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We consider the problem of assessing the changing performance levels of individual students as they go
through online courses. This student performance modeling problem is a critical step for building adaptive
online teaching systems. Specifically, we conduct a study of how to utilize various types and large amounts
of log data from earlier students to train accurate machine learning models that predict the performance of
future students. This study is the first to use four very large sets of student data made available recently
from four distinct intelligent tutoring systems.

Our results include a new machine learning approach that defines a new state of the art for logistic
regression based student performance modeling, improving over earlier methods in several ways: First, we
achieve improved accuracy of student modeling by introducing new features that can be easily computed
from conventional question-response logs (e.g., features such as the pattern in the student’s most recent
answers). Second, we take advantage of features of the student history that go beyond question-response
pairs (e.g., features such as which video segments the student watched, or skipped) as well as background
information about prerequisite structure in the curriculum. Third, we train multiple specialized student
performance models for different aspects of the curriculum (e.g., specializing in early versus later segments
of the student history), then combine these specialized models to create a group prediction of the student
performance. Taken together, these innovations yield an average AUC score across these four datasets of
0.808 compared to the previous best logistic regression approach score of 0.767, and also outperforming
state-of-the-art deep neural net approaches. Importantly, we observe consistent improvements from each of
our three methodological innovations, in each diverse dataset, suggesting that our methods are of general
utility and likely to produce improvements for other online tutoring systems as well.
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1 INTRODUCTION

Intelligent online tutoring systems (ITS’s) are now used by millions of students worldwide,
enabling access to quality teaching materials and to personally customized instruction. These
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systems depend critically on their ability to track the evolving ability level of the student, in order
to deliver the most effective instructional material at each point in time. Because the problem of
assessing the student’s evolving ability to solve different questions (also referred to as student
performance modeling) is so central to successfully customizing instruction to the individual
student, it has received significant attention in recent years.

The state of the art that has emerged for this student performance modeling problem involves
applying machine learning algorithms to historical student log data. The result produced by
the machine learning algorithm is a model, or computer program, that outputs the estimated
likelihood of correct response of any future student for any particular question at any point in the
lesson, given the sequence of steps they have taken up to this point in the lesson (e.g., Corbett and
Anderson 1994, Pavlik Jr et al. 2009, Piech et al. 2015, Pandey and Karypis 2019, Gervet et al.
2020, Shin et al. 2021). These systems typically represent the student knowledge state as a list
of probabilities that the student will correctly answer a particular list of questions that cover the
key concepts (also known as ”knowledge components” (KC’s)) in the curriculum. Most current
approaches estimate the student’s state by considering only the log of questions asked and the
student’s answers, though recent datasets provide considerably more information such as the
length of time taken by the student to provide answers, specific videos the student watched and
whether they watched the entire video, and what hints they were given as they worked through
specific practice problems.

This paper seeks to answer the question of which machine learning approach produces the
most accurate estimates of students’ ability to solve different questions. To answer this question,
we perform an empirical study using data from over 750,000 students taking a variety of courses,
to study several aspects of the question including (1) which types of machine learning algorithms
work best? (2) which features of a student’s previous and current interactions with the ITS are
most useful for predicting their current ability to solve a certain question? (3) how valuable is
background information about curriculum prerequisites for improving accuracy? and (4) can
accuracy be improved by training specialized models for different portions of the curriculum?
We measure the quality of alternative approaches by how accurately they predict which future
questions the student answers correctly.

More specifically, we present here the first comparative analysis of recent state-of-the-art
algorithms for student performance modeling across four very large student log datasets that have
recently become available, which are each approximately 10 times larger than earlier publicly
available datasets, which cover a variety of courses in elementary mathematics, as well as
teaching English as a second language, and which range across different teaching objectives such
as initial assessment of student knowledge state, test preparation, and extra-curricular tutoring
complementing K-12 schooling. We show that accuracy of student performance modeling can
be improved beyond the current state of the art through a combination of techniques including
incorporating new features from student logs (e.g., time spent on previously answered questions),
incorporating background information about prerequisite/post-requisite topics in the curriculum,
and training multiple specialized models for different parts of the student experience (e.g., training
distinct models to assess new students during the first 10 steps of their lesson, versus students
taking the post-lesson quiz). The fact that we see consistent improvements in accuracy across all
four datasets suggests the lessons gained from our experiments are fairly general, and not tied to
a specific type of course or specific tutoring system.

To summarize, the key contributions of this paper include:
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• Cross-ITS study on modern datasets. We present the first comparative analysis of state-
of-the-art approaches to student performance modeling across four recently published,
large and diverse student log datasets taken from four distinct intelligent tutoring systems
(ITS’s), resulting in the largest empirical study to date of student performance modeling.
These four systems teach various topics in elementary mathematics or English as a second
language, and the combined data covers approximately 200,000,000 observed actions taken
by approximately 750,000 students. Three of these datasets have been made publicly
available over the past few years.

• Improved student performance modeling by incorporating prerequisite and hierarchical
structure across knowledge components. All four of the datasets we consider provide a
vocabulary of knowledge components (KCs) taught by the system. Two datasets provide
meta-information about which KCs are prerequisites for which others (e.g., Add and
subtract negative numbers is a prerequisite for Multiply and divide negative numbers),
and one provides a hierarchical structure (e.g., the KC Add and subtract vectors falls
hierarchically under Basic vectors). We found that incorporating the prerequisite and
post-requisite information into the model resulted in substantial improvements in accuracy
predicting which future questions the student would answer correctly (e.g., by including
features such as the counts of correctly answered questions related to prerequisite and
post-requisite topics). Features derived from the hierarchical structure led to improvements
as well, but to a lesser degree than the ones extracted from the prerequisite structures.

• Improved student performance modeling by incorporating log data features beyond which
questions were answered correctly. Although earlier work has focused on student perfor-
mance models that consider only the sequence of questions asked and which were answered
correctly, modern log data includes much more information. We found that incorporating
this information yields accuracy improvements over the current state of the art. For exam-
ple, we found that features such as the length of time the student took to answer previous
questions, the number of videos watched on the KC, and whether the student is currently
answering a question in a pre-test, post-test, or a practice session were all useful features
for predicting whether a student would correctly answer the next question.

• Improved student performance modeling by training multiple models for specialized con-
texts, then combining them. We introduce a new approach of training multiple distinct
student assessment models for distinct learning contexts. For example, training a distinct
model for the ”cold start” problem of assessing students who have just begun the course and
have little log data at this point, yields significant improvements in the accuracy of student
performance predictions. Furthermore, combining predictions of multiple specialized
models (e.g., one trained for the current study module type, and one trained for students
that have answered at least n questions in the course) leads to even further improvements.

• The above improvements can be combined. The above results show improvements in
student performance modeling due to multiple innovations. By combining these we achieve
overall improvements over state-of-the-art logistic regression methods that reduce AUC
error by 17.5% on average over these four datasets, as summarized in Table 1.
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Table 1: Improvements to state of the art (SOTA) in student performance modeling, due to
innovations introduced in this paper. The previous logistic regression state-of-the-art approach
is Best-LR. Performance across each of the four diverse datasets improves with each of our
three suggested extensions to the Best-LR algorithm. Best-LR+ extends Best-LR by adding
new features calculated from the question-response (Q-R) data available in most student logs.
AugmentedLR further adds a variety of novel features that go beyond question-response data
(e.g., which videos the student watched or skipped). Combined-AugmentedLR further extends
the approach by training multiple logistic regression models (Multimodel) on different subsets
of the training data (e.g., based on how far into the course the student is currently). Together,
these extensions to the previous state of the art produce substantial improvements across each of
these four datasets, improving the average AUC score from 0.767 to 0.808 on average across the
four datasets – a reduction of 17.5% in average AUC error (i.e., in the difference between the
observed AUC and the ideal perfect AUC of 1.0).

ElemMath2021 EdNet KT3 Eedi Junyi15 Average
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Prev. SOTA: Best-LR 0.7569 0.7844 0.7069 0.7294 0.7343 0.7901 0.8425 0.7620 0.7602 0.7665
Add Q-R features: Best-LR+ 0.7623 0.7935 0.7169 0.7465 0.7455 0.8040 0.8505 0.7912 0.7688 0.7838
Add novel features: AugmLR 0.7659 0.7987 0.7189 0.7500 0.7496 0.8096 0.8635 0.8603 0.7745 0.8047
Multimodel: Comb-AugmLR 0.7676 0.8016 0.7211 0.7548 0.7504 0.8111 0.8646 0.8634 0.7759 0.8077
percent error reduction 4.40% 7.98% 4.84% 9.39% 6.06% 10.00% 14.03% 42.61% 7.33% 17.50%

2 RELATED WORK

Student performance modeling techniques estimate a student’s likelihood to solve different
problems based on their interactions with the ITS. These performance models and the estimates
of student proficiency they produce are a key component of current ITS’s which allow the tutoring
system to adapt to each student’s personal ability level at each point in the curriculum. In the
literature, performance modeling is also sometimes referred to as knowledge tracing, proficiency
modeling, or student assessment. There are three main categories of performance modeling
techniques: (i) Markov process based probabilistic modeling, (ii) logistic regression, and (iii)
deep learning based approaches.

Markov process based techniques, such as Bayesian Knowledge Tracing (BKT) (Corbett and
Anderson, 1994) and its various extensions (Baker et al. 2008, Pardos and Heffernan 2010, Pardos
and Heffernan 2011, Qiu et al. 2011, Yudelson et al. 2013, Sao Pedro et al. 2013, Khajah et al.
2016, Käser et al. 2017) have a long history in the educational data mining (EDM) community.
Most approaches in this family determine a student proficiency by performing probabilistic
inference using a two state Hidden Markov Model containing one state representing that the
student has mastered a particular concept, and one state representing non-mastery. A recent study
comparing various performance modeling algorithms across nine real-world datasets (Gervet
et al., 2020) found that when applied to large-scale datasets, BKT and its extension BKT+ (Khajah
et al., 2016) are very slow to train and their predictive performance is not competitive with more
recent logistic regression and deep learning based approaches. The Python package pyBKT was
released and promises faster training times for Bayesian Knowledge Tracing models (Badrinath
et al., 2021).

Logistic regression models take as input a vector of manually specified features calculated
from a student’s interaction history, then output a predicted probability that this student has
mastered a particular concept or KC (often implemented as the probability that they will correctly
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answer a specified question). Common approaches include IRT (van der Linden and Hambleton,
2013), LFA (Cen et al., 2006), PFA (Pavlik Jr et al., 2009), DASH (Lindsey et al. 2014, González-
Brenes et al. 2014, Mozer and Lindsey 2016) and its extension DAS3H (Choffin et al., 2019) as
well as Best-LR (Gervet et al., 2020). While there exists a variety of logistic regression models,
they mainly rely on two types of features: (i) One-hot encodings1 of question and KC identifiers;
and (ii) Count features capturing the student’s number of prior attempts to answer questions, and
the number of correct and incorrect responses. R-PFA (Galyardt and Goldin, 2015) augments
PFA with features that represent the recency-weighted count of prior incorrect responses and
the recency-weighted proportion of correct responses. PPE (Walsh et al., 2018) considers the
timing of individual practice sessions to describe spacing effects impacting memorization in the
context of learning word pairs via power functions. DAS3H incorporates a temporal aspect into
its predictions by computing count features for different time windows. LKT (Pavlik et al., 2021)
is a flexible framework for logistic regression based student performance modeling which offers a
variety of features based on question-answering behavior. Among others it offers decay functions
to capture recency effects as well as features based on the ratio of correct and incorrect responses.
Section 4 discusses multiple regression models in more detail and proposes alternative features
which are able to incorporate rich information from various types of log data.

Deep learning based models, like logistic regression models, take as input the student log
data, and output a predicted probability that the student will answer a specific question correctly.
However, unlike logistic regression, deep learning models have the ability to automatically define
useful features computable from the sequence of log data, without relying on human feature
engineering. A wide range of neural architectures have been proposed for student performance
modeling. DKT (Piech et al., 2015) is an early work that uses Long Short Term Memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997) processing student interactions step-by-step.
DKVNM (Zhang et al., 2017) is a memory augmented architecture that can capture multi-KC
dependencies. CKT (Shen et al., 2020) uses a convolutional neural network (LeCun et al., 1999)
to model individualized learning rates. Inspired by recent advances in the natural language
processing (NLP) community, multiple transformer (Vaswani et al., 2017) based approaches
have been proposed (SAKT, (Pandey and Karypis, 2019); AKT, (Ghosh et al., 2020); SAINT,
(Choi et al., 2020); SAINT+, (Shin et al., 2021)). Graph-based modeling approaches infer the
likelihood with which a certain problem is answered correctly based on the structure induced by
question-KC relations (GKT, (Nakagawa et al., 2019); HGKT, (Tong et al., 2020); GIKT, (Yang
et al., 2021)). Unlike BKT techniques and certain logistic regression based approaches such as
IRT, deep learning based models often do not provide interpretable parameters or predictions
which allow users to quantify a learner’s knowledge related to a particular KC. To mitigate this
shortcoming recent works have proposed more interpretable network architectures (Yeung 2019,
Tsutsumi et al. 2021) and techniques to derive knowledge estimates directly from performance
predictions (Scruggs et al., 2020). For an in detail survey on the recent student performance
modeling approaches we refer to Liu et al. 2021.

Most student performance modeling approaches focus exclusively on question-answering
behavior. A student’s sequence of past interactions with the tutoring system is modelled as
x1:t = (x1, . . . , xt). The tth response is represented by a tuple xt = (qt, at), where qt is the
question (item) identifier and at ∈ {0, 1} is binary response correctness. While this formalism

1A one-hot encoding of the question ID, for example, is a vector whose length is equal to the number of possible
questions. The vector contains n− 1 zeros, and a single 1 to indicate which question ID is being encoded.

5
5 Journal of Educational Data Mining, Volume 14, No 1, 2022



has yielded many effective performance modeling techniques, it is limiting in that it assumes the
student log data contains only a single type of user interaction: answering questions posed by
the ITS. Many aspects of student behavior such as interactions with learning materials (videos,
instructional text), hint usage, and information about the current learning context can provide a
useful signal, but fall outside the scope of this formalism.

More recently, the EDM community has started exploring alternative types of log data, in an
attempt to improve the accuracy of student performance modeling. Zhang et al. 2017 augment
DKT with information on response time, attempt number and type of first interaction with the
ITS. Later, Yang and Cheung 2018 enhanced DKT predictions by incorporating more than 10
additional features related to learning context, interaction times and hint usage provided by the
ASSISTment 2009 (Feng et al., 2009) and Junyi15 (Chang et al., 2015) datasets. While
that work employs most information contained in the Junyi15 dataset, it fails to utilize the
prerequisite structure among topics in the curriculum, and does not evaluate the potential benefit of
those features for logistic regression models. EKT (Liu et al., 2019) uses the question text to learn
exercise embeddings which are then used for downstream performance predictions. Eglington
and Pavlik 2019 use student response times and correctness rates to cluster the user population
into multiple groups each representing a different student phenotype. They then incorporate a set
of cluster specific model parameters into a modified PFA model to capture variations between
the individual groups leading to improved performance predictions. MVKM (Zhao et al., 2020)
uses a multi-view tensor factorization to model knowledge acquisition from different types
of learning materials (e.g., quizzes, videos, . . . ). A recent line of research identified a Doer
effect which is associated with the finding that interactive problem solving is more indicative for
learning outcomes than more passive study activities such as reading and watching lecture videos
(Koedinger et al. 2015, Koedinger et al. 2016, Koedinger et al. 2018, Van Campenhout et al. 2021).
SAINT+ (Shin et al., 2021) and MUSE (C. Zhang et al., 2021) augment transformer models with
interaction time features to capture short-term memorization and forgetting. Closest to the spirit
of this manuscript is an early work by Feng et al. 2009. That work integrates features related
to accuracy, response time, attempt-usage and help-seeking behavior into a logistic regression
model to enhance exam score predictions. However, their exam score prediction problem is
inherently different from our problem of continuous performance modeling because it focuses
only on the final learning outcome and does not capture user proficiency on the question and KC
level. Unlike our work, Feng et al. 2009 do not evaluate features related to lecture video and
reading material consumption, prerequisite structure and learning context. Their study is also
limited to two small-scale datasets (< 1000 students) collected by the ASSISTment system.

This paper offers the first systematic study of a wide variety of features extracted from
alternative types of log data. It analyzes four recent large-scale datasets which capture the
learning process at different levels of granularity and focus on various aspects of student behavior.
Our study identifies a set of features which can improve the accuracy of student performance
modeling techniques and we give recommendations regarding which types of user interactions
should be captured in log data of future tutoring systems. Further, our feature evaluation led
us to novel logistic regression models achieving a new state-of-the-art performance on all four
datasets.
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Table 2: Summary of datasets. Here KC refers to a knowledge component in the curriculum of
the respective system, average correctness refers to the fraction of questions that were correctly
answered across all students, question ID refers to whether each distinct question (item) had an
ID, and KC ID indicates that each item is linked to at least one KC, platform indicates if the
system logs how students access materials (e.g., mobile app or web browser), social support
indicates if there is information about a student’s socioeconomic status, question bundle indicates
if the system groups multiple items into sets which are asked together, elapsed/lag time indicates
whether the data includes detailed timing information allowing the calculation of how long
the student took to respond to each question, and the time between presentations of successive
questions. Question difficulty indicates whether the dataset includes ITS-defined difficulties for
each question. Videos, reading, and hints indicate whether the dataset provides information about
which videos and explanations the student watched or read, and which hints were delivered to
them as they worked on practice questions.

ElemMath2021 EdNet KT3 Eedi Junyi15
# of students 125,246 297,915 118,971 247,606
# of unique questions 59,892 13,169 27,613 835
# of KCs 4,191 293 388 41
# of logged actions 62,570,009 89,270,654 19,834,813 25,925,992
# of student responses 23,447,961 17,954,718 19,834,813 25,925,992
average correctness 68.52% 66.19% 64.30% 82.99%
subject Mathematics English Mathematics Mathematics
timestamp ✓ ✓ ✓ ✓

question ID ✓ ✓ ✓ ✓

KC ID ✓ ✓ ✓ ✓

age/gender ✓

social support ✓

platform ✓ ✓

teacher/school ✓ ✓

study module ✓ ✓ ✓ ✓

pre-requisite graph ✓ ✓

KC hierarchy ✓

question bundle ✓ ✓

elapsed/lag time ✓ ✓ ✓

question difficulty ✓

videos ✓ ✓

reading ✓ ✓

hints ✓

3 DATASETS

In recent years multiple education companies released large-scale ITS datasets to promote
research on novel educational data mining techniques. Compared to earlier sizable datasets such
as Bridge to Algebra 2006 (Stamper et al., 2010) and ASSISTment 2012 (Feng
et al., 2009), these new datasets capture an order of magnitude more student responses making
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them attractive for data intensive modeling approaches. Table 2 provides an overview of the four
recent large-scale student log datasets, from different ITS systems, we use in this paper. Taken
together, these datasets capture over 197 million lines of log data from over 789,000 students,
including correct/incorrect responses to over 87 million questions. While each ITS collects the
conventional timestamp for each question (item) presented to the student, the correctness of their
answer, and knowledge component (KC) attributes associated with the question, they also contain
additional interaction data. Going beyond pure question-solving activities multiple datasets
provide information about how and when students utilize reading materials, lecture videos and
hints. In addition there are various types of meta-information about the individual students (e.g.,
age, gender, . . . ) as well as the current learning context (e.g., school, topic number, . . . ). All four
tutoring systems exhibit a modular structure in which learning activities are assigned to distinct
categories (e.g., pre-test, effective learning, review, . . . ). Further, three of the datasets provide
meta-information indicating which questions, videos, etc. are related to which KCs.

Figure 2 visualizes the distribution of the number of responses per student for each dataset (i.e.,
the number of answered questions per user). All datasets follow a power-law distribution. The
EdNet KT3 and Junyi15 datasets contain many users with less than 50 completed questions
and only a small proportion of users answer more than 100. The Eedi dataset filters out students
and questions with less than 50 responses. The ElemMath2021 dataset exhibits the largest
median response number, and many users answer several hundreds of questions.

Another interesting ITS property is the degree to which all students progress through the
study material in a fixed sequence, versus how different and adaptive is the presented sequence
across different students. We can get insight into this for each of our datasets by asking how
predictable the next question item (or the next KC) is from the previous one, across all students
in the dataset. We determine predictability by evaluating the accuracy of a simple model which
takes as input the ID of the current question or KC and outputs the ID of the next question or KC
which is most likely based on the empirical successor distribution as captured by the log data
for the input ID. Figure 1 shows how accurately the current question/KC predicts the following
question/KC. The Junyi15 data exhibits very low variability in its KC sequencing and also
tends to present questions in the same order across all students. Eedi logs show more variability
in the KC sequence, but the question order is still rather predictable. ElemMath2021 exhibits
moderate KC sequence variations and a highly variable question order. EdNet KT3 exhibits the
most variation in question and KC order.

Some of the differences between the individual datasets can be traced back to the distinct
structures and objectives of the underlying tutoring systems. They teach different subjects, assist
students in different ways (K-12 tutoring, standardized test preparation, knowledge diagnosis),
and provide students with varying levels of autonomy. We next discuss the individual datasets
and corresponding ITS in more detail.

EdNet (Choi et al., 2020): EdNet was introduced as a large-scale benchmarking dataset for
student performance modeling algorithms. The data was collected over two years by Riiid’s Santa
tutoring system which prepares students in South Korea for the Test of English for International
Communication (TOEIC©) Listening & Reading. Each test is split into seven distinct parts,
four assessing listening and three assessing reading proficiency. Following this structure Santa
categorizes its questions into seven parts (additional fine-grained KCs are provided). Santa is a
multi-platform system available on Android, iOS and the web and users have autonomy regarding
which test parts they want to focus on. There exist four versions of this dataset (KT1, . . . , KT4)
capturing student behavior at increasing levels of detail ranging from pure question answering
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Figure 2: Distribution of the number of responses per stu-
dent. All four datasets follow a power-law distribution.
The EdNet KT3 and Junyi15 dataset both contain many
users with few responses. The users of the Eedi and
ElemMath2021 tutoring systems have more responses on
average.

activity to comprehensive UI interactions. In this paper we analyze the EdNet KT3 dataset
which contains logs of 297,915 students and provides access to reading and video consumption
behavior. We omit the use of the KT4 dataset which augments KT3 with purchasing behavior.

Junyi15 (Chang et al., 2015): The Junyi Academy Foundation is a philanthropic organization
located in Taiwan. It runs the Junyi Academy online learning platform which offers various
educational resources designed for K-12 students. In 2015 the foundation released log data from
their mathematics curriculum capturing activities of 247,606 students collected over 2 years.
Users of Junyi Academy can choose from a large variety of topics, are able to submit multiple
answers to a single question, and can request hints. The system registers an answer as correct if
no hints are used and the correct answer is submitted on the first attempt. The dataset provides a
prerequisite graph which captures semantic dependencies between the individual questions. In
addition to a single KC each question is annotated with an area identifier (e.g., algebra, geometry,
. . . ). In 2020 Junyi Academy shared a newer mathematics dataset on Kaggle (Pojen et al., 2020).
Unfortunately, in that dataset each timestamp is rounded to the closest quarter hour which prevents
exact reconstruction of the response sequence making it difficult to evaluate student performance
modeling algorithms. Because of this we perform our analysis using the Junyi15 dataset.

Eedi (Wang et al., 2020): Eedi is an UK based online education company which offers a
knowledge assessment and misconception diagnosis service. Unlike other ITS which are designed
to teach new skills, the Eedi system confronts each student with a series of diagnostic questions
– i.e., multiple choice questions in which each incorrect answer is indicative of a common
misconception. This process results in a report that helps school teachers to adapt to student
specific needs. In 2020 Eedi released a dataset for the NeurIPS Education Challenge (Wang et al.,
2021). It contains mathematics question logs of 118,971 students (primary to high school) and
was collected over a 2-year period. Student age and gender as well as information on whether a
student qualifies for England’s pupil premium grant (a social support program for disadvantaged
students) is provided. In contrast to the Junyi15 and ElemMath2021 datasets which have
a prerequisite graph, the Eedi dataset organizes its KCs via a 4-level topic ontology tree. For
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example, the KC Add and Subtract Vectors falls under the umbrella of Basic Vectors which itself
is assigned to Geometry and Measure which is connected to the subject Mathematics. While
analyzing this dataset we noticed that the timestamp information is rounded to the closest minute
which prevents exact reconstruction of the interaction sequences. Upon request, the authors
provided us with an updated version of the dataset that allows exact recovery of the interaction
sequence.

Squirrel Ai ElemMath2021: Squirrel Ai Learning (SQ-Ai) is a K-12 education company
located in China which offers individualized after-school tutoring services. SQ-Ai provides their
ITS as mobile and Web applications, but also deploys it in over 3000 physical tutoring centers.
The centers provide a unique setting in which students can study under the supervision of human
teachers and can ask for additional advice and support which augments the ITS’s capabilities.
Students also have the social experience of working alongside their peers. In this paper we
introduce and analyze the Squirrel Ai ElemMath2021 dataset. It provides 3 months of
behavioral data of 125,246 K-12 students completing various mathematics courses and captures
observational data at fine granularity. ElemMath2021 gives insight into reading material and
lecture video consumption. It also provides meta-information on which learning center and
teacher a student is associated with. Each question has a manually assigned difficulty rating
ranging from 10 to 90. A prerequisite graph captures dependencies between the individual KCs.
Most student learning sessions have a duration of about one hour and the ITS selects a session
topic. Each learning process is assigned one of six categories and learning sessions usually follow
a pre-test, learning, post-test structure. This makes this dataset particularly interesting because
it allows to quantify the learning success of each individual session as the difference between
pre-test and post-test performance.

We conclude this section with a few summarizing remarks. Recent years have yielded
large-scale educational datasets which have the potential to fuel future EDM research. The
individual datasets exhibit large heterogeneity with regards to the structure and objectives of the
underlying tutoring systems as well as captured aspects of the learning process. Motivated by
these observations we perform the first comparative evaluation of various student performance
modeling techniques across these four large-scale datasets. Further, we use the rich log data to
evaluate potential benefits of a variety of alternative features to provide recommendations on
which types of observational data is informative for future performance modeling techniques. Our
feature evaluation leads us to multiple novel logistic regression models achieving state-of-the-art
performance. Given the size of available training data and the structure of the learning processes
we also address the question if it is beneficial to train a set of different assessment modules which
are specialized on different parts of the ITS.

4 APPROACH

In this paper we examine alternative student performance modeling algorithms using alternative
sets of features, across four recent large-scale ITS datasets. Our goals are (1) to discover the
features of rich student log data that lead to the most accurate performance models of students, (2)
to discover the degree to which the most useful features are task-independent versus dependent
on the particular tutoring system, and (3) to discover which types of machine learning algorithms
produce the most accurate student models using this log data. We start this Section with a formal
definition of the student performance modeling problem. We then discuss prior work on logistic
regression based modeling approaches and analyze which types of features they employ. From
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there, we introduce a set of alternative features leveraging alternative types of log data to offer
a foundation for novel student performance prediction algorithms. We conclude this Section
with the proposal of two additional features which capture long-term and short-term student
performance and only rely on response correctness. Appendix A provides precise definitions
of all features used in our experiments, including implementations details and ITS specific
considerations.

4.1 THE STUDENT PERFORMANCE MODELING PROBLEM

Student performance modeling is a supervised sequence learning task which traces a student’s
likelihood to solve different problems over time. Reliable performance predictions are crucial to
enabling ITSs to provide effective individualized feedback to users. More formally, we denote
a student’s sequence of past interactions with the tutoring system as x1:t = (x1, . . . , xt). The
tth interaction with the system is represented by the tuple xt = (It, ct), where It indicates the
interaction type and ct is a dataset dependent aggregation of information related to the interaction.
In this paper we consider interaction types connected to question answering, video and reading
material consumption as well as hint usage. Examples of attributes contained in ct are timestamp,
learning material identifiers, information about the current learning context and student specific
features. Question answering is the most basic interaction type which is monitored by all ITSs.
If the tth interaction is a question response, ct provides the question (item) identifier qt+1 and
binary response correctness at ∈ {0, 1}. Given a user’s history of past interaction with the ITS,
the student performance problem is to predict p(at+1 = 1 | qt+1,x1:t) – the probability that the
student’s response will be correct if they are next asked question qt+1, given their history x1:t.
In addition to interaction logs, all four datasets provide a knowledge component model which
associates each question qt with a set KC(qt) containing one or more knowledge components
(KCs). Each KC represent a concrete skill which can be targeted by questions and other learning
materials. User interactions are discrete and observed at irregular time intervals. To capture
short-term memorization and forgetting it is necessary to utilize additional temporal features. We
denote the dependence of variables on the individual student with the subscript s.

4.2 LOGISTIC REGRESSION FOR STUDENT PERFORMANCE MODELING

Logistic regression models enjoy great popularity in the EDM community. At their core each
trained regression model takes as input a real-valued feature vector (ϕ1, . . . , ϕd) that describes the
student s and their log data up to this point in the course, along with a question ID. Note different
logistic regression approaches can summarize the student and their history in terms of different
features. Each approach calculates its features using its own feature calculation function, Φ (i.e.,
(ϕ1, . . . , ϕd) = Φ(qs,t+1xs,1:t). The trained logistic regression model then uses this feature vector
as input, and outputs the probability that the student will correctly answer question qs,t+1 if they
are asked it at this point in time. The full logistic regression model is therefore of the form

p(as,t+1 = 1 | qs,t+1,xs,1:t) = σ
(
w⊤Φ(qs,t+1,xs,1:t)

)
. (1)

Here w ∈ Rd represents the vector of learned regression weights and σ(x) = 1/(1 + e−x) is the
sigmoid function which outputs a value between 0 and 1, which is interpreted as the probability
that student s will answer question qt+1 correctly. A suitable set of weights can be determined by
maximizing the likelihood function on the training set. The corresponding maximization problem
is usually solved using gradient based optimization algorithms.
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Over the years various logistic regression models have been proposed, each employing a dis-
tinct feature mapping Φ to extract a suitable feature set. In this paper we consider Item Response
Theory (IRT; van der Linden and Hambleton 2013), in particular a one-parameter version of IRT
known as Rasch model (Rasch, 1960), Performance Factor Analysis (PFA; Pavlik Jr et al. 2009),
Recent-Performance Factors Analysis (R-PFA; Galyardt and Goldin 2015), Predictive Perfor-
mance Equation (PPE; Walsh et al. 2018), DAS3H (Choffin et al., 2019) and Best-LR (Gervet
et al., 2020). We now discuss the individual models focusing on how the available interaction
data is utilized for their predictions. First, IRT is the simplest regression model. It employs a
parameter αs which represents the ability of student s as well as a separate difficulty parameter
δq for each question (item) q. The IRT prediction is defined as

pIRT(as,t+1 = 1 | qs,t+1,xs,1:t) = σ
(
αs − δqs,t+1

)
. (2)

Unlike IRT, PFA extracts features based on a student’s history of past interactions. It computes the
number of correct (cs,k) and incorrect responses (fs,k) prior to the current attempt and introduces
a difficulty parameter βk for each individual KC k. The PFA prediction is defined as

pPFA(as,t+1 = 1 | qs,t+1,xs,1:t) = σ


 ∑

k∈KC(qs,t+1)

βk + γkcs,k + ρkfs,k


 . (3)

R-PFA is motivated by the idea that more recently observed student responses are more indicative
for future performance than older ones. R-PFA builds on PFA by introducing two features which
for each KC k look at all interactions of student s with k up to time t and computes: (i) A recency-
weighted count of previous failures Fs,k,t using exponential decay. (ii) A recency-weighted
proportion of past successes Rs,k,t using normalized exponential decay. The degree of decay is
controlled by the hyperparameters dF and dR ∈ [0, 1]. To allow the computation of Rs,k,t when a
student visits a KC for the first time, R-PFA appends their interaction history with k with g = 3
incorrect “ghost attempt”. We denote the total number of responses of student s related to KC k
as as,k and use a correctness indicator as,k,i which is 1 when s’s i-th attempt on KC k was correct
and 0 otherwise. The R-PFA prediction is defined as

pR-PFA(as,t+1 = 1 | qs,t+1,xs,1:t) = σ


 ∑

k∈KC(qs,t+1)

βk + γkFs,k,t + ρkRs,k,t




Fs,k,t =

as,k∑

i=1

d
(as,k+1)−i
F (1− as,k,i), Rs,k,t =

as,k∑

i=(1−g)

d
as,k−i
R∑as,k

j=(1−g) d
as,k−i
R

as,k,i .

(4)

In the context of word pair learning, PPE was proposed to capture the spacing effect (Cepeda
et al., 2008) – the phenomena that spaced out practice repetitions slow down learning but increase
retention rates – by introducing a weighting scheme that considers the delay between individual
practice sessions. PPE assumes a multiplicative relationship between the number of prior attempts
as,k with a time variable Tk. The model features a learning rate parameter c and the forgetting
rate is controlled by parameters x, b and m. These four hyperparameters need to be set by the
user. We define ∆s,k,i to be the real time passed since student s’s i-th response to KC k. The PPE
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prediction is defined as

pPPE(as,t+1 = 1 | qs,t+1,xs,1:t) = σ


 ∑

k∈KC(qs,t+1)

βk + γk
(
acs,kT

−dt
k

)



Tk =

(
as,k∑

i=1

∆1−x
s,k,i

)(
as,k∑

i=1

1

∆−x
s,k,j

)
, dt = b+m

(
1

as,k

as,k∑

i=1

1

ln(∆s,k,i −∆s,k,i+1 + e)

)
.

(5)

DAS3H is a more recent model which combines aspects of IRT and PFA and extends them with
time-window based count features. It defines a set of time windows W = {1/24, 1, 7, 30,+∞}
measured in days. For each window w ∈ W , DAS3H determines the number of prior correct
responses (cs,k,w) and overall attempts (as,k,w) of student s on KC k which fall into the window. A
scaling function ϕ(x) = log(1 + x) is applied to avoid features of large magnitude. The DAS3H
prediction is defined as

pDAS3H(as,t+1 = 1 | qs,t+1,xs,1:t) =σ

(
αs − δqs,t+1 +

∑

k∈KC(qs,t+1)

βk+

∑

k∈KC(qs,t+1)

W−1∑

w=0

θk,2w+1ϕ(cs,k,w)− θk,2w+2ϕ(as,k,w)

)
.

(6)

Gervet et al. 2020 performed a comparative evaluation of student performance modeling algo-
rithms across 9 real-world datasets. They also evaluated the effects of question, KC and total
count as well as time window based count features leading them to a new logistic regression
model referred to as Best-LR. Best-LR is similar to DAS3H, but does not use time-window
features and uses cs and fs as additional features that capture the total number of prior correct
and incorrect responses. The Best-LR prediction is defined as

pBest-LR(as,t+1 = 1 | qs,t+1,xs,1:t) =σ

(
αs − δqs,t+1 + ϕ(cs) + ϕ(fs)+

∑

k∈KC(qs,t+1)

βk + γkϕ(cs,k) + ρkϕ(fs,k)

)
.

(7)

Overall, we can see that these four logistic regression models are mainly based on two
types of features: (i) one-hot encodings that allow the models to infer question and KC specific
difficulty; (ii) count based features that summarize a student’s past interaction history with the
system computed at various level of granularity (total/KC/question-level) potentially augmented
with time windows and time-based weighting schemes to introduce a temporal dimension in
the predictions. Looking back at the dataset discussion provided in Section 3, we note that the
current feature sets only use a small fraction of the information collected by the tutoring systems.
In the following, we aim at increasing the amount of utilized information by exploring alternative
types of features which can be extracted from the log data and can serve as foundation for future
student performance modeling algorithms.

4.3 FEATURES BASED ON RICH OBSERVATIONAL DATA

Tutoring systems collect a wide variety of observational data during the learning process. Here
we discuss a range of alternative features leveraging alternative types of log data. The individual
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features can be used to augment the logistic regression models discussed in Subsection 4.2, but
might also be combined with deep learning based modeling techniques. As shown by Table 2,
each dataset captures different aspects of the learning process and supports a different subset of
the discussed features.

Temporal features: Many performance modeling techniques treat student interactions as
discrete tokens and omit timestamp information which can be indicators of cognitive processes
such as short-term memorization and forgetting. DAS3H uses time window based count features
to summarize the user history. Here we discuss two additional types of temporal features: (i)
one-hot encoded datetime and (ii) the interaction time based features introduced by Shin et al.
2021. By providing the model with information about the specific week and month of interaction
we try to capture effects of school work outside the ITS on student learning. The hour and
day encodings aim at tracing temporal effects on a smaller timescale. For example, students
might produce more incorrect responses when studying late at night. Recently, Shin et al. 2021
introduced a deep learning approach which employs elapsed time and lag time features to capture
temporal aspects of student behavior during question solving activities. Elapsed time measures
the time span from question display to response submission. The idea is that a faster response is
correlated with student proficiency. Lag time measures the time passed between the completion
of the previous exercise until the next question is received. Lag time can be indicative for
short-term memorization and forgetting. The lag time between questions can be affected by
student behavior and system design choices. Some examples are displayed explanations after
incorrect responses, pop-up messages, and study breaks. For our experiments we convert elapsed
time and lag time values, x, to scaled values ϕ(x) = log(1 + x) and also use the categorical
one-hot encodings from Shin et al. 2021. There, elapsed time is capped off at 300 seconds and
categorized based on the integer second. Lag time is rounded to integer minutes and assigned
to one of 150 categories (0, 1, 2, 3, 4, 5, 10, 20, 30, . . . , 1440). We evaluate two variations of the
features. In the first version we compute elapsed time and lag time values based on interactions
with the current question. In the second version we compute them based on interactions with
the prior question. Because it is unknown how long a student will take to answer a question
before the question is asked, we cannot realistically use this elapsed time feature for predicting
correctness in answering a new question. Therefore, we omit the elapsed time feature for the
current question in our experiments described in Subsection 5.3.

Learning context: Knowledge about the context a learning activity is placed in can be
informative for performance predictions. For example, all four datasets considered in this work
group learning activities into distinct context categories we call study modules (e.g., pre-test,
effective learning, review, . . . ). Here effective learning study modules try to teach novel KCs,
whereas review study modules aim at deepening proficiency related to KCs the student is already
familiar with. Providing a student performance model with information about the corresponding
study module can help it adapt its predictions to these different contexts. Additional context
information is provided by the exercise structure. For example, the ElemMath2021 dataset
marks each interaction with a course and topic identifier and offers a manually curated question
difficulty score. The EdNet dataset labels questions based on which part of the TOIEC© exam
they address and groups them into bundles–a bundle is a set of questions which is asked together.
Large parts of the ElemMath2021 dataset were collected in physical learning centers where
students can study under the supervision of human teachers and each interaction contains school
and teacher identifiers. This information can be useful because students visiting the same
learning center might exhibit similar strengths and weaknesses. In Section 5 we evaluate the
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potential benefits of learning context information for student performance modeling by encoding
the categorical information into one-hot vectors and passing it into logistic regression models.
Additionally, we evaluate count features defined for the individual study modules and EdNet
parts.

Personal context: By collecting a student’s personal attributes a tutoring system can offer
a curriculum adapted to their individual needs. For example, information about a student’s
age and grade can be used to select suitable learning materials. Further, knowledge about
personal attributes can enable an ITS to serve as a vehicle for research on educational outcomes.
For example, it is a well-studied phenomena that socioeconomic background correlates with
educational attainment (see for example White 1982, Aikens and Barbarin 2008, von Stumm
2017). A related research question is how ITSs can be used to narrow the achievement gap (Huang
et al., 2016). While both ElemMath2021 and EdNet datasets indicate which modality students
use to access the ITS, the Eedi dataset is the only one that provides more detailed personal
information in form of age, gender, and socioeconomic status. Features extracted from these
sensitive attributes need to be handled with care to avoid discrimination against individual
groups of students. Outside of student performance modeling these features might be used to
detect existing biases in the system. We evaluate one-hot encodings related to age, gender, and
socioeconomic status.

KC graph features: In addition to a KC model three of the datasets provide a graph structure
capturing semantic dependencies between the individual KCs and questions. We can leverage
these graph structures by defining prerequisite and post-requisite count features. These features
compute a student’s number of prior attempts and correct responses on KCs which are prerequisite
and post-requisite to the KCs of the current question. The motivation for these features is that the
mastery of related KCs can carry over to the current question. For example, it is very likely that a
user that is proficient in multi-digit multiplication can solve single-digit multiplication exercises
as well. The Eedi dataset provides a 4-level KC ontology tree which associates each question
with a leaf. Here we compute a prerequisite feature by counting the number of interactions related
to the direct parent node. We also investigate the use of sparse vectors taken from the KC graph
adjacency matrix as an alternative way to incorporate the semantic information into our models.

Learning material consumption: Modern tutoring system offer a rich variety of learning
materials in form of video lectures, audio recordings and written explanations. Information
on how students interact with the available resources can benefit performance predictions. For
example, watching a video lecture introducing a new KC can foster a student’s understanding
before they enter the next exercise session. The ElemMath2021 and Ednet KT3 datasets
record interactions with lecture video and written explanations. Count features capture the number
of videos and texts a user has interacted with prior to the current question and can be computed
on a per KC and an overall level. Video and reading time in minutes might also provide a useful
signal. Another feature which can be indicative for proficiency is the number of videos a student
skips. The Junyi15 datasets provides us with information on hint usage. We experiment with
features capturing the number of used hints as well as minutes spent on reading hints aggregated
on a per KC and an overall level.
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4.4 FEATURES BASED ON RESPONSE CORRECTNESS

4.4.1 Smoothed Average Correctness

The performance of logistic regression models relies on a feature set which offers a suitable
representation of the problem domain. Unlike neural network based approaches, linear and linear
logistic regression models are unable to recover higher-order dependencies between individual
features on their own. For example, given two separate features describing a student’s number of
prior correct responses, c, and overall attempts, a, the linear logistic model is unable to infer the
ratio r = c/a of average correctness which can be a valuable indicator of a student’s long-term
performance. To mitigate this particular issue, we introduce an additional feature, rs capturing
average correctness of student s over time as

rs =
cs + ηr̄

as + η
(8)

where as is the number of questions attempted by student s, and cs is the number of questions
the student answered correctly. Here, r̄ is the average correctness rate over all other students in
the dataset, and η ∈ N is a smoothing parameter which biases the estimated average correctness
rate, r̄s of student s towards this all-students average r̄. The use of smoothing reduces the
feature variance during a student’s initial interactions with the ITS. Related to our approach
R-PFA (Galyardt and Goldin, 2015) introduced a feature that computes a recency-weighted
proportion of correct responses for each individual KC via an exponential decay function. The
LKT framework Pavlik et al. 2021 provides multiple features that can trace the ratio of correct
student responses. By implementing multiple recency-based decay functions LKT extends R-PFA
and introduces features that capture the overall correctness rate of each individual student. Unlike
our formulation, LKT does not allow the use of a smoothing parameter to reduce the feature
variance by biasing towards the all-student average. We calibrated the smoothing parameter
for our experiments by evaluation η ∈ {0, 1, 5, 10, 25, 50, 100, 250} using the ElemMath2021
dataset. Smoothing yielded benefits and we settled on η = 5 for which we observed the largest
accuracy improvements.

4.4.2 Response Patterns

Student performance modeling approaches that employ recurrent or transformer based neural
networks take interaction sequences describing multiple student responses as input (e.g., the
most recent 100). Provided this time-series data, deep learning algorithms are able to discover
patterns and temporal dependencies in student behavior without requiring additional human
feature engineering. Among the logistic regression models discussed in Subsection 4.2 only
DAS3H incorporates temporal information in form of time window based count features to
summarize student interactions over time scales from one hour to one months. While DAS3H
can capture effects of cognitive processes such as long-term memorization and forgetting, it is
still at disadvantage compared to deep learning based approaches that can also infer aspects of
student behavior occurring on smaller time-scales. Indeed, it has been shown that a student’s
most recent responses have a large effect on DKT performance predictions (Ding and Larson
2019, Ding and Larson 2021).

Here, inspired by the use of n-gram models in the NLP community (e.g., Manning and
Schütze 1999), we propose response patterns as a feature which allows logistic regression models
to infer aspects impacting short-term student performance. At time t, a response pattern rt ∈ R2n
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Figure 3: A response pattern rt is a one-hot encoding vector which represents the binary sequence
wt formed by a student’s n most recent correct and incorrect responses. Logistic regression
models can use response patterns to infer aspects of a student’s short-term behavior.

is defined as a one-hot encoded vector that represents a student’s sequence of n ∈ N most recent
responses wt = (at−n, . . . , at−1) formed by binary correctness indicators at−n, . . . , at−1 ∈ {0, 1}.
The encoding process is visualized by Figure 3. For our experiments we calibrated the pattern
length by evaluating n ∈ {1, 2, 3, . . . , 14} using the ElemMath2021 dataset. We settled on
n = 10 for which we observed the largest accuracy improvements. Response patterns are
designed to allow logistic regression models to capture momentum in student performance.
They allow the model to infer how challenging the current exercise session is for the user and
can also be indicative for question skipping behavior. In Subsection 5.3 we combine response
patterns, smoothed average correctness and DAS3H time window features to propose Best-LR+,
a regression model which offers performance competitive to deep learning based techniques
while only relying on information related to response correctness.

5 EXPERIMENTS

We evaluate the benefit of alternative features extracted from different types of log data for student
performance modeling using the four large-scale datasets discussed in Section 3. After an initial
feature evaluation, we combine helpful features to form novel state-of-the-art logistic regression
models. Motivated by the size of the recent datasets, we also investigate two ways of partitioning
the individual datasets to train multiple assessment models targeting different parts of the learning
process. First, we show how partitioning a student’s interaction sequence by response number
can be used to train time-specialized models – focusing on responses submitted earlier or later
in the interaction sequence – to mitigate the cold start problem (Gervet et al. 2020, J. Zhang
et al. 2021). We then analyze how features describing the learning context (e.g., study module,
topic, course, . . . ) can be used to train multiple context-specialized models whose individual
predictions can be combined to improve overall prediction quality even further.

5.1 EVALUATION METHODOLOGY

To be in line with prior work, we start data preparation by filtering out students with less than
ten answered questions (Pandey and Karypis 2019, Choffin et al. 2019, Piech et al. 2015, Gervet
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Figure 4: Accuracy, true positive rate and false
positive rate of a Best-LR model trained on the
ElemMath2021 dataset for different classifi-
cation thresholds. The classification threshold
converts the probability output by the model
into a binary correct/incorrect prediction.
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Figure 5: The receiver operating characteristic
(ROC) curve captures the relationship between
true and false positive rates as the classifica-
tion threshold is swept from 0 to 1. The AUC
score stands for the Area Under the Curve. A
perfect system will have an AUC of 1.0.

et al. 2020). The Ednet KT3 and Eedi dataset both contain questions annotated with multiple
KCs which yields difficulties for some of the deep learning baselines (DKT and SAKT). In those
cases we introduce new artificial KCs to represent each unique combination of original KCs. In
all our experiments we perform a 5-fold cross-validation on the student level. In each fold 80%
of the students are used for training and parameter selection and 20% are used for testing. Thus,
all test results are obtained only from predictions over students who were not observed during
model training. We report performance in terms of prediction accuracy (ACC) and area under
curve (AUC). The AUC score captures the area under the receiver operating characteristic (ROC)
curve and is a popular evaluation metric for student performance prediction algorithms. The
ROC curve plots the true-positive rate against the false-positive rate at all decision thresholds.
One way of interpreting the AUC score is viewing it as the probability of assigning a random
correct student response a higher probability of correctness than a random incorrect response. As
concrete examples we visualize the predictive performance and ROC curve for a Best-LR model
trained on the ElemMath2021 dataset in Figures 4 and 5.

For the computation of average correctness and response pattern features we set smooth-
ing parameter η = 5 and sequence length n = 10 respectively (discussed in Sections 4.4.1
and 4.4.2). For R-PFA we followed (Galyardt and Goldin, 2015) by fixing the number of ghost
attempts g = 3 and determined decay rate parameters dF and dR by selecting the best value
in {0.1, . . . , 0.9, 1.0} for each dataset. For PPE we followed (Walsh et al., 2018) by fixing
c = 0.1 and x = 0.6 and evaluated 20 equally-spaced decay parameters b ∈ [0.01, 0.05] and
m ∈ [0.02, 0.04] for each dataset. Additional implementation details of the different features as
well as ITS-specific considerations are provided in Appendix A. For the evaluation of the deep
learning models, we performed a grid-search and defined hyperparameter search spaces which
extend the hyperparameters selected in the cited references (DKT, (Piech et al., 2015); SAKT,
(Pandey and Karypis, 2019); SAINT, (Choi et al., 2020); SAINT+, (Shin et al., 2021)). A detailed
list of the used hyperparameter search spaces is provided in Appendix B. All models were trained
for 100 epochs without learning rate decay. For our logistic regression experiments we rely on
Scikit-learn (Pedregosa et al., 2011) and all deep learning architectures were implemented using
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PyTorch (Paszke et al., 2019). Our implementation of the regression models uses combinations
of attempt and correct count features which is a slight deviation from the original PFA and
Best-LR formulations which count the number of prior correct and incorrect responses. While
the individual features have a different interpretation, the two feature pairs are collinear to each
other and provide identical information to the model. The code to reproduce our experiments as
well as links to used datasets are shared on GitHub2.

5.2 UTILITY OF INDIVIDUAL FEATURES WITH LOGISTIC REGRESSION

To evaluate the effectiveness of the different features discussed in Section 4 we perform two
experiments in the context of logistic regression modeling. In the first experiment we analyze
each feature by training a logistic regression model using only that feature and a bias (constant)
term. This allows us to quantify the predictive power of each feature in isolation. In the second
experiment we evaluate the marginal utility gained from each feature by training an augmented
Best-LR model (Eq. 7) based on the Best-LR feature set plus the additional feature. This is
particularly interesting because the Best-LR feature set was created by combining features
proposed by various prior regression models and it achieves state-of-the-art performance on
multiple educational datasets (Gervet et al., 2020). If a feature can provide marginal utility on top
of the Best-LR feature set it is likely that it can contribute to other student performance modeling
techniques as well and should be captured by the ITS.

ACC and AUC scores achieved by the logistic regression models trained on the individual
features in isolation are shown in Table 3. Somewhat unsurprisingly, the question (item) identifier
– representing the main feature used by IRT (EQ 2) – is effective for all datasets and is the
single most predictive feature for ElemMath2021 and EdNet KT3. KC identifiers are very
informative as well, but to a lesser extent than the question identifiers. This indicates varying
difficulty among questions targeting the same KC. The PFA model (EQ 3) which only estimates
KC difficulties is unable to capture these variations on the question-level. The attempt and correct
count features are informative for all datasets and there is benefit in using total-, KC- and question-
level counts in combination. Question-level count features are informative for Junyi15 which
is the only dataset that frequently presents users previously encountered questions. Combined
R-PFA’s two recency-weighted features deliver more accurate performance predictions than PPE’s
spacing feature. DAS3H introduced count features computed for different time windows (TWs).
TW based count features are an extension of the standard count features and yield additional
benefits for all four settings. The elapsed time and lag time features are based on user interaction
times and are both informative. The datetime features describing month, week, day and hour of
interaction yield little signal on their own.

Looking at the individual learning context features we observe varying utility. The study
module feature is informative for all datasets, as are the counts of student correct responses
and attempts associated with different study modules. Predictions for the Eedi dataset benefit
largely from information about the specific group a student belongs to. Reasons for this could
be varying group proficiency levels and differences in diagnostic test difficulty. Bundle and part
identifiers both provide a useful signal for EdNet KT3 and Eedi. Features describing personal
information have little predictive power on their own. Among this family of features, social
support yields the largest AUC score improvement over the always correct baseline. Features
extracted from the prerequisite graph are effective for the three datasets that support them. The

2https://github.com/rschmucker/Large-Scale-Knowledge-Tracing
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Table 3: Individual feature performance. Each entry reports ACC and AUC scores achieved by a
logistic regression model trained using only the corresponding feature and a bias term. The first
row provides a baseline for comparison, where no features are considered and the model simply
predicts the student will answer every question correctly. Dashed lines indicate this feature is
not available in this dataset. Maximum ACC and AUC variances over the five-fold test data are
0.17% and 0.3% respectively.

ElemMath2021 EdNet KT3 Eedi Junyi15
Feature \ in % ACC AUC ACC AUC ACC AUC ACC AUC
always correct (baseline) 68.52 50.00 66.19 50.00 64.30 50.00 82.99 50.00
question ID 72.30 72.81 69.40 70.30 67.21 68.50 83.18 72.05
KC ID 69.64 66.63 66.29 58.87 64.29 57.46 83.02 64.06
total counts 70.14 64.86 66.43 59.54 69.03 72.00 83.21 64.62
KC counts 70.71 66.58 66.17 60.29 68.36 69.74 83.72 68.89
question counts 68.52 50.32 66.19 52.54 64.30 50.00 84.19 73.11
combined counts 72.05 71.05 66.65 62.63 70.28 73.94 84.35 74.57
total TW counts 70.64 65.96 66.48 60.62 70.42 74.32 83.60 68.27
KC TW counts 70.72 66.76 66.25 61.22 68.78 70.35 83.99 71.23
question TW counts 68.53 50.32 66.19 53.04 64.30 50.00 84.25 73.86
combined TW counts 72.30 71.66 66.79 64.09 71.11 75.18 84.39 75.41
R-PFA F 69.95 59.97 66.22 54.72 67.92 65.55 83.74 68.15
R-PFA R 68.57 63.56 66.18 60.28 64.30 61.94 83.37 72.71
R-PFA F + R 70.42 66.55 66.37 61.69 68.70 70.35 84.16 73.78
PPE Count 69.22 63.43 66.19 59.03 64.31 56.40 83.03 64.66
current elapsed time 69.72 61.50 66.18 57.36 - - 83.22 66.23
current lag time 68.52 51.57 66.19 51.78 - - 82.99 70.69
prior elapsed time 69.44 55.85 66.18 52.49 - - 83.00 60.17
prior lag time 68.52 50.58 66.19 52.00 - - 82.99 53.79
month 68.52 51.39 66.19 50.73 64.30 52.62 82.99 51.44
week 68.52 52.06 66.19 50.71 64.30 53.07 82.99 51.69
day 68.52 50.51 66.19 50.26 64.30 51.55 82.99 51.21
hour 68.52 50.36 66.19 50.62 64.30 51.63 82.99 52.13
study module ID 68.52 55.28 66.29 54.44 64.64 58.34 82.99 66.40
study module counts 70.35 62.76 66.18 54.00 68.13 68.82 83.17 65.85
teacher/group 68.37 56.52 - - 66.85 66.84 - -
school 68.50 55.62 - - - - - -
course 68.53 54.56 - - - - - -
topic 68.54 59.27 - - - - - -
difficulty 68.55 54.73 - - - - - -
bundle/quiz - - 68.70 68.21 65.05 62.99 - -
part/area ID - - 66.19 56.21 - - 83.02 57.06
part/area counts - - 66.53 61.01 - - 83.48 66.16
age - - - - 64.30 53.30 - -
gender - - - - 64.30 51.51 - -
social support - - - - 64.30 55.13 - -
platform 68.52 50.17 66.19 51.73 - - - -
prereq IDs 69.64 66.63 - - 64.29 57.46 83.18 72.05
prereq counts 71.73 69.72 - - 69.25 71.88 84.42 75.97
postreq IDs 69.63 66.63 - - - - 83.18 72.05
postreq counts 71.12 69.25 - - - - 84.34 76.03
videos watched counts 68.52 53.44 66.19 54.24 - - - -
videos skipped counts 68.59 57.23 66.19 53.27 - - - -
videos watched time 68.52 53.29 66.19 54.05 - - - -
reading counts 68.90 58.92 66.19 55.28 - - - -
reading time 68.50 54.92 66.19 51.48 - - - -
hint counts - - - - - - 82.99 60.00
hint time - - - - - - 82.98 59.73
smoothed avg correct 70.18 65.14 66.49 59.89 69.16 72.10 82.99 66.40
response pattern 70.86 64.98 66.39 59.75 69.67 72.71 84.02 70.51
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logistic regression models trained on prerequisite and post-requisite count features exhibit the
best AUC scores on Junyi15. The features describing study material consumption all provide
a predictive signal, but do not yield enough information for accurate performance predictions
on their own. The smoothed average correctness and response pattern features lead to good
performance on all four datasets.

Moving forward we evaluate the marginal utility of each feature by evaluating the performance
of logistic regression models trained using the Best-LR feature set augmented with this particular
feature. Table 4 shows the results of this experiment. The combination of the two R-PFA features
is beneficial for all four datasets and increases the AUC score for Junyi15 by 1.75%. The PPE
feature is also helpful, but to a lesser extent than the R-PFA features. Time window based count
features lead to improved predictions for all datasets. In combination, they improve the AUC
scores of EdNet KT3 and Junyi by 1.29% and 2.2% respectively. The elapsed time and lag
time features offer a useful signal for the three datasets which capture temporal interaction data.
The datetime features provide little utility in all cases (the best observed value is a 0.08% AUC
improvement for Junyi15).

Context information about the study module a question is placed in is beneficial in all
settings and leads to the largest AUC score improvement over the Best-LR baseline model for
Junyi15. Indication of the group a student belongs to improves model performance for Eedi.
Knowing which topic a student is currently visiting is a useful signal for ElemMath2021.
Information related to bundle and part structure improves EdNet KT3 and Eedi predictions.
ElemMath2021’s manually assigned difficulty ratings lead to no substantial improvements
likely due to the fact that the Best-LR feature set allows the model to learn question difficulty on
its own. The features describing a student’s personal information provide little marginal utility.
Count features derived from the question/KC prerequisite graphs yield a sizeable improvement in
assessment quality. Features targeting study material consumption yield some marginal utility
when available. Discrete learning material consumption counts lead to larger improvements
than the continuous time features. The smoothed average correctness feature leads to noticeable
improvements for all four datasets. The response pattern feature enhances assessments in all
cases and yields the largest improvements for the ElemMath2021 and Eedi dataset (over
0.5% AUC). This shows that the last few most recent student responses yield a valuable signal
for performance prediction.

Overall, we observe that a variety of alternative features derived from different types of
log data can enhance student performance modeling. Tutoring systems that track temporal
aspects of student behavior in detail can employ elapsed time and lag time features. Additional
information about the current learning context is valuable and should be captured. While the
study module features improve predictions for all datasets, other ITS-specific context features
such as group, topic and bundle identifiers vary in utility. The count features derived from the
provided prerequisite and hierarchical graph structures increased prediction quality in all cases.
Log data related to study material consumption also provides a useful signal. Beyond student
performance modeling, this type of log data might also prove itself useful for evaluating the
effects of individual video lectures and written explanations in future work. Lastly, the smoothed
average correctness and response pattern features that only require answer correctness improve
predictions for all four tutoring systems substantially.
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Table 4: Augmented Best-LR performance. Each entry reports average ACC and AUC scores
achieved by a logistic regression model trained using the Best-LR feature set augmented with a
single feature. Maximum ACC and AUC variances over the five-fold test data are 0.15% and
0.13% respectively. The marker ✗ is used to indicate features that are used for the AugmentedLR
assessment models described later in the paper. Dashed lines indicate this feature is not available
in this dataset.

ElemMath2021 EdNet KT3 Eedi Junyi15
Feature \ in % ACC AUC ACC AUC ACC AUC ACC AUC
Best-LR (baseline) 75.69 78.44 ✗ 70.69 72.94 ✗ 73.43 79.01 ✗ 84.25 76.20 ✗

question counts 75.70 78.45 71.24 73.53 73.43 79.01 84.74 77.76
total TW counts 75.90 78.78 70.75 73.07 73.94 79.73 84.37 76.68
KC TW counts 75.72 78.54 70.94 73.27 73.64 79.30 84.47 76.98
question TW counts 75.71 78.47 71.41 74.05 73.43 79.01 84.78 78.27
combined TW counts 75.95 78.88 ✗ 71.51 74.23 ✗ 73.99 79.79 ✗ 84.84 78.40 ✗

R-PFA F 75.73 78.50 70.77 73.14 73.71 79.36 84.56 77.23
R-PFA R 75.72 78.49 70.75 73.10 73.57 79.15 84.72 77.88
R-PFA F + R 75.74 78.51 ✗ 70.80 73.25 ✗ 73.73 79.38 ✗ 84.77 77.95 ✗
PPE Count 75.73 78.53 ✗ 70.73 73.07 ✗ 73.44 79.02 ✗ 84.34 76.75 ✗

current elapsed time 76.07 78.97 71.01 74.14 - - 84.38 77.62
current lag time 75.79 78.54 ✗ 70.71 73.01 ✗ - - 84.34 76.65 ✗
prior elapsed time 75.88 78.67 ✗ 70.77 73.11 ✗ - - 84.26 76.42 ✗
prior lag time 75.76 78.52 70.75 73.10 - - 84.26 76.45
month 75.70 78.45 70.69 72.95 73.43 79.02 84.25 76.21
week 75.70 78.45 70.69 72.95 73.44 79.02 84.26 76.21
day 75.70 78.45 70.69 72.94 73.43 79.02 84.26 76.24
hour 75.70 78.45 70.69 72.94 73.44 79.01 84.27 76.28 ✗

study module ID 75.77 78.60 ✗ 71.40 73.88 ✗ 73.52 79.10 ✗ 84.56 82.39 ✗
study module counts 75.74 78.54 70.76 73.01 73.52 79.10 84.27 76.30
teacher/group 75.68 78.39 - - 74.00 79.63 ✗ - -
school 75.72 78.48 - - - - - -
course 75.72 78.49 - - - - - -
topic 75.74 78.53 ✗ - - - - - -
difficulty 75.70 78.45 - - - - - -
bundle/quiz ID - - 70.69 72.94 73.76 79.43 ✗ - -
part/area ID - - 70.69 72.94 - - 84.25 76.20
part/area counts - - 70.73 73.05 ✗ - - 84.26 76.23
age - - - - 73.45 79.03 - -
gender - - - - 73.43 79.01 - -
social support - - - - 73.44 79.02 - -
platform 75.70 78.45 70.68 72.94 - - - -
prereq IDs 75.70 78.45 - - 73.43 79.01 84.25 76.20
prereq counts 75.91 78.77 ✗ - - 73.54 79.15 ✗ 84.91 78.20 ✗
postreq IDs 75.69 78.45 - - - - 84.25 76.20
postreq counts 75.81 78.64 ✗ - - - - 84.83 78.02 ✗

videos watched counts 75.75 78.51 ✗ 70.70 73.04 ✗ - - - -
videos skipped counts 75.72 78.49 70.70 73.00 ✗ - - - -
videos watched time 75.72 78.48 70.68 72.99 - - - -
reading counts 75.75 78.58 ✗ 70.69 72.95 - - - -
reading time 75.70 78.45 70.69 72.96 - - - -
hint counts - - - - - - 84.31 76.59 ✗
hint time - - - - - - 84.27 76.40 ✗

smoothed avg correct 75.78 78.62 ✗ 70.81 73.22 ✗ 73.49 79.13 ✗ 84.28 76.42 ✗
response pattern 76.03 78.99 ✗ 70.82 73.24 ✗ 74.32 80.10 ✗ 84.72 77.65 ✗

5.3 INTEGRATING FEATURES INTO LOGISTIC REGRESSION

We have seen how individual features can be integrated into the Best-LR model to increase
prediction quality. We now experiment with augmented logistic regression models that incorporate
combinations of multiple beneficial features. The number of parameters learned by the different
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approaches is provided in Table 6. Because each dataset provides different types of log data
it only supports a subset of the explored features. The first model we propose and evaluate is
Best-LR+.

Best-LR+ method. This method augments the Best-LR method (the current state-of-
the-art logistic regression method (EQ 7)) by adding R-PFA’s two recency-weighted
features, PPE’s spacing time feature and DAS3H’s time window-based count features
on total-, KC- and question-level as well as smoothed average correctness and
response pattern features. All of these features can be calculated using only the raw
question-response information from the student log data.

Note that because the features used in Best-LR+ rely only on question-response log data, this
method can be applied to all four datasets, as well as many earlier datasets that lack new features
available in the four we study here. We define Best-LR+ in this way, to explore whether tutoring
systems that log only this question-response data can improve the accuracy of the student
performance modeling by calculating and adding in these count features.

We further propose dataset specific augmented logistic regression models (AugmentedLR) by
combining the helpful features marked in Table 4.

AugmentedLR method. This logistic regression method uses all of the features
employed in the Best-LR model and adds in all of the marked features from Table 4,
which were found to individually provide AUC score improvements of more than
0.05% over the state-of-the-art results of Best-LR.

Note that the AugmentedLR method employs a superset of the features used by Best-LR+.
Because the features used in AugmentedLR go beyond simple logs of questions and responses,
this method can only be applied to datasets that capture this additional information. We define
AugmentedLR in this way, to explore whether ITS systems that do not yet log these augmented
features can improve the accuracy of their student performance modeling by capturing and
utilizing these additional features in their student log data. Note that some of the features marked
in Table 4 and used by AugmentedLR are available in only a subset of our four datasets. During
our AugmentedLR feature selection we made two additions to the over 0.05% AUC improvement
rule to mitigate redundancy: (i) In cases where count and ID feature target the same attribute, we
select the one yielding the larger AUC improvements. (ii) Information about the current lag time
is preferred over prior lag time.

Experimental results for these two proposed logistic regression models are presented in
Table 5, along with results for previously published logistic regression approaches IRT, PFA,
R-PFA, PPE, DAS3H, Best-LR and previously published deep learning approaches DKT, SAKT,
SAINT and SAINT+.

Examining the results, first compare the results for Best-LR+ to the previous state of the
art in logistic regression methods, Best-LR. Notice that Best-LR+ benefits from its additional
question-response features and outperforms Best-LR in all four datasets. On EdNet KT3 and
Juni15 Best-LR+ improves the AUC scores of the previous best logistic regression models
(Best-LR) by more than 1.7%. These results suggest that the additional features used by Best-LR+
should be incorporated into student performance modeling in any ITS, even those for which the
student log data contains only the sequence of question-response pairs.

Examining the results for AugmentedLR, it is apparent that this provides the most accurate
method for student modeling across these four diverse datasets, among the logistic regression
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Table 5: Comparative evaluation of student performance modeling algorithms across four large-
scale datasets. The first six table rows correspond to previously studied logistic regression
methods, the next four to previously studied deep neural network approaches, and the final two
rows correspond to the two new logistic regression methods introduced in this paper. Maximum
ACC and AUC variances over the five-fold test data are 0.16% and 0.17% respectively. Because
the Eedi dataset does not provide response time information it does not accommodate SAINT+
and there is no corresponding entry.

ElemMath2021 EdNet KT3 Eedi Junyi15
Model \ in % ACC AUC ACC AUC ACC AUC ACC AUC
IRT 72.30 72.81 69.40 70.30 67.21 68.50 83.18 72.05
PFA 71.68 70.80 66.48 61.95 68.44 70.28 83.85 70.19
R-PFA 71.60 70.80 66.60 62.92 68.90 71.01 84.35 74.13
PPE 70.08 67.59 66.51 59.93 64.32 57.95 83.09 64.81
DAS3H 74.08 75.82 70.31 72.16 71.64 76.13 84.43 76.73
Best-LR 75.69 78.44 70.69 72.94 73.43 79.01 84.25 76.20
DKT 76.46 79.71 71.77 74.92 75.41 81.55 85.50 80.62
SAKT 75.90 78.44 71.53 74.11 74.51 80.31 85.16 79.59
SAINT 75.87 77.88 71.40 73.69 74.56 80.38 85.10 79.51
SAINT+ 76.04 78.15 71.54 73.94 - - 85.18 79.71
Best-LR+ 76.23 79.35 71.69 74.65 74.55 80.40 85.05 79.12
AugmentedLR 76.59 79.87 71.89 75.00 74.96 80.96 86.35 86.03

methods considered here. Even when considering recent deep learning based models, the
AugmentedLR models outperform all logistic regression and deep neural network methods on
all datasets except Eedi where the deep network method DKT leads to the best performance
predictions. Especially on the Junyi15 dataset AugmentedLR increases ACC by 2.1% and
AUC by over 9.8%, compared to Best-LR. These results strongly suggest that all ITSs might
benefit from logging the alternative features of AugmentedLR to improve the accuracy of their
student performance modeling.

5.4 THE COLD START PROBLEM

Student performance modeling techniques use a student’s interaction history to make predictions
about their ability to solve different problems over time. When a new student starts using the ITS,
little or no interaction history is yet available, resulting in a new student ”cold start” problem
for estimating the performance of new students. Most student performance models therefore
require a burn-in period of student use of the ITS before they can accurately estimate student
performance (Gervet et al. 2020, J. Zhang et al. 2021). Here, to ensure a gratifying user experience
and to improve early on retention rates, we show how one can mitigate the cold start problem by
training multiple time-specialized assessment models. We start by splitting the question-response
sequence of each student into multiple distinct partitions based on their ordinal position in the
student’s learning process (i.e., partition 50-100 will contain the 50th to 100th response of each
student). We then train a separate time-specialized model for each individual partition. The
motivation for this is that the way observational data needs to be interpreted can change over time.
For example, during the beginning of the learning process one might put more focus on question
and KC identifiers, while later on count features provide a richer signal. With this approach a
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Table 6: Number of parameters learned by different student performance models. The number of
parameters is heavily dependent on the number of questions and KCs used by the underlying ITS.

ElemMath2021 EdNet KT3 Eedi Junyi15
# of unique questions 59,892 13,169 27,613 835
# of KCs 4,191 293 388 41
IRT 59,571 11,556 27,614 723
PFA 12,574 904 1,165 124
R-PFA 12,574 904 1,165 124
PPE 8,383 603 777 83
DAS3H 105,672 14,867 31,882 1,174
Best-LR 72,146 12,461 28,780 848
DKT 21,529,751 526,526 10,676,751 184,801
SAKT 6,730,901 1,033,051 3,191,301 125,101
SAINT 16,727,873 8,026,049 7,666,497 1,618,049
SAINT+ 4,194,241 1,349,889 - 148,865
Best-LR+ 119,291 16,816 34,092 2,343
AugmentedLR 137,602 17,297 64,076 6,170
Combined-AugmentedLR 10,595,355 242,159 4,164,941 86,381

student’s proficiency is evaluated by different specialized models depending on the length of their
prior interaction history.

We evaluate the technique of training multiple time-specialized logistic regression models
using the Best-LR and Best-LR+ feature sets using the four educational datasets (additional
results for AugmentedLR are provided by Table 8). In particular we induce the partitions using
the splitting points {0, 10, 50, 100, 250, 500,∞}. Figures 6 visualizes the results of a 5-fold cross-
validation and compares predictive performance with a single generalist Best-LR model trained
using all available data. Figure 7 shows the corresponding experiment for Best-LR+. For both
Best-LR and Best-LR+ feature sets the use of time-specialized assessment models substantially
improves prediction accuracy early on (i.e., during their first 10 question-response pairs) and
mitigates the cold-start problem successfully for all four datasets. For EdNet KT3 and Junyi
we observe AUC improvements of over 2% and 0.8% in early on predictions compared to the
generalist Best-LR and Best-LR+ models respectively. Also, for the same two datasets the overall
Best-LR performance (shown in Table 7) achieved by combining the predictions of the individual
time-specialized models yields an over 0.5% increase in overall AUC scores and the time-
specialized models consistently outperform the generalist model in each individual partition. For
ElemMath2021 and Eedi datasets the time-specialized Best-LR models do not outperform the
baseline consistently in each partition, but we still observe minor gains in predictive performance
overall. Looking at the overall performance achieved by time-specialized Best-LR+ (Figure 7) and
time-specialized AugmentedLR models (Table 8) we observe mixed results. While we observe
consistent benefits for EdNet KT3 and Junyi15 the time-specialized models sometimes harm
overall performance for ElemMath2021 and Eedi. This might be due to the increased data
intensity of the Best-LR+ and AugmentedLR models which we will discuss in more detail in
Section 5.5.

25
25 Journal of Educational Data Mining, Volume 14, No 1, 2022



10 (10, 50] (50, 100] (100, 250] (250, 500] > 500 Overall

0.75

0.76

0.77

0.78

0.79

0.80
AU

C

Best-LR on ElemMath - Perf. over Time
Generalist model
Time specialized models

10 (10, 50] (50, 100] (100, 250] (250, 500] > 500 Overall

0.69

0.70

0.71

0.72

0.73

0.74

0.75
Best-LR on EdNet KT3 - Perf. over Time

Generalist model
Time specialized models

10 (10, 50] (50, 100] (100, 250] (250, 500] > 500 Overall
#Responses

0.76

0.77

0.78

0.79

0.80

AU
C

Best-LR on Eedi - Perf. over Time
Generalist model
Time specialized models

10 (10, 50] (50, 100] (100, 250] (250, 500] > 500 Overall
#Responses

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

Best-LR on Junyi15 - Perf. over Time
Generalist model
Time specialized models

Figure 6: Comparison in AUC performance between a single Best-LR model trained using the
entire training set (blue), and a collection of time-specialized Best-LR models trained on partitions
of the response sequences (red). The horizontal axis shows the subset of question-response pairs
used to train the specialized model. For example, the leftmost red point in each plot shows the
AUC performance of a specialized model trained using only the first 10 question-response pairs
of each student, then tested on the first 10 responses of other students. In contrast, the leftmost
blue point shows the performance of the Best-LR model trained using all available data, and still
tested on the first 10 responses of other students. The time-specialized models are able to mitigate
the cold start problem for all four tutoring systems. On the EdNet KT3 and Junyi15 datasets
the combined predictions of the specialized models increase overall performance substantially.

5.5 COMBINING MULTIPLE SPECIALIZED MODELS

The large-scale datasets discussed in this paper are aggregations of learning trajectories collected
from users of varying ages and grades who complete a range of different courses. The internal
heterogeneity of the datasets paired with the large number of recorded interactions naturally
leads to the question of whether it is more advantageous to pursue a monolithic or a composite
modeling approach. Conventional student performance modeling techniques follow a monolithic
approach in which they train a single model using all available training data, but the results in the
previous section show that with sufficiently large datasets it can be useful to partition the training
data to train multiple time-specialized models. The idea of learning different classification rules
for different parts of the dataset is a popular technique in the machine learning literature and
a core principle behind decision tree algorithms (Breiman, 2001). A related EDM question is
whether it is more beneficial to model KCs in separation or in combination. For example, while
BKT partitions the student interaction sequences by KC to infer KC-specific knowledge estimates,
DKT takes in entire sequences to output a single vector which describes student proficiency for all
KCs. Starting from this observation Montero et al. 2018 explore a modified DKT approach called
DKT-SM-SS. Analogous to BKT, DKT-SM-SS partitions the student interaction sequences by
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Figure 7: Comparison in AUC performance between a single Best-LR+ model trained using
the entire training set (blue), and a collection of time-specialized Best-LR+ models trained on
partitions of the response sequences (red). The horizontal axis shows the subset of question-
response pairs used to train the specialized model. For example, the leftmost red point in each
plot shows the AUC performance of a specialized model trained using only the first 10 question-
response pairs of each student, then tested on the first 10 responses of other students. In contrast,
the leftmost blue point shows the performance of the Best-LR+ model trained using all available
data, and still tested on the first 10 responses of other students. The time-specialized models are
able to mitigate the cold start problem for all four tutoring systems. On the EdNet KT3 and
Junyi15 datasets the combined specialized predictions also improve overall performance.

KC and trains a separate KC-specific DKT model for each partition. Comparing the performance
of DKT-SM-SS with conventional DKT they found that DKT benefits from modeling the KCs in
combination. When partitioning the dataset per KC our logistic regression modeling approach
has an advantage over DKT-SM-SS in that the underlying feature set still captures information
about interactions with all KCs.

In this section we explore the potential benefits of (1) training specialized models for specific
questions, KCs, study modules, etc., and (2) combining the predictions from several of these
models to obtain a final prediction of student performance. The motivation for considering
partitioning the data to train models specialized to these different contexts is that it has the
potential to recover finer nuances in the training data, just as the time-specialized models in the
previous section did. For example, two algebra courses might teach the same topics, but employ
different analogies to promote conceptual understanding, allowing students to solve certain types
of questions more easily than others. Training a separate specialized model for each course can
allow the trained models to capture these differences and improve overall assessment quality.

Table 7 shows performance metrics for sets of logistic regression models trained using the
Best-LR features. As baselines we use a single Best-LR model trained on the entire dataset as
well as a set of time-specialized Best-LR models (described in Subsection 5.4). Note that even
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Table 7: Composite Best-LR performance for different partitioning schemes. The first two rows
of the table give as baseline scores the ACC and AUC for the previously discussed Best-LR
model and time-specialized Best-LR models (Subsection 5.4). The next 10 rows show results
when training specialized models that partition the data based on single features such as question
ID, KC ID, etc.. The final row shows the result of combining several of these models by taking
a weighted vote of their predictions as described in the text. The marker ✗ indicates the inputs
used for this combination model for each dataset. Maximum ACC and AUC variances over the
five-fold test data are 0.14% and 0.12% respectively.

ElemMath2021 EdNet KT3 Eedi Junyi15
Feature \ in % ACC AUC ACC AUC ACC AUC ACC AUC
Best-LR 75.69 78.45 70.69 72.94 ✗ 73.43 79.01 84.25 76.20 ✗
Best-LR (time-spec.) 75.71 78.47 71.04 73.53 ✗ 73.51 79.08 ✗ 84.33 76.81 ✗

question ID specific 75.73 78.31 70.90 73.18 73.69 79.12 ✗ 84.37 76.76 ✗
KC ID specific 75.81 78.63 ✗ 70.80 73.11 ✗ 73.50 79.08 84.26 76.26
study module specific 75.96 78.94 ✗ 71.65 74.43 ✗ 73.73 79.30 84.69 82.67 ✗
teacher/group specific 70.62 66.91 - - 72.99 78.15 - -
school specific 72.17 71.33 - - - - - -
course specific 75.79 78.59 ✗ - - - - - -
topic specific 75.82 78.68 - - - - - -
bundle/quiz specific - - 70.92 73.24 ✗ 73.95 79.49 ✗ - -
part/area specific - - 70.71 73.01 - - 84.25 76.23 ✗
platform specific 75.67 78.39 ✗ 70.71 72.98 ✗ - - - -
Combined-Best-LR 76.08 79.13 71.75 74.65 74.13 79.83 84.71 82.90

Table 8: Composite AugmentedLR performance for different partitioning schemes. The first
two rows of the table give as baseline scores the ACC and AUC for the previously discussed
AugmentedLR model and time-specialized AugmentedLR models (Subsection 5.4). The next
10 rows show results when training specialized models that partition the data based on single
features such as question ID, KC ID, etc.. The final row shows the result of combining several of
these models by taking a weighted vote of their predictions as described in the text. The marker
✗ indicates the inputs used for this combination model for each dataset. Maximum ACC and
AUC variances over the five-fold test data are 0.19% and 0.14% respectively.

ElemMath2021 EdNet KT3 Eedi Junyi15
Feature \ in % ACC AUC ACC AUC ACC AUC ACC AUC
AugmentedLR 76.59 79.87 71.89 74.99 74.96 80.96 86.37 86.03
AugmentedLR (time-spec.) 76.41 79.51 71.92 75.01 ✗ 74.83 80.80 ✗ 86.38 86.16 ✗

question ID specific 75.09 77.37 70.16 72.36 74.33 80.14 86.12 85.72
KC ID specific 75.73 78.49 71.21 73.86 74.59 80.57 86.16 85.82
study module specific 76.71 80.03 ✗ 72.02 75.34 ✗ 74.92 80.93 ✗ 86.42 86.19 ✗
teacher/group specific 66.96 61.16 - - 72.53 77.62 - -
school specific 70.03 66.82 - - - - - -
course specific 76.49 79.69 ✗ - - - - - -
topic specific 75.98 78.89 - - - - - -
bundle/quiz specific - - 70.22 72.44 73.96 79.65 - -
part/area specific - - 71.91 75.09 - - 86.29 85.99
platform 76.55 79.78 71.92 75.04 - - - -
Combined-AugmentedLR 76.76 80.16 72.11 75.48 75.04 81.11 86.46 86.34

though question and KC identifiers are already part of the Best-LR feature set they can still be
effective splitting criteria. As shown in the table, training question specialized models improves
predictive performance for all datasets except ElemMath2021 and KC specialized models are
beneficial for all four datasets. Partitioning the data on the value of the study module feature
and training specialized models for each study module yields the greatest improvements for
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Table 9: Average and median number of training examples (i.e., question responses) available
for different partitioning schemes. For example, when a specialized model is trained for each
different question ID in the ElemMath2021 dataset, the average number of training examples
available per question-specific model is 393.

ElemMath2021 EdNet KT3 Eedi Junyi15
Feature Avg Med Avg Med Avg Med Avg Med
question ID specific 393 118 1,445 930 718 351 35,207 8,380
KC ID specific 5,801 2,031 11,694 2,956 18,485 613 635,487 200,284
study module specific 3,901,401 2,487,865 2,385,616 810,120 336,183 29,589 5,083,895 3,421,938
teacher/group specific 1,370 297 - - 1,674 554 - -
school specific 11,992 5,620 - - - - - -
course specific 329,695 69,125 - - - - - -
topic specific 21,614 4809 - - - - - -
bundle/quiz specific - - 1,970 1,265 1,146 120 - -
part/area specific - - 2,385,616 1,344,293 - - 2,824,386 605,666
platform 11,704,204 11,704,204 8,349,656 8,349,656 - - - -

ElemMath2021, EdNet KT3 and Junyi15, and also leads to substantial improvements on
Eedi. It is interesting that training multiple specialized models for different study modules is
more effective than augmenting the Best-LR feature set directly with the study module feature
(Table 4). Topic and course specific data partitions improve performance predictions for the
ElemMath2021 dataset. On the other hand, school and teacher specific splits are detrimental
and we observe large overfitting to the training data. Splits on the bundle/quiz level are effective
for EdNet KT3 and Eedi. While Eedi benefits from incorporating the group identifiers into
the Best-LR model, group specialized models harm overall performance.

While fitting the question specific models on ElemMath2021, we observed severe overfit-
ting behavior, where accuracy on the training data is much higher than on the test set. This is
likely caused by the fact that ElemMath2021 contains the smallest number of responses per
question among the four datasets. Table 9 provides information about the average and median
number of responses per model for the different data partitioning schemes.

We repeat the same experiment, but this time train logistic regression models using the
ITS-specific AugmentedLR feature sets. Performance metrics are provided by Table 8. Unlike
when using the Best-LR features, the question and KC specific AugmentedLR models have
lower overall prediction quality than the original AugmentedLR model. These specialized
AugmentedLR models contain many more parameters than their Best-LR counterparts due to the
fact that they use more features to describe the student history (Table 6). This larger number of
parameters requires a larger training dataset, which makes them more prone to overfitting. Still,
splits on the study module, course, and part features yield benefits on multiple datasets. Even
though the AugmentedLR models benefit less from training specialized models, these specialized
models still exhibit higher performance than the ones based on the Best-LR feature set.

Finally, we discuss combining the strengths of the different models described in this section by
combining their predictions into a final group prediction via a machine learning technique called
Stacking (Wolpert, 1992). We do so by training a higher-order logistic regression model that
takes as input the predictions of the different models, and outputs the final predicted probability
that the student will answer the question correctly. The learned weight parameters in this higher-
order logistic regression model essentially create a weighted voting scheme that combines the
predictions of the different models. We determined which models to include in this group
prediction by evaluating all different combinations using the first data split of the 5-fold validation
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scheme and selecting the one yielding the highest AUC. The results of the best-performing
combination models are shown in the final rows of Tables Table 7 (Combined-Best-LR) and
Table 8 (Combined-AugmentedLR). Both tables also mark which models were used for this
combination model, for each of the four datasets.

The combination models outperform the baselines as well as each individual set of specialized
models for both Best-LR and AugmentedLR feature sets on all datasets. These combination
models are the most accurate of all the logistic regression models discussed in this paper, and
they also outperform all the deep learning baselines (Table 5) on all datasets except on Eedi
where DKT is the only model that produces more accurate predictions. Looking at the Best-LR
based combination models (Combined-Best-LR) we observe large AUC improvements of more
than 0.65% over the baseline models. For EdNet KT3 and Junyi15 there is an increase in
AUC scores of 1.12% and 6.09% respectively. The minimum number of individual predictions
used by a combination model is 3 (for Eedi) and the maximum number is 6 (for EdNet KT3).
For the AugmentedLR based combination models (Combined-AugmentedLR) we observe AUC
score improvements between 0.15% (for Eedi) and 0.47% (for EdNet KT3) compared to the
baseline models. The AugmentedLR models already contain many of the features used for
partitioning and are more data intensive then the Best-LR based models which is likely to be the
reason for the smaller performance increment. The predictions of the combined AugmentedLR
models rely mainly on the predictions of time- and study module-specialized models. Only the
combination model for ElemMath2021 uses course- instead of time-specialized models as its
second signal.

We note that while we were able to enhance prediction quality using only simple single
feature partitioning schemes, future work on better strategies to partition the training data to train
specialized models is likely to yield even larger benefits.

6 RESULTS SUMMARY AND DISCUSSION

The main results of this paper show that the state of the art of student performance modeling
can be advanced through new machine learning approaches, yielding more accurate student
assessments and in particular more accurate predictions of which questions a student will be
able to answer correctly at any given point in time as they move through the online course. In
particular we show:

• State-of-the-art logistic regression approaches to student performance modeling can be
further improved by incorporating a set of new features that can be easily calculated
from the question-response pairs that appear in student log data from nearly all ITSs.
For example, these include counts and smoothed ratios of correctly answered questions
and overall attempts, partitioned by question, by knowledge component, and by time
window, as well as specific sequences of correct/incorrect responses over the most recent
student responses. We refer to the previous state-of-the-art logistic regression model as
Best-LR (Gervet et al., 2020) and to the logistic regression model that incorporates these
additional features as Best-LR+. Our experiments show that Best-LR+ yields more accurate
student modeling than Best-LR across all four diverse ITS logs considered in this paper.
We conclude that most tutoring systems that perform student modeling should benefit by
incorporating these features.
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• A second way of improving over the state of the art in student modeling is to incorporate
new types of features that go beyond the traditional question-response data typically logged
in all ITSs. For example, accuracy is improved by incorporating features such as the time
students took to answer the previous questions, student performance on earlier questions
associated with prerequisites to the knowledge component of the current question, and
information about the study module (e.g., does the question appear in a pre-test, post-test, or
as a practice problem). We conclude that future tutoring systems should log the information
needed to provide these features to their student performance modeling algorithms.

• A third way to improve on the state of the art is to train multiple, specialized student
performance models and then combine their predictions to form a final group prediction. For
example, we found that training distinct logistic regression models on different partitions
of the data (e.g., partitioning the data by its position in the sequential log, or by the
knowledge component being tested) leads to improved accuracy. Furthermore, combining
the predictions of different specialized models leads to additional accuracy improvements
(e.g., combining the predictions of specialized models trained on different question bundles,
with predictions of specialized models trained on different periods of time in the sequential
log). We conclude that time-specialized models can help ameliorate the problem of
assessing new students who have not yet created a long sequence of log data. Furthermore,
we feel that as future tutoring systems are adopted by more and more students, the increasing
size of student log datasets will make this approach of training and combining specialized
models increasingly effective.

• Although our primary focus here is on logistic regression models, we also considered top-
performing neural network approaches including DKT (Piech et al., 2015), SAKT (Pandey
and Karypis, 2019), SAINT (Choi et al., 2020) and SAINT+ (Shin et al., 2021) as additional
state-of-the-art systems against which we compare. Our experiments show that among
these neural network approaches, DKT consistently outperforms the others across our
four diverse datasets. However, we also find that our logistic regression model Combined-
AugmentedLR, which combines the three above points, outperforms all of these neural
network models on average across the four datasets, and outperforms them all on three
of the four individual datasets (DKT outperforms Combined-AugmentedLR on the Eedi
dataset). We do find that neural network approaches are promising, however, especially
due to their ability in principle to automatically discover additional features that logistic
regression cannot discover on its own. Furthermore, we believe this ability of neural
networks will be increasingly important as available student log datasets continue to
increase both in size and in diversity of logged features. We conclude that a promising
direction for future research is to explore the integration of our above three approaches into
DKT and other neural network approaches.

It is useful to consider how our results relate to previously published results. We found that
the time window feature sets proposed by DAS3H (Choffin et al., 2019) enhanced Best-LR
predictions for all four datasets, showing that these features can also improve other student
performance models besides the DASH model considered in the original DAS3H paper. Note that
when Gervet et al. 2020 introduced the Best-LR model they also experimented with time window
features, but unlike us did not observe consistent benefits. This might be due to the number of
additional parameters that must be trained when incorporating these time window features, and
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the corresponding need for larger training datasets. Recall the datasets we used in this manuscript
are about one order of magnitude larger than the ones used by Gervet et al. 2020. Our algorithm
comparison (Table 5) revealed that the prediction quality of PPE (Walsh et al., 2018) is worse
than all other considered student performance modeling techniques. This is likely due to the
fact that PPE was designed to model cognitive processes during word pair learning over longer
periods of time. This is a very different setting then the learning experiences offered by the
four studied tutoring systems. Three of them focus on mathematics and EdNet KT3 prepares
students for the TOEIC© examination which goes beyond conventional retrieval practice. The
elapsed and lag time features introduced by SAINT+ (Shin et al., 2021) also improve Best-LR
predictions substantially in our experiments. Interestingly, the performance increment for the
Best-LR model produced by these features is comparable to and sometimes even greater than the
performance difference between SAINT and SAINT+. Note SAINT+ is an improved version
of SAINT that uses the two interaction time based features. This suggests it might not require a
deep learning-based approach to leverage these elapsed time and lag time features optimally.

Considering features that require augmented student logs that contain more than question-
response pairs, we found these augmented features vary in utility. We found the feature ”current
study module” to be a particularly useful signal for all datasets. During preliminary analysis
we observed differences in student performance between different parts of the learning sessions
(i.e., pre-test, learning, post-test, . . . ), which are captured by the study module feature. Even
though post-tests tend to contain more difficult questions on average, the highest level of student
performance is observed during post-test session in which the users’ overall performance is
evaluated.

Importantly, we also found that introducing background knowledge about prerequisites and
post-requisites among the knowledge components (KCs) in the curriculum is very useful. As
summarized in Table 3, counts of correctly answered questions and attempts associated with pre-
and post-requisite KCs are among the most informative features. Importantly, these features can
be easily incorporated even into pre-existing ITSs and datasets that log only question-response
pairs, because calculating these features requires no new log data – only annotating it using
background knowledge about their prerequisite structure.

We compared different types of machine learning algorithms for student performance mod-
eling in Subsection 5.3. One limitation is that we did not refit IRT’s student ability parameter
after each user response. Wilson et al. 2016 showed that refitting the ability parameter after each
interaction makes IRT more competitive on multiple smaller datasets. While our feature selection
for the AugmentedLR models solely focused on achieving accurate performance predictions,
the inclusion of certain contextual features can lead to reductions in generalizability to unseen
data. For example, the use of school or teacher specific parameters requires us to refit the model
periodically as new schools and teachers start working with the system. When selecting a feature
set for real world applications one might want to trade a small reduction in predictive perfor-
mance in favor of enhanced generalizability to new users. While the technique of using multiple
time-specialized performance models can improve the overall prediction accuracy when using
the Best-LR and Best-LR+ feature sets, the approach can also harm the predictive performance of
some of the models that use the higher-parametric AugmentedLR feature set. This is likely due
to the overfitting problem associated with more expressive modeling approaches. The proposed
technique represents a first step towards mitigating the performance modeling cold-start problem
for new students and we see a lot of potential for future research in this direction.

Recently, multiple intricate deep learning based techniques have been proposed and yield
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state-of-the-art performance for specific datasets (e.g., Shin et al. 2021, Zhou et al. 2021, C. Zhang
et al. 2021, . . . ). Unfortunately, many of these works only employ one or two datasets, which
raises the question of how suitable they are for other tutoring systems. The code and new data
released alongside this manuscript increases the usability of multiple large-scale educational
datasets. We hope that future works will leverage these available datasets to test whether novel
student performance modeling algorithms are effective across different tutoring systems.

7 CONCLUSION

In this paper we present several approaches to extending the state of the art in student performance
modeling. We show that approaches based on logistic regression can be improved by adding
specific new features to student log data, including features that can be calculated from simple
question-response student logs, and features not traditionally captured in student logs such as
which videos the student watched or skipped. Furthermore, we introduce a new approach of
training multiple logistic regression models on different partitions of the data, and show further
improvements in student performance modeling by automatically combining the predictions of
these multiple specialized logistic regression models.

Taken together, our proposed improvements lead to our Combined-AugmentedLR method
which achieves a new state of the art for student performance modeling. Whereas the previous
state-of-the-art logistic regression approach, Best-LR (Gervet et al., 2020), achieves an AUC score
of 0.767 on average over our four datasets, our Combined-AugmentedLR approach achieves
an improved AUC of 0.808 – a reduction of 17.5% in the AUC error (i.e., in the difference
between the achieved AUC score and the ideal AUC score of 1.0). Furthermore, we observed
that Combined-AugmentedLR achieves improvements consistently across all four of the diverse
datasets we considered, suggesting that our methods should be useful across a broad range of
intelligent tutoring systems.

To encourage researchers to compare against our approach, three of the four datasets we
chose are publicly available. In addition, we make the entire code base for the algorithms and
experiments reported here available on GitHub3. Our implementation converts the four large-scale
datasets into a standardized format and uses parallelization for efficient processing. It increases
the usability of the large-scale log data, and we hope that it will benefit future research on novel
student performance modeling techniques.

A APPENDIX: EXTENDED FEATURE DESCRIPTION

This Appendix provides a reference with additional implementation details for the features
described in Section 4. The individual ITSs capture similar information in different ways and we
discuss necessary system specific adaptions. While we are already sharing the complete code
base that was used to generate the experimental results in this paper on GitHub, this Appendix is
intended to guide independent re-implementations.

QUESTION (ITEM) ID

All four of our datasets assign each question (i.e., item) a unique identifier. To make a performance
prediction for a question our implementation converts the corresponding question identifier into a

3https://github.com/rschmucker/Large-Scale-Knowledge-Tracing
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sparse one-hot vector which is then passed to the machine learning algorithm. Note a one-hot
vector refers to a vector where all values are zero except for a single value of 1. For example,
given a dataset with n different questions, our one-hot vector representation contains n values, of
which n− 1 are zeros, and just a single value of 1 to indicate the current question. Knowledge
about question identifiers allows a model to learn question specific difficulty parameters.

KNOWLEDGE COMPONENT (KC) ID

Knowledge about KC identifiers allows a model to learn skill specific difficulty parameters.
While ElemMath2021 and Junyi15 only assign a single KC identifier per question, Ednet
KT3 and Eedi can assign multiple KC identifiers to the same question. To make a performance
prediction for a question our implementation uses a sparse-vector which is 0 everywhere except
in the entries which mark the corresponding KC identifiers with a 1 value.

TOTAL/KC/QUESTION COUNTS

Count features summarize a student’s history of past interaction with the ITS and are an important
component of PFA (Pavlik Jr et al., 2009) and Best-LR (Gervet et al., 2020). In our experiments
we evaluate three ways of counting the number of prior correct responses and overall attempts:

1. Total counts: Here we compute two features capturing the total number of prior correct
responses and overall attempts.

2. KC counts: For each individual KC we compute two features capturing the number of
prior correct responses and attempts related to questions that target the respective KC. A
vector containing the counts for all KCs related to the current question is then passed to the
machine learning algorithm.

3. Question counts: Here we compute two features capturing the total number of prior correct
responses and attempts on the current question.

All count features are subjected to scaling function ϕ(x) = log(1 + x) before being passed to the
machine learning algorithm. This avoids features of large magnitude.

TOTAL/KC/QUESTION TIME-WINDOW (TW) COUNTS

Time-window based count features summarize student history over different periods of time
and provide the model with temporal information (Choffin et al., 2019). Following the original
DAS3H implementation we define a set of time windows W = {1/24, 1, 7, 30,+∞} measured
in days. For each window w ∈ W , we count the number of prior correct responses and overall
attempts of the student which fall into the window. We evaluate three ways of counting the
number of prior correct responses and overall attempts:

1. Total TW counts: For each time-window, we compute two features capturing the total
number of prior correct responses and overall attempts.

2. KC TW counts: For each time-window and each individual KC, we compute two features
capturing the number of prior correct responses and attempts related to questions that target
the respective KC. A vector containing the counts for all time-windows and KCs related to
the current question is then passed to the machine learning algorithm.

34
34 Journal of Educational Data Mining, Volume 14, No 1, 2022



3. Question TW counts: For each time-window, we compute two features capturing the total
number of prior correct responses and attempts on the current question.

All count features are subjected to scaling function ϕ(x) = log(1 + x) before being passed to the
machine learning algorithm. This avoids features of large magnitude.

R-PFA F & R

Motivated by the idea that more recently observed student responses are more indicative for
future performance than older ones, R-PFA (Galyardt and Goldin, 2015) augments PFA (Pavlik Jr
et al., 2009) by introducing two new features. For each KC k R-PFA considers all interactions of
student s with k up to time t and computes: (i) A recency-weighted count of previous failures
Fs,k,t using exponential decay. (ii) A recency-weighted proportion of past successes Rs,k,t using
normalized exponential decay. The degree of decay is controlled by the hyperparameters dF and
dR ∈ [0, 1]. To allow the computation of Rs,k,t when a student visits a KC k for the first time,
their interaction history is appended with g = 3 incorrect “ghost attempt”. The total number of
responses of student s related to KC k is as,k and correctness indicator as,k,i is 1 when s’s i-th
attempt on KC k was correct and 0 otherwise. With this the two R-PFA features are defined as

Fs,k,t =

as,k∑

i=1

d
(as,k+1)−i
F (1− as,k,i), Rs,k,t =

as,k∑

i=(1−g)

d
as,k−i
R∑as,k

j=(1−g) d
as,k−i
R

as,k,i . (9)

PPE COUNT

In the context of vocabulary learning, PPE (Walsh et al., 2018) was proposed to capture the spacing
effect (Cepeda et al., 2008). PPE does so by introducing a weighting scheme which considers the
delay between individual practice session and by assuming a multiplicative relationship between
the number of prior attempts as,k with a time variable Tk. Further, the model uses a learning rate
parameter c and three forgetting rate parameters x, b and m. These four hyperparameters need
to be set by the user. Let ∆s,k,i be the real time passed since student s’s i-th response to KC
k. For our feature evaluation define a weighted count feature Bs,k = acs,kT

−dt
k by using PPE’s

multiplicative relationship between as,k and Tk which are defined as

Tk =
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ln(∆s,k,i −∆s,k,i+1 + e)

)
. (10)

CURRENT/PRIOR ELAPSED TIME

Elapsed time measures the time span from question display to response submission (Shin et al.,
2021). The idea is that a faster response is correlated with student proficiency. For our experiments
we subject elapsed time values to scaling function ϕ(x) = log(1+ x) and also use the categorical
one-hot encodings from (Shin et al., 2021). There, elapsed time is capped off at 300 seconds and
categorized based on the integer second. We evaluate two variations of this feature. In the first
version we compute elapsed time based on interactions with the current question. In the second
version we compute elapsed time based on interactions with the prior question. Because it is
unknown how long a student will take to answer a question ahead of time the elapsed time value
of the current question is not available for question scheduling purposes and is excluded from the
model comparison in Subsection 5.3.
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CURRENT/PRIOR LAG TIME

Lag time measures the time passed between the completion of the previous exercise until
the next question is received (Shin et al., 2021). Lag time can be indicative for short-term
memorization and forgetting. For our experiments we subject lag time values to scaling func-
tion ϕ(x) = log(1 + x) and also use the categorical one-hot encodings from (Shin et al.,
2021). There, lag time is rounded to integer minutes and assigned to one of 150 categories
(0, 1, 2, 3, 4, 5, 10, 20, 30, . . . , 1440). Because we cannot compute a lag time value for the very
first question a student encounters we use an additional indicator flag. We evaluate two variations
of this feature. In the first version we compute lag time based on interactions with the current
question. In the second version we compute lag time based on interactions with the prior question.

DATE-TIME: MONTH, WEEK, DAY, HOUR

Date-time features provide information related to the temporal context a learning activity is
placed in. Here we consider the month, week, day and hour of interaction. We pass each of these
four attributes to the algorithm using one-hot encodings.

STUDY MODULE: ONE-HOT/COUNTS

All four datasets group study activities into distinct categories or modules (e.g., pre-test, ef-
fective learning, review, . . . ). Providing a machine learning model with information about the
corresponding study module can help with adapting the predictions to the different learning
contexts. ElemMath2021 indicates different modules with the s module attribute. EdNet
KT3 indicates different modules with the source attribute. Eedi indicates different modules
with the SchemeOfWorkId attribute. For Junyi15 we can derive 8 study module identifiers
corresponding to the unique combinations of topic mode, review mode and suggested flags. We
encode these study module attribute values into one-hot vectors before passing them to the
algorithm.

TEACHER/GROUP ID

The ElemMath2021 dataset annotates each student response with the identifier of the super-
vising teacher. Similarly, the Eedi dataset annotates each student response with their group
identifier. Both attributes provide information about the current learning context. We encode the
identifiers into one-hot to allow the machine learning algorithm to learn teacher/group specific
parameters.

SCHOOL ID

The ElemMath2021 dataset associates each student with a physical or virtual tutoring center.
Each tutoring center is assigned a unique school identifier. To capture potential differences
between the various schools we allow the machine learning algorithm to learn school specific
parameters by encoding the school identifiers into one-hot.

COURSE

The ElemMath2021 dataset contains logs from a variety of different mathematics courses.
While each course is assigned a unique course identifier, the KCs and questions treated in the
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individual courses can overlap. To capture differences in the context set by the individual courses
we allow the machine learning algorithm to learn course specific parameters by encoding the
course identifiers into one-hot.

TOPIC

The ElemMath2021 dataset organizes learning activities into courses which itself are split
into multiple topics. Each topic is assigned a unique topic identifier. The ITS can deploy the
same question in multiple topics and the differences in learning context might affect student
performance. We allow the machine learning algorithm to learn topic specific parameters by
encoding the topic identifiers into one-hot.

DIFFICULTY

The ElemMath2021 dataset associates each question with a manually assigned difficulty score
from the set {10, 20, 30, 40, 50, 60, 70, 80, 90}. We learn a model parameter for each distinct
difficulty value by using a one-hot encoding.

BUNDLE/QUIZ ID

The EdNet KT3 datasets annotates each response with a bundle identifier and the Eedi dataset
annotates each response with a quiz identifier. Both bundles and quizzes mark sets of multiple
questions which are asked together. The ITS can decide to assign a bundle/quiz to the student
which then needs to respond to all associated questions. To capture the learning context provided
by the current bundle/quiz we encode the corresponding identifiers into one-hot.

PART/AREA ONE-HOT/COUNTS

The Ednet KT3 dataset assigns each question one label based on which of the seven TOEIC©

exam parts it addresses. Similarly, the Junyi15 dataset assigns each questions one of nine area
identifiers which marks the area of mathematics the question addresses. We allow the machine
learning algorithm to learn part/area specific parameters by encoding the part/area identifiers into
one-hot. In addition, we experiment with two count features capturing the total number of prior
correct responses and attempts on questions related to the current part/area. Before passing the
count features to the algorithm we subject them to scaling function ϕ(x) = log(1 + x).

AGE

The Eedi dataset provides an attribute which captures students’ birth date. We learn a model
parameter for each distinct age by using a one-hot encoding. Students without a specified age are
assigned a separate parameter.

GENDER

The Eedi dataset categorizes student gender into female, male, other, and unspecified. We learn
a model parameter for each attribute value by using one-hot vectors of dimension four.
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SOCIAL SUPPORT

The Eedi dataset provides information on whether students qualify for England’s pupil premium
grant (a social support program for disadvantaged students). The attribute categorizes students
into qualified, unqualified, and unspecified. We learn a model parameter for each attribute value
by using one-hot vectors of dimension three.

PLATFORM

The ElemMath2021 dataset contains an attribute which indicates if a question was answered
from a physical tutoring center or the online system. Similarly, the EdNet KT3 dataset indicates
if a question was answered using the mobile app or a web browser. To pass this information to
the model we use a two-dimensional one-hot encoding.

PREREQUISITE: ONE-HOT/COUNTS

In addition to a KC model three of the datasets provide a graph structure that captures semantic
dependencies between individual KCs and questions. ElemMath2021 offers a prerequisite
graph that marks relationships between KCs. Junyi15 provides a prerequisite graph that
describes dependencies between questions. In contrast, Eedi organizes its KCs via a 4-level
topic ontology tree. For example the KC Add and Subtract Vectors falls under the umbrella of
Basic Vectors which itself is assigned to Geometry and Measure which is connected to the tree
root Mathematics. To extract prerequisite features from Eedi’s KC ontology we derive a pseudo
prerequisite graph by first taking the two lower layers of the ontology tree and then using the
parent nodes as prerequisites to the leaf nodes. We evaluate two ways of utilizing prerequisite
information for student performance modeling:

1. Prerequisite IDs: For each question we employ a sparse vector that is zero everywhere
except in the entries that mark the relevant prerequisite KCs (for ElemMath2021 and
Eedi) or questions (for Junyi15).

2. Prerequisite counts: For each question we look at its prerequisite KCs (for ElemMath2021
and Eedi) or prerequisite questions (for Junyi15). For each prerequisite we then com-
pute two features capturing the number of prior correct responses and attempts related
to the respective prerequisite KC or question. After being subjected to scaling function
ϕ(x) = log(1+x), a vector containing the counts for all relevant prerequisite KCs/questions
is passed to the machine learning algorithm.

POST-REQUISITE: ONE-HOT/COUNTS

By inverting the directed edges of the prerequisite graph, we derive a post-requisite graph.
Analogous to the prerequisite case we encode post-requisite information in two ways: (i) As sparse
vectors that are zero everywhere except in the entries that mark the post-requisite KCs/questions
with a 1; (ii) As correct and attempt count features computed for each KC/question that is
post-requisite to the current question. For further details refer to the above prerequisite feature
description.
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VIDEO: COUNT/SKIPPED/TIME

The ElemMath2021 and EdNet KT3 dataset both provide information on how students
interact with lecture videos. We evaluate three ways of utilizing video consumption behavior for
performance modeling:

1. Videos watched count: Here we compute two features: (i) The total number of videos a
student has interacted with before; (ii) The number of videos a student has interacted with
before related to the KCs of the current question.

2. Videos skipped count: ElemMath2021 captures video skipping events directly. For
EdNet KT3 we count a video as skipped if the student watches less than 90%. Again we
compute two features: (i) The total number of videos a student has skipped before; (ii) The
number of videos a student has skipped before related to the KCs of the current question.

3. Videos watched time: Here we compute two features: (i) The total time a student has spent
watching videos in minutes; (ii) The time a student has spent watching videos related to
the KCs of the current question in minutes.

All count and time features are subjected to scaling function ϕ(x) = log(1 + x) before being
passed to the machine learning algorithm. This avoids features of large magnitude.

READING: COUNT/TIME

The ElemMath2021 and EdNet KT3 dataset both provide information on how users interact
with reading materials. ElemMath2021 captures when a student goes through a question
analysis and EdNet KT3 creates a log whenever a student enters a written explanation. We
evaluate two ways of utilizing reading behavior for student performance modeling:

1. Reading count: Here we compute two features: (i) The total number of reading materials
a student has interacted with before; (ii) The number of reading materials a student has
interacted with before related to the KCs of the current question.

2. Reading time: Here we compute two features: (i) The total time a student has spent on
reading materials in minutes; (ii) The time a student has spent on reading materials related
to the KCs of the current question in minutes.

The count and time features are subjected to scaling function ϕ(x) = log(1 + x) before being
passed to the machine learning algorithm. This avoids features of large magnitude.

HINT: COUNT/TIME

The Junyi15 dataset captures how students make use of hints. Whenever a student answers
a question the system logs how many hints were used and how much time was spent on each
individual hint. Students are allowed to submit multiple answers to the same question, though a
correct response is only registered if it is the first attempt and no hints are used. We evaluate two
ways of utilizing hint usage for student performance modeling:

1. Hint count: Here we compute two features: (i) The total number of hints a student has used
before; (ii) The number of hints a student has used before related to the KCs of the current
question.
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2. Hint time: Here we compute two features: (i) The total time a student has spent on hints
in minutes; (ii) The time a student has spent on hints related to the KCs of the current
question in minutes.

The count and time features are subjected to scaling function ϕ(x) = log(1 + x) before being
passed to the machine learning algorithm. This avoids features of large magnitude.

SMOOTHED AVERAGE CORRECTNESS

Let cs and as be the number of prior correct responses and overall attempts of student s re-
spectively. Let r̄ be the average correctness rate over all other students in the dataset. The
linear logistic model is unable to infer the ratio cs/as of average student correctness on its own.
Because of this we introduce the smoothed average correctness feature rs to capture the average
correctness of student s over time as

r̃s =
cs + ηr̄

as + η
.

Here, η ∈ N is a smoothing parameter which biases the estimated average correctness rate,
r̄s of student s towards this all-students average r̄. The use of smoothing reduces the feature
variance during a student’s initial interactions with the ITS. A prior work by Pavlik et al. 2021
proposed, but did not evaluate, an average correctness feature without the smoothing parameter
for student performance modeling. While calibrating this parameter for our experiments, we
observed benefits from smoothing and settled on η = 5.

RESPONSE PATTERN

Inspired by the use of n-gram models in the NLP community (e.g., Manning and Schütze 1999),
we propose response patterns as a feature which allows logistic regression models to infer factors
impacting short-term student performance. At time t, a response pattern rt ∈ R2n is defined as
a one-hot encoded vector that represents a student’s sequence of n ∈ N most recent responses
wt = (at−n, . . . , at−1) formed by binary correctness indicators at−n, . . . , at−1 ∈ {0, 1}. The
encoding process is visualized by Figure 3 in the paper.

B APPENDIX: HYPERPARAMETERS AND MODEL SPECIFICATIONS

Here we provide information about the hyperparameter search spaces used for the deep learning
based student performance modeling approaches we evaluated with a grid search in Subsec-
tion 5.3. For each model we defined a hyperparameter search space that captures and extends
the hyperparameters which were used in the cited references (DKT, (Piech et al., 2015); SAKT,
(Pandey and Karypis, 2019); SAINT, (Choi et al., 2020); SAINT+, (Shin et al., 2021)). A detailed
list of the used hyperparameter spaces is provided in Table 10. All models were trained for 100
epochs without learning rate decay.
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Table 10: Hyperparameter search spaces for deep learning based approaches.

Model DKT SAKT SAINT SAINT+
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Number of Layers {1, 2} {1, 2} {2, 4, 6} {2, 4, 6}
Dropout Rate {0, 0.2, 0.5} {0, 0.2, 0.5} - -
Truncated Sequence Length - 200 100 100
Number of Heads - 5 8 8
Learning Rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Batch Size {128, 256} {128, 256} {128, 256} {128, 256}
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MANNING, C. D. AND SCHÜTZE, H. 1999. Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge, MA, USA.

MONTERO, S., ARORA, A., KELLY, S., MILNE, B., AND MOZER, M. 2018. Does deep knowledge
tracing model interactions among skills? In Proceedings of the 11th International Conference on
Educational Data Mining. EDM, Buffalo, NY, USA, 462–466.

MOZER, M. C. AND LINDSEY, R. V. 2016. Predicting and Improving Memory Retention: Psychological
Theory Matters in the Big Data Era. Routledge/Taylor & Francis Group, London, UK.

NAKAGAWA, H., IWASAWA, Y., AND MATSUO, Y. 2019. Graph-based knowledge tracing: Modeling
student proficiency using graph neural network. In IEEE/WIC/ACM International Conference on Web
Intelligence. IEEE, New York, NY, USA, 156–163.

PANDEY, S. AND KARYPIS, G. 2019. A self-attentive model for knowledge tracing. In Proceedings of the
12th International Conference on Educational Data Mining. EDM, Montréal, QC, Canada, 384–389.
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