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The second CSEDM data challenge aimed at finding innovative methods to use students’ programming 
traces to model their learning. The main challenge of this task is how to decide which past problems are 
relevant for predicting performance on a future problem. This paper proposes a set of weighting schemes to 
address this challenge. Specifically, students’ behaviors and performance on past problems were weighted 
in predicting performance on future problems. The weight of a past problem was proportional to its 
similarity with the future problem. Problem similarity was quantified in terms of source code, problem 
prompts, and struggling patterns. In addition, we considered another weighting scheme where past problems 
were weighted by the order in which students attempted them. Prior studies have used problem similarity 
and order information in learner modeling, but the proposed weighting schemes are more flexible in 
capturing problem similarity on various problem properties and weighting various behaviors and 
performance information on past problems. We systematically investigate the utility of the weighting 
schemes on performance prediction through two analyses. The first analysis found that the weighting 
schemes based on source code similarity, struggling pattern similarity, and problem order improved the 
prediction performance, but the weighting scheme based on problem prompts did not. The second analysis 
found that the weighting scheme allows a simple and interpretable model, such as logistic regression, to 
have performance comparable to state-of-the-art deep-learning models. We discussed the implications of the 
weighting schemes for learner modeling and suggested directions for further improvement.         

Keywords: learner modeling, programming trace, problem similarity, knowledge tracing, performance 
prediction  
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1. INTRODUCTION 
The application of artificial intelligence in education (AIED) has the potential to address some 
long-existing challenges, such as “mentors for every learner” and “lifelong and lifewide 
learning” (Woolf et al., 2013). AIED can offer learners intelligent learning environments that 
are affectively sensitive and provide personalized support. The learner model is one of the key 
components of AIED (Luckin et al., 2016), which contains information about the learner, such 
as their knowledge and emotional states. The second CSEDM data challenge1 presented a 
learner modeling task where participants used students’ programming problem-solving data in 
the first half of an introductory computer science course to predict performance on problems 
in the second half (Section 2.1 provides more details). The challenge is how to decide which 
problems in the first half of the course are relevant for predicting performance on a problem in 
the second half. Treating all problems in the first half the same is not reasonable because some 
of them may not involve the knowledge and skills that are necessary for solving the problem 
in the second half.  

The most common practice to address such a challenge is perhaps knowledge tracing 
(Corbett and Anderson, 1994), which has been shown to effectively enhance learning when 
integrated into learning systems (Aleven, 2010; Anderson et al., 1995). Knowledge tracing 
typically entails explicitly defining knowledge components (KC) and mapping KCs to 
problems. The mapping is used as a de facto way of determining which prior problems are 
relevant for predicting performance on a future problem. Nevertheless, the process of 
developing a high-quality mapping between KCs and problems is a time and effort-consuming 
process.    

We address the second CSEDM challenge by proposing a set of weighting schemes based 
on problem similarity. Our approach is based on the assumption that, when predicting 
students’ performance in a future problem, past problems that are similar to the future problem 
will be more predictive than past problems dissimilar to the future problem. In addition, we 
consider another weighting scheme in which past problems are weighted based on the order in 
which students attempted them. This weighting scheme aims at accounting for the decay 
impact of past problems: the earlier a problem was attempted, the less impact it had on the 
performance in a future problem (Gong et al., 2011). Utilizing information about problem 
similarity and order is common in learner modeling, but methods that do so are (1) typically 
applying the information to weight a limited number of features (e.g., response correctness), 
and (2) some of them are quite complex and require significant computing power, especially 
for deep-learning-based models. By contrast, our approach allows applying the information 
about problem similarity and order to weight various features in a simpler way, and it can be 
implemented in a model as simple as logistic regression.  

This paper systematically investigates the impact of various weighting schemes on 
prediction performance through two analyses. The first analysis compares models with and 
without weighting to investigate to what extent weighting could improve the predictive 
performance and which weighting scheme performed better. The second analysis compares the 
weighting schemes with the state-of-the-art (SOTA) learner modeling methods to investigate 

 
 
1 https://sites.google.com/ncsu.edu/csedm-dc-2021 
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whether using problem similarity and order in a simple way could achieve the same predictive 
performance.  

1.1. PROGRAMMING PROCESS ANALYSIS 

Researchers have used programming traces to explore programming behaviors and 
proficiencies and predict future course performance. One well-known metric based on 
programming traces is the Error Quotient (Jadud, 2006a). The Error Quotient characterizes the 
extent to which a student struggles with syntax errors while solving a programming problem 
(Jadud, 2006a). Its computation has four steps: (1) generate pairs of consecutive compilation 
events on a problem; (2) assign a score to each pair based on an algorithm; (3) divide the score 
by 11, which is the maximum possible value (the maximum value is 9 in a more complex 
version; Jadud, 2006b); (4) compute the average of the normalized scores of all pairs. The 
algorithm in step 2 penalizes the student if they consecutively make the same errors. A pair of 
compilation events gets a score of 0 if at least one event does not end with any error, 8 if the 
two events have different types of errors, and 11 if both events have the same error type. Thus, 
a student with a high Error Quotient struggles with the problem more than a student with a low 
Error Quotient. Studies have found that Error Quotient predicts course performance (Jadud, 
2006b; Tabanao et al., 2011).  

Error Quotients focus on students’ compilation behaviors and do not consider how students 
handle the semantic errors of a program (Carter et al., 2015). The Normalized Programing 
State Model (NPSM) addressed this limitation by modeling students’ programming activities 
in terms of the change in both syntactic and semantic correctness (Carter et al., 2015). It 
divides students’ program states into eleven categories based on syntactic and semantic 
correctness. For example, a program with unknown semantic correctness might be in a state 
that was edited to be syntactically correct by the student. This state might switch to a state of 
execution with the debugger on or off. The proportion of time in each state was used as a 
feature predicting course performance. The results showed that NPSM had better predictive 
power on assignment grades and final course grades than the Error Quotient. For a detailed 
overview of these and other related metrics, see Villamor (2020).  

Based on the above metrics and other programming process studies, we engineered a set of 
features related to programming errors, behaviors, and debugging (see Table 3 in Section 2.2). 
The computation of our features was not the exact same as these metrics due to the properties 
of the dataset of the second CSEDM data challenge. For example, in the dataset, a submission 
was always executed with the debugger off, and the time that students worked on a submission 
or problem could not be calculated accurately.  

1.2. KNOWLEDGE TRACING AND PERFORMANCE PREDICTION 

Advances in the modeling of student knowledge have come about as the practice of 
knowledge tracing or inference, which has improved in recent decades, largely driven by the 
development of student models in intelligent tutoring systems (ITS; Shute and Zapata-Rivera, 
2012). Knowledge tracing refers to the process of identifying what a learner knows at any one 
time. The most well-known knowledge tracing algorithm is Bayesian Knowledge Tracing 
(BKT), which uses a hidden Markov model that estimates student knowledge as a latent 
variable and updates these estimates based on continuous feedback in the form of student 
performance on future tasks (Corbett and Anderson, 1994). While also typically considered a 
form of knowledge tracing, Performance Factors Analysis (PFA; Pavlik Jr et al., 2009), 
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another popular approach, concerns itself solely with using prior performance to directly 
predict future performance rather than estimating latent student knowledge explicitly. One 
common trait of some knowledge tracing and performance prediction models is the necessity 
of explicitly defining the KCs—including skills, facts, or concepts—required to complete each 
step or problem correctly. KC labels are meant to capture how students develop different skills 
at different rates, and therefore success on a particular problem is dependent on having 
developed the requisite skill for that problem. Skills unrelated to the problem have no direct 
bearing on the probability of success. Ignoring this fact—that is, weighting all past problems 
the same, regardless of their dissimilarity to the future problem for which success is being 
predicted—means treating related and unrelated skills the same, causing the model to retain 
much irrelevant information. In other words, KC labels help us to weight past problems 
differentially when predicting performance on future problems.   

However, developing high-quality KC labels can be an arduous task requiring subject 
domain expertise and careful iterative refinements. The KC labels have such profound 
implications for the accuracy of the knowledge tracing algorithm that specific techniques have 
been devised for evaluating the KC labels themselves (Cen et al., 2006; Stamper et al., 2011). 
As an alternative, modern techniques, such as deep learning knowledge tracing (DLKT; Sarsa 
et al., 2022), compensate for the lack of KC labels by automatically identifying the 
relationship between problems and weighting prior performance and behaviors based on this 
relationship rather than KC labels. Specifically, Deep Knowledge Tracing (DKT; Piech et al., 
2015) and other recurrent-neural-network-based approaches—such as Dynamic Key-Value 
Memory Networks (DKVMN; Zhang et al., 2017) —model student performance as a sequence 
of successes or failures, carrying pertinent information from past problems into the prediction 
of future problems. Self-attention-based models such as Self-Attention Knowledge Tracing 
(SAKT; Pandey and Karypis, 2019) or Separated self-AttentIve Neural knowledge Tracing 
(SAINT; Choi et al., 2020) instead follow a feed-forward architecture that searches for 
similarities among problems in parallel, while still preserving order information through the 
use of positional embeddings. The primary advantage of all these DLKT techniques is that 
they allow for a very large hypothesis space wherein relationships between problems can be 
automatically identified. While KCs can still be explicitly defined in these models—along 
with additional features in models such as Exercise-aware Knowledge Tracing (EKT; Liu et 
al., 2021) or Neural Pedagogical Agent (NPA; Lee et al., 2019)—the inputs are commonly 
kept as simple pairs of {problem ID, correctness}. Bypassing manual KC mapping and feature 
engineering hands the reins to the network’s backpropagation algorithm, which then takes care 
of identifying appropriate weights based on relationships in the input data. The high 
representational power of these models, however, comes at the cost of complexity and 
opaqueness. 

Within the realm of performance prediction for computer science (CS) education, 
approaches have included temporal-pattern-based approaches such as Recent Temporal 
Patterns (RTP; Mao et al., 2019), as well as the Additive Factor Model (AFM; Yudelson et al., 
2014), which is a member of the Item Response Theory (IRT) family. Some recent work has 
relied on DLKT for programming performance prediction (e.g., Shi et al., 2022; Wang et al., 
2017), which tends to have high predictive performance but is difficult to interpret.  

1.3. ITEM SIMILARITY IN EDUCATION 

The similarity of educational items has many applications, such as automatic recommendation 
and student and domain modeling. The basic procedure of applying item similarity consists of 
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three steps (Pelánek, 2020): choosing data of items, computing the similarity matrix, and 
application. The first step is deciding the input data of items or which item property the 
similarity is about. We can measure item similarity in terms of item statement and metadata 
(e.g., the KC of an item), item solutions, and item performance (Pelánek, 2020). Taking 
programming problems as an example, the item statement is the prompt that explains the 
problem requirement. Item solutions can be the sample code provided by the instructor or the 
code submitted by students. Item performance can be the correctness of students’ code, the 
number of students’ attempts, and the time on the problem. The second step is to compute the 
pairwise item similarity matrix. There are a variety of measures for each type of input data 
(Cechák and Pelánek, 2021). For example, when the input data is solution code, researchers 
may first represent the code with a set of vectors via natural language processing techniques 
(e.g., bag-of-words models; Pelánek et al., 2018). Based on two problems’ representation 
vectors, their similarity may be quantified by the Euclidean distance, cosine similarity, etc. 
The choice of input data has been found to be more important than the choice of similarity 
measures (Cechák and Pelánek, 2021; Pelánek et al., 2018). The final step is manipulating the 
similarity matrix for application. For example, with the similarity matrix, we can find the 
nearest neighbors of the item that a student just failed and recommend one neighbor item to 
the student (Pelánek, 2020).  

Item similarity has been used in learner modeling but is typically referred to as item 
relations. For methods that entail explicit mapping between items and KCs, such as BKT and 
PFA, items’ relations are measured in terms of metadata, i.e., their common KC. For methods 
that do not require an explicit mapping, such as DKT and SAKT, items’ relations are typically 
captured based on item performance data (Pelánek, 2020). Recent developments in DLKT 
have started taking advantage of other types of data to capture item relations. For example, 
code-DKT extends DKT by using both code correctness and the representation of code content 
(Shi et al., 2022). That is, the item relations in code-DKT are measured by both item solution 
and performance data. Note that these models do not use item relations in a way aligning with 
the three-steps approach because they do not use an explicit similarity matrix, and item 
relations are computed implicitly during the training of model parameters. In Pelánek’s (2020) 
words, these techniques capture item relations using a “model-based approach,” while the 
three steps capture item relations using an “item similarity approach.” Examples of other 
“model-based approaches” are item response theory (IRT) models (Embretson and Reise, 
2000), canonical correlation analysis (Sahebi and Brusilovsky, 2018), and tensor factorization 
(Zhao et al., 2020).  

1.4. THE RATIONALE BEHIND SIMILARITY WEIGHTING AND THE CURRENT STUDY 

The current study proposes a way of using the “item similarity approach” (Pelánek, 2020) to 
capture item relations and then applying the relation information to learner modeling in the 
context where an explicit mapping between KCs and problems is lacking. As mentioned 
earlier, the KC mapping helps us to weight past problems differentially when predicting 
performance on future problems. Similarity weighting serves as an alternative to this mapping. 
Prior studies have used similarity weighting implicitly through the “model-based approach” 
(e.g., Piech et al., 2015; Pandey & Karypis, 2019; Zhao et al., 2020). The current study uses 
similarity weighting explicitly. Nevertheless, the basic rationale is the same: a past problem’s 
weight to a future problem is proportional to their similarity. For a future problem where 
students’ performance is to be predicted, students’ behaviors and performance on a past 
problem that is similar to it are more indicative of its requisite knowledge than behaviors and 
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performance on a past problem dissimilar to it. Thus, behaviors and performance on past 
similar problems are more important in predicting performance on the future problem and 
should be assigned larger weights than dissimilar problems. Note that similarity is not limited 
to KCs. Two problems that do not involve the exact same KCs may still be similar because 
their KCs may be related to each other. For instance, iteration can be dependent on 
conditionals. Performance on a problem about conditionals may not rely on knowledge about 
iteration, but performance on a problem about iteration relies on knowledge about 
conditionals. Thus, the two problems are still similar, and performance on one problem is 
useful in predicting performance on another. Analogously, some complex KCs may only exist 
in problems later in a course because the instructor may not introduce these KCs until students 
master the prerequisite KCs. However, performance on problems about the prerequisite KCs is 
still useful in predicting performance on problems about the complex KCs.  

The proposed weighting method differs in how it uses item similarity from the “model-
based approach” for learner modeling. As mentioned before, the “model-based approach” uses 
item similarity to weight past problems implicitly while training the prediction model. For 
example, in DKT and SAKT (Pandey and Karypis, 2019; Piech et al., 2015), the various 
matrices (e.g., projection and embedding matrices) in the neural network function as a way to 
assign weights to past problems. The final weight of a past problem to a future problem is a 
non-linear transformation and combination of these matrices, which are iteratively optimized 
by algorithms like gradient descent. In methods based on matrix or tensor factorization 
(Sahebi et al., 2016; Zhao et al., 2020), the weight of a past problem to a future problem is 
determined by the Q matrix, which is a mapping between problems and latent concepts and 
optimized during model training. In IRT models (Embretson and Reise, 2000), the weight 
relies on item discrimination coefficients. Specifically, the performance on an item with high 
discrimination in a dimension impacts the ability estimates of this dimension more than the 
performance on an item with low dimension discrimination, and the ability estimates influence 
the probability of succeeding on items with high dimension discrimination more than items 
with low dimension discrimination. Item discrimination coefficients are optimized during 
parameter estimation. By contrast, in the current study, the weight of a past problem to a 
future problem is a linear transformation of their similarity (see Section 2.3.6), derived from 
one-time computation before training the prediction model. Thus, the proposed weighting 
method uses similarity weighting explicitly.  

The explicit use of similarity weighting prevents optimizing the weights for a prediction 
task, but it allows experts to specify which problem properties the similarity is based on and 
what information or features to weight. For example, two problems’ similarity in code content 
or correctness can be used to weight code correctness, content, errors, and the number of 
attempts on past problems. That is, a single weighting approach can be flexibly applied to all 
problem-specific features. Some DLKT models, such as the long-short-term-memory-based 
DKT, can also weight any features, but our approach can be more interpretable because the 
weighted features can be used by simpler machine learning (ML) models (e.g., logistic 
regression).  

We propose three similarity weighting schemes, each based on one of Pelánek’s (2020) 
three input data types (see Sections 2.3.2 to 2.3.4): problem statement, problem solutions, and 
problem performance. In addition to weighting problems by similarity, we also follow existing 
learner modeling techniques (e.g., PFA-decay model) in weighting problems by the order in 
which students attempted them to account for the decay impact of past problems. The rationale 
is that behaviors and performance on a recent problem are more indicative of their current 
knowledge state than behaviors and performance on an earlier problem (see Section 2.3.5 for 
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details). The four weighting schemes were applied when aggregating information over past 
problems to feature vectors (e.g., the proportion of solved problems; see Section 2.3.1). With 
these feature vectors as input, ML models working with tabular data (e.g., logistic regression) 
can access information about problem relations and attempt order, which are two types of 
information that these methods typically have difficulty using but which DLKT can exploit 
(Gervet et al., 2020). Thus, to some extent, the weighting schemes show a framework for 
using problem similarity and order weighting to engineer useful features and contribute to 
feature engineering in performance prediction.  

The current study evaluates the proposed weighting schemes by comparing their prediction 
performance to the model without weighting and the models using weighting via the “model-
based approach” in the task of the second CSEDM data challenge. In addition to the proposed 
weighting schemes and empirical evaluations, another contribution of this study is comparing 
the relative importance of various programming trace features in programming prediction. 

2. METHOD 

2.1. DATA 

The data was collected from an introductory computer science (CS1) course and provided by 
the second CSEDM data challenge. The CS1 course requested students to complete five 
assignments that were released one by one. Each assignment contained ten problems, but 
problems within the same assignment did not necessarily involve the same programming 
knowledge. Problems within an assignment were released simultaneously, had the same 
deadline, and could be completed in any order.  

The data challenge included two phases. Both phases asked participants to solve the same 
tasks but used different training data. In the within-semester phase, the training data included 
373 students in the CS1 course in the Spring of 2019 and 367 students in that course in the 
Fall of 2019 (see Table 1), while the training data in the cross-semester phase only included 
247 students of the Spring 2019 sample. The test data in both phases were a subset of 123 
students who participated in the CS1 course in the Fall of 2019.  

Table 1: Training and test data in cross-semester and within-semester phases. 

Phase Cross-semester Within-semester 

Training data Spring 2019 sample one 
(247 students) 

Spring 2019 samples one (247 students) 
and two (126 students) + 

Fall 2019 training sample (367 students) 
Test data Fall 2019 test sample (123 students) 

 
Each phase contained two tracks with different prediction tasks. This paper focuses on 

track 1, which asked participants to predict whether students would struggle with each of the 
20 later problems in the CS1 course based on their submission traces on the 30 early problems. 
Struggling was defined as not successfully solving a problem or solving the problem with 
more submissions than 75% of their peers.  

Table 2 displays the distribution of struggling in the 20 later problems in various samples. 
Note that each observation is a unique combination of a student and one of the 20 later 
problems. As such, the total number of observations is around 20 times the number of students 
in the dataset.  
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Table 2: The distribution of labels in various samples. 

Student-problem observations Struggling Not struggling 
Spring sample one 1,084 (25.80%) 3,117 (74.20%) 
Spring sample two 388 (25.68%) 1,123 (74.32%) 
Fall training 1,759 (25.05%) 5,262 (74.95%) 
Fall test 633 (26.77%) 1,732 (73.23%) 

 
The submission traces on problems contained information about syntax errors, test scores, 

and source code of each submission. The test score, ranging from 0 to 1, depended on whether 
the submission had syntax errors and how many tests it passed. If the submission had at least 
one syntax error or passed no test, the test score would be 0. If it had no syntax error and 
passed at least one test, the test score would be larger than 0. A score of 1 meant the 
submission passed all tests and was correct. Thus, if a submission without syntax error had a 
score smaller than 1, it meant that it failed at least one test and had semantic errors. The 
number of tests varied across problems.  
 

2.2. FEATURE ENGINEERING 

A total of 65 features were computed on the submission traces based on the script provided by 
the data challenge organizer (five features), from the winning entry in the first CSEDM data 
challenge (four features; Natti and Athrey, 2019), from the literature on programming process 
analysis (33 features), and from our feature engineering for the competition (23 features).2 
These features either characterize students or the 20 later problems (see Table 3). Students’ 
characteristics include four categories: basic (e.g., the percentage of the 30 early problems that 
students struggled with), error-related features (e.g., the percentage of submissions on the 
early problems that contain syntax errors), debugging-related features (e.g., the average 
difference in test scores between two consecutive submissions), and others (e.g., the number 
of days with at least one submission). Table 3 indicates the sources of these features. For 
simplicity, some rows include multiple features, where the number of features is indicated in 
parentheses. For example, row 20 contains two features, the change in the percentage of 
problems that students struggled with from the first to the third assignments and such change 
in the percentage of problems that students solved. We argue that such changes may represent 
the growth in students’ knowledge or skills, and the variation in the changes may represent 
differences in learning rates. The appendix presents the details of other features.  

We also computed three student-problem interaction features to capture the difference 
between students’ ability and problem difficulty. These features are inspired by 
psychometrics, specifically, the Rasch model (von Davier, 2016), where the probability that an 
examinee answers a problem correctly relies on the difference between their ability and the 
problem difficulty. For example, in the first student-problem interaction feature, the 
percentage of problems that a student did not struggle with may be viewed as the student’s 
ability, while the percentage of students that struggled with the problem may be viewed as the 

 
 
2 The code for this paper is public in Github: https://github.com/yingbinz/JEDM-similarity-weighting 
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problem difficulty. While some models, such as ensemble trees, can implicitly capture feature 
interactions, we explicitly computed such interaction features to ease their interpretation. 

In addition, we computed two sets of features aimed at capturing the linguistic information 
of students’ code submissions. We first used the term frequency-inverse document frequency 
(TF-IDF) to compute linguistic features. This is inspired by natural language processing (NLP; 
Jurafsky and Martin, 2009), where information systems use TF-IDF features to retrieve 
documents on relevant topics. In our case, we treated each student’s final submission on each 
problem as a natural language document and each token as a word. In this way, we obtained a 
50-element embedding vector for each submission using the Scikit-learn Python library. 
However, the elements are zeros in most code submissions and have little variation. We 
selected elements that were not zero in at least 10% of submissions as features in our model. 
Fifteen elements met this criterion. 

One major limitation of using TF-IDF and similar NLP approaches on code is that they 
explicitly capture linguistic information but ignore the structure of code. For this reason, we 
also applied code2vec to the source code of each submission and obtained a 384-element 
embedding vector for each submission. The details of this implementation are described in 
Section 2.3.2. We then performed dimensionality reduction using principal component 
analysis to reduce the 384-element embedding vector to a set of 16 features. 

Among the 65 features in Table 3, 52 would be weighted if weighting schemes were used 
and were marked in gray. We did not weight features #1, #18, #19, and #21 because they were 
more about students’ effort or problem-solving behaviors rather than performance. We did not 
weight features #4 and #20 because weighting was not applicable to them. For example, the 
median of weighted submissions might not be meaningful. Features #9 and #10 were not 
weighted because features highly related to them were weighted (e.g., #11 and #12). Problem 
features could not be weighted.  

Table 3: The categories and sources of features. 

Student  

Basic features Source 
1  # problems that a student attempted 

Organizer 
2  % problems that a student solved eventually 

3  % problems that a student solved on the first 
submission 

4  Median and max submissions on early problems (2) 

5  Mean submissions on early problems 
Engineering 6  % problems that a student struggled with 

Error-related features 
7  % problems on which a student made syntax errors 

1st data challenge 8  % problems on which a student made semantic errors 
9  % submissions that contain syntax errors  

Carter et al. (2015) 10  % submissions that contain semantic errors  
11  Average number of syntax errors on a problem Becker et al. (2016) 
12  Average number of unique test scores on a problem Engineering 
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Debugging 
13  Rate of fixing syntax errors 

Jadud (2006a) 14  Rate of making new syntax errors 
15  Rate of improving test scores 

Engineering 16  Average difference in test scores between two 
consecutive submissions  

17  Transition strength between code states (6) Carter et al. (2015) 
Others 

18  % problems that a student made a submission less 
than 15s Pinto et al. (2021) 

19  Number of days with at least one submission Yeckehzaare et al. 
(2022) 

20  Change in rows 2 and 6 from the first to the third 
assignments (2) Engineering 

21  The number of lines added, deleted, and modified Baumstark and 
Orsega (2016) 

22  TF-IDF vectors (15) Engineering 
23  Principal components of code2vec vectors (16) Shi et al. (2021) 

Problem 

24  % students that struggled with the problem Engineering 
25  % students that made syntax errors on the problem 

1st data challenge 26  % students that made semantic errors on the problem 

Student-
problem 
interaction 

27  % problems that a student did not struggle with  
- % students that struggled with the problem 

Rasch model (von 
Davier, 2016) 

28  % problems on which a student did not make syntax 
errors - % students that made syntax errors on the 
problem 

29  % problems on which a student did not make semantic 
errors - % students that made semantic errors on the 
problem 

Note. #: The number of. %: The percentage of. Engineering: features are engineered. Features 
marked in gray would be weighted if weighting schemes were used. 

2.3. WEIGHTING SCHEMES 

The proposed weighting schemes are designed to adjust the contribution of students’ 
interaction with each of the 30 early problems to the performance prediction on each of the 20 
later problems. Three weighting schemes were based on similarity, and each corresponded to 
one of Pelánek’s (2020) three input data types: item statement (problem prompt in this study), 
item solutions (source code in this study), and problem performance (struggling in this study). 
The fourth weighting scheme was based on problem order. In this section, we first provide 
information about how weights were applied when computing the value of each feature. Then, 
we present the specifics of each weighting scheme used in this study. 
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2.3.1. Application of weights 

Here we present the way in which weights are applied when computing features. Figure 1 
illustrates the hierarchical levels of features and where we used the weights. Features at the 
submission level (denoted as S, e.g., the number of syntax errors a submission contains) were 
aggregated to features at the early problem level (denoted as EP, e.g., the number of syntax 
errors that a student made on a certain early problem), which were further aggregated to 
features at the student-late problem level (denoted as LP, e.g., the average number of syntax 
errors that a student made on early problems). LPm represents the value of a LP feature that is 
used in predicting performance on later problem m. Weights are used in the aggregation from 
EP features to LP features, as illustrated by equation (1):  
 

𝐿𝑃! =
1
𝑁&𝑤"!𝐸𝑃"

#

"$%

 (1) 

N is the number of early problems that a student attempted. 𝑤"! is the normalized weight of 
early problem n for late problem m, and ∑ 𝑤"!#

"$% = 𝑁. 𝐸𝑃"  is the feature value on early 
problem n. If the aggregation is summing, %

#
 needs to be removed from equation (1). Not using 

weights is a special case of equation (1), where 𝑤"!  is always 1 regardless of n and m. 
Consequently, 𝐿𝑃% = 𝐿𝑃& = ⋯ = 𝐿𝑃&'.  

Figure 1: The hierarchical levels of features and where weights are used. 

As an example, we will focus on the feature proportion of problems that a student 
struggled with to predict performance on late problem 43. Table 4 shows three students’ 
responses to five early problems. Students A and B struggled with three problems, and their 
unweighted features were 0.6. However, B’s weighted feature was almost twice A’s weighted 
feature. This is because A struggled with problem 1, which had a low similarity with problem 
43 and a small weight, and B struggled with problem 3, which had a high similarity with 
problem 43 and a large weight. Similarly, student C struggled with two problems, but C’s 
weighted feature was larger than A’s because C struggled with problems 3 and 13, both of 
which had large weights.   

Alternatively, features at the submission level can be directly aggregated to the student-late 
problem level. In such cases, weights are used via equation (2). 
  
 

L𝑃! =
1
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 Table 4: Three students’ unweighted and weighted features for predicting performance on late 
problem 43. 

Student  
Early problem n 1 3 5 12 13 

LP43 Similarity 0.02 0.51 0.31 0.22 0.32 
Weight wn43 0.07 1.86 1.14 0.79 1.14 

A 
Original response EPn 1 0 1 1 0 0.60 
Weighted 0.07 0.00 1.14 0.79 0.00 0.40 

B 
Original response EPn 0 1 1 0 1 0.60 
Weighted 0.00 1.86 1.14 0.00 1.14 0.83 

C 
Original response EPn 0 1 0 0 1 0.40 
Weighted 0.00 1.86 0.00 0.00 1.14 0.60 

Note. Original response: 1 represents struggling, and 0 represents success.  
 
Tn is the number of submissions on early problem n. 𝑇 is the total submissions on all early 
problems, i.e., ∑ 𝑇"#

"$% . 𝑆")  is the feature of submission t on early problem n. 𝑤"!∗  is the 
normalized weight of submissions on early problem n for late problem m and ∑ 𝑇"𝑤"!∗#

"$% =
𝑇. It is derived by normalizing 𝑤"!:  
 

𝑤"!∗ =
𝑇

∑ 𝑇"𝑤"!#
"$%

𝑤"! (3) 

With equation (3), submissions on the same early problem have the same weight for a late 
problem, but submissions on different early problems have different weights. Moreover, the 
ratio of the weight of a submission on early problem P to that on early problem Q is +"#

+$#
 for 

late problem m, which is the same as the ratio of the weight of early problem P to early 
problem Q.   

Equation (2) is suitable for features that require many submissions to generate reliable 
values. For instance, obtaining a reliable measurement of transition strength between code 
states may require 50 or more submissions (Bosch and Paquette, 2021), but in most cases, a 
student made far less than 50 submissions on a single problem. Thus, computing the transition 
strength between code states at the early-problem level would be improper, while using 
equation (2) to compute transition strength directly is more appropriate. All debugging-related 
features were weighted using equation (2), and the others were weighted using equation (1).  

2.3.2. Weighting by source code similarity 

In this weighting scheme, the weights were based on the similarity between two problems 
based on the source code of submissions on these problems. We used code2vec (Alon et al., 
2019) to convert students’ code to embeddings that retained some of the semantic properties of 
the code. We then used the similarities between the average embeddings as weights. 

Code2vec emulates the success of distributed vectors of words (such as word2vec) in 
natural language processing (NLP) tasks but uses an approach that retains the semantic 
properties of code. It does this by extracting a series of leaf-to-leaf paths from an abstract 
syntax tree (AST) representation of the code and then using these paths as inputs in an 
artificial neural network (ANN) designed to predict method names in the code. Once the 
model is trained, it can be used to convert any code snippet into a vector embedding 
representation. Code2vec has previously been used in CS education research, including to 
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profile students based on their code (Azcona et al., 2019), to discover student misconceptions 
(Shi et al., 2021), and to automatically detect bugs in student code (Shi et al., 2021). 

To calculate these weights, we first identified a single submission from each student-
problem pair to convert to a code embedding. If a student successfully solved the problem, we 
used the code from their final correct submission. Otherwise, we used their final submission 
which had no compiler errors. The latter requirement is because we could not extract an AST 
from uncompilable code, making it also impossible to convert it to an embedding. We then ran 
the code snippets from each of these selected submissions through code2vec, converting the 
code to an AST, extracting paths from the AST, then using the path as input for the neural 
network trained to predict method names, and finally extracting the embedding used by the 
neural net in its prediction task. We used the exact neural network configuration described by 
Alon et al. (2019). The network was trained for eight epochs on 14 million examples of Java 
code snippets found on public GitHub repositories. 

Once we had all code embeddings for our training data, we calculated the similarities 
between them in three different ways: inverse Euclidean distance, cosine similarity, and 
Pearson’s correlation. We measured the inverse Euclidean distance between embeddings using 

%

,∑ (/0%100%)&!
%'(

 where 𝐿𝐸3 and 𝐸𝐸3 are the i-th element in the late problem embedding and in 

the early problem embedding, respectively. We calculated the cosine similarity between 
embeddings using /0⋅00

‖/0‖‖00‖
 where ‖𝐿𝐸‖  is the magnitude or Euclidean norm of the late 

embedding vector—that is, 1∑ 𝐿𝐸3&"
3$%  . 

We reasoned that exploring multiple operationalizations of vector similarity would allow us 
to identify the better option, based on the nature of the embeddings themselves. For example, 
cosine similarity—which is the typical way of measuring similarities between word2vec 
vectors—only considers the angle between vectors and works best when the magnitude of a 
vector is not important. Euclidean distance, on the other hand, is quite intuitive as it measures 
actual distance, but these distances (and, for our purposes, weights) can become insignificant 
if the angle between vectors is very small. However, the current study did not find a difference 
between the three measures. This was in line with prior studies that found that the choice of 
similarity measures had relatively less impact than the choice of input data (Cechák and 
Pelánek, 2021; Pelánek et al., 2018). Thus, the result section only reports cosine similarity. 
The appendix presents the results of Euclidean distance and Pearson correlation.  

2.3.3. Weighting by problem prompt similarity 

An alternative way to identify similarities between problems is to compare the language in the 
problem prompts (Pelánek, 2020). To do this, we extracted a document embedding for each 
prompt using doc2vec (Le and Mikolov, 2014). Doc2vec builds on word2vec by adding an 
additional document vector that allows the model to create a document embedding (as 
opposed to a word embedding) that aims to capture the semantic concepts that make up the 
document. We made use of the doc2vec implementation found in the Gensim library for 
Python (Rehurek and Sojka, 2010). 

The specific process we used to calculate weights began by tokenizing the problem prompts 
and removing typical stop words. We then trained a doc2vec model with tagged problem 
prompts over 120 epochs. We used this model to convert the text of each problem prompt into 
a 50-element document vector. Finally, we calculated the similarity between each late problem 
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prompt and each early problem prompt using the same three measures of difference as with 
the code embeddings—inverse Euclidean distance, cosine similarity, and Pearson’s 
correlation. Again, there was no difference among the three measures in prediction 
performance. Thus, the result section only reports cosine similarity, and the appendix presents 
the results of the others. 

2.3.4. Weighting by struggling similarity 

The current weighting scheme used the correlation between the students’ performance in two 
problems as the similarity metric. The rationale is if the knowledge and skills involved in two 
problems are related, a student performing well on one problem is likely to perform well on 
another. Thus, the correlation between students' performance in the two problems should be 
stronger than the correlation between two problems involving unrelated knowledge and skills. 
Performance in a problem can be measured using various indicators—for example, whether a 
student struggled with the problem, whether they made syntax errors in the problem, how 
many syntax errors they made in the problem, etc. Multiple performance indicators can be 
used to compute multiple similarity metrics, which could be used to weight different features. 
For instance, the similarity in struggling could be used to weight the proportion of problems a 
student struggled with, while the similarity in syntax errors could be used to weight the 
proportion of problems on which students made syntax errors. The current study only used the 
similarity in struggling, given that the goal of the task is predicting whether a student will 
struggle with a problem or not. 

Struggling with a problem is a binary feature, so contingency table correlation is used. 
Specifically, we used the log-odds ratio because it ranges from -∞ to +∞ and approximates a 
normal distribution (Dagne et al., 2002), making it suitable for statistical analysis. Thus, the 
similarity between early problem n and late problem m is their log-odds ratio, which is 

𝑙𝑛
678(&9/6;8

(
&9	

6=8(&9/6>8
(
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. ln is the natural logarithm, and Table 5 explains a, b, c, and d. For example, a 

is the number of students struggling with both problems. ½ is used to reduce the bias in the 

log-odds ratio estimate (Dagne et al., 2002). 
678(&9

6;8(&9
 is the odds of struggling with late problem 

m in students struggling with early problem n, while 
6=8(&9

6>8(&9
 is the odds of struggling with late 

problem m in students succeeding on earl problem n. A log-odds ratio of zero means that the 
odds of struggling with late problem m were independent of struggling with early problem n or 
not. A log-odds ratio larger than one means a positive correlation, while A log-odds ratio 
lower than one means a negative correlation.  

Table 5: Contingency table of struggling in two problems. 

                      Problem m 
Problem n Struggling Success 

Struggling a b 
Success  c d 

  
 Among the 600 early-later problem pairs, 46 had negative log-odds ratios. A negative log-

odds ratio indicates that students who struggled with the early problem were less likely to 
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struggle with the later problem. Forty-four negative log-odds ratios were small in terms of 
magnitude (> -0.4), indicating weak associations (Rosenthal, 1996). Such weak negative 
associations might occur due to randomness. Thus, if early problem n and late problem m had 
a negative log-odds ratio, we replaced the negative value with the minimum positive log-odds 
ratio of early problem n. This processing assumed that the interaction with any problem did 
not contribute to learning negatively, analogous to the assumption in Zhao et al. (2020) that no 
learning material was negatively related to a concept. The largest two negative log-odds ratios 
were both from the first early problem (ID 1), with later problems 51 (-0.41) and 64 (-0.55), 
respectively. This early problem had a negative log-odds ratio with 13 of the 20 later 
problems. Investigating the cause of negative log-odds ratios is beyond the scope of this paper, 
but it may be worth future studies. 

2.3.5. Weighting by problem order 

Unlike previous weighting schemes that address the lack of knowledge components, the 
current scheme aims to account for the decay impact of past problems (Gong et al., 2011). The 
decay impact assumes that behaviors and performance on a recent problem are more important 
than that on an earlier problem in predicting performance on a future problem. For example, 
compared with students’ performance in the earlier part of the 30 early problems, e.g., the first 
five problems, their performance in the latter part of the 30 early problems, e.g., the last five 
problems, might more accurately represent their knowledge and skills when they were 
attempting the 20 later problems. Thus, we assigned lower weights to the earlier parts of the 
30 early problems and higher weights to the latter parts. The reason behind the decay impact 
might be various. It might be that students’ programming knowledge and skills grew during 
the period of the 30 early problems, which was one month, perhaps a significant amount of 
time for novice CS students. Meanwhile, students might forget the knowledge learned weeks 
ago. Also, compared to the earlier part of the 30 early problems, the latter part might involve 
content more similar to the 20 later problems.  

For the early problems attempted by a student, we sorted these problems by the timestamp 
of the student’s first submission on each problem. Then, the first problem was assigned a 
weight of 1, the second problem a weight of 2, and so on until the last problem, which was 
assigned a weight equal to the number of early problems attempted. Through this weight 
assignment, we hope to partially account for the learning in programming knowledge that 
occurs over time.  

The weights can be assigned in different ways. For instance, the first problem may have a 
weight of 2, the second problem may have a weight of 3, and so on. In this weight assigning, if 
a student attempted all 30 early problems, the ratio of the first problem’s weight to the last 
problem’s is 2/31. By contrast, based on the weight assignment that we used, the ratio is 1/30, 
almost half of 2/31. Thus, our weight assignment implied a stronger decay in the impact of 
past problems. It is challenging to predetermine which weight assignment method works best, 
analogous to hyperparameters in ML. Similarly, the best weight assignment may be 
determined by cross-validation (CV). Indeed, we experimented with a few ways of assigning 
weights, where the ratio of the first problem’s weight to the last problem’s ranged from 1/60 to 
1/3. The ratio of 1/30 worked best in terms of the average CV AUC in the training data, 
though the differences were small (~0.001 AUC).   
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2.3.6. Normalizing weights and combining different weighting schemes 

Weights derived from the above computation are unnormalized, denoted by 𝑤"!? . 𝑤"!?  cannot 
be used to weight features directly because it may cause unreasonable values in weighted 
features. For example, for the proportion of problems that a student struggled with, using 𝑤"!?  
may result in a weighted proportion beyond 100%. Equation (4) normalizes 𝑤"!? :  
 

𝑤"! =
𝑁 ∗ 𝑤"!?

∑ 𝑤"!?#
"$%

 (4) 

Different weighting schemes can be used together. When multiple weighting schemes are 
used, we take the mean of their normalized values as the final weight: 
 

𝑤"! =
1
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 (5) 

𝑤@"! is the weight of early problem n for late problem m in weighting scheme s. S is the 
number of weighting schemes used. Note that taking the mean of different weighting schemes 
might not be a good choice because weighting schemes that were not useful might damage the 
performance of the average weighting. We return to this point in Section 4.2.  
 

2.4. MODEL BUILDING 

This study investigated the effectiveness of the weighting schemes in two analyses. The first 
analysis compared different weighting schemes to investigate to what extent the weighting 
could improve predictive performance and which weighting scheme performed better. The 
second analysis compared the weighting schemes with the SOTA learner modeling methods to 
investigate whether using problem similarity and order in a simple way could achieve the 
same predictive performance. Both analyses were conducted for cross- and within-semester 
prediction. Note that all weights were learned only from the training dataset. More 
specifically, the weights in cross-semester prediction were from Spring sample one as this is 
the training dataset in this phase. Similarly, the weights in within-semester prediction were 
from Spring samples one and two as well as the Fall training dataset. The evaluation metric 
was AUC because it was the criterion of the CSEDM data challenge. 

2.4.1. Comparing different weighting schemes 

We used three machine learning models: extreme gradient boosting (through the XGBoost 
Python library), random forest (through the Scikit-learn Python library), and lasso logistic 
regression (also through the Scikit-learn library). We used a 5-fold CV within the training 
dataset and grid search to tune the hyperparameters. CV was conducted at the student level, 
i.e., different folds contained different students. We first tuned the hyperparameters in the 
models with unweighted features, and then we applied the tuned hyperparameters to the 
models with weighted features. Table A-2 in the Appendix displays these hyperparameters. 

We first compared the performance of models with and without weighting schemes with all 
features in Table 3. Because engineering all these features was effortful, we investigated the 
difference between models with and without weighting schemes when fewer features were 
used. We varied the number of features from five to all features. The features were selected 
based on their importance in the model with all features calculated on the training dataset. For 
example, when the number of features was five, the most important five features in a model 
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were used. Feature selection was implemented via the SelectFromModel function of the 
Scikit-learn Python library. 

We reported the five most important features in the best models (random forest classifier 
for cross-semester prediction and lasso logistic regression for within-semester prediction) in 
the condition of all features. For the random forest classifier, the Gini importance was used, 
and for lasso logistic regression, the standardized coefficients were used. Because some 
features were highly correlated (e.g., Pearson correlations were around 0.90), we also ranked 
the importance of a feature based on the AUC of the one-feature model, which only used this 
feature. The AUC was evaluated via a 5-fold CV in the training dataset, and the average value 
was used as the importance measure. 

2.4.2. Comparing weighting schemes with DLKT and IRT 

We chose DLKT and IRT models as our baselines. We selected DLKT because they are 
SOTA and use problem similarity and order implicitly. We chose IRT models because they 
account for problem difficulty explicitly and inspired our student-problem interaction features. 
For our approach, we decided to use only two features that could be computed based on 
response correctness and problem ID sequences: the proportion of problems that a student 
struggled with and the proportion of students that struggled with the problem (#6 and #24 in 
Table 3). We chose the two features because they could be computed only using response 
correctness and problem ID sequences, which is the information used by the baselines (DLKT 
and IRT). Thus, with the two features, our approach used the same information for prediction 
as the baselines, and the comparison between our approach and the baselines might be fairer 
than using all features listed in Table 3. It is noteworthy that using many features may cause 
overfitting issues and damage the performance of a model (see Figure 3). Thus, to some 
extent, using only two features might give our approach an advantage.    

The number of combinations of ML models plus weighting schemes was 24 (three ML 
models * eight weighting approaches; see Figure 2). Comparing all combinations to the 
baselines might inflate the performance of our approach. Thus, we selected the combination 
with the best average AUC across a 5-fold CV in the training dataset. The best combination 
was the lasso logistic regression with struggling similarity weighting in both cross- and 
within-semester prediction. We compared this combination with the baselines in the test 
dataset. 
 

DLKT. We used three DLKT models as baselines. We used the LSTM implementation of 
DKT (Piech et al., 2015) since it was the first DLKT model published and serves as a good 
starting point for comparison. We also used two self-attention-based models, SAKT (Pandey 
& Karypis, 2019) and SAINT (Choi et al., 2020). The latter is the SOTA model on the official 
EdNet (Choi et al., 2020) leaderboard as of this writing, though its successor, SAINT+ (Shin 
et al., 2021), has reportedly performed marginally better. We wrote our LSTM-DKT 
implementation using Keras and TensorFlow and used publicly available open-source 
implementations of SAKT3 and SAINT4 written using PyTorch. All three DLKT models used 

 
 
3 https://github.com/hcnoh/knowledge-tracing-collection-pytorch/blob/main/models/sakt.py 
4 https://github.com/Nino-SEGALA/SAINT-pytorch 

79 Journal of Educational Data Mining, Volume 15, No 1, 2023



  
 

problem ID and correctness as inputs. We tuned the hyperparameters by training the model on 
80% of the training data and validating it on the other 20%. 

IRT models. We used the two-parameter logistic model (2PL), which accounts for problem 
difficulty and discrimination explicitly (Embretson and Reise, 2000). We did not use the 
Rasch model because we did not think that the programming problems had the same 
discriminative power. Moreover, in the multidimensional context, to some extent, it is through 
the discrimination coefficients that the 2PL model utilizes problem relations. Indeed, the 
Rasch model performed worse than the 2PL model in terms of both model fit and AUC in the 
training dataset. We implemented one- and two-dimensional 2PLs via the mirt package 
(Chalmers, 2012) in R. The problem structure of the two-dimensional model was determined 
based on the factor loading pattern generated by principal factor analysis with promax 
rotation. We regarded a problem related to a latent dimension when its loading on this 
dimension was larger than 0.2. A problem might be related to both dimensions. The problem-
dimension relations were reported in Table A-2 of the Appendix. 

3. RESULTS 

3.1. COMPARING DIFFERENT WEIGHTING SCHEMES 

Figure 2 depicts the test AUC of different weighting schemes when all features were used. 
Table A-2 in the appendix displays the exact values of train and test AUC. The value of the 
best test AUC per training dataset per ML model is displayed. Models with source code 
similarity weighting improved test AUC, compared to no feature weighting, in 5 out of 6 
conditions (except for the condition of cross-semester prediction with random forest 
classifier). However, the magnitude of improvement is small, between 0.001 and 0.005. 
Problem prompt similarity weighting consistently reduced test AUC (0.003 to 0.009), 
compared to no weighting. 

Problem order weighting improved the test AUC better than source code similarity 
weighting, except for the condition of cross-semester prediction with lasso logistic 
regressions. Compared with models without weighting, models with problem order weighting 
improved test AUC by 0.003 to 0.009. Struggling similarity weighting achieved better 
improvement, with a magnitude of 0.006 to 0.015. In both cross-semester and within-semester 
predictions, the model with the best AUC used struggling similarity weighting. For cross-
semester prediction, random forest with struggling similarity weighting plus problem order 
weighting achieved the best test AUC (0.793). For within-semester prediction, lasso logistic 
regression with struggling similarity weighting achieved the best test AUC (0.797). In 
summary, source code similarity, struggling similarity, and problem order weighting improved 
model performance consistently but by a relatively small amount (≤ 0.015 AUC).  

Problem order weighting aims to account for continued learning, while other weighting 
schemes aim to account for problem similarities. We investigated whether combining them 
could improve the prediction. The combination of problem order weighting and one of the 
problem similarity weighting schemes did improve the test AUC in some conditions, but the 
improvement was relatively small. For example, random forest with struggling similarity 
weighting plus problem order weighting achieved the best test AUC in cross-semester 
prediction, but only 0.0004 higher than random forest with only struggling similarity 
weighting. Combining all weighting schemes did not improve the test AUC. Table A-3 reports 
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the other combinations. Overall, combining weighting schemes did not improve the 
performance. 

 

Figure 2. The test AUC of various weighting schemes. 

Note. Cross-semester: training data contained spring sample one. Within-semester: training 
data contained spring samples one and two as well as the fall training sample. XGB: extreme 
gradient boosting.  

 

3.1.1. The comparison under various numbers of features  

Figure 3 displays the test AUC under various numbers of features (values smaller than 0.76 
were not displayed for clarity). The relative performance of various weighting schemes in the 
condition of not all features was similar to that of all features. In most conditions, problem 
prompt similarity weighting showed lower test AUC than no weighting, and source code 
similarity weighting improved the test AUC slightly. Problem order weighting improved the 
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test AUC better than source code similarity weighting, and struggling weighting or its 
combination with problem order weighting improved the AUC the best. An exception 
occurred at the condition of lasso logistic regression for cross-semester prediction, where 
struggling weighting and its combination with problem order weighting performed much 
better than source code similarity weighting in the condition of five features. As the number of 
features increased, source code similarity weighting overtook these weighting schemes. In 
summary, source code similarity, struggling similarity, and problem order weighting improved 
model performance consistently regardless of the number of features, but the improvement 
decreased as the number of features increased.  

A noticeable pattern was that the difference between models without weighting and with 
struggling (or struggling + order) weighting was the largest in the condition of five features, 
and it generally decreased as the number of features increased. Particularly, as the number of 
features increased from five to ten, the test AUC of the model without weighting increased 
greatly (0.009 ~ 0.042), but that of the model with the best weighting increased little (e.g., 
0.000 ~ 0.005 for struggling weighting). Further analysis found that it was the change in the 
proportion of problems that a student struggled with from the first to the third assignment (for 
simplicity, we refer to it as the struggling change) that contributed to the improvement of the 
model without weighting. After including this feature, the test AUC increased 0.007 ~ 0.035 in 
the model without weighting but hardly changed in the model with weighting (e.g., 0.000 ~ 
0.002 for struggling weighting).  

Note that the struggling change was not weighted even when weighting was used. We 
compared its correlations with the other features between the conditions of struggling 
weighting and no weighting. From no weighting to struggling weighting, the average absolute 
correlation between the struggling change and features that would be weighted if using 
weighting increased from 0.16 to 0.21. Particularly, its correlation increased from 0.21 to 0.51 
with the proportion of problems that a student struggled with, from 0.41 to 0.57 with the 
proportion of problems on which a student made semantic errors, and from 0.39 to 0.53 with 
the average number of unique test scores on a problem. The three features were some of the 
most important features (see Table 6) and included by the model when using only five 
features. Overall, this suggests that the struggling change contained useful information for 
prediction. However, when struggling weighting was used, the importance of this feature 
decreased because the weighting made its useful information contained by the other features.  

The struggling weighting added information about problem struggling similarity to the 
other features. Was this information contained by the struggling change from the first to the 
third assignment? The differences in the two assignments’ similarity to the 20 later problems 
answer this question. The average similarity between the ten problems in the first assignment 
and the 20 later problems was 0.40 log-odds ratios, but the average similarity was 1.27 log-
odds ratios between the ten problems in the third assignment and the 20 later problems. In 
terms of normalized weights, the average of the problems in the first assignment was 0.50, but 
the average of the problems in the third assignment was 1.50. Thus, the struggling change 
from the first to the third assignment would be reflected in the weighted features. For instance, 
a student that struggled with a few problems in the first assignment but many problems in the 
third assignment would have a high weighted proportion of struggling problems because the 
weights of the third assignment were, on average, three times that of the first assignment. In 
summary, the particularity of problem arrangement caused that the arrangement captured 
information about problem struggling similarity. This also explains why the problem order 
weighting showed similar performance to the problem struggling weighting in many situations 
(see the second and third rows of Figure 3). 
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Figure 3: The test AUC changed as the number of features increased. 

Note. Values smaller than 0.76 were not displayed for clarity. 
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3.1.2. The most important features 

Table 6 lists the five most important features in the best models with all features for cross- and 
within-semester predictions. For the within-semester prediction, the rank based on AUC and 
standardized coefficients were different, and the top five features based on either measure 
were reported. The interaction between the percentage of problems that a student struggled 
with (representing students’ ability) and the percentage of students struggling with the 
problem (representing problem difficulty) was the most important feature, regardless of the 
importance measure and the prediction task (cross- versus within-semester).  

The percentage of problems that a student struggled with, whether a student solved 
problems on the first submission, the percentage of problems on which a student made 
semantic errors, and its interaction with the percentage of students making errors on the 
problem were present in the top five features in terms of AUC in cross- and within-semester 
predictions. The Gini importance rankings were the same as AUC, but the standardized 
coefficients differed from AUC. Based on the standardized coefficients, the average number of 
unique test scores and the median number of submissions were present in the top five. The 
percentage of problems on which a student made semantic errors and its interaction with the 
percentage of students making semantic errors on the problem had a low rank, perhaps 
because of their high correlation with the average number of unique test scores (Pearson 
correlations = 0.86 and -0.79, respectively).  

Note that for within-semester prediction, the percentage of problems that a student 
struggled with and the median number of submissions on a problem had positive coefficients, 
which is counterintuitive. We provide an explanation in the appendix.  

Table 6: Top five features in the best model of cross- and within-semester predictions. 

Cross-semester: random forest classifier AUC (rank) Gini importance 
(rank) 

(1 - % problems that a student struggled with) - % 
students that struggled with the problem 0.777 (1) 0.145 (1) 

% problems that a student struggled with 0.762 (2) 0.095 (2) 
(1 - % problems on which a student made semantic 
errors) - % students that made semantic errors on the 
problem 

0.759 (3) 0.079 (3) 

% problems on which a student made semantic errors 0.750 (4) 0.064 (4) 
% problems that a student solved on the first 
submission 0.739 (5) 0.053 (5) 

Within-semester: Lasso logistic regression AUC (rank) Standardized 
coefficients (rank) 

(1 - % problems that a student struggled with) - % 
students that struggled with the problem 0.767 (1) 0.747 (1) 

% problems that a student struggled with 0.761 (2) 0.220 (5) 
% problems on which a student made semantic errors 0.753 (3) 0.000 (64) 
(1 - % problems on which a student made semantic 
errors) - % students that made semantic errors on the 
problem 

0.751 (4) 0.092 (21) 
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Cross-semester: random forest classifier AUC (rank) Gini importance 
(rank) 

% problems that a student solved on the first 
submission 0.747 (5) 0.264 (4) 

Average number of unique test scores on a problem 
(an approximation to average number of semantic 
errors on a problem) 

0.736 (6) -0.311 (2) 

Median number of submissions on a problem 0.716 (10) 0.276 (3) 
Note. The true value of the label means that a student did not struggle with a problem. AUC 
was the one-feature model AUC. 
 

3.2. COMPARING THE WEIGHTING SCHEME WITH DLKT AND IRT 

Table 7 shows the test AUC of lasso logistic regression with and without struggling weighting, 
along with DLKT and IRT models. Recall that this lasso model only used two features: the 
proportion of problems that a student struggled with and the proportion of students that 
struggled with the problem. The lasso with unweighted features showed the lowest test AUC 
in both cross- and within-semester predictions. With weighted features, the test AUC 
increased 0.034 and 0.038. In the cross-semester prediction, the lasso with weighted features 
performed slightly better than DLKT models, with differences in AUC ranging from 0.009 to 
0.017. In the within-semester prediction, the lasso with weighted features performed almost 
the same as DKT and SAKT and slightly better than SAINT. In both predictions, the lasso 
with weighted features performed better than IRT models, with differences in AUC ranging 
from 0.024 to 0.036. 
 

Table 7: The test AUC of models with just problem correctness and ID sequences. 

Phase No 
weighting a Weighting b DKT SAKT SAINT 1D 

IRT 
2D 

IRT 
Cross-semester 0.744 0.778 0.767 0.761 0.769 0.754 0.751 
Within-semester 0.746 0.784 0.785 0.782 0.778 0.760 0.748 

Note. a: The models in both phases were lasso logistic regression. b: The models in both 
phases were lasso logistic regression with struggling similarity weighting. These models were 
chosen based on the average AUC of 5-fold CV in the training data. 1D and 2D IRT: one- and 
two-dimensional IRT models.  

4. DISCUSSION 
This study utilized problem similarity and attempt order information to weight behaviors and 
performance on past problems in the performance prediction on future problems. The main 
findings are: (1) the source code similarity, struggling similarity, and problem order weighting 
improved prediction performance consistently regardless of the number of features, but the 
improvement decreased as the number of features increased; (2) the prompt similarity 
weighting did not improve prediction performance; (3) combining weighting schemes by 
taking the average did not improve prediction performance; (4) using the same information, 
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the struggling similarity weighting made the lasso logistic regression have performance 
comparable to the SOTA deep learning models. 

When only using two features about response correctness and problem difficulties, the 
model with weighted features showed a test AUC of 0.034 to 0.038 higher than the model with 
unweighted features, although the differences decreased as the number of features increased. 
Weighted features generally performed better because the similarity weighting treated past 
problems differentially according to their relations to future problems, and the problem order 
weighting made the features capture temporal information of interactions or possible learning. 
The problem relations and temporal order of interactions are two types of statistical 
regularities that DLKT can exploit but the methods operating on tabular data have difficulty  
using (Gervet et al., 2020). To some extent, the weighting schemes helped the latter methods 
to access the two types of statistical regularities.   

For within-semester prediction, our weighting approach performed almost the same as 
DLKT, which also utilized problem similarity and attempt order to weight past problems but 
implicitly and in a complex way. However, for cross-semester prediction, our weighting 
performed slightly better than DLKT. The reason may be that the training sample in the cross-
semester prediction was just 1/3 of that in the within-semester prediction. This finding is in 
line with prior research (Gervet et al., 2020), where DKT performed better than a logistic 
regression with features about the number of correct and incorrect attempts, student ability, 
and problem difficulty, but only in the condition of large data size. When the data size was 
small to medium, the relative performance reversed.  

Overall, the results indicate the potential of using problem similarities and problem order as 
a tool to weight students’ historical programming behaviors and performance for learner 
modeling, especially in situations where KCs are not explicitly defined. The remainder of this 
section discusses the implications of our results and suggests future directions to address the 
limitations of using problem similarities and order weightings. 

4.1. IMPLICATIONS FOR LEARNER MODELING 

With information about response correctness and sequences, the proposed weighting scheme 
performed better than the model without weighting and IRT models and almost the same as 
DLKT. This result suggests that using problem relation and order to weight information on 
past problems in a way simpler than DLKT does not dimmish the prediction accuracy. 
Moreover, because the computation of the weighting matrix and the process of weighting 
features were finished before training models, we could incorporate features more than 
response correctness and sequences and weight these features. With these features, the model 
with weighting slightly outperformed DLKT (as the best models with all features had an AUC 
of 0.793 and 0.797 in the cross- and within-semester prediction). This suggests that the 
flexibility of the simple weighting is worth the cost of not optimizing the weighting matrix. 
Moreover, computing weighted features is a step of feature engineering and independent of the 
ML models, so our weighting approaches can be used along with ML models simpler than 
deep learning. This means that a learner model based on our weighting may be more 
interpretable but still have accuracy comparable to SOTA deep learning models. 

There was not a single weighting scheme that always performed the best, but the top-
performers seemed to be struggling similarity and problem order. The struggling similarity 
between two problems was defined as their similarity in student struggling patterns. This was 
the performance correlation between the two problems. Computing this performance-based 
similarity is simple and does not rely on problem prompts or source code, and thus, 
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performance similarity weighting is applicable to learner modeling for tasks other than 
programming problems. Similarly, problem order weighting is also applicable in other 
contexts, although its utility may be limited (which we discuss in the next section).  

This study found that when the weighting scheme was used, a few simple features (e.g., 
problem difficulty, average student ability) seemed sufficient for prediction performance 
comparable to many features. For instance, when the struggling similarity weighting was used 
in the within-semester prediction, the test AUC in the condition of five features was close to 
that of ten or more features, with a difference smaller than 0.005. Note the small difference 
was not because the added features were not useful. Indeed, when the weighting was not used, 
the test AUC increased by 0.009 ~ 0.042 as the number of features increased from five to ten.  
Overall, these findings suggest that the weighting scheme allows a simple model to perform 
well.  

A related finding is that the improvement of the weighting scheme diminished as the 
feature set became larger. This suggests that the weighting schemes may be most useful for 
getting more information from a smaller set of features and less beneficial when a 
comprehensive set of features is available. 

Based on past programming process studies, we engineered a set of features related to 
programming errors, behaviors, and debugging. Prior studies that compared features did not 
test the generalizability using a train-test split or CV and compared limited features (e.g., 
Carter et al., 2015; Tabanao et al., 2011). Thus, to some extent, this study provided new 
information about the relative importance of these features in predicting performance. The 
features related to semantic errors were the most important, followed by features related to 
syntax errors. For instance, the proportion of problems on which a student made semantic 
errors had a test AUC higher than the proportion of problems on which a student made 
syntactic errors (0.753 versus 0.722 in within-semester prediction; 0.750 versus 0.706 in cross-
semester prediction). This result is in line with prior research (Fitzgerald et al., 2008) and 
suggests that novice programmers’ struggle with semantic errors may be more critical in 
predicting future performance than the struggle with syntactic errors. Overall, the results 
suggest the importance of information about programming errors in programming 
performance prediction.  

Debugging features were also useful but strongly correlated to error-related features. 
Interestingly, transition strength between code states showed higher predictive power than the 
rate of fixing syntactic errors or increasing test scores. For example, the transition from a code 
state with syntactic errors to a state with test errors had a test AUC higher than the rate of 
fixing syntactic errors (0.688 versus 0.521 in within-semester prediction; 0.670 versus 0.569 in 
cross-semester prediction). The result suggests that transition strengths among code states may 
better indicate novices’ debugging skills.  

Cechák and Pelánek (2021) suggest that reliable performance-based similarity measures 
may need 2000 answers per problem. The answers per problem in the current study were no 
more than 247 in the cross-semester prediction and 740 in the within-semester prediction, 
much lower than 2000. The finding that the struggling similarity measure performed better 
than the other similarity measures seemingly conflicts with Cechák and Pelánek’s study. 
However, the inconsistency is likely because of a difference in the evaluation criterion. In 
Cechák and Pelánek’s study, the criterion was the correlation between the performance-based 
measure and a problem metadata-based measure, which was used as the ground truth. In our 
study, the criterion was prediction accuracy. The finding in the current and Cechák and 
Pelánek’s studies together suggests that the utility of a performance-based similarity measure 
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depends on the evaluation criterion. Choosing the problem similarity measure based on the 
research context and application purpose is critical. 

4.2. LIMITATIONS AND FUTURE STUDIES 

One main limitation of the struggling and source code weighting schemes is that the relations 
between past and future problems rely on students’ solution or performance data. The problem 
prompt weighting does not require such data, but it was not useful in this study. Thus, the 
model based on similarity weighting may decrease when predicting performance on new 
problems because of missing relations between old and new problems. In this condition, if the 
mapping between problems and KCs is available, learner modeling methods that use the 
mapping may be a better choice (e.g., BKT and PFA). Nevertheless, the mapping provides 
problem metadata, which can also be used to measure problem similarity (Pelánek, 2020). 
Specifically, we can derive the Q matrix based on the mapping and compute a pairwise 
problem similarity matrix. The utility of a weighting scheme based on this similarity matrix 
entails future investigation.   

Another limitation of the struggling weighting scheme is that it assumes that students’ 
knowledge changes little between two problems sharing the same KCs. If students learn on 
these KCs after one problem, their performance on the two problems may not be strongly 
related. This limitation may be mitigated by the normalization step (see Section 2.3.6) because 
the normalization assigns final weights based on relative correlation strengths rather than 
absolute strengths. Although students are learning, the correlation between a past problem n1 
sharing KCs with the future problem may still be stronger than the correlation between another 
past problem n2 having no common KC with the future problem. The normalization will 
assign a higher weight to problem n1 but a smaller weight to problem n2. Nevertheless, if 
problem n1 and the future problem have a long interval, students may learn substantially. 
Consequently, problem n1 would have a correlation with the future problem the same as 
problem n2. 

Our results showed little positive impact from weighting by source code similarity using 
code2vec embeddings. The reason may simply be that our assumption that similar problems 
would lead to similar students’ solution code is mistaken. Instead, it may be the case that there 
are more consistent and measurable similarities between code samples from the same student 
or among students with similar coding backgrounds rather than the final solutions to problems 
with related programming concepts. It may also be that averaging the embeddings at the 
problem level—though analogous to accepted practices in natural language embeddings—has 
caused the model to lose valuable information about students’ code submissions. Future 
research may consider devising novel ways to aggregate code embeddings.  

In addition, the number of elements in each code2vec embedding is 384. Having so many 
elements, as well as the unclear meaning of individual elements, makes it difficult to 
understand why the source code of two problems is similar or dissimilar. Even if the similarity 
weighting based on code2vec embeddings could improve prediction, interpretation of problem 
similarity may be challenging. Thus, future work may consider computing source code 
similarity based on techniques that can effectively represent source code with a few 
interpretable features, such as JavaParser (Hosseini and Brusilovsky, 2013). 

Finally, we chose to use a pre-trained code2vec model rather than training or fine-tuning on 
our own data. Our assumption was that the embeddings obtained from such a model would 
carry relevant information for our purposes, but future work may consider fine-tuning the 
model to potentially obtain more meaningful embeddings for predicting correctness. 
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We also found that weighting by prompt similarity led to worse prediction accuracy than 
not weighting at all. After investigating the text of the problem prompts themselves, this is not 
very surprising. Each prompt consisted of a short paragraph describing the task, with an 
average length of 53 words and a range of 13–103 words. The entire vocabulary set was, 
therefore, very limited. Also, some structural patterns within the prompts may have led to 
misleading similarity scores. For example, 15 of the 50 prompts began with “Write a function 
in Java that implements the following logic,” though without seeming conceptual similarity 
between them, and only one of which was in the 20 later problems. It would be beneficial to 
examine the results of prompt similarity weighting when using a system that has longer, more 
elaborate prompts. 

The method of quantifying problem similarity is flexible, but the flexibility comes at the 
cost of too many decisions to make. Researchers need to decide which problem properties 
(e.g., problem performance, solutions, prompt) the similarity is about, how to quantify these 
properties (e.g., performance as whether a student struggled with the problem versus whether a 
student made syntactic errors on the problem), and which similarity measure to use (e.g., 
cosine similarity, Euclidean distance, or Pearson correlation). This study found that weighting 
based on struggling similarity worked better than weighting based on the other problem 
properties, but the advantage of struggling similarity may be due to its relevance to the label—
whether or not a student struggled with a problem. With a different target label, similarity 
weighting based on other characteristics may work better. When calculating similarity 
measures for source code and problem prompts, we did not find a clear difference among 
cosine similarity, inverse Euclidean distance, and Pearson correlation. However, when the 
source code is represented via methods other than code2vec (e.g., JavaParser; Hosseini and 
Brusilovsky, 2013) or the problem prompts are longer and more elaborate, differences among 
these measures may become clearer. As Pelánek (2020) stated, there is no single answer for 
which problem property to use, how to quantify a property, and which similarity measure to 
use. Future work may develop tools that use CV to choose the best options automatically and 
ease the use of problem similarity weighting in learner modeling. 

Weighting by problem order showed a small positive impact. The particular problem 
arrangement made the problem order weighting contain information about problem relations. 
Thus, it was challenging to determine the reason for the small improvement. The reason might 
be because problem order weighting accounted for the decay impact of past problems, or it 
contained information about problem relations, or both. Besides, the definition of the CSEDM 
competition task might limit the application of this approach to the task. In the competition, 
the attempt order on the 20 later problems was kept hidden and unknown for prediction. As 
such, it was not possible to use the problem order information on the first problems of the 20 
later problems when predicting performance on the subsequent problems. Nevertheless, this 
issue may not exist in practice if the prediction is dynamic. Once a student finishes a problem, 
their behaviors and performance on this problem can be used to update features to predict 
performance on the next problem. Thus, problem order weighing may have a larger potential 
in dynamic prediction and may be worth further investigation. 

Another limitation of our problem order weighting scheme is that weights are assigned in 
the same way across all students (i.e., the first problem has a weight of 1, the second problem 
2, etc.). This means that the decay impact of past problems was the same across students, 
implying that the learning and forgetting rates in programming knowledge are the same across 
students. This assumption is likely incorrect. The learning rate may vary across populations 
(Pardos and Heffernan, 2010), such as students with programming experiences versus those 
without any experience. It may be interesting to examine whether using different problem 
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order weighting for different populations of students could improve the prediction 
performance. If so, researchers may be able to use problem order weighting to answer research 
questions in a manner analogous to the way that studies have used BKT to answer research 
questions (Beck et al., 2008; Pedro et al., 2013). For example, assume two groups of students 
in this study: one received feedback when they finished a problem, and one did not. We may 
be able to use problem order weighting to investigate whether the feedback impacts learning. 
Specifically, if using different problem order weighting for the two groups could achieve 
better prediction performance than using the same problem order weighting, we may infer that 
the two groups have different learning rates. Consequently, we would conclude that the 
feedback has an impact. 

We combined different weighting schemes by averaging them, but this might not be a good 
practice because a weighting scheme that did not help (e.g., problem prompt weighting) would 
damage the performance of the average. How to combine different weighting needs a 
systematic investigation, which is beyond the scope of this study. The best weights of different 
weighting schemes in the combination weighting may be discovered through grid-searching 
and CV, analogous to the hyperparameters in ML.    

4.3. CONCLUDING REMARKS 

Knowledge tracing and performance prediction are powerful tools in AIED, but the process of 
defining KCs and mapping them to problems is time- and effort-consuming. This paper 
proposes a set of non-KC based weighting schemes to improve prediction performance. 
Specifically, the weighting schemes adjust the contribution of students’ behaviors and 
performance on past problems in predicting performance on future problems. A past 
problem’s weight to a future problem is proportional to the two problems’ similarity. 
Compared to DLKT and the other performance prediction methods that also use problem 
similarity to weight information on past problems, the proposed weighting schemes are more 
flexible in capturing problem similarity on various problem properties and weighting various 
behaviors and performance information on past problems. We measured the similarity 
between two problems in terms of the source code of students’ solutions to the problems, 
problem prompts, and students’ struggling patterns. After applying the weighting schemes to 
the dataset of the 2nd CSEDM data challenge, we found that similarity weighting based on 
struggling patterns and source code increased prediction performance, but similarity weighting 
based on problem prompts did not. In addition, another weighting scheme that aimed to 
account for the decay impact of past problems also increased prediction performance. While 
these weighting schemes did not result in particularly large increases in prediction accuracy, 
they allowed a simple, interpretable model such as logistic regression to perform on par with 
SOTA deep learning models. Furthermore, the proposed weighting schemes are applicable to 
fields beyond computer programming.   
 

5. APPENDIX 

5.1. EXPLANATIONS OF FEATURES IN TABLE 3 

The average number of unique test scores on a problem. The submission traces did not contain 
the exact semantic errors that the source code had. However, if a submission had semantic 
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errors, the test score would be smaller than one. Thus, we used the number of unique test 
scores on a problem as an approximation to the number of semantic errors on the problem. 

Rates of fixing syntax errors. This feature is the proportion of pairs of successive 
submissions where at least one syntax error in the first submission disappeared in the second 
submission (among all pairs where the first submission had syntax errors).  

Rate of making new syntax errors. This feature is the proportion of pairs of consecutive 
submissions where a syntax error did not exist in the first submission but appeared in the 
second submission (among all pairs where the first submission had syntax errors). 

Rate of improving test scores. This feature is the proportion of pairs of successive 
submissions where the test score increased from the first to second submissions (among all 
pairs where the first submission had a test score smaller than one). 

The average difference in test scores between two consecutive submissions. This feature is 
the mean of test score differences between two successive submissions.  

Transition strength between code states. We classified each submission into three 
categories of code states: containing syntax errors (SE), containing semantic errors (test score 
< 1; TE), and correct (CO). We considered six possible transitions among these code states: 
SE -> SE, SE -> TE, SE -> CO, TE -> SE, TE -> TE, and TE -> CO. Transitions beginning 
with CO are not considered because students rarely made more submissions on a problem after 
they solved it. The transition strength is quantified by the log-odds ratio. For example, the log-

odds ratio of SE -> TE is 𝑙𝑛
678(&9/6;8

(
&9

6=8(&9/6>8
(
&9

, where ln is the natural logarithm. Table A1 explains 

a, b, c, and d. For example, a is the number of submission pairs where the code states of the 
first and second submissions are SE and TE, respectively. ½ is used to reduce the bias in the 
log-odds ratio estimate (Dagne et al., 2002).  

Table A-1: Contingency table for the transition SE -> TE. 

                      Second state 
First state TE Not TE 

SE a b 
Not SE  c d 

 
The proportion of problems that a student made a submission in less than 15s. Following 

prior research (Pinto et al., 2021), we considered a submission that had a gap from the last 
submission shorter than 15 seconds as a quick submission. Typically, consecutive quick 
submissions may indicate guessing behaviors. In this study, there were quick submissions but 
hardly consecutive quick submissions. Thus, we only considered whether the student made at 
least one quick submission on a problem. Note that we did not regard a single quick 
submission as guessing.  

The number of days with at least one submission. Prior research considered the number of 
days where a student was active as an indicator of spacing (Yeckehzaare et al., 2022). In this 
study, we defined being active as making at least one submission. 

The number of lines added, deleted, and modified. A large value in this feature means that 
the student tended to change the code a lot in each submission. This feature may be related to 
the “code-a-little, test-a-little” approach, which has been recommended for novices 
(Baumstark and Orsega, 2016). 
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5.2. MODEL CONFIGURATIONS 

Table A-2: The configurations of various models. 

Model Hyperparameters 
Lasso logistic C=1 
Random forest max_depth=5, min_samples_split=10, n_estimators=500 
XGB learning_rate = 0.01, max_depth=3, subsample = 0.5, n_estimators = 500 
LSTM-DKT batch size = 32, optimizer = adam, learning rate = 0.001, loss function = 

binary crossentropy, LSTM layer hidden units = 10, dropout = 0.3, 
recurrent dropout = 0.3, training epochs = 50 (+ early stopping), validation 
fraction = 0.2 

SAKT batch size = 256,  optimizer = adam, 
loss function = binary crossentropy, 
sequence length = 31, total number 
of questions = 50, validation 
fraction = 0.2 

learning rate = 0.001, dimensions of 
model (embeddings) = 20, number 
of attention heads = 5, dropout = 
0.4, training epochs = 100 (+ early 
stopping) 

SAINT learning rate = 0.0001, dimensions 
of model (embeddings, attention, 
linear layers) = 50, number of 
attention heads = 5, dropout = 0.2, 
training epochs = 100 (+ early 
stopping), number of encoder layers 
= 4, number of decoder layers = 4, 
number of unique concept 
categories = 1 (because we do not 
know the KCs) 

2-dimensional 
2PL IRT 

Problems on the 1st dimension: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 
16, 17, 18, 33. 
Problems on the 2nd dimension: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 
27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 
49, 50. 
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5.3. THE TRAIN AND TEST AUC OF VARIOUS WEIGHTING SCHEMES AND 
COMBINATIONS  

 Table A-3: The train and test AUC of various weighting schemes. 

Phase Weighting Lasso Random forest XGB 
Train Test Train Test Train Test 

Cross-
semester 
(spring 
sample 

one) 

No weighting 0.798 0.766 0.839 0.781 0.849 0.779 
order 0.798 0.766 0.841 0.79 0.85 0.783 
struggling 0.824 0.763 0.86 0.792 0.873 0.786 
code 0.798 0.771 0.847 0.783 0.855 0.781 
prompt 0.796 0.762 0.845 0.778 0.855 0.77 
order + struggling 0.813 0.767 0.856 0.793 0.866 0.787 
order + code 0.799 0.767 0.848 0.787 0.855 0.781 
order + prompt 0.797 0.765 0.847 0.785 0.858 0.781 
struggling + prompt 0.812 0.769 0.855 0.787 0.866 0.784 
struggling + code 0.814 0.766 0.854 0.788 0.865 0.781 
prompt + code 0.797 0.768 0.845 0.78 0.856 0.778 
order + struggling + prompt 0.803 0.772 0.853 0.789 0.861 0.787 
order + struggling + code 0.805 0.77 0.853 0.791 0.861 0.786 
order + prompt + code 0.797 0.767 0.848 0.788 0.857 0.783 
struggling + prompt + code 0.807 0.767 0.852 0.785 0.862 0.784 
all 0.801 0.772 0.852 0.79 0.86 0.786 

Within-
semester 
(Spring 
samples 
one and 
two + 
fall 

training) 

No weighting 0.776 0.782 0.803 0.784 0.811 0.785 
order 0.776 0.786 0.804 0.792 0.812 0.788 
struggling 0.788 0.797 0.811 0.793 0.818 0.792 
code 0.775 0.784 0.802 0.783 0.808 0.785 
prompt 0.773 0.777 0.798 0.781 0.805 0.782 
order + struggling 0.782 0.794 0.808 0.794 0.815 0.789 
order + code 0.776 0.787 0.803 0.789 0.81 0.787 
order + prompt 0.774 0.784 0.801 0.787 0.808 0.783 
struggling + prompt 0.781 0.79 0.806 0.789 0.815 0.783 
struggling + code 0.782 0.793 0.807 0.79 0.814 0.786 
prompt + code 0.774 0.781 0.8 0.782 0.808 0.783 
order + struggling + prompt 0.778 0.789 0.807 0.791 0.813 0.787 
order + struggling + code 0.779 0.791 0.808 0.792 0.814 0.788 
order + prompt + code 0.775 0.785 0.804 0.788 0.811 0.785 
struggling + prompt + code 0.779 0.788 0.805 0.787 0.813 0.784 
all 0.777 0.789 0.807 0.79 0.813 0.787 

Note. XGB: extreme gradient boosting. The similarity measure for code and prompt is cosine 
similarity. 
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Table A-4: The AUC of similarity weighting based on inverse Euclidean distance and Pearson 
correlation. 

Phase Weighting Lasso Random 
forest XGB 

Train Test Train Test Train Test 

Cross-
semester 
(spring 

sample one) 

Code inverse Euclidean 0.798 0.768 0.848 0.784 0.854 0.780 
Code Pearson correlation 0.798 0.771 0.847 0.782 0.855 0.781 

Prompt inverse 
Euclidean 0.796 0.766 0.847 0.778 0.856 0.777 

Prompt Pearson 
correlation 0.796 0.762 0.845 0.776 0.855 0.771 

Within-
semester 
(spring 

samples one 
and two+ fall 

training) 

Code inverse Euclidean 0.776 0.783 0.805 0.784 0.812 0.785 
Code Pearson correlation 0.775 0.784 0.802 0.783 0.808 0.784 

Prompt inverse 
Euclidean 0.775 0.779 0.801 0.782 0.809 0.783 

Prompt Pearson 
correlation 0.773 0.777 0.799 0.780 0.805 0.781 

Note. XGB: extreme gradient boosting. Inverse Euclidean: the similarity measure based on the 
inverse Euclidean distance. Pearson correlation: the similarity measure based on inverse 
Pearson correlation. 
 

5.4. COUNTERINTUITIVE COEFFICIENTS IN TABLE 6 

 
The percentage of problems that a student struggled with had a positive coefficient in the lasso 
logistic regression (0.220), which seems to suggest that a student struggling with earlier 
problems was less likely to struggle with later problems. However, the lasso model also 
contained the interaction between this feature and the percentage of students struggling with 
the problem (the coefficient was 0.747). As such, the coefficient of the percentage of problems 
that a student struggled with should not be interpreted on its own. Indeed, if we combine this 
feature and its interaction, its coefficient would become -0.527 (= 0.220 - 0.747).  

The median number of submissions on a problem also had a counterintuitive positive 
coefficient, suggesting that a student with a higher median number of submissions on early 
problems was less likely to struggle with later problems. The reason for this counterintuitive 
coefficient may be that the median number of submissions adjusts the effects of other features 
related to the number of submissions, such as the percentage of problems that a student solved 
on the first submission and the average number of submissions on a problem, which had a 
negative coefficient (-0.183). Struggling with a problem is based on whether the number of 
submissions on the problem was beyond 75% of peers. Thus, the median number of 
submissions might also adjust the effect of the percentage of problems that a student struggled 
with. 
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