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Identifying collaboration between learners in a course is an important challenge in education for two
reasons: First, depending on the courses’ rules, collaboration can be considered a form of cheating.
Second, it helps one to more accurately evaluate each learner’s competence. While such collaboration
identification is already challenging in traditional classroom settings consisting of a small number of
learners, the problem is greatly exacerbated in the context of both online courses or massively open
online courses (MOOCs) where potentially thousands of learners have little or no contact with the course
instructor. In this work, we propose a novel methodology for collaboration-type identification, which
both identifies learners who are likely collaborating and also classifies the type of collaboration employed.
Under a fully Bayesian setting, we infer the probability of learners’ succeeding on a series of test items
solely based on graded response data. We then use this information to jointly compute the likelihood
that two learners were collaborating and what collaboration model (or type) was used. We demonstrate
the efficacy of the proposed methods on both synthetic and real-world educational data; for the latter, the
proposed methods find strong evidence of collaboration among learners in two non-collaborative take-
home exams.

1 INTRODUCTION

1.1 TODAY’S CHALLENGES IN IDENTIFYING COLLABORATION

A well-known challenge for educators is identifying collaboration among learners (or students)
in a course, test, or exam (Frary, 1993; Wesolowsky, 2000). This task is important for a number
of reasons. The first and most obvious reason is that there are many educational scenarios in
which collaboration is prohibited and considered a form of cheating. Identifying collaboration,
in this instance, is important for maintaining fairness and academic integrity in a course. The
second reason is that collaboration among learners complicates the accurate evaluation of a
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learner’s true level of competence. If, for example, a group of learners work together on a set
of homework problems, then it is difficult to evaluate the competence of each individual learner
as opposed to the competence of the group as a whole. This aspect is especially important in
scenarios where learners are simply copying the responses of a single peer. In such a scenario, a
series of correct answers among collaborative group members could lead to the conclusion that
all learners have mastered the material when—in reality—only one learner in the group achieved
proficiency.

Manually identifying collaboration among learners is difficult enough when the class size
is moderately small, say 20–30 learners, where an instructor may have a reasonable knowledge
about the aptitudes and habits of each particular learner. The problem is exacerbated as the
class size increases to university-level classes with hundreds of learners. In the setting of online
education, such as massive open online courses (MOOCs), a manual identification of learner
collaboration (or cheating-through-collaboration) becomes infeasible, as potentially thousands
of learners may be enrolled in a course, without ever having face-to-face interaction with an
instructor (Pappano, 2012).

1.2 AUTOMATED COLLABORATION IDENTIFICATION

An alternative to manually identifying learners that collaborate is to rely on statistical methods
that sift through learner response data automatically. Such data-driven methods look for pat-
terns in learner answer data in order to identify potential collaborations. A naïve approach for
automated identification of collaboration in educational datasets, such as multiple-choice tests,
would consist of simply comparing the answer patterns between all pairs of learners and flag-
ging learner pairs that exhibit a high degree of similarity. This approach, however, is prone to
fail, as it ignores the aptitude of the individual learners, as well as the intrinsic difficulty of each
test item or question (Levine and Donald, 1979; Wesolowsky, 2000).

In order to improve on such a naïve approach, a wealth of prior work exists on developing
statistically principled methods of collaboration detection. Many of these methods focus on
detecting the case of simple answer copying and a variety of statistical tests have been derived
for this use case (Wollack, 2003; Sotaridona and Meijer, 2002; Sotaridona and Meijer, 2003;
Wesolowsky, 2000). The proposed methods typically involve two steps: First, they estimate the
probability that each learner will provide the correct response to each question by fitting models
to both learners and questions. Second, they examine the actual answers provided by learners
and compute a statistical measure on how likely the learner response patterns are to have arisen
by chance. While such methods for collaboration identification have led to promising results,
they possess a number of limitations:

• The first limitation of prior work in statistical collaboration detection is the overwhelming fo-
cus on multiple-choice testing. While multiple-choice exams are a fact of life in many settings,
they are very limiting. For example, creating useful multiple choice questions is non-trivial
and requires careful thought and planning (Haladyna et al., 2002; Rodriguez, 1997); this is
especially true when creating effective wrong answers (lures) (Butler and Roediger, 2008).
Additionally, the type of knowledge that can be tested on multiple choice exams is quite lim-
ited. This is especially true in fields such as STEM (science, technology, engineering, and
mathematics) as well as economics (Becker and Johnston, 1999). Hence, automated collabo-
ration identification methods should be able to analyze more general forms of learner response
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data.

• The second limitation is in the explanatory weakness of the methods used in the existing col-
laboration identification literature for predicting the success of each learner on each question.
Learning analytics (LA) is concerned with jointly estimating learner ability and question dif-
ficulty and using these estimates to predict future observations. More advanced LA methods
have the potential to further improve the performance of automated collaboration identifica-
tion.

• The third limitation is the use of simplistic models for how collaborative behavior between
learners manifests in learner response data. Concretely, these methods are primarily con-
cerned with the case of one learner copying the answers of another learner. The method
of (Wesolowsky, 2000), for example, proposed the combination of point-estimates of the
learner’s success probability (which are estimated directly from multiple-choice test results)
and a basic model on the number of correspondences that should arise between learners based
on these success probabilities. However, this method does not take into account the variety
of complex ways that learners could collaborate, ranging from simple copying to symbiotic
collaboration. By employing a variety of models for different types of collaborative scenar-
ios, one could hope to improve overall identification performance as well as provide valuable
information to educators.

1.3 CONTRIBUTIONS

This paper develops a novel methodology for collaboration-type identification, which jointly
identifies which learners engaged in collaboration and classifies the type of collaboration em-
ployed. A block diagram of our methodology is shown in Figure 1. Our approach overcomes the
limitations of existing approaches described in Section 1.2. Concretely, we make the following
four contributions, each one corresponding to one of the four blocks shown in Figure 1.

• Generic learner response data: Our methodology relies only on simple right/wrong response
data as opposed to multiple-choice responses (which usually contain multiple options per
question). This response model enables our approach to be applied to a much broader range
of educational datasets than existing methods.

• Improved learning analytics: Our methodology utilizes the recently proposed SPARFA (short
for SPArse Factor Analysis) model proposed in (Lan et al., 2013), which has been shown to
have state-of-the-art performance for LA. We note, however, that the algorithms employed are
not tied to any particular LA method. In fact, any LA method that estimates success proba-
bilities for each learner–question pair can be utilized. Furthermore, the LA method used in
combination with our approach can either provide point estimates or full posterior distribu-
tions of the success probabilities.
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Figure 1: Block diagram for our proposed methodology for collaboration-type identification.
The methodology consists of (i) learning analytics (Section 2) that model the success proba-
bilities between learners and questions from learner response data, (ii) collaboration models
(Section 3) for various types of real-world collaborative behavior, and (iii) collaboration detec-
tion algorithms (Section 4) that jointly identify collaboration and classify it according to one of
the collaboration models. The collaboration graph summarizes the result of the collaboration
detection algorithm graphically. In this example, the collaboration graph depicts collaboration
on a final exam for an undergraduate electrical engineering course. Collaboration was detected
among three groups of learners. In two cases, collaboration is classified as symbiotic (denoted
by solid, dark blue lines). In the other case, collaboration was classified as parasitic copying
(denoted by the dashed, green line). Further details of this real-world application example are
given in Section 5.

• Improved models for collaboration type: Our methodology proposes four novel models for
describing collaboration in real-world educational scenarios. By employing these models,
our methodology provides superior performance and increased flexibility in representing real-
world collaborative behavior.

• Novel algorithms for collaboration-type identification: Our methodology provides two novel
algorithms for collaboration-type identification that fuse LA and collaboration models. These
algorithms have superior performance compared to state-of-the-art algorithms for detecting
collaboration in educational datasets.

1.4 ORGANIZATION OF THE PAPER

The remainder of this paper is devoted to detailing our methodology for collaboration-type iden-
tification as depicted in Figure 1. In Section 2, we review existing algorithms for learning analyt-
ics, including a Bayesian variant of the approach of Rasch (Rasch, 1993) as well as the SPARFA
framework (Lan et al., 2013). In Section 3, we develop probabilistic models for various types
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of collaborative behavior between pairs of learners. In Section 4, we develop two novel algo-
rithms for collaboration-type identification that make direct use of LA and collaboration models
to search for likely pairs of learners engaged in collaboration. To demonstrate the efficacy of the
proposed methodology, we validate our algorithms on both synthetic and real-world educational
data in Section 5. We conclude in Section 6. The computational details of our methods are
relegated to Appendices A, B, and C.

2 STATISTICAL APPROACHES FOR LEARNING ANALYTICS

As discussed above, naïve methods for collaboration identification that simply compare the pat-
tern of right/wrong learner responses are prone to fail because they do not take into account the
ability of each learner and the difficulty of each question. We use the term learning analytics
(LA) to refer to methods that estimate the probability that a given learner will be successful
on a given question. LA is typically accomplished by specifying models on both the learner
abilities and the question difficulties. By fusing these, one can formulate a statistical model and
develop corresponding algorithms for estimating the success probability of a given learner for
each question. Recent approaches to LA enable us to distinguish scenarios where two learners
have highly similar response patterns due to active collaboration as opposed to simply having
similar abilities or a set of very easy/hard questions, where learners jointly succeed/fail with
high probability.

The collaboration identification methodology developed in this work is generic in that one
may use an arbitrary LA algorithm. In this section, we briefly summarize two of our preferred
approaches to LA, namely Bayesian Rasch and SPARFA. We will assume that the datasets con-
sist of learner response data for N learners and Q questions. These questions can be adminis-
tered in a variety of settings, such as during an exam or as a series of homework problems. For
the sake of simplicity of exposition, we further assume that our data is fully observed; that is,
each learner responds to every question. Extending our methods to the case of partially observed
data is straightforward.

2.1 BAYESIAN RASCH LEARNING ANALYTICS

The Rasch model (Rasch, 1960; Rasch, 1993) is a simple, yet powerful approach to LA. This
model assumes that each learner can be adequately characterized by a single latent ability pa-
rameter, ci ∈ R, i = 1, . . . , N . Large positive values of ci indicate strong abilities, while
large negative values indicate weak ability. Questions are also modeled by a single parameter
µj ∈ R, j = 1, . . . , Q, with large positive values indicating easy questions and large negative
values indicating difficult questions. By defining the slack variables

Zi,j = ci + µj, ∀i, j,

the Rasch model expresses the probability of user i answering question j correctly (with Yi,j =
1) or incorrectly (with Yi,j = 0) using

Yi,j ∼ Ber
(
Φ(Zi,j)

)
, ∀i, j.

Here, Ber(x) denotes a Bernoulli distribution with mean x, while the function Φ denotes a link
function that maps the slack variable Zi,j into a probability in [0, 1]. The conventional Rasch
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model deploys the inverse logistic link function defined as

Φlog(x) =
exp(x)

1 + exp(x)
.

Alternatively, one can use the inverse probit link function defined as

Φpro(x) =

∫ x

−∞

1√
2π

exp(−t2/2)dt.

An advantage of the inverse probit link function (over the inverse logistic link) is that, when
coupled with suitable prior probability distributions (i.e., Gaussian distributions) for each pa-
rameter, it enables efficient Markov chain Monte–Carlo (MCMC) methods based on Gibbs’
sampling (Gelman et al., 1995). In what follows, we exclusively make use the inverse probit
link function and use the simplified notation Φ(x) = Φpro(x).

MCMC methods enable us to sample from the posterior distribution of each Rasch param-
eter of interest in a computationally tractable manner. Among these parameters is the latent
success probability pi,j = Φ(Zi,j), which denotes the probability of user j correctly responding
to question i. Such a Rasch MCMC sampler will produce a series of samples from the posterior
distribution of pi,j that will be useful when developing the collaboration-type detection algo-
rithms in Section 4. We reserve the treatment of the full sampling details of the Rasch MCMC
sampler for Appendix A.

2.2 SPARSE FACTOR ANALYSIS (SPARFA) LEARNING ANALYTICS

Like the Rasch model, SPARFA (Lan et al., 2013) characterizes the success probability of a
set of learners across multiple questions. In contrast, however, the SPARFA model assumes
that there are K latent factors, referred to as concepts, that govern the learners’ responses to
these questions. In particular, SPARFA deploys the following model for the graded right/wrong
response data:

Yi,j ∼ Ber(Φ(Zi,j)) with Zi,j = wT
i cj + µi, ∀i, j. (1)

Here, the vector cj ∈ RK , j = 1, . . . , N , represents the concept mastery of the j th learner,
with its kth entry representing the learner’s mastery of concept k. The vector wi ∈ RK models
the concept associations, i.e., encodes how question i is related to each concept. The scalar µi
models the intrinsic difficulty of question i, where positive large values indicate easy questions
(as in the Rasch model).

Retrieving the parameters cj , wi, and µi from the set of graded learner responses Yi,j in (1)
is, in general, an ill-posed inverse problem. To enable tractable inference, SPARFA assumes
that the number of concepts K is small compared to both the number of learners and questions,
i.e., K � N,Q. Furthermore, to both enable interpretability and alleviate problems with model
identifiability, SPARFA imposes non-negativity and sparsity on the question–concept vectors
wi. These assumptions are imposed on the SPARFA model through the selection of the prior
distributions for each parameter of interest.

The SPARFA MCMC sampler extracts samples from the posterior distribution of each pa-
rameter of interest, with the primary concern for collaboration detection being the samples of
pi,j = Φ(Zi,j). As with the Rasch approach, we reserve the treatment of the full sampling details
for the SPARFA MCMC sampler for Appendix B.
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3 STATISTICAL MODELS FOR REAL-WORLD COLLABORATIVE BEHAVIOR

Learners in real-world educational settings typically use a variety of strategies for providing
responses to questions. In many cases, learners simply work independently (i.e., without any
collaboration). In other cases, weaker learners may simply copy the responses of a stronger
classmate. In yet other cases, learners may work together collaboratively such that every learner
within the group both participates and benefits. Learners may also defer to one trusted learner’s
answer, regardless of whether or not the trusted learner is actually correct. The fact that learn-
ers may collaborate on only a subset of questions further complicates automated collaboration
identification.

By explicitly modeling collaboration type, one could hope to both provide valuable infor-
mation regarding collaboration as well as to improve detection of collaborating learners. To this
end, we propose four statistical collaboration models that capture a range of different scenarios.
We use the notation Mm for m = 1, . . . , 4 to refer to each model. We express our models
probabilistically for a given pair of learners, i.e., learner u and learner v, and model the joint
probability distribution of observing the set of answers (Yi,u, Yi,v). This joint distribution natu-
rally depends first on the prior success probabilities pi,u and pi,v of both learners. In practice,
these probabilities can be estimated via an LA approach such as the Bayesian Rasch model (see
Section 2.1) or SPARFA (see Section 2.2). All models (with the exception of the independence
model) are parameterized by a scalar variable ε1 ∈ [0, 1], which characterizes the probability that
two learners will choose to collaborate on a given question. This parametrization enables us to
capture the fact that learners might only collaborate on a subset of all Q questions. Additionally,
two of the collaboration-type models we propose will utilize a second parameter, ε2 ∈ [0, 1];
the meaning of this parameter is model specific and will be explained when applicable. To sim-
plify notation, we will use the following definitions ε̄1 = 1 − ε1 and ε̄2 = 1 − ε2, as well as
p̄i,u = 1− pi,u and p̄i,v = 1− pi,v.

3.1 COLLABORATIVE MODELS

INDEPENDENCE MODELM1 Under the independence model, a pair of learners is not collab-
orating. Instead, each learner answers the assigned questions independently. Hence, there are no
parameters ε for this model. The probability of observing any answer sequence for two learners
working independently is simply given by the product of the individual prior probabilities. For
example, the graded response pair (1, 0) is achieved if learner u provides a correct response to
the ith question, while learner v provides an incorrect response. This case occurs with proba-
bility pi,up̄i,v. The likelihoods for each of the four possible observed set of responses under the
independence model for a given question are given in Table 1.

PARASITIC MODELM2 Under the parasitic model of collaboration, only one of the two learn-
ers under consideration attempts to solve the question while the other learner simply copies the
solution. The parasitic model is a two-parameter model with parameters ε1 and ε2. The first
parameter ε1 models the rate of collaboration, with a value of ε1 = 1 denoting that the learner
pair collaborates on every question; ε1 = 0 denotes that the learners will never collaborate (thus,
collapsing to the independence model). The second parameter ε2 denotes to the probability that
each learner will be selected to answer the question. A value of ε2 = 0 denotes that learner
u will always be the one selected to solve the question, while ε2 = 1 denotes that learner v
will always be the one selected. For example, observing the graded response pair (0, 0) occurs
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Table 1: Independence modelM1

Yi,u Yi,v P (Yi,u, Yi,v | pi,u, pi,v, ε1, ε2)
0 0 p̄i,up̄i,v
0 1 p̄i,upi,v
1 0 pi,up̄i,v
1 1 pi,upi,v

Table 2: Parasitic modelM2

Yi,u Yi,v P (Yi,u, Yi,v | pi,u, pi,v, ε1, ε2)
0 0 p̄i,up̄i,vε̄1 + ε1(p̄i,uε̄2 + p̄i,uε2)
0 1 p̄i,upi,vε̄1
1 0 pi,up̄i,vε̄1
1 1 pi,upi,vε̄1 + ε1(pi,uε̄2 + pi,uε2)

Table 3: Dominance modelM3

Yi,u Yi,v P (Yi,u, Yi,v | pi,u, pi,v, ε1, ε2)
0 0 p̄i,up̄i,v + p̄i,upi,vε1ε2 + pi,up̄i,vε1ε̄2
0 1 p̄i,upi,vε̄1
1 0 pi,up̄i,vε̄1
1 1 pi,upi,v + p̄i,upi,vε1ε̄2 + pi,up̄i,vε1ε2

Table 4: OR modelM4

Yi,u Yi,v P (Yi,u, Yi,v | pi,u, pi,v, ε1, ε2)
0 0 p̄i,up̄i,v
0 1 p̄i,upi,vε̄1
1 0 pi,up̄i,vε̄1
1 1 pi,upi,v + p̄i,upi,vε1 + pi,up̄i,vε1

in the event that (i) both learners do not collaborate on the question and both provide incor-
rect responses independently or (ii) both learners are collaborating on the question and that the
learner chosen to solve the question does so incorrectly. The probability of this event is given
by p̄i,up̄i,vε̄1 + ε1(p̄i,uε̄2 + p̄i,uε2). The likelihood table for each of the four possible observed set
of responses under the parasitic model is given in Table 2.

DOMINANCE MODEL M3 Under the dominance model, each learner works a question inde-
pendently, after which each pair of learners discusses which of the two answers will be used. Un-
der this model, each of the two learners attempts to convince the other to accept their response.
The parameter ε1 denotes the probability that the pair will collaborate on a given question (anal-
ogous to the parasitic model), while the second parameter ε2 denotes the probability that learner
u will convince learner v to adopt their response. For example, ε2 = 1 implies that learner u
will always convince learner v, while ε2 = 0 indicates the opposite scenario. Under this model,
observing the graded response pair (0, 0) occurs in either the event that (i) both learners get the
incorrect response (regardless of which learner dominates) or (ii) only one learner produces an
incorrect responses, but convinces the other learner to accept the response. The probability of
this event is given by p̄i,up̄i,v + p̄i,upi,vε1ε2 + pi,up̄i,vε1ε̄2. The likelihood table for each of the
four possible observed set of responses under the dominance model is given in Table 3.

OR MODEL M4 Under the OR model, each learner may not be able to provide the correct
response to a given question. However, they can identify the correct response if at least one
of them is able to provide it. Thus, the learner pair will jointly provide the correct response
if at least one of the learners succeeds. The name of this model derives from the Boolean OR
function, which is 1 if either one or both inputs to the function are 1 and 0 otherwise. This model
only uses a single parameter ε1, which denotes the probability that the pair will collaborate on
a given question (analogous to the ModelsM2 andM3). As an example, the graded response
pair (1, 1) occurs if (i) both learners produce the correct response (regardless of whether or not
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they are collaborating on the question) or (ii) only one learner produces the correct response and
the pair is actively collaborating on the given question. This probability of this scenario is given
by pi,upi,v + p̄i,upi,vε1 + pi,up̄i,vε1. The likelihood table for each of the four possible observed
sets of responses under the OR model for question i is given in Table 4.

3.2 DISCUSSION OF PAIRWISE COLLABORATION MODELS

Many more models can be developed to emulate various collaboration types. Such new models
can be easily integrated into our methodology. We further note a number of correspondences
that exist between the collaboration models detailed above. For example, the modelsM2,M3,
andM4 are equivalent toM1 whenever ε1 = 0, i.e., with the collaboration probability equal to
zero. Further, modelsM2 andM4 are equivalent under the same value of ε1 and whenever ε2
is either 0 or 1.

One limitation of the collaboration models proposed above is that we have entirely decoupled
the collaboration rate parameter ε1 from the success probabilities pi,u and pi,v. In real educational
scenarios, learners might choose to collaborate when they perceive a large potential benefit.
Learners may, for example, be less likely to collaborate on questions that they are likely to
answer correctly (i.e., pi,u, pi,v are large) and more likely to collaborate on questions that they
are likely to answer incorrectly (i.e., pi,u, pi,v are small). The development of such collaboration
models is an interesting topic for future work.

4 ALGORITHMS FOR COLLABORATION-TYPE INDENTIFICATION

We now develop two novel algorithms for pairwise collaboration-type identification. Both al-
gorithms jointly utilize learner–response data, an LA method, and a set of collaboration models
to jointly detect and classify different types of collaboration in educational datasets (recall Fig-
ure 1).

The first algorithm, referred to as sequential hypothesis testing (SHT), uses a Bayesian hy-
pothesis test first introduced in (Waters et al., 2013). This algorithm examines the joint answer
sequence of a pair of learners and evaluates the likelihood that such patterns would arise inde-
pendently (under modelM1) or under one of the other collaboration model (M2,M3, orM4).
The second algorithm, referred to as collaborative model selection (CMS), uses Bayesian model
selection (Hoff, 2009) in order to jointly compute posterior distributions on the probability of
learner response data arising under various collaboration models.

4.1 SEQUENCE HYPOTHESIS TESTING (SHT)

SHT compares two hypotheses. The first hypothesis H1 corresponds to the case where learner
u and v collaborate under a pre-defined collaboration-type model Mm,m 6= 1, given the LA
parameters. The second hypothesisH2 of SHT assumes that the number of agreements between
the graded responses of learner u and v are a result of the independence modelM1, given the
LA parameters.

4.1.1 Collaboration hypothesis

We start by defining the first hypothesis H1, which models the situation of observing the given
pair of graded responses sequences for learner u and v under the chosen collaboration model
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Mm, m 6= 1. Note that the SHT method can be utilized with any of the collaborative models
introduced in Section 3. The model proposed here relies on the individual probabilities pi,u
and pi,v, which are the probabilities of learner u and v succeeding in question i given the LA
parameters. For ease of exposition, we will proceed with our derivation for a two-parameter
model such asM2 orM3 with parameters ε1 and ε2; the reduction to a single parameter model
(such as the OR model) or the extension to a model with additional parameters is straightforward.

Assuming uniform priors on ε1 and ε2 over the range [0, 1] our collaboration hypothesis for
a given modelMm is simply given by

P (H1 |Mm) =

∫ 1

0

∫ 1

0

Q∏

i=1

P (Yi,u, Yi,v | pi,u, pi,v, ε1, ε2,Mm)dε1dε2, (2)

which corresponds to the probability of observing the pair of sequences of graded responses
for all Q questions under the collaboration model Mm. The quantity in (2) can be computed
efficiently via convolution; we reserve the computation details for Appendix C.

4.1.2 Independence hypothesis

The probability of the second hypothesis H2 for SHT corresponds to the probability of the
observed pair of graded response sequences, given the success probabilities pi,u and pi,v obtained
under the independence modelM1, i.e.,

P (H2) =

Q∏

i=1

p
Yi,u
i,u p̄

(1−Yi,u)
i,u p

Yi,v
i,v p̄

(1−Yi,v)
i,v . (3)

Given the probabilities (2) and (3) for the hypothesesH1 andH2, respectively, we can finally
compute the log Bayes factor1 for SHT for a given pair of learners as follows:

LBF = log

(
P (H1)

P (H2)

)
. (4)

A log Bayes factor greater than 0 indicates more evidence for the collaborative hypothesis
(under the chosen modelMm) than the independent hypothesis, while a log Bayes factor smaller
than 0 indicates the reverse scenario. In general, however, a large value of the log Bayes factor
is required when asserting that the evidence of collaboration is strong.

4.1.3 Discussion of SHT

The primary advantage of the SHT method is computational efficiency and flexibility. It can
be used with simple point estimates of the learner success probabilities. Thus, it can be eas-
ily incorporated into classical approaches for LA, such as the standard (non-Bayesian) Rasch
model (Rasch, 1993) or item-response theory (IRT) (Bergner et al., 2012). When utilized in
this way, the log Bayes factor needs only be computed once for each pair of students, making it
computationally very efficient.

SHT can also be used with a fully Bayesian LA approach (such as those detailed in Section 2
that provide full posterior distributions of the learner success probabilities). This is done by

1Under a uniform prior, the log Bayes factor is called the log likelihood ratio (LLR) in the statistical signal
processing community.
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Figure 2: Graphical model for collaborative model selection (CMS).

adding the computation of (4) as an additional sampling step of the MCMC sampler. Concretely,
we compute (4) at each iteration of the MCMC sampler given the current estimates of pi,u
and pi,v, ∀i, u, v. The log Bayes factor can be equivalently converted to a posterior probability
for each hypothesis, from which we can sample the hypotheses directly as part of the MCMC
sampler. This approach has the advantage of improving the robustness of our inference over
classical approaches, albeit at higher computational cost.

One restriction of our method is that SHT compares the independence model M1 against
exactly one other collaboration model Mm. One could, however, consider testing multiple
models simultaneously by using a form of Bonferroni correction to control the family-wise error
rate (Westfall et al., 1997). The approach proposed in the next section avoids such necessary
corrections by means of Bayesian model selection.

4.2 FULLY BAYESIAN COLLABORATIVE MODEL SELECTION

We now turn to a collaboration-type indentification method based on Bayesian model selection
(Hoff, 2009). This method allows us to jointly explore multiple collaboration models (types) and
to extract the associated model parameters in an efficient way in order to find configurations that
best explain the observed data. The result will provide estimates of the full posterior distributions
for each collaboration model and each parameter of interest. We dub this method collaborative
model selection (CMS).

4.2.1 Generative model for CMS

We first present the complete generative model for the pairwise collaborative model and state all
necessary prior distributions. This will enable efficient MCMC sampling methods for estimating
the relevant posterior distributions.

The full generative model is illustrated in Figure 2 for the case of the SPARFA LA model
(the equivalent Rasch-based model is obtained by removing the node W and replacing C with
the vector c). By symmetry of the proposed collaboration models, collaboration between each
pair of N learners can be specified with D = (N2 −N)/2 total models and corresponding
sets of the associated model parameters. We will use the quantity Md to denote the random
variable that indexes the collaboration model for learner pair d; the notation εd denotes the
random vector of model parameters for learner pair d. For the collaborative model index Md

we assume a discrete prior πm,d such that
∑4

m=1 πm,d = 1 for all d. For the elements of the
parameter vector εd, we assume a Beta-distributed prior Beta(αε, βε). Generation of the latent
variables in Z is done for either the Rasch or SPARFA LA model as discussed in Sections 2.1
and 2.2, respectively. Finally, the observed learner–response matrix Y for learner u and v is
generated jointly as detailed in Section 3 given the model type index Md and the associated
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model parameters εd.

4.2.2 MCMC sampling for collaboration type detection

Given the graded response data matrix Y along with the prior distribution onMd and εd, we wish
to estimate the posterior distribution of each model index along with its respective parameters
for each pair of learners d = 1, . . . , D. Doing this will allow us to infer (i) which pairs of
learners are collaborating, (ii) what type of collaborative model are they using, and (iii) how
strong the evidence is for these assertions.

We use Bayesian model selection techniques (Hoff, 2009) to efficiently search the space of
possible models and model parameters for configurations that best explain the observed data
Y. Full conditional posteriors for the models and model parameters, however, are not avail-
able in closed form, rendering Gibbs’ sampling infeasible. Thus, we make use of a suitable
Metropolis-Hastings step (Gelman et al., 1995). Specifically, assume that at iteration t of the
MCMC sampler and for a specific pair of learners d, we have a model sample M t

d parametrized
by εtd. The Metropolis-Hastings step proceeds by proposing a new model M t+1

d with parameters
εt+1
d via some proposal distribution q(M t+1

d , εt+1
d |M t

d, ε
t
d). We will utilize a proposal distribution

of the following form:

q(M t+1
i , εt+1

i |M t
i , ε

t
i) = qε(ε

t+1
i |M t+1

i ,M t
i , ε

t
i)qM(M t+1

i |M t
i , ε

t
i)

= qε(ε
t+1
i |M t+1

i ,M t
i , ε

t
i)qM(M t+1

i |M t
i ).

In words, we (i) split the proposal into a model component and model parameters component
and (ii) make use of a proposal for the modelMd that is independent of the model parameters εd.
We implement this proposal in two steps: First, we propose M t+1

d ∼ qM(M t+1
d |M t

d). Note that
there are many choices for this proposal; we will make use of the following simple one given by

p(M t+1
d =Mt+1|M t

d =Mt) =

{
γ, ifMt+1 =Mt

1−γ
|M|−1 , ifMt+1 6=Mt.

(5)

Here, γ ∈ (0, 1) is a user-defined tuning parameter. In words, with probability γ the MCMC
sampler will retain the previous model; otherwise, one from the remaining |M| − 1 models is
proposed uniformly. The proposal for the parameters εt+1

d takes the following form:

q(εt+1
d |M t+1

d ,M t
d, ε

t
d) =





δ0, if M t+1
d =M1

qβ(εt+1
d |M t+1

d ,M t
d, ε

t
d), if M t+1

d =Mt,

πε(ε|αε, βε), otherwise,
(6)

where δ0 corresponds to a point-mass at 0; the distribution qβ corresponds to a random walk
proposal on the interval [0, 1] defined by

qβ(a|b) = Beta(cb, c(1− b)), (7)

where c > 0 is a tuning parameter. In words, the sampling of εt+1
d (i) is performed via a random

walk when the model remains unchanged, (ii) is drawn directly from the prior πε(ε|αε, βε) when
a new model non-independent model is proposed, and (iii) is set to 0 when the model changes
to the independence model (since this model has no parameters ε, it is simply set to 0 for
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convenience). Note that it can be shown that the mean of the proposal distribution qβ is simply
b (the previous value used) while the variance is c2(b−b2)

c2+c+1
, which tends to zero as b approaches

either 0 or 1.
After proposing the new model {M t+1

d , εt+1
d } via (5)–(7) we accept the proposal with a

probability r as

r = min

{
1,
p(Y|M t+1

d , εt+1
d )π(M t+1

d )π(εt+1
d |αε, βε)qε(εtd|M t

d,M
t+1
d , εt+1

d )qM(M t
d|M t+1

d ))

p(Y|M t
d, ε

t
d)π(M t

d)π(εtd|αε, βε)qε(εt+1
d |M t+1

d ,M t
d, ε

t
d)qM(M t+1

d |M t
d))

}
.

The accept/reject decision is computed individually for each learner pair d = 1, . . . , D.

4.2.3 Discussion of CMS

The primary advantage of CMS is that it can jointly search across all collaborative models for
each pair of learners in the dataset. This comes at the price of additional computational com-
plexity, as a new set of models and model parameters must be proposed at each iteration of the
MCMC.

We note that while our fully Bayesian method for collaboration detection uses the success
probability matrix Φ(Z) when exploring new collaboration models, those models do not influ-
ence the sampling of Z itself. This is due to the structure of the model we have proposed, as Y
separates the LA portion of the MCMC from the CMS portion. This assumption is similar to the
work in (Wesolowsky, 2000) which computes success probabilities for each learner–question
pair based only on the data Y regardless of the evidence of collaboration.

The model depicted in Figure 2 could be augmented in a way that enables us to propose
a new posterior distribution for Z where the current belief about the collaborative models will
influence our beliefs about learner ability. For example, such a model could be accomplished
by proposing an additional latent variable for the answer that a learner would have provided had
they not been in collaboration; this would enable us to automatically temper our beliefs about
learner ability in the event that we believe that they are involved in collaboration. We will leave
such an approach for future work.

5 EXPERIMENTS

We now validate the performance our proposed methodology. We first examine the identification
capabilities using synthetic data with a known ground truth. Following this, we showcase the
capabilities of our methods on several real-world educational datasets.

5.1 SYNTHETIC EXPERIMENTS

We first validate the performance of our methodology using synthetic test data using both the
SHT and CMS algorithms. We furthermore compare against two other methods. The first is the
state-of-the-art method collaboration identification method developed in (Wesolowsky, 2000),
which was designed specifically for handling responses to multiple choice exams, where one is
interested in the specific option chosen by the pair of learners. Since we are interested in detect-
ing collaboration given only binary (right/wrong) graded responses, we need to first modify the
method (Wesolowsky, 2000) accordingly. Concretely, we set their term vi indicating the number
of wrong options for question i to 1, meaning that all wrong answers are treated equally. The re-
maining aspects of this method are left unchanged. The second method that we compare against
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is the agreement hypothesis testing method proposed in (Waters et al., 2013), which we will call
AHT for short. This method utilizes a Bayesian hypothesis test similar to SHT that compares
the likelihood of the independence modelM1 relative to a simple collaboration model in which
two learners choose to agree in their answer patterns with some arbitrary probability δ. We refer
the interested reader to (Waters et al., 2013) for further details.

5.1.1 Performance metrics

In order to evaluate collaboration identification performance, we will examine how well the con-
sidered methods identify learners who collaborate relative to learners who work independently.
Each of the four methods naturally outputs a collaboration metric related to the probability of
collaboration between each pair of learners:

• Bayesian Hypothesis Tests (AHT and SHT): For each learner pair, the collaboration metric is
given by the log Bayes’ factor.

• Bayesian Model Selection (CMS): For each learner pair, we first threshold on the posterior
probability that two learners worked under a collaborative model and then, we rank them ac-
cording to the posterior mean of ε1.

• Wesolowsky’s Method: For each learner pair, the collaboration metric is given by the Z-score
(see (Wesolowsky, 2000) for the details).

By sorting the output metrics in ascending order, a course instructor can easily see which pairs
of learners in a class are most likely engaging in collaborative behavior. To this end, let ξ denote
the output vector of pairwise metrics for each learner pair for a given algorithm. Sorting the
entries of ξ from smallest to largest, we can compute a normalized percentile ranking for each
pair of learners. Let Id denote the index of learner pair d in this sorted vector. The normalized
percentile ranking is then given simply by

Pd =
Id
D
, d = 1, . . . , D, (8)

with larger values of Pd denoting higher likelihood of collaboration relative to the rest of the
entire learner population.

5.1.2 Algorithm comparison on synthetic data

As a first synthetic experiment, we consider a class of N = 30 learners (with D = 435 unique
learner pairs) answering Q = 50 questions. Learner abilities are initially generated via the
SPARFA model. We select three pairs of learners who will work together collaboratively, one
pair for each model M2, M3, and M4 as defined in Section 2. Each pair has a per-question
collaboration probability ε1 = 0.75, while the value for ε2 for each of the two-parameter models
is set to 0 for simplicity. The answers for the collaborating learners are generated according the
appropriate collaboration model. The remainder of the learner pairs work independently, and
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Figure 3: Normalized percentile ranking performance for all four collaboration methods with a
synthetic dataset consisting of N = 30 learners and Q = 50 questions. Three learner pairs
are engaged in collaboration, one for each of the collaborative models, with a per-question
collaboration probability ε1 = 0.75. Larger values indicate better identification performance.
The CMS method achieves the best collaboration identification performance, followed by SHT,
Wesolowsky’s method (denoted by “Wes.”), and AHT, respectively.

their answers are generated according to the SPARFA model via (1). We then deploy CMS,
SHT, Wesolowsky’s method (denoted by “Wes.” in Figure 3), and AHT, and we compute the
normalized percentile ranking for each learner pair according to (8). We repeat this experiment
over 100 trials and present the normalized percentile ranking statistics for the collaborating
learner pairs for each collaboration model and each algorithm as a box-whisker plot.

From Figure 3, we see that CMS outperforms all other methods, both in the average and stan-
dard deviation of the normalized percentile ranking. CMS is followed by SHT, Wesolowsky’s
method, and AHT. Since our proposed CMS method shows the best collaboration identification
performance, we focus exclusively on this method in the remaining synthetic experiments.

5.1.3 Performance evaluation for CMS over multiple parameters

We now examine the performance trends of the CMS method for a varying number of questions
as well as the collaboration probability ε1. First, we generate data for N = 50 learners with
Q = 50 questions and sweep the collaboration probability ε1 ∈ {0.25, 0.5, 0.75, 1.0} and repeat
this experiment over 100 trials. We again examine performance using the normalized percentile
ranking (8) and display the results in Figure 4(a). We can see that the performance is excellent
for collaboration probabilities as low as ε1 = 0.5, meaning that learners were expected to collab-
orate on only every-other question. Second, we fix ε1 = 0.5 and sweep Q ∈ {25, 50, 75, 100}.
The result is displayed in Figure 4(b). We see that the proposed CMS method achieves excellent
identification performance for Q ≥ 50 questions.

5.2 REAL-WORLD EXPERIMENTS

We now turn to two real-world educational datasets. Specifically, we analyze datasets taken
from undergraduate courses in electrical and computer engineering administered on OpenStax
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Figure 4: Collaboration-type identification performance for the collaborative model selection
(CMS) approach with a synthetic N = 50 learner dataset. (a) impact of varying collabora-
tion probabilities ε1 ∈ {0.25, 0.5, 0.75, 1.0} for Q = 50 questions; (b) impact of numbers of
questions for Q ∈ {25, 50, 75, 100} with collaboration probability ε1 = 0.5.

Tutor.2

5.2.1 Undergraduate signal processing course

We first identify collaboration on homework assignments in the course up to the first midterm
examination. One interesting aspect of this course is that learners were encouraged to work to-
gether on all homework assignments, albeit with some restrictions. Concretely, each learner was
assigned into a group of 2-to-4 learners with whom they were allowed to actively collaborate
on homework assignments. Learners within each group were free to discuss each homework
problem as well as its solution with any members of their group, though each learner was re-
quired to submit their own homework solutions for final grading. Learners were, however, not
required to collaborate; the only restriction was that any collaboration with other learners was to
be confined to the assigned homework group. Collaborating outside of the assigned homework
group was considered cheating.

This particular setting presents an interesting test case for our method since we have a rough
ground truth with which to compare our results. We examine the performance of CMS and
the method of Wesolowsky on all homework assignments up to the first midterm exam; a total
of Q = 50 questions and N = 38 learners. We further include all question–responses to the
midterm (14 additional responses) in extracting the SPARFA parameters, though these questions
were excluded from the collaboration detection algorithm. The data is especially challenging
since learners were given ample time to solve and discuss homework problems. Because of this,
most responses given on homework problems were correct. As a consequence, an extremely
high degree of similarity between answer patterns is required for collaboration to be considered
probable.

For CMS we posit collaborative connections between learner pairs for whom Md 6= 1
(i.e., from which the independence model M1 is excluded) in more than 90% of MCMC it-

2http://www.openstaxtutor.org
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Figure 5: Collaboration-type identification result for the Bayesian model selection method for
the first set of homework assignments in the undergraduate signal processing class dataset. The
data consists of 38 learners answering 50 homework questions plus 14 midterm exam questions.
Grey ellipses designate the assigned homework groups. Dashed green lines denote parasitic
collaborations, while solid blue lines denote symbiotic collaborations detected by CMS. Dotted
red lines denote the connections found using Wesolowsky’s method, which, in general, finds
fewer ground truth connections than the CMS method.

erations and for whom the posterior mean of ε1 was greater than 0.4. The Z-score threshold
for Wesolowsky’s method was adjusted manually to provide the best match to the ground truth.
We display the corresponding results in Figure 5. Dotted red lines denote connections detected
under Wesolowsky’s method. For the Bayesian model selection method, blue solid lines denote
detections under symbiotic (OR) model, whereas dashed green lines show detections under the
parasitic model.

Most collaborative types found using CMS for this dataset are of the OR type. An exception
is the group {9, 10, 12}, for which the parasitic copying model was proposed most frequently.
Examination of the answer pattern for these learners show that while the joint answer patterns
for these learners are very similar on the homework assignments, Learners 10 and 12 perform
poorly on the midterm relative to Learner 9. Thus, the algorithm assumes that their success in the
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homework is more a consequence of copying the responses of Learner 9 rather than because of
their mastery of the subject material. We additionally note the collaborative connection between
Learners 9 and 24 as well as between Learners 10 and 14. These connections arise due to
high similarity in the homework answering patterns which are also quite different from the rest
of the collaborative group. Interestingly, Wesolowsky’s method also found strong evidence of
collaborations between Learners 9 and 24; this method, however, failed to reveal three of the
intra-group collaborations found by our proposed CMS method. In the following, we omit
further comparisons with Wesolowsky’s method for the sake of brevity.

As a second experiment with the same undergraduate signal processing course, we consider
collaboration identification on the final exam, which was administered as a take-home test. Dur-
ing this examination, learners were instructed not to collaborate or discuss their results with
any other learners in the class. The final exam consisted of 24 questions. We deploy CMS us-
ing all questions in the course (a total of 147 questions) to extract the SPARFA parameters and
search for collaboration only on the questions on the final exam. We jointly threshold on the
posterior mean of ε1 and the proportion of MCMC samples that indicated a non-independent
collaborative model for each learner pair to arrive at the collaboration graph of Figure 6. We
find strong evidence of collaboration between the learner pair {14, 38} under the symbiotic col-
laboration model. Interestingly, Learner 14 was also detected in the previous experiment as a
learner working outside of his collaborative group on the course homework assignments. Both
learners provided correct responses to each question on the final exam, although their previous
performance in the course would lead one to expect otherwise. To prevent false accusations (see,
e.g., (Chaffin, 1979) for a discussion on this matter), we examined their open form responses
available in OpenStax Tutor and found a remarkable similarity in the text of their answers; this
observation further strengthens our belief about their collaboration.

5.2.2 Final exam of an undergraduate computer engineering course

This course consists of 97 learners who completed the course answering a total of 203 questions,
distributed over various homework assignments and three exams. We examine collaboration
among learners in the final exam, which consists of 38 questions. As was the case with the
signal processing final exam, the computer engineering final exam was administered as a take-
home examination where learners were instructed not to collaborate with their peers. In order
to extract the SPARFA parameters, we use all questions administered during the entire course
and then use CMS to extract the posterior distributions for each pair of learners on the subset
of questions corresponding to the final exam. We jointly threshold the posterior probability of
non-independent collaboration as well as the posterior mean of ε1. We display the result in
Figure 7, where dashed green lines correspond to parasitic collaboration (M2) and solid blue
lines denoting symbiotic collaboration (M4). Note that no collaborations were detected under
the dominance model (M3).

All three groups of learners in Figure 7 for whom we identify collaboration have identical an-
swer patterns. The group {10, 92, 62, 73} provides the correct response to every question on the
exam. The group {5, 34, 90} jointly miss only one question which is estimated by SPARFA to
be in the mid to high range of difficulty. The group {1, 88} jointly miss the same two questions,
one of these being found by SPARFA to exhibit low intrinsic difficulty. We manually inspected
the open-form responses available in OpenStax Tutor of all learners in the identified groups to
prevent false accusations. We found that there is some diversity in the responses provided by the
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Figure 6: Collaboration-type identification result for a take-home exam in an undergraduate
electrical engineering course consisting of 38 learners answering 24 questions. The connected
nodes correspond to learners for which the collaboration hypothesis. Manual inspection of the
open-form responses provided by Learners 14 and 38 further strengthens the collaboration hy-
pothesis.

group {10, 62, 73, 92}. This, coupled with the fact that each of the learners have only managed
to perform slightly better than what SPARFA would predict, allows us to reasonably exclude this
group from further scrutiny. By contrast, the answer patterns for the other groups reveal strong
evidence of collaboration due to very similar wording and grammar. This is especially true for
the pair {1, 88}; as it can be seen from Table 5, Learner 1 consistently provides a shortened
version of the responses provided by Learner 88, including those answered incorrectly.3

6 CONCLUSIONS

We have developed new methods for pairwise collaboration-type identification in large educa-
tional datasets, where the objective is to both identify which learners work together and classify
the type of collaboration employed. Our framework combines sophisticated approaches to learn-
ing analytics (LA) with new models for real-world collaboration and employs powerful algo-
rithms that fuse the two to search for active collaborations among all pairs of learners. We have
validated our methodology on both synthetic and real-world educational data and have shown

3We analyzed the same computer engineering dataset using a different collaboration detection framework in
(Waters et al., 2013). We omitted two learners in this work due to their failure to submit all homework assignments.
Thus, learner indices in these two papers differ. As an example, Learners 1 and 88 in this work thus correspond to
Learners 1 and 90 in (Waters et al., 2013).
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Figure 7: Collaboration identification result for a take-home exam in an undergraduate electrical
engineering course consisting of 97 learners answering 38 questions. The connected nodes
correspond to learners identified by CMS to be collaborating, with dashed green lines denoting
one-side copying and solid blue lines denoting symbiotic collaboration. Manual inspection of
the open-form responses provided by Learners 1 and 88 (highlighted by a gray oval) reveals
obvious collaboration.
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Table 5: Selected responses of Learners 1 and 88 in the non-collaborative take-home exam.
Answer similarities are highlighted in black. Both learners responded to the last item incorrectly.

Learner 1 Learner 88

double char integral double cannot be used to base a
switch decision int and char can be
used as they are of integral type

When the name field is defined. student.name would correctly ac-
cess the name field if the name of
the student struct object declared is
student.

A This prints the ASCII character as-
sociated with the decimal value 65,
which is A

5 The value of x would be 5 ; it would
truncate the digits right of the deci-
mal point.

−2147483648−+2147483647 Its potential range is
−2,147,483,648− +2,147,483,647
(using the typical 32 bit representa-
tion).

that they significantly outperform the state-of-the-art methods available in the open literature.
Additionally, we detected several cases of non-permissible collaboration (which is considered
cheating) on both homework assignments and examinations in two undergraduate-level courses.

The collaboration rankings that our method provides can greatly facilitate collaboration iden-
tification as it provides a good (and small) set of candidates that need to be evaluated in greater
depth (with respect to collaborative behavior) by an instructor. This advantage reduces the in-
structor’s workload and promotes fairness in educational settings.

One interesting avenue for future work involves modeling more complicated social groups
among learners. In particular, extending the capability of collaboration detection methods be-
yond pairwise collaboration is useful in real-world educational scenarios in which learners of-
ten work in larger groups with complicated social dynamics. Another avenue for future work
consists of using collaboration detection methods to “denoise” or, more colloquially, “decol-
laborate” LA. Such an application is crucial in the deployment of intelligent tutoring systems
(Nwana, 1990), as it could use its beliefs about collaboration to estimate the true learner ability
(i.e., without collaboration).

Additionally, fusing data across different modalities is an open problem that could deliver
impressive results. Concretely, in addition to the learner’s answer patterns, we often possess a
wealth of side information, such as their open-form responses. Incorporating this side informa-
tion directly into our collaboration detection approach has the potential to dramatically improve
the identification of collaborative behavior, as well as reduce the rate of false detections that can
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arise when only the answer patterns themselves are considered.

A DERIVATION OF THE MCMC SAMPLER FOR BAYESIAN RASCH AP-
PROACH TO LEARNING ANALYTICS

Here, we derive the sampling steps for the Rasch MCMC sampler. Recall that the generative
model for the data Y under the Rasch approach is given by

Yi,j ∼ Ber(Φ(Zi,j)) with Zi,j = ci + µi, ∀i, j.
It can be shown (see, e.g., (Chib and Greenberg, 1998)) that this model is equivalent to

Yi,j ∼ sign(Φ(Z ′i,j)) with Z ′i,j = ci + µi + ei,j, ∀i, j.
where sign(·) is the signum function and ei,j ∼ N (0, 1). This latter representation is more
convenient for the purposes of MCMC.

By specifying the following prior distributions

π(cj) ∼ N (0, σ2
c ) and π(µi) ∼ N (0, σ2

µ),

we can perform Gibbs’ sampling on each of the variables cj, µj by augmenting with the latent
variable Z ′i,j . The sampling steps at each MCMC iteration are given by

(1) For all i = 1, . . . , Q and j = 1, . . . , N sample Z ′i,j ∼ N (ci + µj, 1), truncating above 0 if
Yi,j = 1, and truncating below 0 if Yi,j = 0.

(2) For all i = 1, . . . , Q sample µi ∼ N (σ̃2
µ

∑N
j=1(Z

′
i,j − cj), σ̃2

µ), where σ̃2
µ =

(
1
σ2
µ

+N
)−1.

(3) For all j = 1, . . . , N sample cj ∼ N (σ̃2
c

∑N
i=1(Z

′
i,j − µi), σ̃2

c ), where σ̃2
c =

(
1
σ2
c

+Q
)−1.

By repeating this sampling scheme over several iterations, we assemble a set of samples from
the posterior distribution of the Rasch parameters cj , ∀j and µi, ∀i. In addition, the values of
pi,j = Φ(cj + µi) are samples of the probability of learner j answering item i correctly, which
are then used by the collaboration-type identification algorithms of Section 4.

B DERIVATION OF THE MCMC SAMPLER FOR THE SPARFA APPROACH

TO LEARNING ANALYTICS

Here, we discuss the sampling scheme for the SPARFA-based MCMC sampler. Like the Rasch
MCMC sampler of Appendix A, we can introduce the latent variable Z ′ and use the equivalent
generative model

Yi,j ∼ sign(Φ(Z ′i,j)) with Z ′i,j = wT
i cj + µi + ei,j, ∀i, j.

where ei,j ∼ N(0, 1) as with the Rasch MCMC.
In order to comply with the constraints discussed in Section 2.2, Bayesian SPARFA imposes

the following prior distributions

Wi,k ∼ rk Exp(λk) + (1− rk) δ0, λk ∼ Ga(α, β), and rk ∼ Beta(e, f)

cj ∼ N (0,V), V ∼ IW(V0, h), and µi ∼ N (µ0, vµ),
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it can be shown that the posterior samples can be computed via a Gibbs’ sampler with the
following updates

(1) For all i = 1, . . . , Q and j = 1, . . . , N , sample Z ′i,j ∼ N
(
(WC)i,j + µi, 1

)
, truncating

above 0 if Yi,j = 1, and truncating below 0 if Yi,j = 0.

(2) For all i = 1, . . . , Q, draw µi ∼ N (mi, v) with v = (v−1µ +N)−1,mi = µ0+v
∑

( i, j)
(
Z ′i,j −wT

i cj
)
.

(3) For all j = 1, . . . , N , draw cj ∼ N (mj,Mj) with Mj = (V−1 + WTW)−1, and mj =
MjW

T (zj − µ), where zj denotes the j th column of Z.

(4) Draw V ∼ IW(V0 + CCT , N + h).

(5) For all i = 1, . . . , Q and k = 1, . . . , K, draw Wi,k ∼ R̂i,kN r(M̂i,k, Ŝi,k) + (1 − R̂i,k)δ0,
where N r(a, b) is a rectified Normal distribution (Schmidt et al., 2009) and:

(a) R̂i,k = p(Wi,k = 0|Z′,C,µ) =
Nr(0|M̂i,k,Ŝi,k,λk)

Exp(0|λk)
(1−rk)

Nr(0|M̂i,k,Ŝi,k,λk)
Exp(0|λk)

(1−rk)+rk
,

(b) M̂i,k =
∑

(i,j)

(
(Z′
i,j−µi)−

∑
k′ 6=kWi,k′Ck′,j

)
Ck,j∑

(i,j) C
2
k,j

, and

(c) Ŝi,k =
(∑

(i,j)C
2
k,j

)−1
.

(6) For all k = 1, . . . , K, let bk define the number of active (i.e., non-zero) entries of wk. Draw
λk ∼ Ga(α + bk, β +

∑Q
i=1Wi,k).

(7) For all k = 1, . . . , K, draw rk ∼ Beta(e+ bk, f +Q− bk), with bk defined as in Step 6.

We refer the interested reader to the work in (Lan et al., 2013) for further details regarding the
derivation of these sampling steps.

C NUMERICAL EVALUATION OF (2)

Here, we detail the efficient numerical evaluation of the SHT collaboration hypothesis (2). We
do this specifically for the case of a two-parameter collaboration model such as M2 or M3.
Reduction to a single parameter model such asM4 or to the extension to a model with additional
parameters is straightforward.

First, it is important to notice that the product term in (2) is a polynomial in the variables ε1
and ε2 of the form

Q∏

i=1

P (Yi,k, Yi,` | pi,k, pi,`, ε1, ε2,Mj) =

g0,0ε
0
1ε

0
2 + g0,1ε

0
1ε

1
2 + . . .+ g0,Qε

0
1ε
Q
2 + g1,0ε

1
1ε

0
2 + . . .+ gQ,Qε

Q
1 ε

Q
2 . (9)

The coefficients ga,b of the polynomial expansion in (9) can be evaluated efficiently using a
2-dimensional convolution. In particular, consider the matrix expansion

G =

Q

©∗
i=1

Gi(Yi,k, Yi,` | pi,k, pi,`, ε1, ε2,Mj), (10)
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where©∗ is the (2-dimensional) convolution operator. The term Gi(·) ∈ R2×2 is a matrix
polynomial in the variables ε1 and ε2 of the form

Gi(·) =

[
G̃i

0,0 G̃i
0,1

G̃i
1,0 G̃i

1,1

]
,

where G̃i
a,b is the coefficient associated with εa1ε

b
2 corresponding to the ith question:

P (Yi,k, Yi,` | pi,k, pi,`, ε1, ε2,Mj). For example, Gi(0, 0 | pi,k, pi,`,M2) is given by

Gi(0, 0 | pi,k, pi,`,M2) =

[
p̄i,kp̄i,` −p̄i,kp̄i,` + p̄i,k

0 −p̄i,k + p̄i,`

]
.

The result of (10) is a matrix G ∈ R(Q+1)×(Q+1) where Ga,b = ga,b. Since

∫ 1

0

∫ 1

0

ga,bε
a
1ε
b
2dε1dε2 =

ga,b
(a+ 1)(b+ 1)

,

we can evaluate (2) by computing

P (H2
1) =

∑
ij Hij with H = G ◦ F, (11)

where the entries of the matrix F correspond to Fa,b = 1
(a+1)(b+1)

, and ◦ denotes the Hadamard
(element-wise) matrix product. Simply put, P (H2

1) is given by the sum of all elements in the
matrix H = G ◦ F.

It is important to note that finite precision artifacts in the computation of (10) and (11)
become non-negligible as Q becomes large, i.e., if Q exceeds around 35 items with double-
precision floating-point arithmetic. In order to ensure numerical stability while evaluating of
(10) and (11) for large Q, we deploy specialized high-precision computation software packages.
Specifically, for our experiments, we used Advanpix’s Multiprecision Computing Toolbox for
MATLAB.4
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