errors (Altadmri and Brown, 2015). Spacco et al.
(2015) found that more difficult exercises require more time and effort, yet without increasing
the number of compilation failures and, as a corollary, found that students improved in writing
syntactically correct code despite the increasing difficulty of the exercises throughout the course.
Similar work used error analysis to find that students gradually show fewer misconceptions as
they progress through a course (Kurvinen et al., 2016).

In what could be seen as auxiliary work to prediction tasks, Leinonen et al. (2017) cal-
culated pair-correlations between fine-grained features including time-on-task (computed from
keystrokes), edit event count, run event count, assignment correctness, and educational value.
Among other contributions, this work can help avoid prediction studies that unnecessarily test
features that are correlated with features that have already been shown to be predictive or not.

Keystrokes have been used for emotion detection. Allen et al. (2016) used keystroke data
to predict the affective state of people while writing natural language essays. They found that
boredom and engagement were particularly well-suited to prediction, and even the simple me-
dian keystroke latency could be used. Similar studies using natural language typing patterns to
predict affective state include (Vizer et al., 2009; Epp et al., 2011; Bixler and D’Mello, 2013).
The CSEDM community has also investigated this space. Kołakowska (2016) predicted student
stress using keystroke features and Tiam-Lee and Sumi (2019) correlated engagement with code
modification.

Programming process data give excellent insight into student experience while program-
ming. It can be captured while the student is in a natural setting and with little-to-no disrup-
tion to their process. This enables time-of-day and time-on-task studies. Zavgorodniaia et al.
(2021) clustered students into circadian rhythm characterizations, finding along the way that
most students do their programming during the day and evening, contrary to some stereotypes
of programmers as night owls. Time-on-task has been an important measure for predicting and
describing the student experience. However, ad hoc estimates, until recently the only way of
calculating time-on-task from process data, have been shown to be unreliable (Kovanovic et al.,
2015; Nguyen, 2020; Edwards et al., 2022). Leinonen et al. (2021) compared time-on-task esti-
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mates using course-grained (submission) versus fine-grained (keystrokes) data, finding that the
two modalities had only very weak time-on-task correlations, implying that fine-grained data
should be used for time estimation. Edwards et al. (2022) performed an empirical study in
which students were periodically prompted while working on programming assignments asking
whether they were on task or not. Using elapsed time between the last keystroke and the stu-
dent’s response, they fit a regression model that predicts a probability that a student is engaged or
not for any given gap between keystrokes. Using this model to more accurately predict time-on-
task could improve time-on-task estimates for fixing compilation errors (Altadmri and Brown,
2015; McCall and Kölling, 2019), correlations between time-on-task and other programming
process data (Leinonen et al., 2017), predicting time to complete a solution (Kazerouni et al.,
2017), measuring the effect of an intervention (Leinonen et al., 2019; Edwards et al., 2020),
intervening when students are falling behind (Rodriguez-Rivera et al., 2022), and using time-
on-task for exam score prediction (Leinonen et al., 2022).

Other works look specifically at the process students take to write programs. Kazerouni
et al. (2017) report how the number of statements and methods added or removed can be used
to compute an index of how early and often a student works on their project, a measure of
incremental test checking, and a measure of incremental test writing. Using code snapshots
at saves and compiles, Blikstein et al. (2014) cluster students as tinkerers and planners. Piech
et al. (2012) similarly compare code snapshots to cluster students into groups who use similar
problem-solving trajectories. Similar to the matrix view of Piech et al. (2012), Shrestha et al.
(2022) introduced CodeProcess charts. These charts indicate where in the code the changes
are made, so observers can see whether a student wrote their code linearly or if they jumped
around making changes. The Pensieve tool is designed to use programming process snapshots
to facilitate discussions between instructor and student about the process taken to complete a
programming project. The authors suggest that its use improves metacognition (Yan et al.,
2019). See Section 2.5 for a discussion of open questions regarding programming process.

A perhaps under-utilized use of CSEDM data is in measuring differences between groups
in a controlled study. Two works analyze the number of keystrokes and time-on-task between
students who used a syntax practice intervention and those who didn’t (Leinonen et al., 2019;
Edwards et al., 2020). The lack of use of CSEDM data in this area could be attributed to
researchers’ desire to use more direct measures of success (e.g. course outcomes), but in terms
of richness of insight into student experience, keystroke, and other fine-grained process data
may be superior.

2.1.3. Differences in context

While conducting a study in different contexts is generally geared toward ensuring that findings
are generalizable, some CSEDM work has used programming process data to understand the
contexts themselves. Jadud and Dorn (2015) computed EQ on Blackbox data and compared dis-
tributions between countries and found that some cultural affinities may be discovered through
analysis of, e.g., the number of days spent programming. Edwards et al. (2020) did an analysis
of the predictive power of digraph latencies as features across two contexts: Python/English and
Java/Finnish. They showed digraph distributions differ significantly between programming lan-
guages (Python and Java) and spoken languages (English and Finnish). Edwards et al. (2020)
looked at the effect of differences between programming and typing natural language on typ-
ing characteristics such as the speed of typing particular constructs and how quickly a person
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corrects an error.

2.1.4. Biometrics, identification, and authentication

Studies of biometrics using programming process data are entirely based on keystroke data,
which may not come as a surprise as, intuitively, keystrokes are the only data type that have
the granularity to admit identification and authentication. Early work was done using data from
natural language typing. Morales and Fierrez (2015) use keystroke dynamics to authenticate stu-
dents in an exam situation. They reported 90% authentication accuracy using only 100 keystroke
digraphs and trigraphs. The keystroke data was taken from the OhKBIC dataset (Monaco et al.,
2015). Krishnamoorthy et al. (2018) used a richer set of keystroke dynamics features, including
length of time a key is pressed, interval between release of a key and press of the next, and inter-
val between presses of consecutive keys, as features into a support vector machine for biometric
authentication.

In the CSEDM space, Leinonen et al. (2016) used the top 25-50 digraph latencies, as given
by feature selection, to identify whether the student was a novice at programming or not. Longi
et al. (2015) were the first to identify users with programming data using average latency, average
latency for given keys, and average latency for digraphs using a nearest neighbor classifier. This
was followed by work geared toward authentication in an exam setting, where fewer keystrokes
are available and students are using unfamiliar computers and keyboards (Leinonen et al., 2016).

2.1.5. Adaptive support systems

Adaptive support is an umbrella term that comprises systems that adapt learning environments,
activities, and hinting to the current knowledge state of a student. A common adaptive sup-
port system is the Intelligent Tutoring System (ITS) which is typically integrated into an IDE
or learning environment and that gives feedback and help that are individualized to students.
Submission-level CSEDM data is typically used to design and train the ITS. Since most systems
are trained using only canonical solutions, possibly along with sample sets of input and output,
little is said about the training data: educators generally have solution data, whether generated
by themselves or from previous offerings of a course, and so no customized software or public
data repository is needed in order to train the ITS.

Foundational work in Intelligent Tutoring Systems was done by Barnes and Stamper (2008)
who used Markov Decision Processes from a set of canonical solutions to dynamically generate
hinting in the context of learning logic proofs. Rivers and Koedinger (2017) used similar ideas
for a Python programming course but first converted input solutions into abstract syntax trees
(ASTs) in order to analyze a more meaningful structure of the code, which is independent of
identifiers but unfortunately still suffers from how the code is structured. For this reason, Rivers
and Koedinger (2017) uses multiple input solutions to find the closest one to the code the student
is working on. The SourceCheck ITS from (Price et al., 2017) similarly uses ASTs for compar-
ison to and hint generation from solution code. Being based on ASTs, SourceCheck is largely
language independent and, indeed, is implemented for iSnap, a block-based language (Price
et al., 2017). A 2018 survey looks at 14 Intelligent Programming Tutors described in the litera-
ture (Crow et al., 2018).
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2.1.6. Plagiarism detection

Despite providing a rich view into the process students use to write a computer program, very lit-
tle work has been done in using programming process data for plagiarism detection. Rodriguez-
Rivera et al. (2022) use repository commit data to look for projects with mostly additions and
few deletions of code. Two finer-grained approaches use keystroke-level data. Hellas et al.
(2017) construct a line chart that shows the edit distance from the current snapshot to the final
submission for each keystroke event. Sudden drops in the edit distance indicate pasted code
and consistent, linear drops indicate that the student may be re-typing someone else’s solution.
Shrestha et al. (2022) improved on edit distance line charts with CodeProcess charts that indi-
cate where in the code temporal changes are made. Almost all types of plagiarism, including
large pastes, type-copying, and changing identifier names and comments at the last minute, can
be readily identified.

2.2. DATA GRANULARITY

Ihantola et al. (2015) define six levels of programming process data granularity which we here
condense into four levels. The least granular data includes submissions and commits. In the
works reviewed already in this section, most submission and commit data are used for academic
outcome prediction (Ahadi et al., 2016; Castro-Wunsch et al., 2017; Ahadi et al., 2017; Vinker
and Rubinstein, 2022; Koutcheme et al., 2022) and Intelligent Tutoring Systems (Barnes and
Stamper, 2008; Price et al., 2017; Crow et al., 2018) with a little work in descriptive analyt-
ics (Rodriguez-Rivera et al., 2022) and plagiarism detection (Rodriguez-Rivera et al., 2022).

The next level is executions, compilations, and file saves, which are also used extensively in
academic outcome prediction (Carter et al., 2015; Jadud, 2006; Watson et al., 2013; Kazerouni
et al., 2017; Estey and Coady, 2016; Estey et al., 2017; Becker, 2016; Spacco et al., 2015) but
is also used extensively in descriptive analytics (Kazerouni et al., 2017; Kurvinen et al., 2016;
Spacco et al., 2015; Altadmri and Brown, 2015; Yan et al., 2019; Smith and Rixner, 2019;
Blikstein et al., 2014; Piech et al., 2012; Carter et al., 2017; Carter et al., 2015; McCall and
Kölling, 2019).

The next level is line-level edits, where a single event captures statistics of all changes made
to a line. The Blackbox dataset captures line-level edits (Brown et al., 2014), yet most stud-
ies using Blackbox analyze only the compile events (Brown et al., 2018). However, line-level
edits have been used in academic outcome prediction (Gao et al., 2021) and differences in con-
text (Jadud and Dorn, 2015).

The finest-grain data are keystrokes and character edits which, unsurprisingly, offer the
greatest flexibility in analysis. They are used in all five of our categories: academic outcome
prediction (Ahadi et al., 2015; Leinonen et al., 2021; Leinonen et al., 2016; Carter and Hund-
hausen, 2017; Edwards et al., 2020; Leinonen et al., 2022), descriptive analytics (Leinonen
et al., 2017; Shrestha et al., 2022; Leinonen et al., 2019; Edwards et al., 2022; Allen et al.,
2016; Leinonen et al., 2021), differences in context (Edwards et al., 2020; Edwards et al., 2020),
biometrics (Morales and Fierrez, 2015; Krishnamoorthy et al., 2018; Leinonen et al., 2016;
Leinonen et al., 2016), and plagiarism detection (Hellas et al., 2017; Shrestha et al., 2022; Longi
et al., 2015).
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2.3. TOOLS

A number of data collection tools have been used in the studies we have reviewed. Some of these
have been made available to the research community. In this section, we discuss data collection
tools that are finer-grained than submission-level data and include studies that have either used
the tool directly or have used data collected with the tool.

2.3.1. Programming exercise tools

Test My Code (Vihavainen et al., 2013; Ahadi et al., 2015; Ahadi et al., 2017; Ahadi et al.,
2016; Leinonen et al., 2021; Leinonen et al., 2016; Leinonen et al., 2022; Leinonen et al.,
2017; Leinonen et al., 2019; Leinonen et al., 2021; Edwards et al., 2020; Leinonen et al., 2016;
Leinonen et al., 2016; Longi et al., 2015; Hellas et al., 2017) is a server5 that automates the test-
ing of programming exercise solutions and has an accompanying NetBeans plugin6 that collects
keystroke-level data. BitFit (Estey and Coady, 2016; Estey et al., 2017) is an open source7 pro-
gramming practice tool that provides intelligent hints to struggling students and collects usage
log data at the compilation level. CloudCoder (Spacco et al., 2015) is a web-based program-
ming exercise system that captures code edits at the character level. As of March 2022, the
project is no longer active, though the source code is still available.8 ViLLE (Kurvinen et al.,
2016) is a programming practice environment that is publicly available under the name Eduten.9

Phanon (Edwards et al., 2020) is a web-based syntax exercise tool that collects keystroke-level
data and that is now marketed under the name CodeKeyz.10

2.3.2. Plugins

OSBIDE (Carter, 2012; Carter et al., 2015; Carter and Hundhausen, 2017; Carter et al., 2017) is
a VisualStudio plugin11 with social media elements that captures at least compile- and edit-level
events. DevEventTracker (Kazerouni et al., 2017; Kazerouni et al., 2017) is an addition to an
Eclipse plugin that allows students to submit code to the Web-CAT submission support system.
It collects data with compilation, execution, and save granularity. Its source code is available on
GitHub.12 PyPhanon (Edwards et al., 2022), now called ShowYourWork, is a plugin for JetBrains
IDE software (e.g. PyCharm, IntelliJ) that collects keystroke-level events. It is available through
the JetBrains plugin marketplace. EnCourse (Rodriguez-Rivera et al., 2022) is a management
system that commits a project to a git repository at every compile. It is open-source and available
for download.13

2.3.3. Integrated Development Environments (IDE)

Decaf (Becker, 2016) is a Java IDE that is written primarily to research improved compiler error
messages. It is unclear whether Decaf is publicly available or not. BlueJ (Braught and Midkiff,

5https://github.com/testmycode/tmc-server
6https://github.com/testmycode/tmc-netbeans
7https://github.com/ModSquad-AVA/BitFit
8https://cloudcoder.org/
9https://www.eduten.com/

10https://codekeyz.com/
11https://github.com/WSU-HELPLAB/OSBIDE
12https://github.com/web-cat/deveventtracker-feedback
13https://www.cs.purdue.edu/homes/grr/Encourse
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2016; Jadud and Dorn, 2015; Altadmri and Brown, 2015; McCall and Kölling, 2019) is a Java
development environment designed for beginners that is available for general use.14 Blackbox
is a data collection project that captures line-edit events in BlueJ and stores the logs on a server.
The Blackbox database has a large number of entries and is frequently used in CSEDM studies,
only a few of which are discussed in this paper. A compile-level data collection extension to
BlueJ has also been used for a study (Watson et al., 2013). Snap 15 is a block-based programming
environment fitted with ProgSnap2-format log data collection. It is available online for free
use.16 CodeSkulptor (Warren et al., 2014; Smith and Rixner, 2019) is a web-based Python
programming environment that logs data at every file save event.17

2.3.4. Analysis tools

Far fewer data analysis tools are available compared to data collection tools. The lack of data
analysis tools could perhaps be attributed to the lack of consensus as to what exactly in program-
ming process data is generally important, e.g., do researchers and practitioners want to see the
EQ, Watwin, RED, or NPSM score? Which features should be used for exam score prediction?
Compounding the problem is that no standard data format has gained general acceptance by the
community, though ProgSnap2 (Price et al., 2020) has gained some traction. But possibly the
main reason for the lack of analysis tools is that they may not necessarily get used – researchers
tend to prefer more flexible scripting tools such as Pandas and scikit-learn, and practitioners,
well, arguably, there is not a lot of evidence that programming process data is used much at all
in practice (with the exception of IDE hinting tools, such as code completion, that use transient
data). But perhaps that is because few analysis tools are available to instructors. One tool that is
available is Pensieve (Yan et al., 2019), a tool that facilitates discussions between instructor and
student about the process taken to complete a programming project. Pensieve uses code snap-
shots to enable discussions that can increase both student success and student metacognition.
The source code is available on GitHub.18

2.4. PUBLIC DATASETS

To our knowledge, no data has been released publicly that captures programming behavior at the
keystroke level. Furthermore, there is a general lack of open datasets in CSEDM (Ihantola et al.,
2015). See Mihaescu and Popescu (2021) for a recent review of EDM datasets which includes
some of the datasets described here. The most prominent available dataset is Blackbox (Brown
et al., 2014; Brown et al., 2018; Brown and Kölling, 2020) which was made public in 2013
and has perpetually been added to since, with terabytes of data available as of 2022. Blackbox
logs events from the BlueJ online Java IDE at line-level granularity. This level of granularity
was selected for two stated reasons. The first is because data is logged on a server, so every
event requires network activity. The second reason is the difficulty of analysis. The dataset
proposed by Thomas et al. (2003) had both mouse and keystroke events and proved difficult to
clean and analyze, informing the Blackbox decision to simplify. While the Blackbox dataset is
powerful and voluminous, there is little supporting metadata, such as assignment descriptions,

14https://www.bluej.org/
15https://snap.berkeley.edu/
16https://snap.berkeley.edu/
17https://py2.codeskulptor.org/
18https://github.com/chrispiech/pensieve
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assignment scores, and student background. This is by design, as subjects could be using BlueJ
for any purpose (Brown et al., 2018). The Blackbox dataset is stored in a database and access
is granted only to established researchers because of the potential for misuse in the form of
plagiarism and deidentification challenges (see Section 4).

code.org has made a dataset from their 2013 Hour of Code public.19 It contains the progres-
sion of abstract syntax trees as students progress toward a solution in a block-based program-
ming environment and has been used for research of automatic hint generation (Piech et al.,
2015). A series of programming logs from the iSnap environment are available.20 Data from
both code.org and iSnap are from block-based environment where there is little to no opportu-
nity for subjects to include identifying information in their solutions, and so deidentification is
a simple matter of removing identifiers from the metadata.

The annual CSEDM challenge has been a catalyst for the release of open datasets. The
2019 challenge used a dataset21 collected from subjects using the Intelligent Teaching Assistant
for Programming (ITAP) tutoring system (Rivers et al., 2016) and captures submission and
hint events. The second CSEDM data challenge used a dataset22 with compile/run granularity,
which was used for both knowledge tracing, by predicting performance on later programming
problems, and early grade prediction, by predicting exam scores.

2.5. OPEN QUESTIONS

As has been shown, programming process data has largely been used to predict academic out-
comes. We propose that a shift in focus be considered. Programming process data is just that,
a record of the process a student went through to write a program, and can provide powerful
insights into learning and into the student experience. While some work has been done in this
space (Shrestha et al., 2022; Shrestha et al., 2022; Blikstein et al., 2014; Piech et al., 2012),
far more can be done to understand exactly what students are experiencing and thinking as they
write their computer programs.

One question posed by Shrestha et al. (2022) is what exactly good programming process
is. Should students be writing their code linearly from start to finish, or should they be moving
between different sections of code making changes? It is possible that the answer depends on
the student and/or the particular problem being solved. It may also depend on how advanced
the student is. Answering this question could not only affect how we teach programming, but it
could give insights into programming at a professional level as well.

Another question is what exactly flailing looks like (i.e., students who are working unpro-
ductively and are unlikely to make progress) and what learning looks like (i.e., students who are
working productively) (Spacco et al., 2015). This is more than an academic exercise – realtime,
automatic interventions embedded in an IDE could be implemented to support the productive
use of a student’s time and effective learning.

A related question is how we can characterize engagement (Edwards et al., 2022). Can
we statistically detect, using keystrokes, whether a student is thinking, consulting resources,
checking their phone, or taking a longer break? If we can identify, even just in the aggregate,
these activities we can implement interventions as well as improve course design.

19https://code.org/research
20https://pslcdatashop.web.cmu.edu/Project?id=321
21https://pslcdatashop.web.cmu.edu/Files?datasetId=2865
22https://pslcdatashop.web.cmu.edu/Files?datasetId=3458
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And finally, we have a large class of questions relating to interventions and their effect, not
only on outcomes but also their effect on students’ programming process. Hundhausen et al.
(2017) outline a framework for pursuing these questions using CSEDM data. CSEDM data can
play an integral role in controlled studies of interventions and can enrich our insights beyond the
statistical analysis of traditionally measured outcomes.

2.6. THE ROLE OF OUR DATASETS

The five objectives we have discussed for work using CSEDM data are predicting course out-
comes, descriptive analytics, differences in context, biometrics, and plagiarism detection. Our
and other keystroke datasets have been used in studies in each of these areas (see Sec. 3.5 for
specifics on studies our datasets have been used in). Each of these objective areas is actively
being researched and in need of data, and so this release of the first set of public keystroke data
is timely. Much of the work done recently has used coarser-grained data, such as compile- or
submission-level, and so one could ask if all the effort to deidentify and acclimate to keystroke
data is really necessary. In answer, we point out that in the context of the objectives listed above,
keystroke data provides a richness of features that can’t be matched by lower-resolution data.
Indeed, the data we are releasing includes compilation and run data.

Predicting of course outcomes, biometrics, and plagiarism detection are heavily dependent
on selected features, and fine-grained data provides more opportunity for combining features as
well as discovering novel features. Differences in context can also benefit from a richer feature
set. But perhaps the objective where fine-grained data such as keystrokes can offer the most
value is in descriptive analytics. Much of our attention in our discussion of open questions has
focused on descriptive analytics, e.g., characterizing and understanding the process of writing a
computer program. While course-grained data provides a data point every hour or even minute,
fine-grained data provides data at the millisecond level and, if we are able to harness it, can
provide a veritable play-by-play view of what a student programmer is doing while writing
code. Of course, there are plenty of larger pauses between keystrokes during which students
are thinking, reading, reviewing, searching, and taking breaks, but during those two or three
hours during which we do have keystroke data, we may be able to gain important and actionable
insights into student behavior.

As we make progress in understanding the programming process, it is possible that Intel-
ligent Tutoring Systems could be enhanced by training them not just with canonical solution
code, as is done now, but with canonical processes. Much of the hint generation today is done
by finding optimal paths from the current code state to a canonical code state. Yet, with pro-
gramming process data, especially fine-grained data such as keystrokes, we can begin to define
“optimal” as “a path taken by an expert” and generate hints to guide students in not only ending
up with canonical code but developing the code in a canonical way.

3. TWO KEYSTROKE DATASETS

We present two keystroke log datasets that we have made publicly available for researchers and
practitioners. In this paper, we refer to them as the 2019 and 2021 datasets. They are available
for download as cvs files along with various metadata and other supporting files. They were
both collected in CS1 courses taught at Utah State University.
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(a) Phanon - 2019 dataset (b) PyCharm - 2021 dataset

Figure 2: Phanon and PyCharm IDEs used to collect 2019 and 2021 data, respectively. Phanon
has no hinting mechanisms whereas PyCharm has underlining and textual hints via the light bulb
icon.

3.1. DATA COLLECTION CONTEXT

The 2019 dataset was collected as part of a study on “syntax exercises,” which are short, high-
repetition exercises intended to help students become proficient in Python syntax before they
work on their weekly programming assignment (Edwards et al., 2020). We wrote a custom,
browser-based IDE called Phanon to deliver the syntax exercises and so that students would
not have to learn a second development environment, we added an interface for students to
complete their programming assignments within the Phanon environment (Fig. 2a). Keystrokes
were collected in order to measure whether students were spending significantly less effort on
their weekly projects as a result of the syntax exercises. Participation rates in the study were
extremely high (74%, resulting in 505 participants) because students did not need to do anything
to participate in the study beyond signing the informed consent form.

The 2021 dataset was collected as part of a study on attention and engagement (Edwards
et al., 2022). Students used the PyCharm IDE (Fig. 2b) to complete their weekly programming
projects. We wrote a plugin called PyPhanon that had two primary functionalities. The first was
that it would periodically prompt students to declare if they were working on their assignment or
not. The second functionality was to log keystrokes. In the attention study, we correlated student
responses to the prompts with their keystrokes and built a regression model to predict if a student
was on- or off-task based on the amount of time since their last keystroke. Participation rates
were much lower in this study (44 participants) because students would be required to reply to
the periodic prompts as to whether they were on task or not.

As will be seen in Section 3.3, both datasets include course metadata such as assignment de-
scriptions and exam scores. Only the ethics review board protocol for the 2021 study included
prior student academic data such as ACT score and college major. Neither study included de-
mographic information such as gender or ethnicity. In 2019 and 2021, 21% and 20% of students
enrolled in CS1 at Utah State University were female, respectively. 15% of students in 2019
and 20% in 2021 were declared Computer Science majors. Utah State University undergraduate
enrollment is approximately 83% white and 6% Hispanic or Latinx.
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Table 1: Summary of programming project tasks. Details are in a readme that is downloadable
with the data. Time is the median time in h:mm taken by students to complete the assignment
(both tasks are included in the time estimate). Tasks prefixed with “Turtle:” use Turtle graphics
for drawing.

Year Assign Time Task Description
2019 p4 0:21 1 Turtle: Draw snowman using turtle graphics
2019 p4 2 Calculate surface area and volume of a cuboid
2019 p5 0:50 1 Investment/interest calculations
2019 p5 2 Turtle: Draw bullseye
2019 p6 1:33 1 Calculate area of a polygon
2019 p6 2 Calculate employee pay
2019 p7 1:26 1 Rock, paper, scissors game with randomness
2019 p7 2 Calculate if two circles intersect
2019 p8 1:15 1 Discover perfect numbers
2019 p8 2 Simulate the Monty Hall problem
2021 Assign6 3:03 1 Calculate fluky numbers
2021 Assign6 2 Zookeeper and elephants in pens
2021 Assign7 3:02 1 Number pyramids
2021 Assign7 2 Turtle: Draw a chessboard
2021 Assign8 2:18 1 Turtle: Write functions that draw patterns
2021 Assign9 2:35 1 Turtle: Draw a face
2021 Assign9 2 Use classes to write a blobber pet
2021 Assign10 0:05 1 Generate output based on two words
2021 Assign11 1:23 1 Use classes to create and manage a human-like family
2021 Assign12 2:05 1 Modify lists
2021 Assign12 2 User enters numbers into list
2021 Assign12 3 Card game
2021 Assign13 0:40 1 Memory game
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3.2. DATASET DESCRIPTIONS

The 2019 dataset was collected during spring and fall terms of 2019. There were five assign-
ments with due dates between January 26 and February 23 for spring term and September
14 through October 12 for fall term. Each weekly assignment had two parts: the first was a
text-based logic problem and the second was a turtle graphics drawing. The dataset contains
keystrokes of students using Phanon to complete their weekly Python programming assign-
ments. The code editor of Phanon is minimal, using the CodeMirror library to provide syntax
highlighting, but no hints or auto completion functionality are available. Being browser-based,
the keystrokes were logged and stored in a database on a server then downloaded and converted
to ProgSnap2 format. Of the 505 study participants, 499 completed the first programming as-
signment and 448 completed the fifth programming assignment, which was the final assignment
measured in the study. The median score on the first assignment was 100 (IQR: 100-100) and
the median score on the fifth assignment was 94 (IQR: 74-100).

The 2021 dataset was collected during fall term of 2021. There were eight weekly assign-
ments with due dates from October 18 to December 10. Assignments were similar to the 2019
dataset, with both text-based logic problems and turtle graphics drawings. Students completed
their assignments in Python using the PyCharm IDE with the PyPhanon plugin that logged
keystrokes. PyCharm provides syntax highlighting, self-closing parentheses and strings, and
simple code completion. Keystrokes are logged in a custom format to a local file that is sub-
mitted together with the students’ code to our institution’s learning management system (LMS).
We downloaded the log files from the LMS and converted them to ProgSnap2 format. Of the 44
study participants, 39 completed the first programming assignment and 28 completed the eighth
programming assignment, which was the final assignment measured in the study. The median
score on the first assignment was 82 (IQR: 47-94) and the median score on the eighth assignment
was 39 (IQR: 0-68).

For both datasets, we have made assignment descriptions available for download (the same
descriptions given to the students) along with grades they received and other metadata described
in Sec. 3.3. For a very brief summary of the assignment descriptions see Tab. 1. Median time-
on-task for the assignments, calculated using Edwards et al’s statistical model (Edwards et al.,
2022), is included in the table.

In the cases of both datasets, instructors were independent of the researchers and did not
have access to the keystroke log files or which students were participating in the studies. While
the instructor strongly encouraged students to write their code using Phanon and PyCharm,
enforcing it was impossible, and some students wrote their code using a different IDE and then
pasted their solutions into Phanon and PyCharm. This is reflected in the keystroke log files as a
large paste with little, if any, change afterwards.

3.3. DATASET METADATA

Our datasets have a significant amount of metadata associated with them. This is important:
even subtle details regarding the context in which the data is collected (e.g. assignment type) can
have an impact on the analysis of the data, even to the point of seeing opposite effects between
two datasets (Ihantola et al., 2015). A simple example is the difference in time that different
assignments take. In the 2021 dataset, students made an average of 5570 edits to complete
assignment 6, while they only made an average of 999 edits for assignment 10. Without the
assignment descriptions, this difference could be difficult to understand. (Assignment 6 includes
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Table 2: Details about datasets.

2019 2021
Participants 505 44
Assignments 5 8
Submissions 3126 1304
Events 5 million 1 million
Collected Spring/fall 2019 Fall 2021
Collection mechanism Phanon PyPhanon (PyCharm)
Assignment descriptions ✓ ✓
Due dates ✓ ✓
Assignment/exam scores ✓ ✓
Final grade ✓
Highest ACT score ✓
High school GPA ✓
Major ✓
Execute success/failure ✓ ✓
Execute output ✓
Error underlining ✓

two difficult tasks with numerical manipulations and assignment 10 requires just a few simple
string manipulations.) For another example demonstrating the importance of detailed metadata,
see Section 5.2 of Ihantola et al. (2015).

Table 2 shows what metadata is included in each of the two datasets. These features include:

• Assignment descriptions - For each assignment, we include a PDF file with the assignment
description given to the students.

• Due dates - Each assignment has a due date. This is useful for studies relating to pro-
crastination, starting early, typing behavior relating to remaining time before the due date,
etc.

• Assignment, exam, and final scores - For each assignment, we include student scores for
studies relating to behaviors leading to immediate outcomes. We also have exam and
final course scores to understand relations to medium-term learning. The exam questions
themselves are not released.

• Highest ACT score and high school GPA - These measures help us understand preparation
and its relation to student experience in CS1. The ACT score is the highest ACT score
reported to the university for the student. Other reported ACT scores are not included.

• Major - This is the students’ chosen major program of study at the time they took the
course. This helps in studies looking at interest and success in CS from other fields.

• Execute success/failure/output - We include, as do other datasets such as Blackbox, results
from running the programs. Execution success and failure are in the same CSV files as the
other event data. Execution output is in a different file and is large (˜3 Gb). This is because
some executions result in many lines of output, especially those resulting in infinite loops.
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• Error underlining - The 2019 dataset was collected with Phanon, a piece of academic
software with very few features and no realtime compile helps, such as underlining of
syntax errors. The 2021 dataset, on the other hand, does have realtime error underlining,
the so-called squiggly line. This distinction can be useful in studying the effect of realtime
error assist mechanisms in an IDE.

With each dataset, we include a readme file describing the different files of the dataset.
We also include the IRB-approved informed consent documents that were filled out by student
participants.

The number of events for the 2021 dataset that is listed in Table 2 is the effective number
of events: for this dataset each keystroke results in two events, a keystroke event and a file edit
event, so the actual number of events stored in the files is closer to two million.

3.4. FORMAT

We selected the ProgSnap2 format for the keystroke data not necessarily because it is the most
suited to the data (indeed, we’ll see below that it presented some challenges) but because it ap-
pears that it is becoming more widely accepted as a standard format for computer programming
event data. Some additions and non-standard modifications were made to make it suitable for
keystroke data.

The ProgSnap2 format was designed for datasets for which storing an entire snapshot of
the code state at every event is reasonable. This makes sense when the snapshots are at low
temporal resolution, such as commits or compiles. Our data, however, often contains multiple
events per second, and so storing a snapshot at each event would result in prohibitively large
files. An alternative would be to store snapshots periodically, at, say, every compile. However,
since reconstruction of a given state of a file is straightforward (we provide Python code to do
so), little is lost in not including full snapshots.

Other changes are simply extensions using the ProgSnap2 extension mechanism and are
described in readme files included with each of the dataset downloads.

3.5. USE OF THE DATASETS

The two keystroke datasets we have released for public use have already been used in a number
of studies. The 2019 dataset was first collected during a controlled study analyzing the effec-
tiveness of a syntax exercise intervention (Edwards et al., 2020) and was used for effort analysis
between the control and test groups. Edwards et al. (2020) combined the 2019 dataset with a
dataset collected at a Finnish university to analyze differences in keystroke patterns across dif-
ferent programming languages and across natural language. Edwards et al. (2020) has a similar
analysis, except that it takes advantage of the fact that the 2019 dataset has a small assignment in
written English prose. Edwards et al. (2020) analyzes the 2019 dataset to find that some predic-
tive features are more reliable across assignments than others. Zavgorodniaia et al. (2021) uses
the 2019 dataset to look at circadian rhythms and chronotypes of introductory programming
students. Shrestha et al. (2022) introduces CodeProcess charts, Shrestha et al. (2022) analyzes
pausing behavior among students, and Edwards et al. (2022) reports an important study looking
into accurate estimation of time-on-task.

All of these studies were conducted by the same research group. Because the datasets were
identifiable, they could not easily be shared with others, complicating collaborations and virtu-
ally eliminating the possibility of widespread use. The richness and usefulness of the data, as
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evidenced by the publications and the growing list of interested investigators, motivated us to
undertake the significant work of deidentification and public release.

The datasets’ potential for future usefulness relates especially to the open questions dis-
cussed in Section 2.5. The question of what exactly qualifies as good programming process, as
suggested in Shrestha et al. (2022), is a question well-suited to keystroke log data. CodeProcess
charts are a good start, but there are at least two interesting directions the research could go in
this respect. The first is to discover ways to quantify programming processes. Finding features
that indicate what process is being used is an important first step towards finding effective pro-
cesses. The second research direction is in conducting controlled studies and measuring process
using log data. This is dependent on finding process features.

These datasets could also potentially be used for engagement studies. Similar to the pause
analysis (Shrestha et al., 2022), the keystroke data could be analyzed, especially using unsu-
pervised learning, to understand better when students are engaged and its relationship with out-
comes.

4. DEIDENTIFICATION

Deidentification is hard and is particularly so with programming process data. The creators
and maintainers of the Blackbox dataset, in fact, have restricted access because of the technical
challenges of deidentification (Brown et al., 2018), and since all primary analysis must take
place on a designated machine, dissemination and adoption are impaired. Indeed, it can’t be
used for public data challenges such as the annual Mining Software Repositories data challenge.

Deidentification is hard not just because source code files may contain unexpected identify-
ing information that needs to be inspected and masked. Even more challenging is the fact that
over half of the characters entered into a source code file are eventually deleted and don’t show
up in the final, submitted code.23 The ephemeral nature of most keystrokes means that inspecting
final submitted files is not sufficient – the process of writing the final code must be inspected as
well. The most straightforward way of reviewing keystroke log files is to watch a replay of the
keystrokes. Replays are interesting and insightful, but watching replays of hundreds of submis-
sions and millions of keystrokes is daunting. Remaining attentive during replay is challenging,
which is a major problem because even a momentary lapse in attention could result in missing
an inadvertent paste that the student quickly deletes. A further problem is that changes are made
in various parts of the file, so even for only moderately large files, a replay could jump around
in the file, making it difficult for the reviewer to maintain context.

Nevertheless, deidentification is possible and can be done without “almost destroying [the
source code]” (Brown et al., 2018). In consultation with our institution’s ethics review board
(IRB) we use the regulatory definition of identifiable, in that a document is identifiable if “the
identity of the human subjects [can be] readily be ascertained directly or through identifiers
linked to the subjects” (hhs, 2022). Examples of data that can readily identify participants
include names, email addresses, and student identification numbers. This is the information
that we target for removal in our deidentification process. Ihantola et al. (2015) point out
that participants can be identified by other features in the data, such as time elapsed between
keystrokes (Longi et al., 2015), time of day (Zavgorodniaia et al., 2021), and other typing pat-
terns (Thomas et al., 2005). However, all of these identification techniques require a labeled

23In our datasets, 58% of characters entered into a source code file are eventually deleted.
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sample, which the regulatory definition of identifiability assumes is not available.
A major challenge in preparing keystroke datasets for public release is deidentification. Dei-

dentification of keystroke log datasets is more complex than just a search/replace of student
names in submitted code files for at least two reasons. The first is that students sometimes mis-
spell their names and add other identifying information in comments, strings, and even variable
names (Ihantola et al., 2015). Indeed, the Blackbox project suggested that to fully deidentify this
type of data would be to blank all comments and strings and to rename all identifiers (Brown
et al., 2014). The second, and more challenging, issue is that much of the data is ephemeral.
That is, the final, submitted file is only a part of what was typed, with the majority of characters
being deleted before submission, yet all deleted characters can easily be recovered through a
replay of the keystroke log. An example case of both of these challenges was encountered dur-
ing the manual phase (see below) of deidentification when we discovered an invite for a Zoom
meeting that had been (inadvertently?) pasted and then deleted. At the time that we discovered
it, the linked-to meeting was still valid.

An option that we considered early on in the process was to tell the students in the informed
consent document that, if they agreed to participate in the study, the only deidentification we
would do would be to find their name in the final, submitted file, and mask those characters.
This is the general approach taken by the Blackbox project (Brown et al., 2014). We ultimately
decided that, while this type of waiver would simplify deidentification, there were ethical con-
cerns. Consider a student who, intentionally or not, enters additional identifying text. They may
realize that they don’t want that text submitted and delete it. Deleting the text gives a false sense
of security because, while the text disappears from the file, the deleted text, in fact, remains
recorded in the keystroke log. And even if the student does realize that there remains a record
of the text, there is not an immediately obvious way of removing it from the log file. The case
of the accidentally pasted Zoom meeting invitation described above highlights the importance
of handling deleted text with care. Even having an easy and obvious way for students to remove
identifying text is not enough. See Shrestha et al. (2022) for an example of a student who, appar-
ently having forgotten that their keystrokes were being logged, committed an egregious act of
plagiarism. This demonstrated that the logging of keystrokes can be forgotten after a short time
and therefore students may not think to remove identifying information beyond simply delet-
ing the text. A comprehensive deidentification process is needed to fully protect participants’
privacy.

Our approach to deidentification is to mask the characters of identifying text with the @
character. We chose this character because it is only used in the Python language as a NumPy
matrix multiplication operator, which we do not use in our CS1 course and so, if it appears in a
compilable program, would only appear in a string or comment. Alphabetic characters, such as
x, are not good candidates for masking characters because they would confuse the statistics of
character and digraph counts, which have been used in keystroke studies (e.g., (Thomas et al.,
2005; Edwards et al., 2020; Edwards et al., 2020)).

A shortcoming of the @ character, however, is that if an identifier gets masked it can
cause the program to fail to compile. For example, when masking the name “Eve,” a func-
tion is even() would get masked as is @@@n(). See Sec. 4.2 for other examples. It turns
out that masking keywords or identifiers is rare: for the 2021 dataset, final submissions have a
total of 1172645 characters. 7195 (0.6%) of those are mask (@) characters. Of the mask char-
acters, 12 appear outside of strings or comments, affecting compilation of a single submission
among the 1304 total submissions.
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The following subsections describe our deidentification process in detail. The process does
not rely on data format and can be used generally with any keystroke data that is rich enough to
be used to reconstruct code snapshots after any event.

4.1. DATA STRUCTURES

The first step in deidentification is to reconstruct the final submission of each file, maintaining a
pointer for each character back to the row in the log file where that character was added (Tables 3
and 4). At the same time, we also construct a string of the deleted characters for which each
character has pointers back to two events in the log file: where the character was added and
where it was deleted. We are required to mask the deletion event because it also stores the
character that was deleted. (It is stored for convenience and efficiency in playback.) Both the
final submission and deleted text string will undergo automatic and manual masking (see the
next two sections). When characters are found that need to be masked, the indices of the events
(Tab. 4) are used to mask the character(s) in the Insert/Delete Text fields of the event (Tab. 3).
When deleting characters, students typically use the backspace key, which usually results in
characters being deleted in reverse order of what they were typed. Because names and other
identifying information are being searched for, we reverse the order of the deleted text string.
We do not reverse it character-by-character, but rather, event-by-event. The reason is because
block deletes (highlighting a block of text and pressing the delete key) will appear in the deleted
text string in the correct order. For example, deleting the text “Hello•w[orld]”, where characters
in brackets are block deleted, might be deleted in the following order: “orld”-w-•-o-l-l-e-H. If
we consider these deletes as an array of strings, we reverse the array and concatenate to get
“Hello•world”. This approach restores most deleted text into a readable order, but there are
cases that cause failure. For example, deleting every other character in “Hello•world” and then
deleting the remainder would result in the deleted text string “drwolHro•le”. More simply, using
the delete key instead of backspace would result in “dlsow•olleH”. These cases are rare, and
whole, reversed strings from using the delete key can be manually discovered, as we found in
the manual review phase of deidentification. See Listing 1 for an example snippet of deleted
text. With these data structures in place, we can proceed with masking.

4.2. NAME SEARCH

We first mask the student’s name for each submission. We still know the student’s name at this
stage, so we do a case-insensitive search in the program text and deleted text (in reverse; see
below) for the student’s name. We first search and mask the student’s full name by searching
in the final and deleted text and following the pointers of each character back to the rows in the
log file and masking those characters. This takes care of the majority of identifiable text. After
masking the full name we search for each name individually (first, middle1, middle2,..., last)
and replace it. Then we looked at the first five lines of each file where students were required to
put their names, and looked for misspelled names and nicknames that hadn’t been masked. We
added these to our set of names and masked them.

Masking names can result in false positives. For example, (examples are contrived – actual
cases are not reported to protect participant identity) a student with the last name of “Green”
could mask the color green in turtle graphics assignments. A student named “Tim” could mask
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Listing 1: Deleted text example. The text is jumbled because deletions are scattered through
the process of writing code. Note the names in bold on lines 3 and 7 (with the name on line 7
apparently misspelled). The student typed in a name and then deleted it, which tends to stand
out among the disorder even without using the boldface font. We added and anonymized the
names for illustrative purposes and the remaining text is actual deleted text from our datasets.
See the text for details on how to detect and mask these events deleting identifiable text.

a part of a function called get time() as get @@@e(). We identified these cases and un-
masked code manually.

With the name search, we also do a regular expression match looking for student identifiers
which, in our case, are 8-digit numbers.

4.3. MANUAL SEARCH

Reconstructed files and deleted characters are mutually exclusive.
After the automatic name search, we do a manual search for additional identifying text.

The apparently ideal approach would be to manually watch replays of all keystroke logs. If
replaying at four events per second, this would take over 400 hours for six million events. But
more importantly, reviewers are at risk of losing focus and missing a piece of identifying text.
For example, if a student accidentally pastes something like the Zoom invite and immediately
deletes it, the text would appear on the screen for review for only 250 milliseconds. In addition,
when the code being replayed is long, it can be challenging to follow if the student jumps around
in the code making changes.

Instead of reviewing replays, we manually reviewed final code submissions as well as re-
versed versions of deleted text. In order to ease the challenge of review we first removed all
non-alphabetic, non-whitespace characters. We also removed non-identifying words as follows:
we first created a set of all names, nicknames, and known name misspellings of our study par-
ticipants. We then took a set of 370,102 English language words (DWYL, 2022) and removed
all words that were also in the set of names (e.g., Holly, Jack, Summer). We then removed all of
the non-name English words from the text to review. More formally,

to review = (program + deleted)− (words \ names)

where + is the append operator, − indicates removal of words, and \ is set subtraction. This
approach ensures that names remain in the text to be reviewed, but other words do not.
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Table 3: Log file for a student entering their first name. The first three characters are pasted, and
the e and the x are initially typed in the wrong order, deleted, then retyped correctly. TextIdx
is where the insertion or deletion occurs in the file. Curr is the current state of the code and
does not appear in the actual log files – it is included here for clarity.

Event Text Edit Insert Delete
Idx Idx Type Text Text Curr
0 0 Paste # A # A
1 3 Insert l # Al
2 4 Insert x # Alx
3 5 Insert e # Alxe
4 5 Delete e # Alx
5 4 Delete x # Al
6 4 Insert e # Ale
7 5 Insert x # Alex

Table 4: Data structures for deidentification. Each character of the reconstructed submission
text has the index of the log event (row) at which the character appeared. Each character of the
deleted text has the index of where the character was added as well as where it was deleted. The
text index is needed when insert and deleted events have multiple characters (e.g. pastes and
block deletes, respectively).

submission text # A l e x
event index 0 0 0 1 2 3
text index 0 1 2 0 0 0
deleted text e x
insert event index 2 3
insert text index 0 0
delete event index 5 4
delete text index 0 0
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After the text was manually reviewed by two researchers, which discovered issues in approx-
imately 10 submissions, we manually masked them. The fact that only 10 submissions among
the 4,430 total submissions contained issues both encourages us that the automatic tools are
quite effective and reinforces in our minds that the manual search needs to be done with care –
with so few issues, the manual reviewer must remain vigilant even after minutes or hours of not
finding any problems. Identifying text included additional misspelled names and nicknames,
such as shown in Listing 1, the Zoom invite, and, surprisingly, two additional Zoom meeting
links. The names were found in both the submission and deleted text while the Zoom links were
found only in deleted text.

We recognize that identifying information could have slipped through our deidentification
process, whether through algorithmic imperfections or through missing something during our
manual review. As a result, we are prepared to update log files as necessary should identify-
ing information be found. We have included the following statement in the metadata of our
published datasets: “This dataset has undergone deidentification, though it is possible, being a
complex, temporal, and ephemeral dataset, that identifying keystrokes may have been missed.
Ethical use of this dataset includes avoiding attempts at reconstructing identities. That said, if
researchers discover anything identifiable in the data, they are encouraged to contact the dataset
authors (john.edwards@usu.edu).”

5. TOOLS

We have attempted to make the adoption of our keystroke datasets as straightforward as possible
by storing the data in the ProgSnap2 format (Price et al., 2020), providing a web-based tool for
easy keystroke exploration, and providing a Python script, in the form of Jupyter Notebook, for
common tasks.

5.1. KeystrokeExplorer

KeystrokeExplorer is a web-based software that enables exploration of keystroke data. See
Fig. 1. It is useful for both researchers and instructors. It supports any keystroke log file in
the ProgSnap2 format with customizations described in Section 3.4.

The main feature of KeystrokeExplorer is the playback tool. The process of writing the
program can be replayed using a slider tool or using automatic replay. In automatic replay, there
are two modes. The first is to run with edits replayed at approximately 15 Hz. This mode is
useful for getting an idea of how the code structure evolves. The second mode is to use the
original keystroke latencies (though pauses are clamped to be no longer than five seconds). This
mode is useful for understanding what parts of the program might be frustrating to students or
what students are working on when they take breaks.

A version of a CodeProcess chart (Shrestha et al., 2022) is also included. This chart is a static
2D graphic showing what parts of the code were written when that can be used in concert with
playback. We include one enhancement over CodeProcess charts – we include all characters
that were deleted. This makes it straightforward to immediately see if a student struggled with
their program or not.

Other features of KeystrokeExplorer include a chart of keystroke latencies as well as a view
of the original csv file.
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KeystrokeExplorer has a number of use cases. Researchers can use it to formulate theories
around how students write code, including the order in which they write code, pause behavior,
struggle, variation across students, and variation across assignments. Educators can use it in a
number of different contexts. One is in conference with individual students. Students may have
difficulty reasoning about the process they take when discussing challenges with an instructor,
and the playback tool can help them explain their process. Another context is instructors under-
standing the difficulty students have in their assignments. A third use is plagiarism detection.
Instructors or teaching assistants can use the tool to quickly screen for different types of plagia-
rism (Shrestha et al., 2022) but, equally as important, students can use the playback to defend
against false positives. That is, if an instructor uses a static code plagiarism tool that flags a
program as similar to another, the student can show the playback to prove that they used a dif-
ferent process to come up with a similar program. However, anyone using keystroke data for
plagiarism detection should consider the practical and ethical issues it presents.

5.2. PYTHON SCRIPT

With the data distribution, we include a Jupyter Notebook file with various procedures that can
help researchers read keystroke data, reconstruct programs at any point, estimate time-on-task,
and correlate keystroke statistics with course outcomes.

6. CONCLUSIONS

In this paper, we have presented two keystroke datasets intended to play a role in CSEDM.
We have taken considerable space in the paper to situate where these datasets, and hopefully
others like them in the future, can contribute the most. Keystrokes are the highest resolution
among common CSEDM dataset types. The only type of data with higher granularity are mouse
movement logs, but these are rare and their utility hasn’t been established. Keystroke datasets,
however, have been used with considerable success in prediction tasks, descriptive analytics,
context difference studies, biometrics, and plagiarism detection.

The most significant limitation of this paper is the possibility of missed code identifying
students. As noted in Sec. 4.3, our deidentification process, because it has a manual component,
could have errors. Furthermore, as noted, the data is deidentified only as long as there is no
other labeled sample of a student’s keystrokes. When creating similar datasets, care should be
taken that labeled samples are not available. One other significant limitation is the data itself,
which is processed only for deidentification, so some cleaning may need to take place. One
cleaning issue is tasks; sometimes it isn’t completely clear which task a keystroke belongs to,
and so paying attention to what file is being modified is sometimes required if analyzing data
where task distinction is important. And, of course, the lack of demographic data – gender and
ethnicity in particular – reduces the applicability of the keystroke data for some studies.

A considerable challenge that we have discussed is deidentification, ostensibly a major rea-
son that no keystroke data is publicly available. Even the line edit-level Blackbox dataset is not
completely open because of deidentification issues (Brown et al., 2014; Brown et al., 2018).
In this paper, we have outlined our deidentification process in detail. It includes a process for
efficiently and robustly reviewing keystrokes, both those that end up in the final submission and
those that are eventually deleted. Our results show that deidentification, while still burdensome,
is possible.
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We were aware from the beginning that deidentification would be a challenge, but we did
not expect that so much manual labor would be needed. Writing scripts to prepare the data,
filter and mask known identifiers, and generate text for manual review was time-consuming, but
it was interesting and enjoyable. However, the manual review, while actually requiring fewer
hours than writing the scripts, was taxing. The dullness makes it challenging to stay alert to
catch the very few cases of identifiable data that slipped through automatic masking. Thus, we
suggest that a fruitful direction of future work could be in further automating deidentification
of keystroke data. This suggestion makes one major assumption: that public keystroke data is
worth the effort. We remain enthusiastic that fine-grained CSEDM data is and will remain a boon
to computing education research and education research in general, and believe that its value is
justified by the extant literature. However, if its value needs further proof, we are delighted to
release these datasets to the community for testing of its merits.
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