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Learnersourcing is the process by which students submit content that enriches the bank of learning ma-
terials available to their peers, all as an authentic part of their learning experience. One example of learn-
ersourcing is Technology-Mediated Peer Instruction (TMPI), whereby students are prompted to submit
explanations to justify their choice in a multiple-choice question (MCQ), and are subsequently presented
with explanations written by their peers, after which they can reconsider their own answer. TMPI allows
students to contrast their reasoning with a variety of peer-submitted explanations. It is intended to foster
reflection, ultimately leading to better learning. However, not all content submitted by students is ade-
quate and it must be curated, a process that can require a significant effort by the teacher. The curation
process ought to be automated for learnersourcing in TMPI to scale up to large classes, such as MOOCs.
Even for smaller settings, automation is critical for the timely curation of student-submitted content, such
as within a single assignment, or during a semester.

We adapt methods from argument mining and natural language processing to address the curation
challenge and assess the quality of student answers submitted in TMPI, as judged by their peers. The
curation task is confined to the prediction of argument convincingness: an explanation submitted by a
learner is considered of good quality, if it is convincing to their peers. We define a methodology to
measure convincingness scores using three methods, Bradley-Terry, Crowd-Bradley-Terry and WinRate.
We assess the performance of feature-rich supervised learning algorithms as well as transformer-based
neural approach to predict convincingness using these scores. Experiments are conducted over different
domains, from ethics to STEM. While the neural approach shows the greatest correlation between its
prediction and the different convincingness measures, results show that success on this task is highly de-
pendent on the domain and the type of question.

Keywords: learnersourcing, comparative peer evaluation, text mining, convincingness, TMPI

1. INTRODUCTION

Peer Instruction (PI) is a classroom-based activity, often mediated by automated response sys-
tems (e.g. clickers), wherein teachers prompt students to answer a Multiple-Choice Question
(MCQ) individually, then break out into small groups and discuss their reasoning. Next, the
student is offered a second opportunity to answer the same question. Research has shown that
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students demonstrate significant learning gains from the intermediate interaction with their peers
(Crouch and Mazur, 2001). Synchronous, classroom-based PI is an effective component in the
teaching practice of instructors looking to drive student engagement as part of an active learning
experience (Charles et al., 2015). In discussing with peers after they have formulated their own
reasoning, students are engaged in a higher order thinking, as they evaluate (Highest on Bloom’s
taxonomy, Bloom et al. 1956) what is the strongest argument before answering again.

Prompting students to explain their reasoning is beneficial to their learning (Chi et al., 1994).
Deliberate practice of argumentation in defence of one’s ideas has been shown to improve in-
formal reasoning for science students (Venville and Dawson, 2010). There exists empirical
evidence on the positive relationship between constructing formally sound arguments and deep
cognitive elaboration, as well as the individual acquisition of knowledge (Stegmann et al., 2012).

Technology-mediated peer instruction (TMPI) platforms (Charles et al., 2019; University of
British Columbia, 2019) augment MCQ items into a two-step process. It first prompts students
for their answer choice, giving them an opportunity to explain their reasoning with a written
open response. Second, student have a chance to compare and contrast their explanations with
their peers.

On the first step, students must not only must choose an answer choice, but also provide an
explanation that justifies their reasoning, as shown in figure 1a. On the second step (figure 1b),
students are prompted to revise their answer choice by taking into consideration a subset of ex-
planations written by their peers and choose the explanation they consider the most convincing.

In an MCQ context, the student will choose an explanation that falls within one of three
scenarios according to whether the choice corresponds to the original answer choice and, if it
does, whether it is their original explanation:

1. Different answer choice. Change their answer choice, by indicating which of their peer’s
explanations for a different answer choice they find most convincing.

2. Same answer choice, different explanation. Keep the same answer choice, but indicate
which of their peers’ explanations they deem more convincing than their own.

3. Same answer choice, same explanation. Choose “I stick to my own”, which indicates
that they are keeping to the same answer choice, and that their own explanation is best
from among those shown.

Whenever the student chooses either of the first two scenarios above, we frame this as “cast-
ing a vote” for the peer explanation selected. By this vote, we will consider that the student has
judged their peer’s explanation as more convincing than their own explanation.

1.1. ON CONVINCINGNESS AND TMPI

As defined above, a more convincing explanation might be an incorrect answer. As such, we
could question in what sense would convincingness help curate peer-submitted explanations?

One answer to this question is that incorrect explanations may nevertheless be useful for
nurturing student reflection, such as better understanding what was a misleading reasoning. They
also afford teachers the opportunity to mitigate the “expert blind spot” (Nathan et al., 2001),
addressing student misconceptions they might not otherwise have thought of.

Another answer is that it is an intermediate step towards a better measure: the expected
learning gain for a given explanation. Indeed, in TMPI environments, we aim to offer explana-
tions that will bring the student to better understand the concepts and theories behind questions.
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(a) The first step in TMPI, where a student
is presented with a multiple-choice item.
The student must enter a “rationale”, or
“explanation”, justifying their answer choice.

The panel on the right, figure 1(b), shows the
second review step of TMPI. The student can
reconsider their answer choice with a subset
of explanations written by previous students.
A set of peer-explanations is shown, one for
the student’s own answer choice, and another
set is shown for a different answer choice
(the correct answer if the student’s choice
was wrong, otherwise a randomly chosen
incorrect choice). (b)

Figure 1: The two steps in technology-mediated peer instruction (TMPI).
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Therefore, the ideal measure we would like to extract is the expected learning gain for each
explanation. However, learning gains is a complex measure to obtain for several reasons:

• TMPI environments generally cover many skills and topics. A switch of topics and a
variation in difficulty during item sequencing can induce a change in student performance
that gets confounded with learning gains.

• Question items often involve more than one skill, as do explanations. As learning gains
must be attributed to a specific skill or concept, it is difficult to untangle the correct impu-
tation in multi-skill explanation pairs, for multi-skill questions.

• The exact “eureka!” moment often cannot precisely be established, blurring the timeline
of the learning gain.

• The learning gain may not depend solely on the explanation, but also on the alternative
explanations shown, a particular student’s misunderstanding, the specific sequencing of
question items, etc.

• Explanations are only shown once per student, taking away the possibility of eliminating
inter-student variance or explanatory factors.

Therefore, our aim at this stage of our research, and research on TMPI in general, is to solely
derive a metric we call “convincingness in TMPI” defined as the propensity a student to select
an explanation over others. This definition is closely linked to the notion of argument quality
(Bentahar et al., 2010; Gretz et al., 2020; Wachsmuth et al., 2017) and for our purpose here
could be considered interchangeable. However, it ought not be conflated with the notion of
correctness. An argument can be convincing and of high quality, in the sense of scoring high on
many features that characterize the quality of arguments such as being well structured, yet it can
be incorrect.

1.2. OVERVIEW

The ultimate objectives of our research can be summarized in figure 2, which gives a schematic
overview of how data from TMPI can be managed and leveraged to help curate peer explana-
tions. We decompose this into a three-step process, as shown in figure 2. Firstly, in step (b),
blatantly off-task student submissions must be filtered out. Automatic methods for this first-level
of content moderation in TMPI are discussed in Gagnon et al. (2019) but are limited to ensuring
that the irrelevant, potentially malicious student submissions are flagged and excluded from the
database.

Second, the student votes must be aggregated in step (c) of figure 2. This rank aggregation
will yield a globally ordered list of explanations for each question prompt, as in step (d). We
can then use this global ranked list to select the subset which will be shown to future students
(step (e)).

The third step is to mitigate the disproportionate impact of “early voters”: as soon as the
first few students submit convincing explanations, it can become difficult for the explanations
of “newer” students to be shown often enough to earn votes, and climb the ranks. Linguistic
features can help mitigate this impact.

In step (g) of figure 2, feature-rich linguistic models are trained on a regression task, where
the target is the aggregate rank score of student explanations seen thus far (see section 4.2). Such
features can be lexical and statistical, syntatic, or semantic (in particular, involving embeddings
extracted with neural models). Models able to correctly predict the relative convincingness of
student explanations, based on the linguistic features, can help navigate the trade-off between
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Figure 2: Schematic overview of TMPI system components.

exploiting the content that has already been shown to be of high quality, while exploring the
possible effectiveness of newly submitted work. Such models can also help eliminate “cold-
start” associated problems that occur when a new question item is introduced and no vote-data
has yet been collected.

How the final ranking for the selection of explanations is computed (steps (d) and (e)) re-
mains an open question, but we can assume it can be a learned process that combines input
source rankings from (g) and (c). That process can take the form of a supervised learning task
given the ground truth from (f), or the form a reinforcement learning task based on a deferred
measure of learning gains, for example.

The problem of aggregating the results of evaluative peer judgments extends beyond TMPI.
For example, in response to the difficulty students can have providing a holistic score to their
peers’ work, there is a growing number of peer-review platforms built on comparative judg-
ments. Notable examples include ComPAIR (Potter et al., 2017) and JuxtaPeer (Cambre et al.,
2018), both of which present students with a pair of their peers’ submissions, and prompt the
learner to evaluate them with respect to one another. As in TMPI, students apply a comparative
judgment to only the subset of peer content that they are shown during the review step. There
is a need for a principled approach to aggregating this learnersourced data, in a pedagogically
relevant manner, despite the inevitable absence of an absolute pointwise ranking.

1.3. RESEARCH QUESTIONS

Given the above considerations, we turn to our central research questions:
RQ1 Since each student’s “vote” in this context represents a pairwise judgment relative to other

explanations, which rank aggregation methods are best suited for estimating global, point-
wise ranking of the convincingness of student explanations in TMPI?

RQ2 Once we establish a global ranked list of explanations along the dimension of convincing-
ness, can we model this construct and identify the linguistic features of the most effective
student explanations, as judged by their peers?

We suggest that the results of our work can inform the design of technology-mediated peer
instruction platforms. Such platforms will likely have an architecture analogous to figure 2’s,
and thus have similar design objectives, which our work helps to address.

The first objective of this work is to provide feedback to learners: feedback that helps them
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better understand the characteristics common to the most convincing arguments in their disci-
pline, promote learning, and develop critical reasoning skills.

The second objective is providing support to teachers: in such platforms, the amount of data
generated scales very quickly. The data associated with each student-item pair includes many
relevant variables: correct answer choice on first attempt, student explanation, subset of expla-
nations shown, time spent writing and reading explanations, correct answer on second attempt,
and the peer-explanation chosen as most convincing (see figure 4). This amount of information
can be overwhelming for instructors who use such tools regularly as part of formative assess-
ment. Automatically identifying the highest (and lowest) quality student explanations, as judged
by other students, can support instructors in providing timely feedback.

A third related objective is to maintain the integrity of such platforms: automatic filtering
of irrelevant/malicious student explanations is paramount to keep from being shown to future
students (Gagnon et al., 2019), a non-trivial task for content written in natural language.

From here, we provide an overview of related research in learnersourcing of student expla-
nations, automatic short-answer grading, and argument quality ranking (section 2). We then
describe our TMPI dataset, as well as publicly available reference datasets of argument quality,
which we use to evaluate our methodology (section 3).

The specific contributions made by this work include:
• proposing a methodology for evaluating the quality of student explanations, along the

dimension of convincingness, in TMPI environments. An extension of previous work
in Bhatnagar et al. (2020b), we demonstrate this methodology in section 4 and propose
evaluation metrics based on practical issues in TMPI environments;

• a comprehensive evaluation of this proposed methodology using data from a real, live
TMPI environment, with question items from multiple disciplines. We refine work from
argument mining research and propose the use of consistent rank aggregation methods
independent of model architecture;

• a comparison of feature-rich linguistic regression models with neural transformer-based
models for the prediction of real-valued convincingness scores. We identify some of the
linguistic features most often associated with high-quality student explanations in TMPI
and the question types where predicting the convincingness of student explanations is
more challenging. We also demonstrate how to leverage transfer learning from large pre-
trained neural models for this task (section 5).

2. RELATED WORK

2.1. LEARNERSOURCING STUDENT EXPLANATIONS

TMPI is a specific case of learnersourcing, wherein students first generate content, and then help
curate the content base, all as part of their learning process (Singh et al., 2022; Weir et al., 2015).
Notable examples include PeerWise (Denny et al., 2008), Elaastic (Gomis and Silvestre, 2021;
Silvestre et al., 2015) and RiPPLE (Khosravi et al., 2019), where students generate learning
resources, which are subsequently used and evaluated by peers as part of formative assessment
activities.

One of the earliest efforts specifically leveraging peer judgments of peer-written explanations
is from the AXIS system (Williams et al., 2016), wherein students solved a problem, provided
an explanation for their answer, and evaluated explanations written by their peers. Using a
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reinforcement-learning approach known as “multi-armed bandits”, the system could select peer-
written explanations rated as helpful as those of an expert. The novel scheme proposed by
Kolhe et al. (2016) also applies the potential of learnersourcing to the task of short answer
grading: short answers submitted by students are evaluated by “future” peers in the context of
multiple-choice questions, where the answer options are the short answers submitted by their
“past” counterparts. Our research follows from these studies and focuses on how to use vote
data more directly to model argument quality as judged by peers.

2.2. AUTOMATED WRITING EVALUATION

A central objective of our work is to evaluate the quality of student explanations in TMPI.
Under the hierarchy of automated grading methods proposed by Burrows et al. (2015), this
task falls under the umbrella of automatic short-answer grading (ASAG), where students must
recall knowledge and express it in their own way, using natural language, typically between
10-100 words. Their in-depth historical review of ASAG systems describes a shifting focus in
methods, from matching patterns derived from answers written by experts, to machine-learning
approaches, with n-grams and hand-crafted features combined as input to supervised learning
algorithms, such as decision trees and support vector machines.

For example, Mohler et al. (2011) measure alignment between dependency parse tree struc-
tures of student answers with those of an expert answer. These alignment features are paired
with lexical semantic similarity features that are both knowledge-based (e.g. using WordNet)
and corpus-based (e.g. Latent Semantic Analysis), and used as input to support vector machines
which learn to grade short answers automatically. Another similar system proposed by Sultan
et al. (2016) starts with features measuring lexical and contextual alignment between similar
word pairs from student answers and a reference answer, as well as semantic vector similarity
using “off-the-shelf” word embeddings. They then augment their input with “domain-specific”
term-frequency and inverse document-frequency weights, to achieve their best results on several
ASAG datasets using various validation schemes.

While modelling the quality of TMPI explanations has much in common with the ASAG task
and can benefit from the features and methods borrowed from the systems mentioned above,
a fundamental difference lies in how similarity to an expert explanation may not be the only
appropriate reference. The “quality” we are measuring is that which is observed by a group of
peers, which may be quite different from how a teacher might explain a concept.

Previous work on the automated evaluation of long-form persuasive essays (Ghosh et al.,
2016; Klebanov et al., 2016; Nguyen and Litman, 2018) focused on modelling the pointwise
scores given by experts. While our work here does not set out to “grade” student explanations,
its aim is also to provide a pointwise estimate of the convincingness score out of pairwise data.

2.3. RANKING ARGUMENTS FOR QUALITY

Argument mining is a broad research area concerned with automatically identifying argumen-
tative structures in free-text (e.g. claims and premises), classifying their pro/con stance with
respect to the topic, and evaluating argument quality.

Modelling argument “quality” is an active sub-area of research, with direct applications in
education, such as in automated scoring of persuasive essays written by students (Persing and
Ng, 2015; Nguyen and Litman, 2018). In work more closely tied with peer instruction, it has
been found that when students are asked to debate in dyads, there is a relationship between
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knowledge acquisition and the quality of arguments the students produce, as measured by the
presence of formal argumentative structures (e.g. claims, premise, etc.) (Garcia-Mila et al.,
2013).

In a comprehensive survey of research on the assessment of argument quality, a taxonomy
of major quality dimensions for natural language arguments was proposed, with three princi-
pal aspects: logic, rhetoric, and dialect (Wachsmuth et al., 2017). As students vote on their
peers’ explanations in TMPI, they may be evaluating the logical cogency (e.g. is this argument
sound?), or its rhetorical quality (e.g. is this argument phrased well?). However, experiments
have also shown that the perceived quality of an argument can depend on the audience (Mercier
and Sperber, 2011). These foundational questions are out of the scope of this current study and
the subject of future work.

Instead, we focus on modelling the aggregate quality rankings of student explanations based
on their individual, pairwise vote data, and cast this along the dialectic dimension of argument
quality, as convincingness. We suggest that the pairwise “vote” data collected in TMPI is a
proxy for argument quality, along the dimension of convincingness, as judged by peer learners.

The current work moves from the pairwise prediction task to a point-wise regression. This is
a field of study that is gaining attention in the research community, likely due to the fact that it
spans a large array of applications beyond TMPI (Melnikov et al., 2016). The explanation pairs
in TMPI can be aggregated to produce a real-valued convincingness score for each student’s
submission.

However, aggregating these votes should be done with care: when a student chooses an
explanation as convincing, they are doing so only with respect to the subset that were shown,
as well as the one they wrote themselves. It has long been understood that obtaining pairwise
preference data may be less prone to error on the part of the annotator, as it is a more straightfor-
ward task than rating on scales with more gradations. The trade-off, of course, is the quadratic
scaling in the number of pairs one can generate. Pairwise preference is what we have in TMPI,
since each student chooses one explanation as the most convincing only in relation to a subset of
those that are shown. The potential permutations of explanations different students may see is
intractably large for a typical question answered by 100+ students. A classical approach specifi-
cally proposed by Raman and Joachims (2014) for ordinal peer grading data is the Bradley-Terry
(BT) model. The BT model (Bradley and Terry, 1952) for aggregating pairwise preference data
into a ranked list assumes that predicting the winner of a pairwise “match-up” between any
two items, is a function of the difference in the latent “strength” for those two items. These
“strength” parameters can be calculated using maximum likelihood estimation. CrowdBT was
originally proposed for evaluating relative reading level in pair passages (Chen et al., 2013). It is
an extension of the BT method, which incorporates the quality of contributions of each annotator
in a Crowdsourced setting.

In the specific context of evaluating argument convincingness from pairwise preference data,
one of the first approaches proposed is based on constructing an “argument graph”. In this con-
text, a weighted edge is drawn from node a to node b for every pair where argument a is labelled
as more convincing than argument b. After filtering passage pairs that lead to cycles in the graph,
PageRank scores are derived from this directed acyclic graph, and then used as the gold-standard
rank for convincingness (Habernal and Gurevych, 2016). This approach’s dataset is included in
our study and labelled as UKP. A more straightforward heuristic, the WinRate score, has been
recently shown to be a competitive alternative for the same dataset, wherein the rank score of an
argument is simply the (normalized) number of times that argument is considered as more con-
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vincing in a pair, divided by the number of pairs it appears in (Potash et al., 2019). Yet another
alternative, the Elo rating system, has been shown to successfully model student performance in
intelligent tutoring systems (Pelánek, 2016). In this work, we will compare these aggregation
methods on several datasets to evaluate their usefulness for measuring the convincingness of
students’ explanations.

Our review would not be complete without covering Neural approaches that have become the
state-of-the-art in modelling argument convincingness. One such method is based on RankNet,
joining two Bidirectional Long-Short-Term Memory Networks in a Siamese architecture. By
appending a softmax layer to the output, pairwise preferences and overall ranks were jointly
modelled in a dataset made publicly available by the authors (Gleize et al., 2019). We refer to
their dataset as IBM Evi in our study (see section 3.2 for details datasets). Most recently, a
transfer-learning approach has been proposed: using the architecture from a bidirectional en-
coder representations from transformers, BERT (Devlin et al., 2018), which is pre-trained on
masked language modelling and next-sentence prediction, the model is fine-tuned for the task of
predicting argument convincingness. This approach has posted state-of-the-art results for pair-
wise preference data as well on a large dataset predicting an absolute rank score (Gretz et al.,
2020).

The key difference between the above mentioned studies in modelling the quality rankings of
arguments, and that of TMPI explanations, is that the students are not indifferent Crowdlabellers:
each student will have just submitted their own explanation justifying their answer choice, and
we analyze the aggregate of their choices as they indicate when a peer may have explained
something better than themselves.

We leverage all of this related work in three ways:
• we use publicly available datasets of annotated pairwise preferences from the AM research

community as a reference to evaluate our proposed methodology: UKP, IBM ArgQ, and
IBM Evi. Section 3.2 provides further details on these datasets.

• we aggregate the pairwise preference data using methods that have been proposed in the
context of learning systems: WinRate, BT, CrowdBT, and Elo. The mathematical formu-
lation of each is described in more detail in section 4.1;

• we train a variety of regression models that are common to text mining in learning systems:
Linear regression, DecisionTrees, RandomForests, and different variants of
BERT (e.g. BERT_Q and BERT_A) for regression described in section 4.3. Section 4.5
details how we evaluate the performance of these models.

3. DATA

3.1. DALITE

The primary data source for this study is myDALITE.org, a hosted instance of an open-source
project, dalite1. myDALITE.org is maintained by a Canadian researcher-practitioner partner-
ship, SALTISE, focused on supporting teachers in the development of active learning pedagogy.
The platform is primarily used for formative assessments, in “flipped-classroom” settings, where
students are assigned pre-instruction readings to be followed by relatively simple TMPI concep-
tual questions.

1https://github.com/SALTISES4/dalite-ng
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Figure 3: The possible transition types that can occur in TMPI for student answers between their
first attempt (when they write their own explanation), and the review step (when they are presented
with peer explanations). The relative proportion of each transition type is shown in this Sankey
diagram for data from myDALITE.org.

One particular characteristic of TMPI data, which sets it apart from other comparative peer-
review platforms, is best described when we consider the three options a student can take, de-
scribed above in section 1: change to a different answer, change of explanation for same answer,
or keep same answer and decide that their own explanation is best.

Moreover, when one of the answer choices is labelled as “correct” and the others are “in-
correct”, as is often the case in question items from the STEM disciplines, we get one of four
transitions: Right → Right, Right → Wrong, Wrong → Right, or Wrong → Wrong. In addition,
transitions in which the answer choice remains the same (Right → Right and Wrong → Wrong)
have two options as students select either their own or another student’s explanation as justifica-
tion for their answer choice, giving a total of six transition types.

The transition possibilities and an example of the relative proportions present in the TMPI
platform we study (Bhatnagar et al., 2020a), are shown in the Sankey diagram of figure 3.

Across all disciplines, we see two important trends: first, if a student chooses the correct
answer on their first attempt and decides to keep that same correct choice on the review step,
there is almost 50% chance that they chose a peer’s explanation as more convincing than their
own. Second, if a student chooses an incorrect answer choice on their first attempt, there is a
one in three chance that a peer’s explanation will convince them to change to the correct answer.
These trends highlight the process of reflection students undertake in TMPI and the importance
of leveraging student “vote” data to identify the best, most thought provoking content.

The data for this study comes from introductory level university science courses (Physics
and Chemistry), and generally spans different teachers at several colleges and universities in
Canada. The Ethics dataset comes from the 2013 run of a popular MOOC (Justice, offered by
HarvardX). The TMPI prompts are slightly different from the Physics and Chemistry prompts,
in that there is no “correct” answer choice, and that the goal is to have students choose a side of
an argument, and justify their choice. Table 1 gives an overview of the datasets included in this
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Table 1: Summary statistics for reference datasets from argument mining research community and
DALITE. In the argument reference datasets, topics are debate prompts shown to crowdsourcing
workers (e.g. “social media does more good than harm”), while a topic in DALITE is a ques-
tion item. The explanations given by students are analogous to the “arguments”, which are then
assembled into pairs based on what was shown to students. wc is the average number of tokens in
each argument/explanation in each topic. Standard deviations of averaged quantities are shown in
parentheses.

topics args pairs args/topic pairs/topic pairs/arg wc
source dataset

Arg Mining
IBM ArgQ 22 3474 9125 158 (144) 415 ( 333) 5 (1) 24 ( 1)
IBM Evi 41 1513 5274 37 ( 14) 129 ( 69) 7 (3) 30 ( 3)
UKP 32 1052 11650 33 ( 3) 364 ( 71) 22 (3) 49 (14)

DALITE
Chemistry 36 4778 38742 133 ( 29) 1076 ( 313) 7 (1) 29 ( 6)
Ethics 28 20195 159379 721 (492) 5692 (4962) 7 (1) 48 ( 8)
Physics 76 10840 96337 143 ( 42) 1268 ( 517) 7 (2) 27 ( 5)

study.
To stay consistent with terminology from argument mining research, we refer to a question-

item as a “topic”. The transformation of TMPI student explanations (“args”) into “pairs” is
described in section 4.

There are some critical filtering steps taken on raw data before we begin our analyses:
• Approximately 1 in 10 students decide that they prefer not to have their explanations

shared with other students. These student answers are removed from the dataset.
• We exclude observations where students choose “I stick to my own rationale”. There is

a strong bias toward this choice. We consider it may reflect a disengagement and the un-
willingness to put effort into the task of evaluating all explanations. This filtering reduces
our data by approximately 50%.

• Many question items have been completed by several hundreds of students. As such,
almost half of all student explanations have been shown to another peer; thus we retain
only those student answers that were presented to at least 5 other students (a threshold we
chose based on a qualitative look at the distribution of how often each student explanation
has been presented to a peer).

• As a platform for formative assessment, not all instructors provide credit for the explana-
tions students write, and there are invariably some students who do not put much effort
into writing good explanations. We include only those student answers that have at least
10 words.

• After the previous two steps, we only include data from those questions that have at least
100 remaining student answers (a threshold chosen based on minimum data required for
convergence of BT model in python implementation we use choix).

• We remove any duplicate pairs before the rank aggregation step that have the same “win-
ning” label, as explanations that appear earlier on in the lifetime of a new question are
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bound to be shown more often to future students.

3.2. ARGUMENT MINING DATASETS

Much of our methodology for the measure of convincingness is inspired by work on modelling
argument quality, as described in section 2.3. To contextualize the performance of these methods
in our educational setting, we apply the same methods to publicly available datasets from the
AM research community as well and present the results. These datasets are described in table 1,
alongside the TMPI data at the heart of our study. Each of these datasets was released not just
with the labelled argument pairs, but holistic rank scores for each argument, which were each
derived in different ways. We will be comparing our proposed measures of convincingness to
these rank scores in section 4.5.

The UKP dataset (Habernal and Gurevych, 2016) is one of the first sets of labelled argument
pairs to be released publicly. Crowdworkers were presented with pairs of arguments on the same
stance of a debate prompt, and were asked to choose which was more convincing. In addition,
each argument is assigned a real-valued quality score derived from the modified PageRank score
described earlier.

The authors of the IBM ArgQ dataset (Toledo et al., 2019) offer a similarly labelled dataset,
but much more tightly curated, with strict controls on argument word count and relative length
difference in each pair. This curation was partly in response to the observation that, across
datasets, crowd labels could often be predicted simply by choosing the longer text from the pair.
The authors also release in their dataset a real-valued convincingness score for each argument,
which is the average of multiple binary relevance judgments provided by Crowdlabellers.

The labelled argument pairs in the IBM Evi dataset (Gleize et al., 2019) are actually gener-
ated by scraping Wikipedia, and the crowd workers were asked to choose the argument from the
pair that provided the more compelling evidence in support of the given debate stance.

We see in table 1 how the different disciplines in our TMPI dataset are comparable to the
reference AM datasets (just proportionately larger).

4. PROPOSED METHODOLOGY TO MODEL CONVINCINGNESS

We borrow our methodological approach from research in argument mining, specifically related
to modelling quality along the dimension of convincingness. A common approach is to curate
pairs of arguments made in defence of the same stance on the same topic. These pairs are
then presented to Crowdworkers, whose task is to label which of the two is more convincing.
The pairwise comparisons can then be combined using rank-aggregation methods to produce
an overall ordered list of arguments. We extend this work to the domain of TMPI, and define
prediction tasks that not only aim to validate this methodology, but help answer our specific
research questions.2

4.1. RANK AGGREGATION

The raw data emerging from a TMPI platform is tabular in the form of student-item observations.
We refer to this raw format as Multiple-choice Explanation (MCE). As shown in figure 4(a), the
data fields in our MCE format include: the student’s first answer choice, their accompanying

2All code for this project available on Github (https://github.com/sameerbhatnagar/
convincingness).
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Figure 4: Example of student-item observations from a TMPI environment, and the pairwise trans-
formation of data from Multiple-choice Explanation format, to explanation pairs, to be followed by
rank aggregation to produce a sorted list. This figure follows from figure 1. (a) Student s30 chose
the correct D as the answer on their first attempt and provided the explanation e30 in the dataset for
this question. The student is shown a subset of explanations from previous students for D, as well
as for A (the most popular incorrect answer). The student decides to keep the same answer choice
D, and indicates that the explanation e25 is the most convincing (Right→Right transition). (b) This
observation is transformed into 8 explanation pairs and indicates that e25 is the more convincing
of the pair. (c) This pairwise preference data is aggregated into a global, ranked list of student ex-
planations for this question, where each explanation is assigned a real-valued rank score (using the
methods described in section 4.1).

explanation, the peer explanations shown on the review step (as in figure 1b), the student’s
second answer choice, and finally, the peer explanation they chose as most convincing (None if
they choose to “stick to their own”). Timestamps for these events are associated as well.

The process starts by filtering the data in MCE format (described in section 3.1) to obtain the
figure 4(a) table. This data is processed into explanation pairs 4(b), which is later transformed
into pointwise convincingness scores 4(c). When a student chooses an explanation (other than
theirs), pairs are created for all explanations that were shown as alternatives, including the stu-
dent’s original explanation. In figure 4’s example, the choice of e25 out of the eight peer expla-
nations thus results in seven pairs, plus one that includes the student’s own.

We apply the following rank aggregation techniques order to derive a real-valued convinc-
ingness rank score for each student explanation, as depicted in figure 4(c).

1. WinRate: as described in Potash et al. (2019), this measure of argument quality is de-
fined as the number of times it is chosen as more convincing in a pairwise comparison,
normalized by the number of pairs in which it appears. In the context of TMPI, when we
calculate the WinRate of a student explanation after the data transformation depicted in
figure 4a and figure 4b, we take a step toward including the effect of comparative judg-
ment, as pairs are specifically constructed for each observation from the explanation that
was chosen, and the ones that were shown.
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2. BT score, which is the argument “quality” parameter estimated for each explanation, ac-
cording to the Bradley-Terry model, where the probability of argument a being chosen
over argument b is given by:

P (a > b) =
1

1 + eβb−βa

where βi is the latent strength parameter of argument i.

We decompose each student-item observation into argument pairs, where the chosen ex-
planation is paired with each of the other shown ones, and the pair is labelled with −/+1,
depending on whether the chosen explanation is first/second in the pair. Assuming there
are K students, and Sk pairs labelled by the kth student, the latent strength parameters are
estimated by maximizing the log-likelihood given by:

ℓ(β) =
∑

K

∑

(i,j)ϵSk

log
1

1 + eβi−βj

subject to
∑

i βi = 0.3

3. The Elo rating system (Elo, 1978), which was originally proposed for ranking chess play-
ers, has been successfully used in adaptive learning environments (see Pelánek 2016 for
a review). This rating method can be seen as a heuristic re-parametrization of the BT
method above, where the probability of argument a being chosen over argument b is given
by

P (a > b) = Pab =
1

1 + 10(βb−βa)/δ

where δ is a scaling constant. All arguments are initialized with an initial strength of β0,
and the rating of any argument is only updated after it appears in a pairwise comparison
with another. The rating update rule transfers latent “strength” rating points from the loser,
to the winner, in proportion to the difference in strength:

β′
a := βa +K(Pab − βa)

where K is a factor that can be adjusted to make the score more or less sensitive to recent
data. It is set to 24 in the current experiments.

While the BT model can be thought of as consensus approach (all rank scores are re-
calculated after each pair is seen), Elo ratings are dynamic and implicitly give more weight
to recent data (Aldous, 2017).

4. CrowdBT (Chen et al., 2013) is an extension of the BT model, tailored to settings where
different annotators may have assigned opposite labels to the same pairs and the reliability
of each annotator may vary significantly. A reliability parameter ηk is estimated for each
student, where the probability that student k chooses argument a as more convincing than
b is given by

ηk ≡ P (a >k b|a > b)

3Implementation using python library choix.
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where ηk ≈ 1 if the student k agrees with most other students, and ηk ≈ 0 if the student
is in opposition to their peers. This changes the model of argument a being chosen over b
by student k to

P (a >k b) = ηk
eβa

eβa + eβb
+ (1− ηk)

eβb

eβa + eβb

and the log-likelihood maximized for estimation to

ℓ(η, β) =
∑

K

∑

(i,j)ϵSK

log

[
ηk

eβa

eβa + eβb
+ (1− ηk)

eβb

eβa + eβb

]

This method is currently used in the comparative evaluation platform JuxtaPeer (Cambre
et al., 2018).4

Section 4.5 describes how we evaluate the fit of these rank aggregation methods to our data.

4.2. LINGUISTIC FEATURES

Once the pairwise votes are converted to global ranking scores of convincingness, we next build
on these results to predict these rankings for each explanation, using different representations
of the text in those explanations. We cast RQ2, the goal of identifying the linguistic features
behind convincingness, as a regression task, predicting the argument convincingness scores via
a feature-rich document vector.

The list of features included here is derived from related work in argument mining (Habernal
and Gurevych, 2016; Persing and Ng, 2016), on student essays and automatic short answer
scoring (Mohler and Mihalcea, 2009).

• Lexical & statistical features: These include uni-grams, type-token ratio and number
of keywords (defined by open-source discipline-specific textbook). These features may
capture lexical diversity and discipline specific keywords that are predictive of convinc-
ingness. Moreover, a statistical feature we propose to include is the number of equations
(captured by a regular expression) used by a student in their explanation, as they appear
very often in the TMPI platform data. In STEM disciplines, many students choose to
reference their knowledge around a body of formulae to justify their reasoning.

• Syntactic features: We surmise that such features are question and discipline agnostic
and that there are patterns used by students that are simpler to understand for their peers.
These include part-of-speech (POS) tags (e.g. noun, preposition, verb, etc.), and POS
bi-grams and tri-grams as well. We replace each word in the student explanation with its
universal POS tag and derive features from the normalized counts of each of these tags for
each student explanation5. We also include counts of certain more detailed Modal verbs
(e.g. must, should, can, might), and the average height of syntactic parse trees for each
sentence.

• Semantic features: we build from work in automatic short answer grading, which often
employs vector space models: student answers are represented as embeddings, and their
quality is evaluated based on vector similarity/distance with the embeddings of expert,

4Implementation from Gavel platform.
5POS tagging done using pre-trained models provided with the python package, spacy, which uses the tag set

defined by the Universal Dependencies project
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correct text. We make our choice of different embedding spaces based on increasing
levels of specificity:

– Generally available pre-trained GloVe vectors (Pennington et al., 2014) have been
used for short-answer grading (Magooda et al., 2016; Riordan et al., 2017). Using the
300-dimensional vectors, we calculate similarity metrics to i) all other explanations
(following results from Gagnon et al. (2019)), ii) the question item text, and, when
available, iii) a teacher provided “expert” explanation (feature is NA otherwise).

– We derive our own discipline-specific embedding vectors, trained on correspond-
ing open-source textbooks6. We experiment with a word-based vector space model,
Latent Semantic Indexing (LSI) (Deerwester et al., 1990), due to its prevalence in
text analytics in educational data mining literature, as well as Doc2Vec (Le and
Mikolov, 2014), which directly models the compositionality of all the words in a
sentence7. We take the text of the question prompt and, when available, an “expert
explanation” provided by teachers for each question, and determine the 10 most rel-
evant sub-sections of the textbook. We then calculate the minimum, maximum, and
mean cosine similarity for each student explanation over these 10 discipline-specific
“reference texts”.

These semantic features are meant to leverage the discipline-specific linguistic knowledge
contained in reference textbooks.

• Readability features include empirically derived formulas which have been shown to
predict how difficult it is to read a text, and which have been used extensively in automatic
essay scoring research (Graesser et al., 2004). The most common indices are the ones we
adopt, including Flesch-Kincaid reading ease and grade level, Coleman-Liau automated
readability index, and a normalized number of spelling errors8.

Features typical to NLP analyses in the context of writing analytics not included here are
sentence-to-sentence cohesion, sentiment, and psycho-linguistic features, as we deem them not
pertinent for shorter responses that deal with STEM disciplines.

In our effort to address RQ2, these high dimensional feature-rich representations are passed
through a uni-variate feature selection step, wherein all features are ordered in decreasing order
of variance, and the top 768 features are retained, to be used as input for the classical regression
models described earlier. We chose this vector representation size to match the size of the
contextual embeddings in the neural BERT models, described in section 4.3, and compare their
performance in a fair manner. These neural models do not provide the same transparency for
interpretation upon inspection, but leverage pre-training on massive corpora to bring a broad
linguistic understanding to our regression task.

4.3. REGRESSION MODELS

The machine learning convincingness models we frame as a regression task are inspired from
writing analytics literature, as well as the design objective of maximizing interpretability: the
ability to inspect models to explain predictions of which student answers are most convincing is
paramount in providing pedagogical support to students and teachers. The models we include

6OpenStax
7model implementations from Gensim
8Python package PySpellChecker, which uses Levenshtein distance to determine if any given word is too far

from known vocabulary
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in this study are Linear regression, Decision Tree regression, and Random Forest
regressors.

As demonstrated in related work (Habernal and Gurevych, 2016), argument Length is a
challenging baseline to beat when modelling convincingness in pairwise preference data. While
Length is not in itself a linguistic nor a semantic feature, it is likely that the greater the amount
of words, the greater is the opportunity to construct a convincing argument. It may also well be
a confounding factor that correlates with engagement and, in turn, with convincingness. What-
ever the reason is for its effectiveness, we set explanation Length (the number of white-space
separated tokens) as our regression baseline.

All features described in section 4.2 are used in the regression models described above.

4.4. BERT TRANSFORMER MODEL

Transformer models are at the basis of the most recent approaches for the prediction of argu-
ment convincingness scores (Gretz et al., 2020; Fromm et al., 2023; Thorburn and Kruger, 2022;
Falk and Lapesa, 2023, for example). We also fine-tune a pre-trained bi-directional neural trans-
former model, BERT, with argument mining reference data sets, as well as the TMPI data from
our three disciplines. In line with the best-performing model in Gretz et al. (2020), we go be-
yond this and train a different model where the input is augmented with the question prompt.
The text of the question, along with any text from an accompanying image caption, is combined
with the student explanation, separated by the model-specific [SEP] token, and input as a pair
of sequences during fine-tuning and inference (henceforth referred to as BERT_Q)).

Finally, in the Physics and Chemistry datasets from our TMPI platform, many of the ques-
tions are accompanied by an expert explanation, written by the teacher-author of the question
(the purpose of which is to provide some feedback to the student to read after they have sub-
mitted their second answer choice in the review step). We fine-tune a variation of BERT_Q
and combine expert-written text, separated by the SEP token, with the student explanation, and
serve as input to the transformer (instead of the topic prompt). We refer to this approach as
BERT_A. The theoretical grounding for the use of these models in the study of convincingness
stems from the large gain of performance of these models in several natural language processing
tasks. BERT-like models and pre-trained language models have revolutionized natural language
processing tasks with the ability to transfer knowledge from pre-training phases and the task of
convincingness makes no exception in this regard.

In each of BERT, BERT_Q and BERT_A, the contextual embedding of the model-specific
[CLS] token in the last layer of the fine-tuned transformer is fed as input into a fully dense
regression layer that outputs a predicted convincingness score.

4.5. EVALUATION OF THE PROPOSED METHODOLOGY

In order to address research question RQ1 and evaluate the choice of rank aggregation methods,
we perform two experiments. First, we need to ascertain that we can derive a valid measure of
convincingness given a set of pairwise comparisons of explanations. This is accomplished by
comparing the calculated score with an independent external score obtained from human judge-
ments (external validity experiment), and by measuring how the calculated score can reliably
predict back the pairwise order in a cross-validation scheme (internal validity experiment).

Finally, we address RQ2 by comparing a range of models that use the convincingness score
as the ground truth for training. Each model varies in how it uses linguistic features to predict

17
42 Journal of Educational Data Mining, Volume 15, No 3, 2023



IBM ArgQ IBM Evi UKP
Dataset

0.0

0.2

0.4

0.6

0.8

C
or

re
la

tio
n

to
R

ef
er

en
ce

Sc
or

e

Rank Score Method
WinRate
Bradley Terry
Elo

Figure 5: Distribution of Pearson correlation coefficients measured between “reference” rank scores
(from Crowdlabellers) and the rank aggregation methods (WinRate, BT, Elo) used in our proposed
methodology, across the different topics of the reference argument mining datasets. While the lower
IBM Evi suggests the labelling is less reliable than the other two, all three score methods are rela-
tively similar within a data set.

convincingness.

4.5.1. External validity of the convincingness score

We begin by measuring the correlation between the scores output from the rank aggregation
methods described in section 4.1, and the “reference” scores provided with the AM datasets
obtained from Crowdlabellers (outlined in section 3.2). For each topic in the different AM
datasets, we calculate the Pearson correlation between the “reference” scores of each argument,
and WinRate, BT, Elo scores aggregated from the pairwise preference data. (We cannot include
CrowdBT here, as the AM datasets do not include information on which crowd workers labelled
which argument pairs, which is a requirement for estimating the annotator-specific ηk). The
distribution of Pearson correlation coefficients across the different topics for each dataset is
shown in the box plots in figure 5.

While the variance across topics of the correlation coefficients between the “out-of-the-box”
reference scores and our rank-aggregation scores can be quite large, the median lies between
0.5 and 0.7 for the UKP and IBM ArgQ datasets. The relative alignment between our choice
of rank aggregation techniques (WinRate, Bradley-Terry, and Elo), and the modified PageRank
score provided with UKP, indicates that all capture approximately the same information about
overall convincingness. Also of note is the relatively high correlation between the IBM ArgQ
reference rank score and the aggregation methods we include in our study. The IBM ArgQ
reference convincingness score was actively collected by the authors of the dataset: first, they
presented crowd workers with individual arguments, and prompted them to give a binary score
of 1/0, based on whether “they found the passage suitable for use in a debate”. The real-valued
score for each argument is simply the average of the score over all labellers. The correlation
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Figure 6: Internal evaluation of rank scores: for each question, student answers are divided into
two batches, yielding two batches of corresponding pairs and two lists of aggregated rankings. The
yellow arrows in the diagram depict how we evaluate the derived rankings’s ability to predict the
other batch’s pairwise preferences.

between WinRate, Bradley-Terry, and Elo, and this actively collected reference score, would
indicate that these methods capture a ranking that is more than just an artifact of a computational
model.

4.5.2. Internal validity of the convincingness score

In order to evaluate a measure of reliability of aggregated convincingness scores, we employ
a validation scheme similar to the one proposed by Jones and Wheadon (2015). Students are
randomly split into two batches, and their answers are used to derive two independent sets of
convincingness scores, as shown in figure 6.

We apply this reliability estimate on the derived rank scores from the pairwise preference
data from dalite (we cannot perform this evaluation on the reference AM datasets, as we do
not know who provided each pairwise preference label). Finally, we dis-aggregate the results
by possible TMPI transition types in figure 7, in order to inspect if there are any systematic
differences between the cases when students are casting a vote for an explanation for a different
answer choice than their own, or whether their initial guess was correct, or not.

Note that, as shown in the relative proportions of the Sankey diagram (figure 3, the vast ma-
jority of the data is represented in the Right→Right transition (the rarest transition is Right→Wrong).
When we consider using the rankings derived from one batch of students and use them to predict
the pairwise preferences of the other batch, the classification accuracies are roughly equivalent
across the different rank score methods (figure 7). Ideally, we could compare these results with
an inter-judge agreement which would provide an estimate of the maximum results we could
expect. This is left for future work.

At the other end of the performance spectrum, we use the baseline “Length” method, where
the pairwise preference is determined by simply choosing the explanation with the most words.
All methods outperform this baseline.
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Figure 7: Average accuracy of predicting pairwise comparison from rank aggregation scores. Rank
scores are calculated with the vote data of half the students and tested on the pairs generated by the
other half. Data is averaged across all questions and by transition types.

4.5.3. Predicting convincingness

We have so far addressed RQ1 and determined that WinRate, Elo and BT are valid and reliable
rank-aggregation scores that outperform the simple, yet relatively accurate, length indicator. We
now turn to the second step of our proposed methodology which addresses research question
RQ2 (identify the most salient linguistic features of convincingness), and builds feature-rich
supervised regression models to predict the individual argument scores.

We choose our feature sets based on relevant related research, as described in section 4.2,
and use Pearson correlation9 coefficients to measure performance, as is standard practice in the
literature on point-wise prediction of argument quality along the dimension of convincingness.

In order to estimate the generalizability of these models to new question items, we employ a
“cross-topic” cross-validation scheme, wherein we hold out all of the answers on one question
item as the test set, training models on all of the answers for all other question items in the
same discipline. This approach is meant to capture discipline-specific linguistic patterns, while
addressing the “cold-start” problem for new items before vote data can be collected.

Once feature-rich models are trained and tested under this validation scheme, we inspect
these using permutation importance (Fisher et al., 2019), a model agnostic feature importance
version originally introduced by Breiman (2001) random forests. Each feature is randomly
permuted for a set number of repetitions (we choose the default nrepeats = 30). This permutation
has the effect of eliminating its potential predictive contribution and is akin to an ablation study.
The importance of that feature is measured by the average decrease in performance of the model
on the non-perturbed dataset10.

We devote the next section to the results of this experiment as they are more central to the

9Spearman correlation was also tested but it is not reported as it yields more or less equivalent results.
10Implementation from SciKit-Learn
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Table 2: Average Pearson correlation (under cross-topic validation scheme) between convincingness
score predicted by different models, and the different “ground truth” reference scores accompanying
argument mining datasets.

Dataset Method Length Linear DTree RF BERT BERT Q Average
IBM ArgQ BT 0.16 0.18 0.21 0.31 0.55 0.55 0.33

WinRate 0.13 0.23 0.21 0.28 0.52 0.51 0.31
reference 0.14 0.14 0.17 0.25 0.37 0.39 0.33
average 0.15 0.18 0.20 0.28 0.48 0.48 0.32

IBM Evi BT 0.11 0.20 0.30 0.50 0.52 0.33
WinRate 0.13 0.17 0.21 0.30 0.46 0.48 0.29
reference 0.15 0.28 0.25 0.33 0.50 0.56 0.34
average 0.13 0.22 0.21* 0.31 0.49 0.52 0.32

UKP BT 0.54 0.20 0.42 0.58 0.60 0.64 0.50
WinRate 0.58 0.18 0.46 0.60 0.71 0.72 0.54
reference 0.33 0.23 0.34 0.23 0.26 0.28
average 0.48 0.20 0.42* 0.51 0.51 0.54 0.44

* Average after imputation for missing values

main contribution of this paper.

5. PREDICTING CONVINCINGNESS, RESULTS AND DISCUSSION

Given an absolute score of convincingness from pairwise rankings, the next and main contribu-
tion of this study is to propose models of learnersourced explanation quality labels inside TMPI
learning environments. A total of seven models are compared and described in section 4.3. The
first four use the linguistic features described in section 4.2, whereas the BERT models use raw
text:

Length : number of words in explanation.
Linear : a linear regression.
DTree : decision tree.
RF : random forest.
BERT : BERT transformer with explanation text.
BERT Q : BERT transformer with explanation and question texts.
BERT A : BERT transformer with explanation, question, and expert

answers texts.

5.1. RESULTS — ARGUMENT MINING DATASETS

We begin by applying this methodology to publicly available AM datasets in table 2. We train
our different models to predict the real-valued convincingness score provided by these datasets.

It should be noted that the real-valued reference scores that are provided with the argument
mining datasets, and are the target variables for the model training in table 2, are each calculated
in different ways. For example, in the UKP dataset, the ground truth convincingness score
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provided for each argument by the authors, is derived by constructing an argument graph, and
calculating a variant of the PageRank score, after removing cycles induced by the pairwise
data (e.g. cases where A is more convincing than B, B is more convincing than C, but C is
more convincing than A). For IBM ArgQ, the real-valued score is the mean of multiple binary
“relevance judgments” explicitly collected by the authors from a set of Crowd-labellers. Finally,
the real-valued score accompanying arguments in IBM Evi is the output of a regression layer
that is appended to a two-armed Siamese Bi-LSTM model, wherein only one arm is provided
with the GloVe embedding of the input argument.

To allow a consistent comparison across datasets and across methods in table 2, we train our
models to predict a target variable that can be calculated from any pairwise preference dataset,
namely WinRate or BT. To the best of our knowledge, we are the first to propose, evaluate, and
subsequently model a common set of rank aggregation methods for the calculation of point-wise
argument quality scores from pairwise preference data.

While our best-performing feature-rich model (Random Forests) beats the Length
baseline, the fine-tuned neural transformer models BERT and BERT_Q systematically outper-
form all other methods. This pattern holds across the three reference datasets, when all trained
for the same task, under the same cross-topic validation scheme, in line with similar results from
the literature described in section 2. Given the superiority of pre-trained language models and
their impact on raising performance in several natural language processing tasks, these results
are not surprising, but come at the expense of the results’ explainability for such black-box
models, a research avenue that is left for future work.

Training our regressors to learn the WinRate and Bradley-Terry scores yields better corre-
lations than when we try to predict the reference scores accompanying the datasets (table 2).
Beyond the added benefit of WinRate and Bradley-Terry being universal measures across data
sets, the higher correlation values for WinRate and BT indicate that they are better aligned with
the linguistic features used to measure convincingness.

5.2. RESULTS - TMPI DISCIPLINE-SPECIFIC DATASETS

We apply this same methodology to our three TMPI discipline-specific datasets in table 3, and
observe that BERT_Q is also the best performing model.

The success of the neural approach over feature-rich regressors raises a barrier to our ob-
jective of identifying the linguistic properties of what students find convincing in their peers’
explanations. However, it should be noted that Length baseline is also very effective for
Physics and Chemistry, and that BERT may be getting much of its information from the num-
ber of empty tokens required when padding the different inputs to equal length. The feature-rich
Random Forest model achieves almost the same performance without access to the infor-
mative feature of explanation length.

Nonetheless, for the Physics and Chemistry disciplines, no models significantly outperform
the Length baseline, which seems to indicate that more work is needed in determining the
features of those longer explanations that they find most convincing. This is true also when
our rank aggregated score jointly estimates the student’s agreement with their peers, as in the
CrowdBT score (results in table 3).

The gain in performance over the Length baseline is most pronounced for Ethics. This may
be best explained by the inherent similarities between the Ethics TMPI data, and the argument
mining datasets: the topic prompts are subjective and personal, and the available answer options
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Table 3: Average Pearson correlation (under cross-topic validation scheme) between convincingness
score predicted by different models, and the convincingness score as given by the WinRate across
pairwise preference data, for different disciplinary datasets from TMPI environment.

Dataset Method Length Linear DTree RF BERT BERT Q BERT A Average
Chemistry

BT 0.36 0.21 0.26 0.35 0.37 0.37 0.36 0.33
CrowdBT 0.36 0.20 0.27 0.35 0.36 0.37 0.35 0.32
WinRate 0.32 0.14 0.25 0.31 0.34 0.34 0.33 0.29
average 0.31 0.16 0.22 0.28 0.32 0.32 0.30 0.28

Physics
BT 0.37 0.27 0.31 0.35 0.40 0.40 0.38 0.35
CrowdBT 0.38 0.25 0.30 0.37 0.41 0.41 0.39 0.36
WinRate 0.36 0.19 0.27 0.35 0.38 0.39 0.37 0.35
average 0.33 0.20 0.26 0.32 0.36 0.36 0.34 0.31

Ethics
BT 0.17 0.21 0.21 0.25 0.32 0.31 0.24
CrowdBT 0.17 0.19 0.24 0.28 0.32 0.32 0.25
WinRate 0.16 0.17 0.22 0.26 0.29 0.29 0.23
average 0.16 0.16 0.20 0.24 0.28 0.28 0.22

students must choose from are also limited: typically, the options are two opposing stances of
an argument, as can be seen in the sample data in Appendix A’s tables 4 and 5.

Finally, augmenting the input of BERT to incorporate the question prompt, in BERT_Q,
yields virtually no improvement. This pattern also holds true for the argument mining datasets.
This may indicate that, unlike the potential correctness of an explanation, its convincingness
may be independent of the question prompt.

The slight decrease in performance of BERT_A might reflect that explanations written by
content experts are different from student explanations, and do not help model convincingness
as judged by peers. But considering the small difference, this remains speculative.

It should be noted that under our cross-topic validation scheme, different question-level folds
witness significantly better agreement between model predictions and rank aggregated convinc-
ingness scores.

In both Physics and Chemistry, the question-level folds where our models performed worst
were with question prompts that ask students to choose one true statement from among a selec-
tion (e.g. Which of the following statements about the force of gravity is false? a) ..., b) ...,). We
posit that the language students use to formulate their explanations in such a multiple-choice
question item, many describing their internal process of elimination to find the correct answer
choice, include patterns our models are not able to learn in the training data.

Our contributions are centred on our research questions stated at the beginning of this study.
In terms of RQ1, we present a methodology grounded in argument mining research and em-
pirically demonstrate its validity in the context of TMPI. We present the result of different ap-
proaches to rank aggregation from pairwise preference data so as to calculate a convincingness
score for each student explanation. The pairwise transformation of TMPI data, into a format
similar to research from argument research (as described in figure 4) allows for a comparison to
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related work. The results, when we train our models to predict the raw WinRate, are significantly
worse (table 3) than any of the other rank aggregation methods. This confirms the findings of
Potash et al. (2019), who first proposed the pairwise WinRate heuristic as a more reliable re-
gression target. (While the Elo rank aggregation score is much faster than BT, our modelling
results were by far worse than the alternatives described in the tables here.) With such simple
methods as WinRate and the Bradley-Terry scores to measure and rank student explanations in
a TMPI environment, instructor reports can focus attention on where students may have gaps in
their knowledge, based on their reading/evaluating of their peers’ explanations.

5.3. MODEL INSPECTION FOR IMPORTANT LINGUISTIC FEATURES

In an effort to provide insight into the feature-rich regression models for predicting argument
convincingness (RQ2), we look at our best-performing folds of our regression task, and note the
features with the highest permutation importance (from highest to lowest):

• Type Token Ratio
• Dale-Chall Readability score
• Number Equations
• Vector Similarity to others (GloVe)
• Vector Similiarity to related textbook portions using LSI
• Number of spelling errors
• Flesch Kincaid reading ease score
• Mathematical expressions used as a noun subject for a verb e.g. “F = ma, tells us that

...”
Another approach we explore to determine which linguistic features are most associated with

explanations that are deemed convincing by students, is taking our best performing neural trans-
former model, BERT_Q, and finding the features most correlated with its predicted rankings.
We find that the same features which are listed above are also those most highly correlated with
the predicted convincingness score.

It is these types of features that can provide pedagogical insight to instructors when parsing
through data generated inside TMPI based activities. These features are predictive of what the
students find most convincing in their peers’ explanations, and hence offer a much needed lens
into how students operate when at the upper levels of Bloom’s taxonomy (Bloom et al., 1956),
evaluating each others’ words in a comparative setting.

6. LIMITATIONS AND FUTURE WORK

In the current study, we focused on a measure of the propensity of students to choose an expla-
nation, which we called convincingness, as a proxy for explanation quality. Ultimately, we hope
convincingness can be used as a feature that could guide teachers and TMPI designers towards
determining an explanation set shown to students that can maximise learning gains (section 1.1).
But convincingness is only a feature that may help lead to this ultimate goal.

In fact, convincingness in TMPI should not be confounded with convincingness in the ar-
gument mining field. In a traditional crowdsourcing setting, the people who choose the most
convincing explanations are not also the ones who wrote them. In TMPI, the student will not
only be comparing their peers’ explanations with each other, but also against the explanation
they just submitted. The effect of this can be seen in the 50% chance that students decide to
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“stick to their own” explanation in myDALITE.org. On the one hand, students who are disen-
gaged and do not wish to invest in the effort of analyzing each explanation’s quality will stick
to their own choice. On the other hand, the “vote” a student casts for a peer’s explanation might
not be due to its relative convincingness, but instead a reflection of how confident that student is
in their own answer choice, and even their own understanding of the underlying concept. While
these factors may not bias the pairwise choice of explanations, it warrants the exclusion of “stick
to their own” choice for TMPI data. It also sheds evidence as to why the measure convincingness
in argument mining is different from the TMPI context.

Other directions for future work include improving the performance of feature-rich models
by incorporating “argument structure” features, which require the identification of claims and
premises as a feature engineering step. The combination of such argument-features with a neural
model has been shown to be effective in the grading of persuasive essays (Nguyen and Litman,
2018). We also note that valuable insights could be gained through ablation studies and more
in depth analysis of the results to better understand what features are most important and why
one model works better than another. For instance, we hypothesized that BERT models might
be able to boost their performance by simply including the length feature, a strong predictor in
some domains. In fact, a number of conjectures were made in the analysis of the results that
warrant further investigations.

Another important step to take is to confirm whether simply showing students convincing
explanations can improve learning or drive engagement. A previous study has shown that how
instructors integrate TMPI with their in-class instruction has an impact on learning gains across
the semester (Bhatnagar et al., 2015).

Finally, our work can inform pedagogical practice in how teachers design conceptual ques-
tions meant to promote the elaboration of rich self-explanations, which in turn can lead to deep
reflection among peers in TMPI. Recent research on identifying the types of question-items best
suited for in-class PI encourages the use of non-numerical prompts in order to foster rich discus-
sion (Cline et al., 2021). One metric the authors propose for evaluating the quality of a question
is the variability of votes around the different answer choices. More work is needed in order
to extend this notion to TMPI, where a formal measure of question quality can help instructors
pose more thought-provoking tasks for their students.
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APPENDIX A, ARGUMENT TEXTS EXAMPLES

Table 4: Examples of argument pairs from each reference argument mining datasets. These exam-
ples were selected because they were incorrectly classified by all of our models, and demonstrate the
challenging nature of the task. In each case, the argument labelled as more convincing is in italics.

(a) A pair of arguments from UKP, for the prompt topic: “school uniforms are a good idea”.

a1 a2

I take the view that, school uni-
form is very comfortable. Because
there is the gap between the rich and
poor, school uniform is efficient in
many ways. If they wore to plain
clothes every day, they concerned
about clothes by brand and quantity
of clothes. Every teenager is sen-
sible so the poor students can feel
inferior. Although school uniform
is very expensive , it is cheap bet-
ter than plain clothes. Also they
feel sense of kinship and sense of
belonging. In my case, school uni-
form is convenient. I don’t have to
worry about my clothes during my
student days.

I think it is bad to wear school
uniform because it makes you look
unatrel and you cannot express
yourself enough so band school uni-
form OK

(b) A pair of arguments from IBM ArgQ , for the prompt topic: “We should support information privacy laws”.

a1 a2

if a company is not willing to openly
say what they are going to do with
my data, they shouldn’t be allowed
to do it.

if you are against information pri-
vacy laws, then you should not ob-
ject to having a publicly accessible
microphone in your home that oth-
ers can use to listen to your private
conversations.

31
56 Journal of Educational Data Mining, Volume 15, No 3, 2023



Table 5: Examples of argument pairs from Physics and Ethics disciplines, taken from our TMPI
environment. These examples were selected because they were incorrectly classified by all of our
models, and demonstrate the challenging nature of the task. In each case, the argument labelled as
more convincing is in italics.

(a) Student explanations from dalite, for the question prompt: “Rank the magnitudes of the electric field at point
A, B and C shown in the following figure from greatest magnitude to weakest magnitude”.

a1 a2

At B, the electric field vectors can-
cel (E=0). C is further away than A
and is therefore weaker.

A is closest, B experiences the least
since it is directly in the middle, and
C the least since it is most far away.

(b) Student explanations from TMPI in an Ethics MOOC, for the question prompt: “Assuming that motorcycle
drivers are willing to pay their own medical bills, should they be allowed to ride without a helmet?”.

a1 a2

Law should always to make for
the good of their people.If wear-
ing helmet help,then it should be
enforce.Also,you cannot assure that
every motorcycle in the country
would want to pay.

I believe that motorcycle helmets
should be mandatory for ALL mo-
torcycle drivers . Although they
may be willing to pay their own
medical bills , you ca n’t pay any-
thing if you ’re not alive to do so
. Motorcycle wrecks can kill the
driver , leaving the drivers family
with funeral expenses and the like
. The family may not be able to af-
ford it . Wearing a helmet increases
possibility of surviving a crash that
you may not otherwise survive . So
yes , motorcycle helmets should be
mandatory even if the rider is will-
ing to pay their own medical ex-
penses ..
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