
 

Latent Skill Mining and Labeling from 
Courseware Content 
 
Noboru Matsuda 
NCSU* 
Noboru.Matsuda@ncsu.edu 

Machi Shimmei 
NCSU* 
mshimme@ncsu.edu

 
Jesse Wood  
NCSU*   
jwood96706@gmail.com  

Norman Bier 
CMU†   
nbier@cmu.edu  

 
Raj Shrivastava 
NCSU* 
rksmail20@gmail.com 

 
A model that maps the requisite skills, or knowledge components, to the contents of an online course is 
necessary to implement many adaptive learning technologies. However, developing a skill model and tagging 
courseware contents with individual skills can be expensive and error prone. We propose a technology to 
automatically identify latent skills from instructional text on existing online courseware called SMART (Skill 
Model mining with Automated detection of Resemblance among Texts). SMART is capable of mining, 
labeling, and mapping skills without using an existing skill model or student learning (aka response) data. 
The goal of our proposed approach is to mine latent skills from assessment items included in existing 
courseware, provide discovered skills with human-friendly labels, and map didactic paragraph texts with 
skills. This way, mapping between assessment items and paragraph texts is formed. In doing so, automated 
skill models produced by SMART will reduce the workload of courseware developers while enabling adaptive 
online content at the launch of the course. In our evaluation study, we applied SMART to two existing authentic 
online courses. We then compared machine-generated skill models and human-crafted skill models in terms 
of the accuracy of predicting students’ learning. We also evaluated the similarity between machine-generated 
and human-crafted skill models. The results show that student models based on SMART-generated skill models 
were equally predictive of students’ learning as those based on human-crafted skill models— as validated on 
two OLI (Open Learning Initiative) courses. Also, SMART can generate skill models that are highly similar to 
human-crafted models as evidenced by the normalized mutual information (NMI) values. 
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1. INTRODUCTION 
The demand for high-quality online education has been growing rapidly. Accordingly, the need to 
efficiently build online courseware becomes more and more evident (Tyton Partners, 2020). The 
current literature suggests that adaptive learning (Yang et al., 2014; Jovanovic and Jovanavic, 
2015; Liu et al., 2017; Chen et al., 2018; Imhof et al., 2020) and personalization (Walkington, 
2013; Paquette et al., 2015; Dai et al., 2016) are essential components for broad dissemination of 
practical online courses. 

In this paper, we refer to the mapping of course contents to a set of skills as a skill model, aka 
a knowledge component model (Koedinger, Corbett, and Perfetti, 2012). A “skill”, by definition, 
represents a piece of knowledge that students are supposed to learn. Typically, the skill model 
consists of a set of skills that are supposed to be obtained by students.  

Many of the adaptive learning technologies assume that the online course is equipped with a 
skill model. It is therefore extremely important to create the skill model that accurately reflects the 
target skills to be learned. The skill model, for example, often serves as a basis for a student model 
(Desmarais and Baker, 2012; Pelanek, 2017). In turn, information from the student model can be 
used for adaptive instruction—e.g., selecting and sequencing instructional materials, providing 
recommendations to facilitate learning, presenting student’s progress and knowledge state, aka, 
the open learner model (Paquette et al., 2015; Dai et al., 2016; Pelanek, 2017; Chen et al., 2018; 
Gavrilovic et al., 2018; Imhof et al., 2020). 

In addition to identifying latent skills, we would also argue that labeling the skills also provides 
instructors with important insights into instruction that will in turn improve effectiveness of the 
courseware. The presence of labeled skills apparently facilitates the refinement of instructional 
materials by developers and other experts (Martin, Mitrovic, Mathan, and Koedinger, 2005; 
Martin, Mitrovic, Koedinger, and Mathan, 2011). It also facilitates the analysis of student learning, 
which will further allow instructors to identify areas in which students need assistance (Bier et al., 
2014).  

Despite the importance of creating a high-quality skill model, identifying the skills required for 
an authentic course (say, with a semester’s worth of instructional material) and mapping course 
contents to the skills is extremely costly. As far as the authors are aware of, there are very few 
existing online courseware equipped with skill models—e.g., Open Learning Initiative (OLI) at 
Carnegie Mellon University (Bier and Rinderle, 2011; Bier et al., 2019). As a result, developing a 
pragmatic method for automatic skill discovery is a critical component of learning engineering 
for successful dissemination of an adaptive online course.  

The goal of this paper is to introduce a technology to discover latent skills from existing online 
courseware and fully annotate the contents with the discovered skills. The proposed technology 
for skill mining is called SMART—Skill Model mining with Automated detection of Resemblance 
among Texts. In the current work, the term “instructional texts” is used as a collective term 
referring to written didactic paragraphs and assessment items in the given online courseware 
(including question stems, answers, multiple-choice items, and hint messages).  

SMART analyzes instructional texts on the given online courseware and clusters those texts 
based on their linguistic similarity. Each cluster of text is then labeled with an extracted keyword(s) 
that represents the latent skill that the corresponding cluster of the text is describing. Thus, among 
the significant features of SMART are the ability to automatically tag individual clusters of texts 
with a human-readable label.  
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The proposed SMART method was developed as a part of our on-going effort to study a suite of 
evidence-based learning engineering methods, called PASTEL (Pragmatic methods to develop 
Adaptive and Scalable Technologies for next generation E-Learning). PASTEL is a suite of 
advanced technologies for courseware developers to iteratively build adaptive online courseware 
(Matsuda et al., in press). The goal of PASTEL is to provide courseware developers with data-
driven scaffolding and feedback while they are building the courseware. Specifically, PASTEL 
aims to assist with the implementation of adaptive instructions that include the optimal sequencing 
of formative assessments and proactive scaffolding on answering assessment questions. SMART 
discovers a latent skill model by analyzing the course contents and tags individual instructional 
elements with a skill in the discovered skill model to realize those adaptive instructions.  

The current paper addresses two practical challenges: (1) The discovered skills need to be 
annotated with human-readable labels for courseware engineers and instructors to make sense of 
what those skills are, and (2) all instructional texts used in the online courseware, i.e., didactic 
paragraphs and assessment items, need to be tagged with the discovered skills. The former 
challenge is to ensure the interpretability of the resulted courseware. When analyzing students’ 
learning, for example, the human-readable skill model will provide courseware developers with 
meaningful insights into how to improve the courseware. The latter challenge is practically 
important for implementing adaptive courseware because the system will then be able to utilize 
the association among courseware contents to provide students with the adaptive scaffolding.  

A major contribution of the current paper is to provide the current educational data mining 
literature with a proof of concept for an innovative application of a text mining method, SMART, 
for automatic skill discovery from online courseware content. SMART is the first in the current 
literature that can automatically discover labeled skills that are latent in the existing courseware 
without labor intensive analysis of courseware contents. SMART consists of existing, well-
established technologies, including k-means clustering and keyword extraction. Yet, we also 
demonstrated that a well-designed combination of existing technologies was able to be applied to 
genuine online courseware and the generated skill models were equally valid as human-crafted 
skill models in terms of fit to students’ learning log data. The lessons learned from the current 
study provide insights into the next generation of online courseware engineering and adaptive 
pedagogy driven by a skill model. 

2. RELATED WORK 
When a skill model is manually developed by subject matter experts, they often use cognitive task 
analysis, CTA (Clark et al., 2008), to identify skills by breaking down learning objectives of a 
course into more specific goals (Bier et al., 2014; Koedinger et al., 2010). Likewise, other 
evidence-based approaches, e.g., Evidence-centered assessment design, ECD (Mislevy, R. J., 
Almond, R. G., and Lukas, J. F. 2003), have been proposed. However, a proper application of CTA 
and ECD requires intensive training. Also, developing a skill model with CTA is a time-
consuming, iterative process. These and other factors can combine to make CTA and ECD not an 
optimal solution for a scalable skill mining technique for large sets of curricula (Crandall, Klein, 
and Hoffman, 2006; Shute, Torreano, and Willis, 2000).  

To overcome the issue of expensive human labor, researchers apply data mining techniques to 
automatically identify latent skills.  The current literature shows three types of approaches for skill 
mining: (1) Response Analysis: This type of skill mining techniques analyzes students’ response 
on assessment items to identify latent skills required to correctly answer them. (2) Content 
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Analysis: This type of techniques analyzes courseware contents (e.g., assessment items and 
didactic texts) to identify latent skills embraced in them. (3) Model Refinement: This type of 
techniques analyzes an existing skill model(s) to improve the “validity” of the model, usually 
measured as the accuracy of a model prediction. SMART is an example of the Content Analysis 
technique.  

For the first approach, Response Analysis, the student response data must be collected from 
authentic students using existing online courseware. The response data are usually represented as 
a matrix, called a response matrix, that shows the correctness of individual students’ answers on 
each individual assessment item. The response matrix, R, is then decomposed into two matrices, 
one showing each student’s understanding of latent skills, U, and another showing the mapping 
between latent skills and assessment items, Q, such as R = U ´ Q. The latter matrix is called the 
Q-matrix (Tatsuoka, 1983). The Q-matrix is a binary matrix in which columns represent 
assessment items and rows represent latent skills. Ones (‘1’) in cells indicate that answering a 
corresponding assessment item requires a corresponding skill to be applied.  

The task of mining latent skills based on the response matrix is therefore often reduced to 
finding a Q-matrix, which has been intensively studied. For example, U- and Q-matrices can be 
found by applying the matrix factorization technique that algebraically factorizes the response 
matrix (R).  Desmarais (2012) used the Non-negative Matrix Factorization technique. Winters et 
al. (2005) conducted an exploratory study comparing various factorization techniques including 
Non-negative Matrix Factorization, Sigmoidal Factorization, and Common-Factor Analysis. 
Barnes (2010) applied the Q-Matrix Method that uses a hill-climbing technique to incrementally 
refine the model fit of a Q-matrix to the actual response data. Bayesian Networks have also been 
applied to compute a Q-matrix (Gonzalez-Brenes et al., 2012). In another approach, conjunctive 
and disjunctive models (DINA and DINO) were used to generate a Q-matrix based on an item 
response matrix and a matrix of the relationships between skills that was partially defined by 
experts (Wang et al., 2020).  

Although methods dependent on student response data have been effective in the proper 
circumstances, one of the weaknesses of Response Analysis is a lack of interpretability of the 
resulted skill model. That is, the latent skills in a Q-matrix are implicit in its columns. It is hard to 
understand what each of the columns represents, which limits their practical application since the 
skills identified require input from an expert to be labeled. The reliance on student response data 
for the methods also implies that the online courseware needs to be used to collect the response 
data even without a skill model (or with a temporal skill model).  

For the second approach, Content Analysis, some researchers apply machine learning 
techniques to classify course contents and identify associated skills. One such approach involved 
training a neural network to compute an answer to the assessment items for a course and consider 
a hidden layer just prior to the output layer of the model as the Q-matrix after binarizing the values 
(Chaplot et al., 2018). However, since the output is a Q-matrix, the lack of interpretability related 
to the meaning of the skills is a concern.  

Other researchers aimed to generate labeled skills using the supervised-machine learning 
techniques. Haris and Omar (2012) extracted rules in the form of regular expressions from sets of 
assessment items labeled with the skill names and applied the rules to classify unseen assessment 
items.  Supraja et al. (2017) implemented Support Vector Machine and Extreme Learning Machine 
techniques to automatically label assessment items. More recently, a classifier based on a 
Bidirectional Encoder Representations from Transformers (BERT) was used to assign skill labels 
to course content (Shen et al., 2021). Although, those models yielded adequate results, providing 
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training data for supervised learning requires solving the problem with initial labeling of skills. 
The methods are also likely to be domain-dependent since their performance is related to the 
domain of the training data. SMART, on the other hand, utilized unsupervised learning hence no 
labor-intensive analysis of courseware contents is required. SMART, in theory, is also domain 
independent.  

For the third approach, Model Refinement, researchers have studied ways to refine existing 
skill models. For example, Difficulty Factors Assessment (Koedinger and Nathan, 2004) uses 
observation and analysis of the actions of students by experts to refine the required skills for tasks. 
Stamper and Koedinger (2011) then developed a hybrid human-machine discovery approach using 
learning curve analysis where experts identify improvements by observing characteristics of a 
model generated from student response data. As another example, Learning Factor Analysis (LFA) 
is a semi-automatic approach to improve an initially given skill model when additional knowledge 
is provided about the features (called P-Matrix) that differentiate assessment items that are 
otherwise associated to the same skill (Cen et al., 2006).  

To overcome time-consuming feature engineering done by subject matter experts, Koedinger, 
McLaughlin, and Stamper (2012) further proposed a modification to LFA by taking previously 
developed skill models as a P-Matrix. This proposal works quite well when a rich collection of 
skill models is available such as those on DataShop (Koedinger et al., 2010) and its successor 
Learnsphere. Those open data sharing platforms allow researchers to run data analytics using built-
in functionalities, given that adequate skill models are provided.  Yet, since the process of creating 
the initial skill models for refinement is primarily driven by human experts, it becomes impractical 
to apply it to MOOCs due to scalability issues. It is therefore desired to develop automated skill 
mining techniques that provides human-readable labels. 

The current work builds on our previous work on eEPIPHANY that is a combination of 
Response Analysis, Content Analysis, and Model Refinement (Matsuda et al., 2015). The goal of 
eEPIPHANY is to discover a Q-matrix either from a given response matrix or a set of assessment 
item text. In either case, eEPIPHANY first computes embeddings for assessment items, called an 
F-matrix. The F-matrix may be computed either by matrix factorization with the response matrix 
(Response Analysis) or by applying the Bag of Words technique to the assessment items (Content 
Analysis). The rows of F-matrix (that represent latent features) are then clustered where each 
cluster is considered as a skill, which becomes a default skill model. The default skill model will 
be refined (Model Refinement) by merging and splitting the skills so that the resulting clusters 
yield a better fit to the response matrix. eEPIPHANY requires human experts to interpret the 
discovered skill model by identifying the instance of refinement which received the most 
improvement. 

To our knowledge, SMART is the only domain-agnostic technique capable of mining, labeling, 
and mapping skills without the use of an existing skill model or student response data. Not only 
does SMART eliminate an intensive requirement for expert input, but it can also produce an 
interpretable skill model prior to actual use of the courseware. Another unique feature of the 
SMART method is its capability to make associations between assessment items and instructions 
(i.e., didactic paragraphs). This association between skills and instructions has a significant utility 
for adaptive online courseware. For example, when a student fails to correctly answer an 
assessment item, the system can automatically show a link to a corresponding didactic text.  

These two features —(1) developing a skill model prior to the actual courseware dissemination 
and (2) making the association between skills and instructions— are the most important advantages 
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of the SMART method for our primary purpose, which is to develop pragmatic and scalable learning 
engineering methods to build adaptive online courseware.  

3. TECHNICAL OVERVIEW OF SMART 
Our primary research focus is on an automation of skill discovery from instructional text. The 
“instructional text” in the current study includes (1) written didactic paragraphs and (2) question 
sentences for assessment items as shown in Figure 1. The assessment items may include fill-in-
the-blank questions (as shown in Figure 1), short answer questions, multiple-choice questions, and 
check list questions, etc. The assessment items might also include the correct choice item(s), 
feedback, and hint messages, wherever available. 

Our central hypothesis is that when instructional texts are clustered based on their linguistic 
similarity, each cluster of text represents a unique latent knowledge component. We further assume 
that the most influential keyword extracted from the cluster of text will represent the latent 
knowledge component. Therefore, we implemented SMART as shown in Figure 2. We have 
integrated text-clustering and keyword-extraction techniques to identify latent skills from a 
collection of instructional texts and tag them with meaningful labels. The given instructional texts 
are clustered based on their linguistic similarity and each cluster is given a representative label.  

 
 
Figure 1. An example of (a) the paragraphs of instruction and (b) the assessment item extracted 
from existing courseware for middle school physics. 

 

(a) 

 
(b) 
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The rest of this section provides details of the SMART technology. With a lack of theoretical 
and empirical implications, we conducted an exploratory study to compare three hyperparameters 
to determine the optimal performance of SMART: (1) The representation level determines whether 
the embeddings of texts to be clustered are computed based on their linguistical characteristics or 
relationship among them (section 3.1). (2) The number of clusters determines a desired number of 
skills to be mined (section 3.2). (3) The focal strategy determines whether the latent skills should 
be extracted from assessment items or didactic paragraphs (section 3.2). A part of our research 
questions considers different combinations of these hyperparameters as discussed in section 4.1.  

3.1. PREPROCESSING 

The following preprocessing procedure is applied to individual sentences in the given instructional 
text (paragraph or assessment). A sentence text is first distilled by lowercasing and removing the 
special characters and numbers. Stop words are then removed from the distilled text prior to 
lemmatization. 

The resulting text is then encoded into a vector representation based on the token frequency 
within the document using the Term Frequency-Inverse Document Frequency (TF-IDF) method 
(Salton and Buckley, 1988). The unit of analysis for text clustering is a paragraph or an assessment 
item. Consequently, TF-IDF is applied to didactic paragraphs and assessment items separately. 

The representation level is the first hyperparameter for SMART. The TF-IDF vector 
representation of individual texts to be clustered are termed the first-level representation. The first 
level representation may be used for clustering the texts (as described below). However, the current 
literature indicates that the clustering based on the second-level representation sometimes results 
in a better classification accuracy (Rihák and Pelánek, 2017). The second-level text representation 
uses vectorizations that represent relative distance among the target text embeddings. Assume a 
set of first-level representations, 𝑉! ∈ ℝ"×$ where |V1| = m and d is the dimension of the TF-IDF 

 

Figure 2. Multi-step process depicting the SMART method. 

Preprocessing

•Removal of special characters, numbers, and stopwords
•Character lowercasing and lemmatization
•Representation and vectorization

Skill Mining 
(Clustering)

•Clustering of the focal text type (paragraphs or assessment items)
•Iteratively perform K-means clustering on text until all the clusters have different skill 
names or input a defined number of clusters

Skill Labeling

•Keyword extraction using TextRank algorithm
•Hypothesis: "Top" keywords represent the skill name

Skill Mapping

•Mapping of texts (non-focal text type) to skills and assessments to paragraphs using cosine 
similarity

7 Journal of Educational Data Mining, Volume 14, No 2, 2022



 

embeddings. The second-level representation, 𝑉% ∈ ℝ"×", is computed such that the j-th element 
of the i-th vector in V2 represents the cosine similarity distances (Salton and McGill, 1983) between 
the i-th and j-th (0 < i, j < m) embeddings in V1. 

3.2. SKILL MINING 

Following the preprocessing step mentioned above, the resulting text embeddings (paragraphs or 
assessment items) are then clustered using the k-means technique (Hartigan and Wong, 1979). The 
k-means technique requires the number of clusters to be given a priori. Thus, the second 
hyperparameter for SMART is the number of clusters which specifies the variable k, which 
represents the number of skills. 

Initially, we implemented an iterative approach to determine a sense-making k value, instead 
of providing the value of k in an ad-hoc fashion. It begins with a value of k specified by the number 
of unique instruction texts to be clustered divided by two (aiming an average of two items per 
cluster). SMART then performs the k-means clustering followed by skill labeling (described in the 
next subsection). Once all clusters are labeled, if two or more clusters have the same skill labels, 
they are assumed to be representing the same latent skill and, hence, get merged into one cluster. 
If any clusters are merged, then another iteration of k-means clustering takes place with the value 
of k equals to the number of unique clusters after merging (hence k is reduced at least by one). The 
iteration terminates when no duplicate cluster labels are found. Consequently, each of the final 
clusters represents a unique skill. 

For further evaluation of determining the appropriate value of k, we applied a user-specified 
approach for identifying the number of clusters for SMART. The user-specified approach begins 
with a user specified value for k, representing the anticipated number of skills in the course. In 
contrast to the iterative approach, the user-specified approach applies k-means clustering only once 
before applying skill labeling and merging any clusters with the same skill label. Since clusters 
may be merged (at most once), the final number of clusters (unique skills) may be less than the 
value that the user specified originally.  

The third hyperparameter for SMART, the focal strategy specifies the type of text on which the 
skill clusters are computed. There are two types of focus: paragraph-based and assessment-based. 
As mentioned above, the instructional text in the current study includes paragraphs and assessment 
items. The paragraph text is didactic whereas the assessment text is interrogational. With a lack of 
theoretical implications, there was no design justification on how this mixed type of text should 
be used. We, therefore, empirically compared two different focal strategies for skill mining. We 
presumed that clustering only one type of text (paragraph or assessment) to identify a set of skills 
first, and then mapping individual texts in another type to one of those identified skills (i.e., clusters 
of text) will result in a better skill model than clustering mixed text at once. We refer to the set of 
instructional texts used for initial clustering as the focal text. Accordingly, the set of instructional 
texts that are later mapped to the clusters is called the non-focal text. 

In sum, once the focal text is clustered, each cluster is given a label that provides human-
friendly interpretation of the latent skill among the clustered text. The individual items in the non-
focal text are then mapped to one of the skill clusters using the cosine similarity measure. The 
hyperparameter focal strategy specifies whether the focal text is paragraph or assessment.  
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3.3. SKILL LABELING 

A label for a cluster of text is computed using TextRank, a keyword extraction algorithm (Mihalcea 
and Tarau, 2004). We hypothesize that the keyword of the cluster represents the latent skill that 
the cluster of texts aims to convey. 

The TextRank algorithm is an unsupervised graph-based ranking algorithm that takes words in 
a given document (the cluster of text in our case) as input and produces ranking of representative 
lemmatized words based on how closely they appear in the given document.  

The “closeness” of a pair of words is computed as the frequency of co-occurrence within a pre-
defined window. The “closeness” of the words is then reflected in the graph with nodes 
representing words and edges representing the frequency of the co-occurrence for the linked 
words. In the current study, the size of the window was set to be two based on empirical 
observations of the TextRank performance (Mihalcea and Tarau, 2004). 

Once the graph of co-occurring words is formed, the TextRank algorithm computes a score of 
each node in the graph. In essence, the higher the number of links coming into a node, the higher 
the importance of the node, and hence the higher the score. The scores are then sorted in 
descending order to determine a rank associated with the nodes that represents the importance of 
the words within the graph. A list of the top n important words is retrieved and referred to as the 
keywords.  

All the keywords that occur adjacent to each other with a particular order in the original text 
are collapsed into a single multi-word keyword, and their scores are averaged. For example, if the 
keywords “Skill”, “Model”, and “Mining” occur in a particular consecutive sequence (e.g., “.... 
skill model mining ...”) in the original text (i.e., the text before removing stop words), then the 
three individual keywords are combined in the same order (e.g., “Skill Model Mining”).  

3.4. SKILL MAPPING 

The following mapping procedure applies both for assessment-based and paragraph-based focal 
strategies. Let the map base be the focal text used for skill mining, i.e., a group of either assessment 
items or instructional paragraphs. Let the mapping text be the non-focal text.  For example, if 
assessment items are the focal text, a cluster of assessment items is the map base whereas 
individual paragraphs are the mapping texts.  

Skill mapping is done by computing the cosine similarity (Salton and McGill, 1983) between 
a mapping text and a map base. Individual clusters of text in the map base and individual sentences 
in the mapping text are first encoded using the TF-IDF representation. The cosine similarity 
between each sentence Si in the mapping text and each cluster of text Cj in the map base is then 
computed using the Euclidean dot product. The cluster Cj in the map base with the highest cosine 
similarity is considered as a provider of a skill name for the sentence Si in the mapping text. This 
way, didactic instructional paragraphs and assessment items are mapped to each other using the 
skill name as a key. 

4. RESEARCH QUESTIONS 
Our primary research questions are centered around the effectiveness of SMART, the proposed 

technique for latent skill discovery from courseware content. We group the research questions into 
two studies: (1) Hyperparameter Selection and (2) Comparison of SMART and Human Skill 
Models. The Hyperparameter Selection study explore the implementation and hyperparameter 
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choices associated with the approach. The Comparison of SMART and Human Skill Models study 
addresses the effectiveness of the approach for skill model generation by comparing the results 
with human skill models. 

4.1. HYPERPARAMETER SELECTION 

As a reminder, we consider three hyperparameters: representation level, number of clusters, 
and focal strategy. The first research question (RQ1), therefore, will analyze the different 
combinations of the hyperparameters for SMART by comparing the accuracy of resulting skill 
models predicting the student response on the existing student learning data. 

  
(RQ1) Which set of hyperparameters for SMART are optimal for skill model generation? 

 
As mentioned in section 3.2, while identifying skill clusters, SMART merges clusters with the 

same label into a single cluster. In the process of exploring the hyperparameter selection, we 
noticed that SMART often merged an unexpectedly large number of clusters—i.e., there were often 
too many clusters labeled with the same labels. Since, linguistically speaking, the merged clusters 
may represent different skills, we speculated that merging clusters with the same skill label 
degrades the validity of the resulting skill model. We therefore aim to address the following 
research question (RQ2) by evaluating the effect of merging clusters on the distribution of the 
number of assessment items per skill and the similarity of the resulting skill model with one made 
by human experts. 

 
(RQ2) How does merging clusters impact the performance of SMART? 
 
Poor clustering performance related to the loss of relevance for pairwise distance measures 

among high dimensional, sparse data is a common concern (Bansal and Sharma, 2021; Smieja et 
al., 2019; Zamora, 2017). Additionally, word embeddings that include contextual information have 
been shown to improve performance for certain natural language processing tasks compared to 
frequency-based representations such as TF-IDF. Therefore, we explore an additional research 
question (RQ3). RQ3 compares the model fit performance of SMART with the current sparse, 
frequency-based representation (TF-IDF) versus dense, contextual-based embeddings using 
Bidirectional Encoder Representations from Transformers (BERT) and Sentence-BERT. 

 
(RQ3) What is the effect of using dense, context-based embeddings on the performance of 

SMART? 
 

4.2. COMPARISON OF SMART AND HUMAN SKILL MODELS 

We hypothesize that if a skill model discovered by SMART is valid, then the model should yield 
adequate prediction of students’ responses on the existing student learning data that is equivalent 
to or better than human-crafted skill models. We also hypothesize that valid machine-generated 
skill models will have high similarity to human-crafted skill-models. The following research 
question (RQ4) is therefore explored: 

 
(RQ4) Can SMART yield a skill model that is comparable to human-crafted skill models? 
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5. DATA AND METHODOLOGY 
To address the research questions mentioned above, SMART was applied to two instances of 
existing online courseware. The machine-generated skill models were used to predict students’ 
performance using the learning data collected by previous studies where students participated in 
the corresponding online courses. The learning data were obtained from DataShop, the open 
educational data repository (Koedinger et al., 2010). After selecting the optimal hyperparameters 
for SMART, we compared the best performing SMART-generated skill model with the best human-
crafted skill model on each course (also obtained from DataShop) to measure the similarity among 
them.  

5.1. DATA 

Courseware content data and students learning data used in the current study were obtained from 
two existing online courses offered by the Open Learning Initiative (OLI) at Carnegie Mellon 
University (CMU), entitled “Introduction to Biology” and “General Chemistry I”.  

For the Biology course, a total of 1,095 assessment items and 1,608 paragraphs were parsed 
from the courseware. Students’ learning data for this online course are available as “ALMAP 
spring 2014 DS 960 (Problem View fixed and Custom Field fixed)” dataset on DataShop. The 
learning data contain 268,822 observations, each of which shows a student’s attempt on an 
assessment item including the correctness of the student’s answer.  

For the Chemistry course, a total of 1,505 assessment items and 2,838 paragraphs were parsed 
from the courseware. The student learning data are available as “AHA Chemistry 1 v2.3 Fall 2020” 
dataset on DataShop, which includes 200,327 observations.  

5.2. METHODS 

To address the research questions mentioned above, two evaluation studies have been conducted: 
(1) Hyperparameter selection, and (2) Comparison of SMART and human skill models.  

5.2.1. Hyperparameter Selection Study 

The goal of the first study, the Hyperparameter Selection Study (results shown in section 6.1), 
was to answer the first three research questions, RQ1-3. The first research question, RQ1, was 
investigated by computing the model fit for SMART-generated skill models across a range of values 
for the hyperparameters —representation level, focal strategy, and number of clusters. As a 
reminder of the hyperparameters, the representation level can be either first- or second-level. The 
focal strategy uses either paragraphs or assessment items as the focal text. For the number of 
clusters, the iterative approach can be applied, or we set the initial value of k to 10, 50, 100, 150, 
and 200 for the user-specified approach.   

Some readers might question why the values of k were taken rather ad-hoc. While a more 
exhaustive exploration of the specified values of k is more rigorous, we chose to limit our study 
for two primary reasons: (1) Our primary motivation is to examine the trend in the quality of the 
skill model as the number of skills in a course (i.e., k) progresses into the lower range of 
pedagogically meaningful values. (2) Computing the AIC (Akaike Information Criterion) value 
(that was used to evaluate the quality of the model as described below) was very expensive hence 
the computational cost of the experiment needed to be reduced by limiting the scope of exploration.  
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To determine a best combination of hyperparameters, we compare the model fit of a student 
model based on the SMART-generated skill models to student learning data. We adopted the 
Additive Factor Model (AFM) implemented in DataShop as the basis for evaluating the model fit. 
The AFM is a logistic regression model with the probability of performing a problem step correctly 
on the first attempt as the dependent variable whereas the skill involved and the number of previous 
opportunities for that skill are independent variables. The individual student is also entered in the 
model as a random effect.   

The validity of AFM is often measured using Akaike Information Criteria (AIC) and Bayesian 
Information Criteria (BIC). AIC is commonly used for determining a model that best predicts 
observations (i.e., predictive model selection) hence lenient with the model complexity. BIC, on 
the other hand, is better suited for theorizing observations as a regression model (i.e., explanatory 
model selection) hence prefers simple models (Shmueli, 2010). Since we are most interested in 
generating a skill model that results in an accurate prediction of student learning, we used the AIC 
measure of the fit between the predictive model and actual student performance to evaluate the 
validity of the skill model.  

Throughout the currently study, for a given skill model M, the evaluation of the model fit to 
student learning data was performed according to the following steps: 

 
(1) Associate a skill in M to each of the assessment items if M is computed by the paragraph-

based focal strategy (see 3.2).  This mapping is naturally done for the assessment-based 
focal strategy.  

(2) Calculate the sequential opportunity count for each of the skill applications in the given 
student response data. Notice that for each opportunity of skill application, there might be 
multiple attempts with one and only one correct attempt at the end (unless students can 
answer the same assessment question correctly multiple times, which usually does not make 
sense).  

(3) Fit the Additive Factor Model (AFM) using the correctness of the first attempt at each skill 
application opportunity as ground truth. 

(4) Compute AIC that shows the fit between the predicted student responses according to the 
AFM and actual student responses. 

 
Since the k-means clustering involves a stochastic component, SMART generates different skill 

models each time it runs even with a fixed set of hyperparameters. Therefore, for each combination 
of the hyperparameters, AIC values were averaged over 10 runs where each run consists of skill-
model production and model fit. Notice that since AIC takes the model complexity into account, 
it is a common practice in the current literature to measure the model fit without cross validation. 
We fit the AFM model using all data.  

An ANOVA test was then conducted with AIC as the dependent variable and the three 
hyperparameters mentioned above as independent variables to determine the optimal settings for 
representation level, focal strategy, and number of clusters. Since the evaluation of the model is 
expensive in terms of computation time, we chose to reduce the student learning data to the top 
100 students according to number of responses while training the model. The sampling was done 
this way (instead of, say, random sampling) to maximize the coverage of skills in the response data 
sample used for the experiment. 

To investigate the second research question, RQ2, the impact of merging clusters on the 
performance of SMART was examined in two ways. First, we examined the distribution of cluster 
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sizes for SMART-generated skill models with and without merging clusters. We assume that 
SMART-generated skill models should hold the skill distributions comparative with human-crafted 
ones. As far as the quality of the skill model is concerned, the one that is more similar to human-
crafted skill model should be valued. We therefore computed the number of assessment items per 
skill cluster for each skill model to create an empirical probability distribution of skill cluster size 
for SMART-generated skill models (both with and without merging) and the human-crafted skill 
models. The similarity of the skill cluster size probability distributions for SMART-generated skill 
models (with and without merging) with the skill cluster size probability distribution for the 
human-crafted skill model was then computed using Kullback-Leibler divergence (KLD). The 
KLD value, DKL(P||Q), shows how the probability distribution Q differed from P (Kullback and 
Leibler, 1951). In our case, KLD tells us how the cluster size probability distribution for SMART-
generated skill models differed from the cluster size probability distribution for human-crafted 
skill models.    

Second, the Normalized Mutual Information (NMI) between SMART and the human-crafted 
model was measured. The NMI measures with and without the merging of clusters were then 
compared. The NMI is an information theoretic measurement commonly used to quantify the 
similarity of two clustering results on a scale between 0 and 1, where the similarity increases as 
the measure approaches 1 (Vinh et al., 2009). An ANOVA test was conducted with NMI as the 
dependent variable and the following variables as independent variables: (1) merge operation—on 
vs. off, (2) number of clusters (discrete values of 10, 50, and increments by 50 from 100 to 1000). 
Based on the results from the AIC comparison mentioned above, representation level and focal 
strategy were fixed at first-level and assessment focus, respectively. For each combination of 
independent variables, NMI values were averaged over 25 runs where each run consists of skill-
model production and computation of the NMI between the SMART skill-model and the human-
generated skill model.  

The third research question, RQ3, was investigated by comparing the model fit performance of 
SMART using TF-IDF representation versus embeddings from Bidirectional Encoder 
Representations from Transformers (BERT) and Sentence-BERT. BERT embeddings are based 
on a pre-trained encoder on the masked language model and next sentence prediction tasks using 
a large corpus of text (Devlin, et al., 2019). Sentence-BERT embeddings are the result of fine-
tuning BERT on a large collection of sentence pair data with a label showing their relationship, 
e.g., contradiction, entailment, or neutral (Reimers and Gurevych, 2019).  

To avoid the requirement for course contents being labelled with a skill, we chose not to fine-
tune the pretrained BERT and Sentence-BERT models for our task. For BERT, we used the bert-
base-uncased pretrained model from the transformers python library, which has been pre-trained 
using a collection of unpublished books (BookCorpus) and Wikipedia. For Sentence-BERT, we 
used the paraphrase-distilroberta-base-v2 pretrained model from the sentence-transformers 
python library, which was pretrained using sentence pair data from a variety of sources including 
StackExchange, Yahoo Answers, and Quora.  

5.2.2. Comparison of SMART and Human Skill Models 

The goal of the second study—comparison of SMART and human skill models (results shown 
in section 6.2) was to investigate the fourth research question RQ4.  To achieve this goal, we 
compared the model fit of the best SMART-generated skill model against the best human-crafted 
skill model taken from DataShop. The best SMART-generated model was the one identified by the 
Hyperparameter Selection Study mentioned above. The AIC over AFM was used to measure the 
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model fit performance as described in section 5.2.1. To evaluate how the best SMART-generated 
model is similar to the human-crafted model, we applied the NMI measure as mentioned above.  

Note that since SMART relies on the k-means clustering technique, an appropriate value for the 
number of clusters needs to be identified. In the current study, we applied the elbow method for 
determining the number of clusters. The elbow method uses measures intrinsic to the unsupervised 
clustering method to identify the value for the number of clusters at which the metric’s 
improvement diminishes (Thorndike, R.L., 1953; Ketchen and Shook, 1996). We used the 
silhouette score that is a commonly used intrinsic measure for the elbow method. The measure 
considers the within-cluster dispersion and between-cluster dispersion to evaluate the quality of a 
clustering (Rousseeuw, 1987). The silhouette score improves as the within-cluster distances 
decrease and between-cluster distances increase, representing dense clusters that are relatively 
separated from other clusters. To enhance the rigor for this final comparison, we used the entire 
set of student learning data.  

6. RESULTS 

6.1. HYPERPARAMETER SELECTION 

Regarding RQ1, Figure 3 and Figure 4 show the results of the model fit to students’ learning data 
for the Additive Factor Model based on skill models identified using various combinations of the 
hyperparameters for SMART for the OLI Introduction to Biology and General Chemistry I courses, 
respectively. In the figures, each series is a combination of focal strategy and representation level, 
with the number of clusters as the x-axis and the average AIC from the model fit evaluation as the 
y-axis.   

Regarding the number of clusters, the iterative approach clearly performed poorly compared 
to the user-specified number of clusters. Upon further review of the output for the iterative strategy, 
we noticed that our proposed skill labeling approach via TextRank frequently resulted in duplicate 
keywords for clusters. Consequently, the iterative strategy did not terminate until the number of 
clusters became very small, often less than 10, that resulted in poor performing skill models. Thus, 
we only include user-specified number of clusters in the following analysis. 

To understand the impact of hyperparameters on the model fit, an ANOVA analysis was 
conducted with AIC as the dependent variable, representation level (first vs. second), focal strategy 
(assessment vs. paragraph), and number of clusters (10, 50, 100, 150, 200) as the independent 
variables, and course (Biology vs. Chemistry) as a random effect. The result did not show that 
representation level was a main effect; F(1, 395) = 0.34, p = 0.56. Therefore, we retain the simplest 
representation, first-level, for the following analysis. 

The ANOVA found that focal strategy was a main effect; F(1, 395) = 28.19, p < 0.001. The 
assessment focal strategy yielded better skill models in terms of the model fit. The preference for 
assessment focus while clustering may be related to the use of the assessment item to skill mapping 
in the model fit evaluation. As a reminder, in the assessment strategy, the assessment items are 
directly clustered. On the other hand, in the paragraph strategy, the paragraphs are clustered and 
then the assessment items are mapped to the closest cluster of paragraphs. The indirect mapping 
of assessment items in the paragraph strategy is a potential source of error that may carry onto the 
skill model.  

Finally, the ANOVA revealed that number of clusters was a main effect for the model fit; F(1, 
395) = 1610.46, p < 0.001. The larger the number of clusters, the better the model fit. Specifically, 
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as the number of clusters increased by one, the AIC value was improved by -19.49 (notice that the 
smaller the AIC value, the better the model fit). 

Regarding RQ2, based on relatively poor performance of the iterative clustering strategy, we 
hypothesize that the duplicate keywords depict distinct skills under a common topic rather than 
replicated skills.  For example, two clusters with the skill label of ‘atom’ may be related to unique 
skills related to the atom, such as identifying the structure of an atom or explaining their properties. 
To test this hypothesis, we developed a version of SMART that did not carry the merge operation 
hence created distinctive labels for clusters with identical skill labels from TextRank keyword 
extraction. For example, multiple clusters with TextRank keyword ‘electron’ become ‘electron_1’, 
‘electon_2’, ‘electron_3’, and so on.  

We then conducted an evaluation of the similarity between SMART-generated skill models with 
and without the merging operation and the human-crafted skill model to determine whether the 
merging of clusters had a statistically significant effect on the performance of SMART. We first 
compared the distribution of cluster sizes for the SMART-generated skill model with and without 
the merge operation and the human-crafted skill model using the KL Divergency measure as 
described in section 5.2.1. The results are shown in Table 1.  

 
 
Figure 3. Results of the model fit for SMART on OLI Introduction to Biology across the range of 
hyperparameter values. 

 

 
 
Figure 4. Results of the model fit for SMART on OLI General Chemistry I across the range of 
hyperparameter values. 
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As shown in the table, SMART without merging clusters resulted in a cluster size distribution 
more similar to the human-crafted skill model than the one with the merging operation. This result 
implies that the TextRank algorithm generates the same labels for clusters of assessments that 
human experts might consider as different skills. Further research is needed to produce more 
distinctive labels than the current TextRank algorithm.  We will elaborate this discussion later in 
section 7.2. 

Regarding RQ2, we also compared the average Normalized Mutual Information (NMI) 
between the skill models generated by the versions of SMART and human experts (results in Figure 
5). An ANOVA with NMI as the dependent variable, the status of merging clusters for SMART as 
the independent variable, and course and number of clusters as random effects revealed that the 
merging operation was a main effect for the normalized mutual information between SMART-
generated and human-crafted models; F(1, 2077)=2543.4, p < 0.001. The skill models generated 
by SMART without the merging of clusters resulted in a 4% increase of NMI. Therefore, we selected 
the version of SMART without merging clusters for further comparison.  

 

 

Figure 5. Normalized Mutual Information (NMI) between SMART skill models (with and without 
merging clusters) and the human-generated skill model for OLI Introduction to Biology and OLI 
General Chemistry I. 

Regarding RQ3, to determine the effect of dense, contextual-based embeddings on the 
performance of our approach for skill model generation, we compared the model fit for student 

Table 1. Comparison of the Cluster Size Distribution between SMART with the merging of 
clusters, SMART without merging clusters, and the human-generated skill model. 

 
Version of SMART 

 KL Divergence from Human Skill Model 
 OLI Introduction to Biology  OLI General Chemistry 1 

Merge  0.1444  0.1121 
No Merge  0.1015  0.1021 
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learning using the Additive Factor Model based on skill models generated by SMART with different 
representation types (TF-IDF, BERT, and Sentence-BERT). The results are shown in Figure 6 and 
Figure 7 —the model fit by varying representation type for the OLI Introduction to Biology and 
OLI General Chemistry I courses, respectively. An ANOVA was conducted with AIC from the 
model fit as the dependent variable, representation, focal strategy, and number of clusters as the 
independent variables, and course as a random variable. The results showed that representation 
(TF-IDF, BERT, or Sentence-BERT) was a main effect; F(1, 354) = 70.12, p < 0.001.  

To our surprise, both Sentence-BERT and BERT representation generated skill models with the 
model fit worse than TF-IDF —on average aggregated across focal strategy, number of clusters, 
and course, AIC for BERT and Sentence-BERT were 1011.3 and 351.7 points lower than TF-IDF, 
respectively. These results suggest that either the decrease in clustering performance frequently 
observed when using high dimensional, sparse data does not apply to our application and/or 
contextual-based embeddings have no advantage over frequency-based representation when 
clustering a set of relatively short assessment items for a specific domain. We have yet to 
understand why this occurs, but it is beyond the scope of the current study.  

 

 

Figure 6. Comparison of the results of the model fit for SMART with varying representation 
methods on the OLI Introduction to Biology course. 
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Figure 7. Comparison of the results of the model fit for SMART with varying representation 
methods on the OLI General Chemistry I course. 

In sum, our evaluation of the best hyperparameter of SMART resulted in the selection of first-
level TF-IDF representation, assessment items as the focal text, a user-specified number of 
clusters, and skill labeling without merging clusters. This combination of the hyperparameters was 
used for the comparison of SMART-generated and human-crafted skill models as described in the 
next section. 

6.2. COMPARISON OF SMART AND HUMAN SKILL MODELS 

As mentioned in the method section (5.2.2), the silhouette score was used to determine the number 
of clusters (i.e., a hyperparameter that specifies the target number of skills) in conjunction with the 
elbow method. The silhouette score values for the OLI Introduction to Biology and OLI General 
Chemistry 1 courses (as the number of clusters increase) are shown in Figure 8 and Figure 9, 
respectively.  

Based on the elbow method, we determined the number of skills for the Biology course to be 
325 and the number of skills for the Chemistry course to be 215 since the improvement of the 
silhouette score related to increasing the number of clusters diminishes beyond those values. We 
acknowledge that selection of the number of clusters using this method involves some subjectivity 
since it does not exactly pinpoint a value for the number of clusters. 
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Figure 8. Measurement of the silhouette score for clustering assessment items as the number of 
clusters increases (OLI Introduction to Biology course). 

 

 
Figure 9. Measurement of the silhouette score for clustering assessment items as the number of 
clusters increases (OLI General Chemistry 1 course). 
 

As noted in Section 5.2, both the SMART-generated skill model and the human-crafted skill 
model for each course were applied to student response data to build predictive models using AFM. 
The results of comparing the model fit in predicting student response for the OLI Introduction to 
Biology and OLI General Chemistry I courses are depicted in Table 2. Note that since not all 
students responded to all assessment items, the student response data taken from DataShop do not 
necessarily include all assessment items. Consequently, the number of skills discovered by SMART 
does not match the number of skills in the student response data. The results in Table 2 show that 
for both courses, SMART was able to discover skill models that equally well or better predicted 
student response than the human-crafted skill models.  

Further, we evaluated the clustering similarity between the SMART-generated and the human-
crafted skill models using Normalized Mutual Information (NMI) as shown in Table 3. In both 
cases, the SMART-generated skill model had a relatively high similarity with the human-crafted 
skill model for the entire courseware based on the NMI values. Although, there seems to be no 
common agreement on the goodness of NMI values, we would argue that an NMI of 0.8 shows a 
fair amount of agreement between human experts and SMART. The values we observed are 
comparable to NMI values achieved by top-performing clustering methods used for tasks such as 
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grouping health-related tweets and emails (Lossio-Ventura et al., 2021) and clustering texts such 
as news articles and Wikipedia entries (Sherkat et al., 2018).  

 
Table 2. Model fit comparison between SMART and the human-crafted skill model for OLI 
Introduction to Biology and OLI General Chemistry 1 courses. The number in parenthesis 
represents the user-specified number of clusters for SMART on the entire courseware. 

  OLI Introduction to Biology  OLI General Chemistry 1 
  SMART 

(325) 
 Human-

crafted 
 SMART 

(215)  
 Human-

crafted 
# Skills identified and 
associated to student 
response data 

 

257  186  187  185 

AIC  216,131.95  217,561.55  187,212.10  187,571.83 

 

Table 3. Clustering similarity between SMART and the human-generated skill models using 
Normalized Mutual Information (NMI). 

Course  NMI between SMART and 
human-crafted skill models 

OLI Introduction to Biology  0.816 
OLI General Chemistry I  0.791 

 

7. DISCUSSION 

7.1. TEXT-MINING AS A METHOD FOR LATENT SKILL DISCOVERY 

The current study demonstrated that even only using instructional text (i.e., instruction paragraphs 
and assessment items), latent skills covered on the courseware can be identified, labeled, and 
associated to individual written elements. The proposed model for the skill discovery, SMART, is 
the first in the current literature to automatically mine the labeled latent skills from authentic 
courseware contents. The current study also provided rigorous evaluations of the proposed method 
using existing authentic learning data. 

The study also showed that the machine-generated skill models performed equally well or better 
than elaborated skill-models iteratively crafted by human subject-matter experts in terms of the fit 
to students’ learning data. Admittedly, the larger the number of skills, the better the model fit. 
Indeed, SMART ended up identifying a larger number of skills than human experts to achieve a 
better performance. However, the number of skills reported in the current study is arguably still 
plausible. 

The current version of SMART lacks a precise method for determining the number of clusters 
for the k-means clustering algorithm used to identify latent skills. Since the attempt to identify the 
number of clusters through an iterative approach performed poorly, we relied on a common method 
for estimating the value based on cluster analysis (the elbow method). Further study is required to 
more precisely select a pedagogically relevant number of skills for a given courseware content. 
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We plan to extend our study to include additional clustering algorithms and corresponding methods 
for inferring the number of clusters, e.g., DBSCAN with Gaussian Mixture Models, as well as 
exploring other methods for approximating the skill distributions made by experts.   

The current study also showed that the skill model generated by SMART generally agreed with 
skill models defined by subject matter experts based on the Normalized Mutual Information 
between the models. A cursory review of the output of SMART, specifically the assessment item to 
skill mapping, confirmed that the clustering of assessment items appears logical. Examples from 
each course evaluated in the study can be found in Appendix A, Section A.1.  

In sum, SMART can generate a skill model that is comparable to the skill models proposed by 
subject matter experts given the knowledge about the appropriate estimation of the number of 
skills in the target courseware. At a minimum, the machine-generated skill model from SMART can 
serve as an automated basis for skill-model refinement through existing methods, such as Learning 
Factor Analysis. Even as an initial skill model for further refinement based on expert input, SMART 
may significantly reduce the workload required of courseware developers. 

7.2. KEYWORD EXTRACTION FOR SKILL LABELING   

A unique practical strength of the SMART method is its capability to provide a supposedly 
instructor-friendly interpretation to the machine-discovered skills. While human readable skill 
labels are significant to the intended application of our approach, the current study was focused on 
evaluation of whether assessment items were meaningfully clustered based on semantic features. 
Therefore, we have yet to fully explore and evaluate the possible range of algorithms to extract or 
generate skill labels that have a utility for instructors and learners.  Future research is needed to 
investigate how to best integrate courseware developers into the engineering pipeline.  

For example, SMART might be used to validate and refine skill models used in the existing 
courseware. As a slight extension, SMART might be a part of analytic tools to optimize online 
learning by validating the size of an embedded skill model —assuming that SMART can actually 
make an adequate estimation of the number of skills related to the courseware. Finally, when 
SMART is fully mature, we may want to directly apply the resulting skill models in an authentic 
adaptive online environment and investigate the effect on learning. 

The current study also shows some issues on skill labeling to be addressed by future research. 
First, we observed that SMART sometimes generated a skill label that did not discernibly represent 
all assessment items associated to a single cluster. Specific examples of this situation are included 
in Appendix A, Section A.2.  

This suboptimal labeling behavior might be due to poor classification of the focal text, which 
results in mixing up texts for different skills. Alternatively, the poor discernability of the suggested 
skill labels might be due to a limitation of the TextRank algorithm for keyword extraction. Since 
the text from all assessment items in a single cluster is input into the TextRank algorithm, words 
that appear closely together in many of the assessment items, but not all, can be selected to 
summarize the entire set of assessment items. In this case, the behavior of the TextRank algorithm 
may produce a suboptimal skill label. In the current study, we observed approximately 10% of 
clusters with suboptimal labeling hence we would argue that SMART is still a valid technique with 
a pragmatic impact. Future research is necessary to produce text clusters with better (or “tighter” 
if you will) bond among the focal texts and/or to identify keywords that provide coverage of all 
texts in a given cluster.  

Second, our skill labeling approach may generate skill labels that is too broad (or too “vague” 
if you will) to clearly identify or distinguish the skill required for the assessment items. For 
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example, SMART extracted seven ‘atom’s (‘atom_1’ through ‘atom_7’) and ‘atomic’ for the OLI 
Introduction to Biology course. Similarly, eight ‘electron’s were extracted for the OLI General 
Chemistry I course. It appeared that a specific keyword was identified for multiple different 
clusters of text while each should be associated with different skills. Future research is necessary 
to study alternative approaches for skill labeling to address the inability to distinguish between 
skills that are closely related. 

Due to the identified shortcomings with using the TextRank algorithm for skill labeling, we 
plan to extend our evaluation to include additional keyphrase extraction algorithms, as well as 
supervised, abstractive techniques. For instance, more complex keyphrase extraction algorithms 
may produce a better result by considering longer phrases as keyphrase candidates that are more 
relevant and meaningful. Alternatively, sequence models, such as GPT-3, may be able to 
successfully generate a skill label given the text for a group of assessment items. However, the 
approach might also require formation of a broad set of training examples from courses across 
several domains to fine-tune the sequence model. 

Once we achieve adequate performance for skill labeling, another research direction involves 
the extrinsic evaluation of the validity of the automatically generated skill labels. A survey of 
experts in course development, for example, would better assess the utility of our automated skill 
labels for application by instructors in managing an adaptive online course when compared to 
manually formed skill labels. 

8. LIMITATIONS     
We acknowledge the limitations of the current study that must be further investigated. First, we 
lack empirical evidence to support the generality of our approach. The current study explored the 
effect of hyperparameter settings on a subset of the data used for evaluation and was applied to 
only two STEM courses. Therefore, unforeseen factors may influence the performance of our 
approach for skill mining and labeling when applied to a diverse set of courses.  

For example, our proposed approach is likely to work well for courses that depend on verbose, 
comprehension-type tasks since the assessment items are clustered according to term frequency-
based features. However, the approach may not be as relevant for courses with a high sensitivity 
to syntactic differences (e.g., programming). Additionally, decisions regarding pre-processing of 
the text, such as the removal of numbers and specific stopwords, may degrade performance for 
courses where numbers are prevalent and highly relevant to the learning objectives (i.e. math). In 
the current study, we have studied two STEM courses from different domains. We will explore 
more divergent, non-STEM courses, to study domain specific and domain general features that 
influence skill mining, if any. 

Second, regarding the evaluation of the machine-generated skill models during hyperparameter 
selection, we have reduced the student learning data to only include the top 100 students based on 
their number of responses to reduce the computational cost. However, this may have inadvertent 
side effects. For example, it is unknown how sampling different populations of students —e.g., 
“average” vs. “low” performers— would impact the result. Further study is necessary to validate 
the impact of the selection bias, if any. 
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9. CONCLUSION 
We found that clustering instructional text based on semantic features resulted in a skill model 

with predictive power for students’ learning comparable to the efforts of the subject matter experts. 
We have also found that the machine-generated skill models generally agree with the human-
crafted skill models in terms of assessment-skill association. At the same time, the current 
observation of the results indicates that using the TextRank algorithm to extract skill labels 
sometimes fails to differentiate closely related skills as resulting in having multiple skill clusters 
with the same label. In the current evaluation study, the machine-generated skill models were 
compared to the human-crafted skill models for two existing authentic online courses. 

In summary, SMART is a method for automatically mining, labeling, and mapping skills for 
existing online courseware using existing machine learning technologies. It is aimed to apply to 
authentic large-scale online courseware, aka, Massive Open Online Course (MOOC). With the 
rapidly growing interest in effective MOOCs, studying assistive technologies to develop valid 
adaptive instruction is of utmost importance and critical research for the next generation of online 
education. It is our belief that the current work has provided a significant contribution toward 
automating the generation of scaffolding for adaptive online content with potential for increasing 
the reliability, hence pedagogical value, of online education. 

In its current state, SMART produces an initial skill model for refinement by experts, such as 
course developers and instructors. Should the aim of the approach be fully achieved, automated 
skill models produced by SMART may have the potential to reduce the workload of course 
developers while enabling adaptive online content at the launch of a course. As student response 
data becomes available, then existing methods for model refinement —such as Learning Factor 
Analysis— may be deployed to further improve the validity of the SMART-generated skill model. 
Through integration into open data sharing platforms, such as DataShop and its successor 
Learnsphere, researchers can run data analytics using built-in functionalities with the skill models 
automatically generated by SMART. Yet, we believe that SMART is an important step towards our 
goal to automate the generation of skill models with instructor-friendly labels from courseware 
content without the use of an existing skill model or student learning data. 

The entire code base for the algorithms reported in the current paper is available on GitHub1. 
 

  

 
 
1 https://github.com/IEClab-NCSU/SMART 
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APPENDIX 

A.  ASSESSMENT ITEM TO SKILL MAPPINGS FROM SMART 
In this appendix, we provide a sample of the assessment item to skill mappings generated by 
SMART. In the first subsection, we present examples where the grouping of assessment items 
appears logical at face value. Next, we present examples where the skill label does not discernably 
apply to all assessment items assigned to the skill. 

A.1. EXAMPLES OF ASSESSMENT ITEM TO SKILL MAPPINGS 

From the OLI Introduction to Biology courseware: 
 

Skill Name Assessment Items (Clustered by Skill) 

phosphate How are ATP and ADP structurally different? ATP has three phosphates attached to a single 
adenosine, while ADP has two phosphates attached to an adenosine, Correct. What does the T 
in ATP stand for? What about the D in ADP? D stands for diphosphate (two) and T stands for 
triphosphate (three). 

The products of ATP hydrolysis, ADP and inorganic phosphate, are more stable because: 
Electrostatic repulsion between the phosphates is relieved. Correct. 

When ADP is converted to ATP, the new phosphate is added to which position on the molecule? 
a. Correct 

ATP is formed from ADP by the addition of _ to ADP _ phosphate. Correct. 

protein Moving single molecules across the membrane using a transport protein involves: uniport. 
Correct. 

Which of the following can cross the cell’s plasma membrane without the assistance of protein 
transporters? Select all that apply. gasses small hydrophobic molecules Correct. Gases are small 
enough to cross the membrane without assistance. The inner portion of the membrane is 
hydrophobic, so hydrophobic molecules also can cross on their own provided they are small 
enough. 

Which component of the plasma membrane has the widest variety of functions? proteins. 
Correct. Proteins help transport material, are involved in metabolism and adhesion, and play a 
number of other roles. 

In which of the following organisms is it necessary to transport the mRNA across a membrane 
prior to protein synthesis? Select all that apply. Animals Plants Correct. 

Molecules that can not cross the phospholipid bilayer on their own are transported across the 
cell membrane using proteins. Which of these molecules would NOT need to be transported 
across the membrane using a protein? carbon dioxide Correct. Carbon dioxide and other gasses 
can cross the membrane on their own and do not require transport using a protein. 

Oxygen is transported from the lungs to the tissues by dissolving directly in blood. false 
Correct. Oxygen binds to the protein hemoglobin, which is found in red blood cells. Proteins 
perform most of the biological functions in organisms. Proteins are involved in oxygen 
transport. 
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glycolysis When ATP levels are high, do you expect glycolysis to be operating? No Correct. High levels of 
ATP act like a stoplight to glycolysis. There is no need for more ATP, so glycolysis stops. 
Glycolysis produces ATP. If glycolysis produces ATP, should it be operating when the cell has 
plenty of ATP? 

Which of the images above would best represent the pathway when ATP levels are low? A. Correct. 
If ATP levels are low, more ATP is needed. This image shows the green light, meaning that 
glycolysis will proceed, and more ATP will be produced. If ATP levels are low, the cell has to 
generate ATP using the energy in glucose. Glucose has to proceed through the entire pathway to 
pyruvate in order to produce ATP. 

Glycolysis does not require O2 to generate: energy Correct. Glycolysis can (and often does) occur 
in the absence of oxygen. 

Glycolysis takes place in: cytosol Correct. 

In addition to ATP, which of the following are end products of aerobic glycolysis? pyruvate and 
NADH Correct. 

Phosphofructokinase, the major flux-controlling enzyme of glycolysis is allosterically inhibited by 
_ and activated by _. ATP, AMP Correct, Since glycolysis generates ATP, if [ATP] is high, less 
carbon is sent through the pathway by inhibiting PFK; the converse is true for high levels of AMP, 
which is produced by hydrolysis of ATP. Look through all of the information on this page. 

 
From the OLI General Chemistry I courseware: 
 

Skill Name Assessment Items (Clustered by Skill) 

energy The skater has the greatest kinetic energy _? Correct. The skater will have the greatest velocity at 
the bottom of the track.  

Which of the following forms of electromagnetic energy has the greatest energy? X rays Correct. 
Energy is directly proportional to frequency. The greater the frequency the greater the energy. 

Which of the following compounds would have the greatest lattice energy? NaF Correct. With ionic 
charges being equal, compounds with smaller distances between ions have higher lattice energy. 

All of the compounds contain the same ionic charges, +1 and -1. With ionic charges being equal, 
compounds with smaller distances between ions have  _ lattice energy? greater Correct.  

Which of the following compounds would have the greatest lattice energy? MgI2 Correct. With 
magnitude of the ionic charges being +2 and -1 and this compound has a smaller distances between 
its ions, this compound will have the greatest lattice energy. 

The magnitude of charge of the ions in the compound has a _ impact on lattice energy than the 
distance between the ions? greater Correct. Look for the compound with the greatest magnitude of 
charge. With the magnitude of charge being equal, look for the compound with the smallest distance 
between the ions. 

Which of the following compounds would have the lowest lattice energy? NaBr Correct. With a 
magnitude of charge of +1 and -1 and larger distance between its ions than NaCl, NaBr will have 
the lowest lattice energy. 

Place the following in order from least repulsive force to greatest repulsive force. 
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A.2.  EXAMPLES OF SUBOPTIMAL SKILL LABELLING  

From the OLI Introduction to Biology courseware: 
 

Skill Name Assessment Items (Clustered by Skill) 

equal 
concentration 

A solution has an equal concentration of H+ and OH-. This solution is probably: neutral Correct. 
Neutral substances have equal concentrations of H+ and OH-. Acids have a higher concentration 
of H+ than OH-. Bases have a lower concentration of H+ than OH-. Neutral substances have 
equal concentrations of H+ and OH-. 

 
A solution has a higher concentration of H+ than OH-. This solution is probably: acidic Correct. 
Acids have a higher concentration of H+ than OH-. Acids have a higher concentration of H+ 
than OH-. Bases have a lower concentration of H+ than OH-. Neutral substances have equal 
concentrations of H+ and OH-. 

 
A solution has a lower concentration of H+ than OH-. This solution is probably: basic Correct. 
Bases have a lower concentration of H+ than OH-. Acids have a higher concentration of H+ than 
OH-. Bases have a lower concentration of H+ than OH-. Neutral substances have equal 
concentrations of H+ and OH-. 

bacterial cell 
membrane 

Require(s) DNA polymerases that are stable at higher temperatures. PCR Correct. PCR includes 
a step at high temperatures, which requires special DNA polymerases. 

A typical PCR cycle consists of steps at different temperatures, typically 55, 78 and 98o C. The 
correct order of these steps is? 98, 55, 78 Correct. First you denature the DNA at 98o C and 
then let the primers anneal at 55o. 

 
What would you expect to happen to a bacterial cell membrane under high temperatures? It 
would probably get looser and break apart. Correct. Think about how lipids melt at high 
temperatures. 

 
From the OLI General Chemistry I courseware: 
 

Skill Name Assessment Items (Clustered by Skill) 

chemical 
formula 

What is the chemical formula for copper(I) carbonate?  

Enter the chemical formula for copper(II) iodide. 

Which of the following statements is true of the chemical equation below?  
Cu(s) + 2 AgNO3(aq)→2 Ag(s) + Cu(NO3)2(aq) 

Copper undergoes oxidation when placed in a solution of silver nitrate. If 6.2 g of copper is placed 
into 50.0 mL of a 2.5 M AgNO3 solution, which is the limiting reactant? 

What is the concentration of Cu(NO3)2 when the reaction is complete? (Assume the change in 
volume from the added Cu(s) is negligible and can be ignored.) 
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