
Modeling NAEP Test-Taking Behavior
Using Educational Process Analysis

Nirmal Patel Aditya Sharma
Playpower Labs Playpower Labs
nirmal@playpowerlabs.com aditya@playpowerlabs.com

Tirth Shah Derek Lomas
Playpower Labs Delft University of Technology
tirth.shah@playpowerlabs.com j.d.lomas@tudelft.nl

Process Analysis is an emerging approach to discover meaningful knowledge from temporal educational
data. The study presented in this paper shows how we used Process Analysis methods on the National
Assessment of Educational Progress (NAEP) test data for modeling and predicting student test-taking be-
havior. Our process-oriented data exploration gave us insightful findings of how students were interacting
with the digital assessment system over time. To discover what processes students were following during
the NAEP Digital Assessment, we first developed an innovative set of research questions. Then, we used
Process Analysis methods to answer these questions and created a set of features that described student
behavior over time. These features were used to create an ensemble model that aimed to accurately pre-
dict the digital test-taking efficiency of the students taking NAEP. Our model emerged as one of the most
successful models in the 2019 NAEP Data Mining Competition, scoring second place out of 89 teams.

Keywords: process analysis, behavior modeling, test-taking behavior, curriculum pacing, process min-
ing

1. INTRODUCTION

Decades have passed since researchers first started using computers to deliver educational ex-
periences. Since the time of PLATO, one of the first digital instructional programs, researchers
have been fascinated by the potential of student data collection and analysis (Slattow, 1977,
p.145). Today’s digital learning platforms collect vast amounts of student activity data and then
use these data to inform the student experience (e.g., recommendations and resources). Educa-
tional data are also used by teachers to understand their students and their needs (Data Quality
Campaign, 2018). We can also use educational data to build models that can predict future stu-
dent behavior. Our study in this paper describes how we used data from the US Government’s
National Assessment of Educational Progress1 (NAEP) test to develop a novel student behavior
detection model. The model was designed to predict, as much as 20 minutes in advance, how
the student was going to spend their time during the NAEP Digital Assessment.

1https://nces.ed.gov/nationsreportcard/

16 Journal of Educational Data Mining, Volume 13, No 2, 2021

https://nces.ed.gov/nationsreportcard/


Our work was conducted as a part of the 2019 NAEP Data Mining Competition (Baker
et al., 2019) where competition organizers invited the participants to understand effective and
ineffective test-taking behaviors in the NAEP Digital Assessment, and determine how quickly
these behaviors could be detected. The ultimate goal of the competition was to build a model
that could predict whether the student was going to spend their time in NAEP efficiently or
not. To build our model, we extensively used Educational Process Analysis methods to design
innovative features that aimed at accurately predicting student test-taking behavior. The use of
Process Analysis methods gave our model predictive power and explainability; not only were we
able to make accurate predictions, but we also gained insight into how students behaved during
the test.

1.1. EDUCATIONAL PROCESS ANALYSIS

Educational Process Analysis aims to discover latent learning and teaching processes that are
hidden within temporal educational data. Typically, the process data has information about what
students and teachers do over time. From such data, we can discover different representations
of the unobserved learning and teaches processes that might be producing the observed data. In
other words, the process data can be thought of as resulting from a set of hidden learning and
teaching processes occurring within students and teachers.

Processes hidden in the data can be represented by various types of constructs and models.
Some examples are directed graphs, process model representations such as Petri Nets, Heuristic
Nets, or Fuzzy Nets, graphical models such as Hidden Markov Models or Bayesian Networks,
simpler constructs like Markov Chain Transition Matrices, or even trivial representations like
discrete event sequences. Techniques such as Association Rule Mining (Garcı́a et al., 2010),
Sequential Pattern Mining (Zhou et al., 2010), Process Mining (Trčka et al., 2010; Bogarı́n et al.,
2018), Graph-Based Analysis (Lynch et al., 2017; Patel et al., 2017), and Curriculum Pacing
(Patel et al., 2018) can help us discover different representations of educational processes from
the data. For example, the Rule Mining methods can discover which student/teacher interactions
follow each other more frequently. Pattern Mining methods can reveal frequent sequences of
actions in the data. Process Models and Graph-Based Analysis can give an end-to-end view of
the student interaction data as process models or graphs, whereas the Curriculum Pacing method
produces a clear visualization of how students follow the curriculum over time.

Educational process data can come in many different shapes and sizes, and we have to use
different methods for different types of data. For example, to analyze task-level data with a low
amount of variance, we can use graph-based algorithms or process modeling algorithms such as
Heuristic Miner (Bogarı́n et al., 2018). These algorithms become difficult to use when there is a
high amount of complexity in the data. This is often the case with click-stream data, where we
can use algorithms like Fuzzy Miner (Bogarı́n et al., 2018) that give more flexibility with ‘zoom-
ing in and out’ of the process maps so that we can easily look at both more and less frequent
behaviors. If the data have a high amount of variance, meaning that there are too many student
learning processes or behaviors tied up with each other, we can use sequence clustering methods
to group student data with similar temporal features and analyze them separately (Bogarı́n et al.,
2014; Patel et al., 2017).

17 Journal of Educational Data Mining, Volume 13, No 2, 2021



1.2. PAPER ORGANIZATION

The rest of the paper is structured as follows: Section 2 reviews the earlier work on behavior
detection, focusing on which methods and approaches were used to build the behavior detection
models. Section 3 briefly describes the NAEP Data Mining Challenge and the behavior detection
model that the participants had to build. Section 4 outlines our exploratory analysis of the data
and presents a process view of the student data. Section 5 describes our feature engineering
work, while Sections 6 and 7 detail the modeling approach and final results. Section 8 gives
details about the open-source code that readers can download to reproduce our results. The
remainder of the paper contains a discussion and some ideas for future analyses.

2. PRIOR WORK

A number of studies have been published around predicting student behavior using educational
data. Many of these studies have also correlated student behavior with students’ learning out-
comes.

Behavior detection models are specifically designed to infer whether a student is engaged
in a specific type of complex behavior (Baker, 2015). These models can be used to help digital
systems (or teachers) take appropriate actions. This type of data-informed learning experience
can possibly lead to better outcomes for the students. A recent study by Holstein et al. showed
that when teachers were given real-time data about student knowledge and behavior, student
learning was impacted positively (Holstein et al., 2018). Besides detecting complex student
behaviors in advance, we can also study their relationships with student learning. There are
several classes of behaviors in the digital learning systems that researchers have detected using
automated models. Some of the examples are listed below (Baker, 2015):

• Gaming the System Behavior: Students trying to figure out how they can succeed in going
through the digital learning system without learning e.g. clicking the next button repeat-
edly, or getting the hints without trying to solve the problems

• Off-Task Behavior: Students pausing during their interaction with the learning system for
some external reason

• Carelessness Behavior: Students making errors that are not due to their lack of knowledge

• Without Thinking Fastidiously Behavior: Students doing the actions in the learning sys-
tem that are not related to the learning task e.g. repeatedly changing their avatar, piling up
virtual currency by taking the same assessment again and again

• Help Avoidance behavior: Students not asking for help in the digital system, even if they
need it

The analysis presented in Baker et al. (2004) showed that gaming the system behavior was
negatively correlated with the learning outcomes. The behavior detection model in Baker et al.
(2004) used 24 features created from the student data within a latent response model to predict
the frequency of the gaming the system behavior. In Baker et al. (2006), researchers devised a
system that prevented students from gaming by giving them more exercises in the areas where
they showed the gaming behavior. This preventive system reduced the gaming behavior of the

18 Journal of Educational Data Mining, Volume 13, No 2, 2021



students, and the students who received more resources as a result of their gaming behavior
performed better in comparison to the students who did not receive additional resources. A
much bigger model to detect the gaming behavior was presented in Walonoski and Heffernan
(2006) where the researchers used an ensemble learning approach. Their final model was an
ensemble of 12 different algorithms which included Decision Tree methods, methods such as K-
Nearest Neighbors, Locally Weighted Learning methods, Bayesian methods, a Neural Network,
a Propositional-Logic Rule Learning Algorithm and a Logistic Regression model. They used
a total of 1430 features that were mined from student log data. We took a similar ensemble
approach in this paper, but our set of features remained significantly smaller.

Off-Task Behavior was detected by Baker (2007) using a latent response model and a com-
bination of features from several different sources. Another study to model the off-task behav-
ior used Least Squares and Ridge Regression, and utilized a set of time features, performance
features, and mouse movement features to detect the student behavior (Cetintas et al., 2009).
Carelessness Behavior was modeled in Pedro et al. (2011) by using Contextual-Slip-and-Guess
Estimation based on Bayesian Knowledge Tracing. Another study that used the same method
found that the students who had high levels of concentration demonstrated the most careless be-
havior (Pedro et al., 2011). A study that attempted to model the Without Thinking Fastidiously
behavior tested 11 common classification algorithms such as Naive Bayes, J48 Decision Trees,
etc. on the student data (Wixon et al., 2012). The best model performance was achieved by
the Partial Decision Tree algorithm. Results presented in Rowe et al. (2009) found that student
activity in the digital tutor that was not related to learning was negatively correlated with the pre
and post-test scores of classroom students. Help Avoidance behavior was detected in Aleven
and Koedinger (2000) and Aleven et al. (2006) by creating more production rules within the
intelligent tutor.

Behavior detection has also been studied in the context of digital testing environments. Many
studies have investigated how student response times to different test items relate to the outcomes
of interest. In Şahin and Colvin (2020), researchers used item response rapidness to detect disen-
gaged behavior. Response rapidness was also used to identify differences in the item correctness
in Goldhammer et al. (2016) where the researchers found (p. 15, ibid) that a small proportion of
students responding to an item very rapidly had close to zero problem correctness. This ‘click-
ing through the test items’ behavior can also be exhibited by high performing students who are
simply bored or not interested in taking the online test. Guo et al. (2016) proposed that such
zero correctness item responses that are correlated with very low response times should be re-
moved from the item and test validation process because they will have undesirable impact on
the measurement procedures. Several other studies have used response times of the students to
understand and predict the outcomes of the digital tests (Kong et al., 2007; Lee and Jia, 2014).
In this study, we use a near identical measure of how rapidly students interact with a test item
to predict the target behavior. Şahin (2019) used Latent Profile Analysis to look at how students
allocated times to different test items in the NAEP. They discovered 4 distinct groups in their
sample that they described as 1) little time on first (problem) visit, 2) balanced time (across prob-
lem visits and revisits), 3) little revisit with more time at the end, and 4) little revisit with less
time at the end. The researchers found that these four groups differed in the average outcomes
with group 4 scoring the lowest (p. 21, ibid).

19 Journal of Educational Data Mining, Volume 13, No 2, 2021



Figure 1: User interface of the NAEP digital test.

3. NAEP DATA MINING CHALLENGE

In 2019, Baker et al. announced the NAEP Data Mining challenge that aimed at engaging
the participants in modeling the student test-taking behavior in the NAEP Digital Assessment
(Baker et al., 2019). The broader goal of the competition was to develop metrics for measuring
students’ test-taking activities, better understand effective and ineffective test-taking behaviors,
and determine how quickly these behaviors could be detected. The organizers of the competition
provided NAEP Process Data2 for around 2400 students who took the NAEP test in early 2017.
Researchers have proposed various ways to leverage NAEP Process Data to predict outcomes
of interest (Bergner and von Davier, 2019). The organizers asked the competition participants
to use the process data to build a behavior detection model that predicted whether the students
were going to spend their time in the test efficiently or not.

The NAEP test is used by the US government to measure student achievement across the
country. The digital version of the test collects detailed data about the student test-taking pro-
cess. The test is administered in a variety of subjects, and the questions used in the previous
assessment are also available publicly3. For the competition, we received the process data from
the Math test. The data contained details about how students interacted with the user interface
of the digital test over time. Figure 1 shows how the UI looked while the students took the test.
Apart from seeing the question in the UI, students were also given several learning aids that
they could use to solve the problem. The data about how students used these learning aids was
adequately captured and given to the competition participants.

3.1. COMPETITION STRUCTURE AND THE OUTCOME VARIABLE

The NAEP Math Test consisted of two 30 minute blocks of time called Block A and Block B. In
both blocks, students were given a fixed set of questions. The task of the competition was to use

2https://www.nationsreportcard.gov/process data/
3https://nces.ed.gov/nationsreportcard/nqt/

20 Journal of Educational Data Mining, Volume 13, No 2, 2021

https://www.nationsreportcard.gov/process_data/
https://nces.ed.gov/nationsreportcard/nqt/


Figure 2: Structure of the 2019 NAEP Data Mining Challenge.

data from Block A to predict student behavior in Block B. The target variable to be predicted was
a binary indicator of whether or not the student would spent their time in Block B efficiently.
The organizers of the competition used a method described in Patikorn and Heffernan (2019)
to define what the efficiency meant and they generated the outcome labels of ‘efficient’ and
‘inefficient’ accordingly4. Both the training and test set of the data were from Block A, while
the outcome labels were from Block B.

The testing data was organized slightly differently from the training data. While the training
data had full 30 minute of process data for every student, the testing data was divided in 3 differ-
ent subgroups of 10, 20, and 30 minutes. Each of these subgroups had the respective minutes of

4“We defined efficient usage of time as 1) being able to complete all problems in Block B, and 2) being able to
allocate a reasonable amount of time to solve each problem...[namely] for each problem in Block B, we ranked the
total amount of time each student took to complete each problem, and used the 5th percentile as the cut-off for the
“reasonable amount of time.” (Patikorn and Heffernan, 2019)

21 Journal of Educational Data Mining, Volume 13, No 2, 2021



Table 1: Columns of the NAEP Process Data.

Variable Description
STUDENTID Unique identifier of the student
Block Block of the NAEP test, A or B
AccessionNumber Unique identifier of the question that the student is attempting
ItemType Type of the question e.g. MCQ, Fill in the Blank, etc.

Observable
The name of the action that student took,
e.g. clicking, dragging, scrolling, typing, opening a calculator

ExtendedInfo
Metadata of the student action in a JSON format
e.g. how much did the student scroll, what key she pressed
on the calculator, what digit she typed as a response, etc.

EventTime Time when the student interaction occurred

data for the students within them. This was done to find out how early we can detect the target
behavior in Block B. For example, if we can accurately detect student behavior in Block B after
the first 10 minutes of Block A, the student can be given an appropriate intervention. Figure 2
shows the structure of the competition more clearly.

Due to privacy and test validity reasons, additional data about student performance and de-
mographics were not available. For instance, we were not provided with details about student
scores on individual items nor overall scores on the test. The only data available for use were
those listed in Table 1.

3.2. MODEL EVALUATION

The competition organizers created an online submission form where we had to submit our
predictions for the 1,232 students in the test set. Participants received a feedback based on a
random sample of the test data which acted as a public validation set. The actual test set was
held back for the final results of the competition. Adjusted AUC and Adjusted Kappa values
for the public validation set were provided once every day to the participants. These metrics
are described more in Section 7.1. This once-a-day mechanism prevented participants from
overfitting their models to the public validation set. The evaluation of the submissions on the
private test set was made public when the final competition results were announced.

4. EXPLORATORY DATA ANALYSIS

We started our model-building process by extensively analyzing the process data that were pro-
vided to us. The data consisted of 1.19 million observations for 2,463 students across both the
training (N = 1,231) and the test set (N = 1,232). The data from the sample were spread out over
February and March of 2017. The student data were in an event log format, where each student
interaction in the digital assessment system resulted in one observation in the dataset. Each
observation had 7 different variables. They are listed in Table 1. It is a very typical practice to
format event logs as an actor-verb-object triplets. The data sample had student ID for the actor
part, multiple variables describing the type and subtype of student action which was the verb
part, and the question ID and the related metadata for the object part. Figure 3 shows a random
sample of 10 rows from the dataset.

22 Journal of Educational Data Mining, Volume 13, No 2, 2021



Figure 3: A sample of the NAEP Process Data.

The distribution of item types in the dataset was quite skewed, with the MCQ (Multiple
Choice Question) type having 14 items, Fill in the Blank having 2 items, and all of the other
question types having just 1 item (the other types were Matching, Multiple Fill in the Blank, and
Composite Constructed Response). For each of the question types, there were several possible
actions. In total, there were 42 unique actions in the data. Some actions were only present in
some of the question types. Figure 4 gives a clear picture of which actions were frequent in
which questions. Looking closely at the plot, we can see that the frequency of the Open Cal-
culator was different in different questions, that there were some actions that were not common
across all of the item types, that the Draw action was done with different frequency across the
problems, etc. We found that both the calculator and drawing facilities were used more in the
questions where students had to apply procedural knowledge rather than declarative knowledge.
For example, in question VH0988105, students simply had to answer with the correct unit so
their calculator and draw pad usage was quite low. By comparison, question VH0985196 was a
geometry question, and students used both the calculator and drawing considerably more. Our
data exploration was aimed at discovering differences of this nature and seeing whether any of
them correlated with the outcome variable.

4.1. PROCESS ANALYSIS

The outcome variable that we were trying to predict was whether the student was going to
spend their time in the NAEP test efficiently or not. Thinking about the predictor variables that
would allow us to predict the outcome correctly, we felt that different aspects of the student’s
problem-solving process might act as a good set of predictors, because the process in which the
student was taking part was a construct that was likely aligned with the behavioral outcome. In
other words, we hoped that if we had behavioral predictors, they would be better at predicting a
behavioral outcome. Ultimately, though, all of our hypotheses were validated by the feedback
that our predictive model received on the public validation set.

Given the smaller sample size, we took a feature based approach to build our predictive
model. We first hypothesized the different types of behaviors that might predict the outcome,
and then we converted those behaviors into features. Our process to build the model was as

5https://cotw.naep.ed.gov/student/grade8/MAT/VH098810/toolbarOn
6https://cotw.naep.ed.gov/student/grade8/MAT/VH098519/toolbarOn

23 Journal of Educational Data Mining, Volume 13, No 2, 2021

https://cotw.naep.ed.gov/student/grade8/MAT/VH098810/toolbarOn
https://cotw.naep.ed.gov/student/grade8/MAT/VH098519/toolbarOn


Figure 4: Questions and the possible actions within them.

24 Journal of Educational Data Mining, Volume 13, No 2, 2021



follows:

1. Come up with a list of innovative research questions about student test-taking process

2. Turn those research questions into features

3. See if the new features are helpful in increasing the predictive accuracy

4. Continue the same process until the end of the competition

Time is a critical factor in building the predictive models. We could only continue to follow
our process until the end of the competition, even though on the last day of the competition, we
had more ideas to try. Below is our list of research questions that we put together during the
course of the competition, along with our rationales behind them:

• How did the students go through the questions over time? The pattern in which students
took the first half of the test can reveal whether they were going to be effective or ineffec-
tive during the later half of the test.

• How much time did the students spend on each problem? The distribution of the time
spent on different problems can tell us how well balanced it was. If a student spent a lot of
time on one problem and did not solve other problems, this was most likely an indicator
of inefficient behavior.

• What was the distribution of the time gaps between student actions? The rhythm profile
of the student actions can tell us something about the effectiveness of their test-taking
process. Maybe there was an ‘ideal rhythm’ and large distance from that rhythm was a
likely indicator of inefficiency.

• How quickly did the students enter an answer after seeing the problem? If students acted
quickly after seeing the questions, they might be trying to click through the test without
really attempting the questions, or being hasty. Both of these phenomena could indicate
an inefficient test-taking approach.

• How many times did the students switch between the problems? If a student had to switch
between problems many times, it was likely that they had some issue during the test.

• What was the problem completion rate? If a student had a low problem completion rate,
it was likely that they were not spending their time efficiently during the test.

• What was the student accuracy? Maybe more accurate students were more efficient.

• How many times different actions occurred during the test? Counts of actions (along with
averages, minimums, maximums, and standard deviations) are very typical predictors in
educational data, so we included them without any further thinking.

We found that process-oriented data analysis presented us with novel lenses to look at the
data and generate better questions around what type of student interaction patterns might predict
the student test-taking behavior. There are several approaches available to take a more process-
oriented look at the data. Two of the most distinct approaches that we used were Curriculum
Pacing and Process Mining. They are described below.

25 Journal of Educational Data Mining, Volume 13, No 2, 2021



Figure 5: Example Pacing Plots of two randomly selected students. The X axis of the plot repre-
sents student steps which occur when the students change the problem that they are working on.
The Y axis of the plot has question IDs of the Block A of the test, arranged in their approximate
order of appearance in the test.

4.1.1. Curriculum Pacing

Curriculum Pacing Plots are a type of data educational data visualization developed to reveal
the implementation of blended learning programs in classrooms (Patel et al., 2018). These visu-
alizations allow us to look at how students progress over through a set of educational resources
over time. Inherent to the plots is the set sequence of the learning materials that the students are
expected to follow. This is a more common case in classroom instruction than in digital systems
where students are often free to explore and can receive adaptive learning material. We adapted
the Pacing Plots to look at how students stepped through the problems in the NAEP test over
time. We first arranged the problems by their average row number within each student sample,
and gave each problem an approximate ‘problem number.’ This number was simply the average
of the problem’s row number across all of the students. Then, for each student, we created an
ordered list of problems that they attempted over time. The combination of this information
allowed us to create Pacing Plots for the NAEP test. Figure 5 shows example Pacing Plots for
two students’ 30 minutes in Block A of the test.

We can see here that the student on the left went through all of the problems, and then came
back to a couple of problems in the end. This was not the case for the student on the right. This
student started off, then swung around two problems a few times, and then ended up not going
all the way through the questions. Patel et al. took a large sample of their Pacing Plots and ran
a clustering algorithm over these plots to group the similar ones and look at them separately.
Doing so was not possible on our sample because of the smaller sample size. But if the pacing
analysis is done on a larger sample of the NAEP test data, clustering can reveal quite interesting

26 Journal of Educational Data Mining, Volume 13, No 2, 2021



groups of patterns. Figures 6 and 7 show two more sets of randomly selected 25 pacing plots,
one for each of the outcome value (we have omitted the Y axis values in these plots, which are
same as the Y axis values in Figure 5).

In these larger samples, we can see many interesting patterns! A very typical pattern appears
for students 3, 22, and 27, who went through all of the problems twice. Student 17 went through
all of the problems twice, but she did her first round of problems in a much fewer number
of steps. We can see that many students (e.g. Student 50) went through all of the problems
without ever going back and forth. We called this pattern a ‘lockstep’ pattern. We found that the
prevalence of this exact pattern was not significantly different across the two outcome groups
(p = 0.27). We can also see that many students kept switching between adjacent problems
throughout the whole time. For examples, see students 10, 18, 23, 36, and 41. There are some
students, e.g. 10 and 23, who could not make it all the way to the end. Some students had a mind
of their own and had very unique ways of going through the problems. For example, Student 4
went on to do many of the problems in the reverse order! Some of these actions might be taken
for exploration or review of the test before actually beginning to solve the problems.

If we can group these patterns based on a clustering or pattern detection approach, we can
easily correlate them with various indicators of interest. Since we could not group pacing charts
and give them labels automatically, we generated features from the pacing charts. For example,
we divided the student event logs into 5 different time slots, and took averages of several indica-
tors for each of the time slots. This gave us a numerical approximation of the visual information
that we were seeing in the plots. Here is a concrete example. If for a given student there are
50 time steps and 10 problems, then we first divide the data in the 5 sequential segments each
having 10 time steps. Then, within each segment, we can find the average order of the problem.
This would give us a vector of length 5 which can numerically approximate the chart. Similarly,
we can also take averages of any other indicators that we expect to vary in a certain fashion over
time, and we would get back a vague numerical approximation of the 2D visual data.

4.1.2. Process Mining

There were a few different ways to apply Process Mining (PM) algorithms to the NAEP data.
We looked at the test level process maps that showed us how students proceeded through the
question over time, and we also looked at how students interacted with the system within the
question. To identify how the test-taking process of the efficient students was different from the
inefficient students, we took the training data and divided it into two parts based on the outcome
variable. Then, we looked at the process maps for each group separately. Our goal was to
see if the two process maps of two outcome variables had significant differences. We defined
‘significant’ here as a visually significant difference between the process that could be discerned
by examining them.

We used the Fuzzy Mining algorithm (Günther and Van Der Aalst, 2007) to build the pro-
cess models. The modeling and visualizations were done within the R environment using the
fuzzymineR package7. Fuzzy Mining algorithms take event data as input and return a set of
metrics for nodes and edges of the process map that we can use to look at the process at different
‘zoom levels’. For example, you can remove nodes from the process map that have a metric
lower than a certain threshold value. The same can be done for the edges of the process map.
In a nutshell, the visualizations of the process maps for the Fuzzy Mining algorithm are param-

7https://github.com/nirmalpatel/fuzzymineR

27 Journal of Educational Data Mining, Volume 13, No 2, 2021

https://github.com/nirmalpatel/fuzzymineR


Figure 6: Block A Pacing Plots of students who were efficient in Block B. Y axis is the same as
Figure 5.

28 Journal of Educational Data Mining, Volume 13, No 2, 2021



Figure 7: Block A Pacing Plots of students who were inefficient in Block B. Y axis is the same
as Figure 5.

29 Journal of Educational Data Mining, Volume 13, No 2, 2021



eterized, and changing values of those parameters will show or hide details of the process. We
used a trial-and-error approach to find a good set of parameters that showed the most difference
in the process maps, and then we examined those differences. We ensured that the parameters
remained the same for both of the process maps (one for each of the outcome values).

The question level process map that we created had question IDs as nodes and the edges of
the process map represented the transition between the problems. Two process maps, one for
each of the outcome values, for the first 10 minutes of student data, are shown in Figure 8. In
the process maps, the darker the nodes, the more frequently they are traversed in the process.
Looking at these plots, we immediately identified a visual difference among them. The efficient
group showed a strong path of students going through the problems from start to end (start and
end are the very dark blue nodes on the left and right edges of the plots), while the inefficient
students’ path trailed off before the end of the 10 minutes.

We can see that in the top process map in Figure 8, there are some nodes that are not con-
nected with the rest. This is because the edges that connect them with the rest of the process
map are hidden due to a threshold parameter. When we add more edges to the process map,
it quickly becomes complex and impossible to interpret. The process map in Figure 9 is not
useful at all unless the researcher has obtained some special powers to make sense of it. For this
reason, we used Fuzzy Mining primarily to explore the data and identify places where the stu-
dent interaction processes for the different outcomes measures were sufficiently distinct. Once
we identified those processes, we fit Markov Chain (MC) models to the student event log data
where the states of the MC were the question IDs and the problem switches were modeled as
change in the student state. MC matrices gave us a very simple way to convert process maps into
numerical features that we could further utilize for creating features. Visualizations of the MC
matrices also had visible differences. Figures 10 and 11 show the MC matrices for the efficient
and inefficient students.

If we look closely, we can spot the difference between the two matrix visuals in Figures
10 and 11. There are differences present on the top, right, and bottom of the matrices. We
called these matrices ‘behavior prototypes,’ meaning that they represented a prototypical student
behavior. After creating these prototypes, we created a single MC transition matrix for each
student. Then, we unrolled all of the matrices into vectors. This allowed us to calculate, for each
student, her cosine similarity with each of the ‘behavior prototypes.’ The cosine similarities and
their difference turned out be important (in one case, very important) features for the predictive
models. In the given example, the cosine similarity between prototype matrices is 34 units,
while their self similarities are 43 and 40 units. This tells us that the matrices are different not
only visually but also numerically.

We can imagine doing the same exercise for the process models at the problem level where
the states are the possible actions, e.g. Opening Calculator, Drawing, Answering, etc. Given the
high dimensionality of the number of actions and more variance within student interactions, we
found that the problem level process maps of the different outcomes were difficult to examine
(see Figure 14). When we looked at the MC matrices for the question ID VH098759, we did not
see many differences (see Figures 12 and 13).

30 Journal of Educational Data Mining, Volume 13, No 2, 2021



Fi
gu

re
8:

Pr
oc

es
s

m
ap

s
of

ef
fic

ie
nt

(t
op

)a
nd

in
ef

fic
ie

nt
(b

ot
to

m
)s

tu
de

nt
s

fo
rt

he
fir

st
10

m
in

ut
es

of
B

lo
ck

A
.T

he
no

de
s

re
pr

es
en

tt
he

qu
es

tio
ns

an
d

th
e

ed
ge

s
re

pr
es

en
ts

tu
de

nt
s

sw
itc

hi
ng

fr
om

on
e

pr
ob

le
m

to
an

ot
he

r.

31 Journal of Educational Data Mining, Volume 13, No 2, 2021



Fi
gu

re
9:

T
he

to
p

pr
oc

es
s

m
ap

in
Fi

gu
re

8
w

ith
ad

di
tio

na
le

dg
es

.

32 Journal of Educational Data Mining, Volume 13, No 2, 2021



Figure 10: Markov Transition Matrix of the efficient students for the first 10 minutes of problem
switches.

Figure 11: Markov Transition Matrix of the inefficient students for the first 10 minutes of problem
switches.

33 Journal of Educational Data Mining, Volume 13, No 2, 2021



Figure 12: Markov Transition Matrix of the efficient students for question ID VH098759.

Figure 13: Markov Transition Matrix of the inefficient students for question ID VH098759.

34 Journal of Educational Data Mining, Volume 13, No 2, 2021



Fi
gu

re
14

:P
ro

ce
ss

m
ap

of
th

e
ef

fic
ie

nt
st

ud
en

ts
fo

rt
he

qu
es

tio
n

ID
V

H
09

87
59

.N
od

es
re

pr
es

en
t

po
ss

ib
le

st
ud

en
t

ac
tio

ns
an

d
th

e
ed

ge
s

re
pr

es
en

t
st

ud
en

ts
do

in
g

th
e

ac
tio

ns
.

T
he

le
ft

an
d

ri
gh

t
no

de
s

ar
e

st
ar

ta
nd

en
d

of
th

e
st

ud
en

ti
nt

er
ac

tio
n.

35 Journal of Educational Data Mining, Volume 13, No 2, 2021



We can see that some action transitions on the far right and bottom sides of the matrix are
done differently in the inefficient behavior group. Overall, the problem-level process features
were not helpful for us. Our model started overfitting when we included them (we got high
cross-validation accuracy on the training set, but low public validation set accuracy). It is likely,
though, that if the sample size was bigger, the results would be different.

5. FEATURE ENGINEERING

Behavior detection problems are often formulated as classification problems, where the classes
represent different types of behaviors. We took a feature based approach to build our behavior
detection model. When building a classification model, we need to identify features that provide
the model with more discriminatory power. In other words, a feature is good for the classifica-
tion model if certain ranges of its values strongly predict certain classes. If a certain range of
values for a feature correlate with multiple classes, the feature becomes less helpful and more
ambiguous for the model. The feature discovery process has no set methodology, except for
being guided by well-thought out hypotheses and research questions.

Based on our research questions, we created different feature sets from the data. Each set of
features encoded a different type of information that aimed at addressing the research question.
Since the testing data was given in 10, 20, and 30-minute subsets, we created subsets out of
the training set having only the first 10, 20, and 30 minutes of the data. Some of the features
were not possible to calculate for 10 and 20 minute subsets of the data. When that was the case,
we omitted those features from the feature set of the specific subset. This feature sets approach
allowed us to work in a team of researchers, each working to create a different set. The sets
were then combined and ran through a Genetic Algorithm-based Feature Selection procedure.
We first describe our Feature Sets and then the results of the Feature Selection procedure.

5.1. FEATURE SETS

Our features aimed to capture different aspects of the student behavior that would help us ac-
curately predict the effective or ineffective test-taking behavior of students. For each of our
research questions, we tried to come up with meaningful numeric vectors that can get at an an-
swer to the research question. We used complex data transformation techniques available in the
tidyverse package in the R environment to create the features (see Section 8 to access our
code).

5.1.1. Time spent on each problem

Time spent on each problem was a feature set that was simple yet effective. In this feature set,
we calculated the time students spent on each of the problems. Given the format of the data, this
was a tricky feature to calculate. We could not simply use minimum and maximum timestamps
for each of the problems, as the student could enter and exit the problem at any time. Instead, we
looked at the Enter Item and Exit Item actions for each problem, and found the individual ‘item
session times,’ which we then added to calculate the total time students spent on each item.

5.1.2. Percentiles of the time spent on each problem

This feature set was developed to add a compressed version of the time spent information into
the model. First, we calculated the time spent by every student on every item, and then we

36 Journal of Educational Data Mining, Volume 13, No 2, 2021



converted the times into percentile by item. Then, for each student, we calculated the minimum,
maximum, first quartile, and third quartile of all of the percentile values of the student. The
outcome generation process utilized percentiles to generate the outcomes, so we hypothesized
that using percentiles to encode the student behavior was likely to correlate with the outcomes.

5.1.3. Hiatus between student actions

While taking the test, we hypothesized that some students would be interacting with the digital
system quickly and some would be interacting slowly, meaning that the time gaps between ac-
tions would be different for different students. Looking at the hiatus variable across all students,
we saw that the times between different actions had an interquartile range from 0.16 seconds to
2.6 seconds. It was likely that the more important actions of entering the answer had a bigger
hiatus related to them. We wanted to encode the distributions of students’ response patterns as
features, so we converted all of the hiatuses of the students into discrete buckets based on the
hiatus value. The buckets we used were 0 to 0.5 seconds, 0.5 to 1 seconds, 1 to 5 seconds, 5 to
10 seconds, 10 to 20 seconds, 20 to 50 seconds, 50 to 100 seconds, and 100 seconds or more.
Each bucket became a feature whose count was the number of actions for a given student in a
given bucket.

5.1.4. Time to select the choice in the MCQ problems

This was a feature that intended to encode how ‘hasty’ the student was. If the student was very
quick in answering the question as soon as she saw it, we hypothesized that it would tell us
something important about the test-taking behavior of the student. Since we were using tree
based algorithms, it was possible that an interaction of this feature with some other feature
would lead to meaningful information that the predictive model could use. We first selected the
MCQ data with the ‘Click Choice’ action, and then looked at the time of the first ‘Click Choice’
within each of the MCQ problems. Then we took min, max, average, and standard deviation of
the individual question-wise values.

5.1.5. Student behavior similarity to effective and ineffective ‘behavior prototypes’

We described earlier in Section 4.1.2 how we converted Process Models into Markov Matrices
to create ‘behavior prototypes’ matrices. We created these prototype matrices for how students
switched between the problems. First, two prototype matrices were created, one for the efficient
test-takers and one for the inefficient test-takers. We then created single matrices for each of
the students, and calculated the cosine similarity between individual student vectors and the
prototype vectors (matrices were unrolled into vectors). We also took the difference between
the similarities, because if the student vector was close to both of the prototypes, then the low
difference would tell the predictive model to treat the similarity features as ambiguous.

This method of creating the features can be applied to many different process analysis sce-
narios. We attempted to apply this for the problem level prototype behaviors, and found the
model to be overfitting. As noted earlier, the results could differ for a larger sample size. It is
possible to omit the zero variance indices in the matrix when calculating the similarity, which
we did not do because we did not think of it at the time. This way of encoding the process
features provides us a more transparent way to build a student model.

37 Journal of Educational Data Mining, Volume 13, No 2, 2021



5.1.6. Counts of different student actions

Counts are a very typical feature to add in most of the feature engineered approaches. Besides
counts, we can use averages, minimums, maximums, and standard deviations. The main idea
here is to create a large number of features, and see if any of them turn out as important during
the feature selection procedure. We added counts of the following actions in this feature set:

• Open Calculator

• Click Progress Navigator

• Choice

• Scroll

• Receive Focus

• TextToSpeech

• Eliminate Choice

• Draw

5.1.7. Measures in different time slots of the data sample

This feature set was inspired by our Curriculum Pacing analysis. We hypothesized that if the
student was showing an ‘ideal’ behavior, at certain points in time, she would be at a certain
state as defined by our metrics. For example, if the student is patiently solving problems one by
one, then in the first half of her data, the average position of her problem number would be near
the problem at the 25th percentile. Similarly, other metrics would also be around some ‘ideal’
values at that time. To calculate the features in this set, we first divided the student data based
on the time in 5 equal slots. Then, for each slot, we calculated the following features:

• Number of unique problems

• The total number of times the student entered the items

• Total calculator opens

• Total observations in the data

• Average, minimum, maximum, and standard deviation of the problem positions for the
problems seen within the time bucket

Although our list of the metrics here appears limited, virtually any number of metrics that
we calculated for the whole dataset can be calculated for every time slot.

5.1.8. Problem completion rate

This feature set consisted of just one feature, but it was a very tricky feature to calculate. No
explicit information about problem completion was given to us in the data, but the metadata
of the student action gave details about what the students did within the problems. Using the
metadata, we could infer whether the student had completed a problem or not. For us, the
completion simply meant that the student had responded to the problem. For each of the problem
types, we developed our own rules to infer whether the problem was completed or not. The rules

38 Journal of Educational Data Mining, Volume 13, No 2, 2021



were as follows:

• MCQ: Look for a Click Choice action

• Fill in the Blank and Multiple Fill in the Blank: Look for a Math Keypress action/

• Matching: Look for 4 distinct Drop Choice actions that had a keyword ‘target’ in their
metadata. Matching questions required students to drag and drop items.

• Composite Constructed Response: Look into the metadata for the presence of the keyword
“Part A/B/C”. This was done using a Regular Expression.

The problem completion rate was the average of the completion rate of all of the prob-
lems (multi-answer problems could have a partial completion, all other problems had a binary
completion value). The unseen problems that were not attempted at all were also counted as
incomplete.

5.1.9. Problem switching rate

While taking the test, a student can switch to work on a different problem for many reasons.
Maybe she has solved the current problem, maybe she is leaving the current problem to come
back later, maybe she is just reviewing the problems, or maybe she is frustrated and just switch-
ing between problems impulsively. We hypothesized that the rate of switching between the
problems and the amount of going forward and backward were possibly related to the outcome
variable. Specifically, we calculated the following measures for each of the students:

• Total number of forward switches (going from an earlier problem to a later problem)

• Total number of backward switches (going from a later problem to an earlier problem)

• Total problem switches

• Percentage of forward switches

5.1.10. Approximate problem correctness

We tried approximating the % correct of the items by first identifying the most frequently oc-
curring answers, and then assuming those answers were the correct answers. The process of ex-
tracting the answers from the data included Regular Expressions and data transformation tricks.
However, this feature did not get selected in the feature selection procedure in the end, which
was surprising to us, as earlier studies have found behavior and outcomes to be correlated. We
later discovered that it was possible for us to actually see the questions based on their ques-
tion ID on the NAEP website. Doing so would have given us the actual problem correctness
value rather than the approximate value. It is possible that the actual correctness of the problem
correlates differently with the outcome.

5.1.11. Time spent doing different types of actions

This feature set was designed to capture the student behaviour based on how much time the
students spent doing different actions. We hypothesized that this feature created a ‘behavior
profile’ of the students that could help us detect the target behavior. At the time of crafting this
feature, we did not consider the fact that different actions had different frequency across various

39 Journal of Educational Data Mining, Volume 13, No 2, 2021



questions. We chose to ignore the problem level information and simply calculated counts of the
actions that we felt were representative of the student behavior. This feature set captured how
much time students spent doing the following actions:

• Selecting the choices in MCQ problems

• Using the calculator

• Looking at the timer

• Doing scratchwork, etc.

For some of these actions, outlier values can indicate the presence of certain types of en-
gagements. For example, if a student is spending too much time changing MCQ options, maybe
they are frustrated or disengaged.

5.1.12. Balance between the time spent in solving earlier and later problems

This feature was developed to observe if students were taking more time at the start of the test to
solve earlier problems and left themselves less time for other problems at the end of the test. This
kind of student behaviour could be termed as inefficient, as ideally students should be allocating
appropriate time for each problem.

To derive this feature, we calculated time taken by a student to solve each problem and then
for each problem we calculated the average time taken to solve it. Then for each problem we
took the ratio (time deviation ratio) of time taken by the student to the average time taken to
solve the problem, where a value greater than 1 means the student took more time than average
to solve the problem. Then, for each student, we arranged the problems in a temporal sequence
and looked at the slope of the time deviation ratio, where a negative number would suggest that
the student took more time than required at the start of the test and less time than required as
they came towards the end of the test.

5.1.13. Miscellaneous features

We added some more count and average types of features into our list of features. A typical
rationale behind creating such features is that if you generate a large enough volume of such
features, it is likely that some of them are important predictors of the outcome. In predictive
modeling practice, it is not uncommon to find a good predictor that we cannot easily make sense
of. For this reason, it is not a bad practice to ‘throw all of the data into the model and see what
happens’. This feature set was small for us, since we had derived similar features as in other
feature sets. Here are the features in this set:

• Average number of actions performed per problem by students

• Average number of attempts per problem by students

• Percentage of time taken to solve the problems

• Unique number of actions done by the student

40 Journal of Educational Data Mining, Volume 13, No 2, 2021



5.2. DATA PREPROCESSING

At the end of the feature engineering process, we applied a set of preprocessing algorithms to
the features. We found that preprocessing gave us better results on the public validation set.
We applied the following list of preprocessing algorithms from the caret package (Kuhn and
Johnson, 2013a) using its preProc() function:

1. Winsorization

2. Remove zero variance variables

3. Remove near zero variance variables

4. Centering

5. Scaling

6. Removing correlated variables (using the default parameters that the function provided)

7. The Yeo Johnson transform

At the end of the preprocessing, the 10, 20, and 30 minute subsets of the training data had
the following number of features:

Training Data Subset # of Features
10 min 63
20 min 73
30 min 85

5.3. FEATURE SELECTION

Once we had our final list of features, we put them through the Genetic Algorithm (GA) based
Feature Selection procedure (Kuhn and Johnson, 2013b). This was also done using the functions
that the caret package provides. Our procedure used the Bagged Tree model for optimization,
and Kappa was the target metric to optimize. We chose to find the optimal subset of features
that gave us better Kappa because it would lead to a more balanced model, and Kappa was also
one of the evaluation metrics for the competition. The exact details of our GA configuration are
available in our code repository8 described in Section 8.

We initially did some experiments on what number of iterations and population size to use in
the GA algorithm to see what kind of solutions we got. We started by using a smaller population
size (50) and a larger number of iterations (100). By trial and error, we discovered that we
needed a bigger population size, but not too big. We also experimented randomly with the
Crossover Probability, Mutation Probability, and Elitism parameters of the algorithm to see if
they had any impact on the final outcome. Each of the GA iterations took anywhere from 10 to
18 hours to complete on a cloud-based 64-thread virtual machine. It is possible to get the same
speed with an 8 or 12-thread desktop processor, if you use an appropriate configuration. Figure
15 shows the number of iterations and population sizes for each run of the GA algorithm, and
also shows where we found the best solution. The best GA solution was identified by using the

8https://github.com/nirmalpatel/naep-competition-submission/blob/main/mod
el/build ga models.R

41 Journal of Educational Data Mining, Volume 13, No 2, 2021

https://github.com/nirmalpatel/naep-competition-submission/blob/main/model/build_ga_models.R
https://github.com/nirmalpatel/naep-competition-submission/blob/main/model/build_ga_models.R


Figure 15: Results of our GA algorithm experiments.

features selected by the GA algorithm and seeing if it improved our existing public validation
set results.

At the end, each subset of the features (10, 20, and 30 minutes) had the following numbers
of features from the highest performing GA Feature Selection procedures:

Training Data Subset # of Features Selected Out of the Total
10 min 26 out of 63
20 min 20 out of 73
30 min 21 out of 85

Each of these subsets had features from different feature sets. Table 2 shows which feature
sets had a presence in which best-performing feature subset:

From Table 2, we can see that when we have less data for prediction, we need more infor-
mation about the student to make a correct prediction. When we have more data, it is likely that
a fewer number of features is sufficient. However, this is just an observation in our analysis,
and a broader analysis would be required to present a more generalized finding. This table also
provides us insight into our research questions. We can see that two feature sets - namely, the
approximate problem correctness and the balance between earlier and later problems - had none
of their features selected. This means that our hypothesis about these factors being important
was strongly rejected. We can see that features from some feature sets were partially selected
while some feature sets were present in all three models. In a nutshell, this table provides us a
proxy to evaluate our research questions.

6. MODELING APPROACH

We created separate models for each of the 10, 20, and 30 minute subsets of the training data,
and used these models on the appropriate 10, 20, and 30 minute sets of the test data. This meant
that we had 3 predictive models in total.

Given the smaller sample size, rather than building one complex model for each of the sub-
sets, we decided to build an ensemble of the simpler algorithms for each of the subsets. It is

42 Journal of Educational Data Mining, Volume 13, No 2, 2021



Table 2: Which feature set was present in which training data subset. X marks the presence and
a blank marks the absence.

Feature Set Selected by the GA algorithm?

10 min 20 min 30 min
Time spent on each problem x x x
Percentiles of the time spent on each problem x x
Hiatus between student actions x x x
Time to select the choice in the MCQ problems x x x
Student behavior similarity to effective

x x x
and ineffective ‘behavior prototypes’
Counts of different student actions x x x
Measures in different time slots of the data sample x x x
Problem completion rate x
Problem switching rate x x
Approximate problem correctness
Time spent doing different types of actions x x x
Balance between earlier and later problems
Miscellaneous Features x

possible that one model is better at detecting the positive class, and another is better at detecting
the negative class. In such a case, an ensemble would be an idea tool to obtain better overall
accuracy. This was true for our setup, and when we started combining the predictions from
different algorithms, we saw better overall results. We kept adding more models to our ensem-
ble until we reached a point where our validation set accuracy started decreasing from having
more models. Using R package caretEnsemble made it very easy for us to implement our
ensemble model. Here are the algorithms along with their caret codenames9 that we used in
the ensemble:

1. Stochastic Gradient Boosting (gbm)

2. Regularized Random Forest (rrf)

3. Random Forest (rf)

4. Regularized Logistic Regression (regLogistic)

5. Distance Weighted Discrimination with Polynoial Kernel (dwdPoly)

6. k-Nearest Neighbors (knn)

7. Naive Bayes (nb)

8. Partial Least Squares (pls)

9. Support Vector Machines with Radial Basis Function Kernel (svmRadial)

10. Linear Distance Weighted Discrimination (dwdLinear)

11. Neural Network (single layer)
9https://topepo.github.io/caret/train-models-by-tag.html

43 Journal of Educational Data Mining, Volume 13, No 2, 2021

https://topepo.github.io/caret/train-models-by-tag.html


12. Bayesian General Linear Model (bayesglm)

13. Quadratic Discriminant Analysis (qda)

The correlation of the training predictions between these algorithms and with the ensemble
are given in Figure 16. We can see that the two Random Forest algorithms (RRF and rf) cor-
related the least with other algorithms, while they correlated perfectly with each other. We can
also see the Bayesian General Linear Model algorithm (bayesglm) correlated perfectly with the
Regularized Logistic Regression algorithm (regLogistic). The Bayesian General Linear Model
algorithm was also used as the meta learner. Details of the parameter grid for each of the algo-
rithms is given in our open source code10 described in Section 8.

Figure 16: Correlations between the ensemble algorithms.

All of our modeling algorithms including the meta learner algorithm used a 10 fold cross-
validation with 3 repeats to find the optimal model parameters. This meant that for every algo-
rithm and parameter combination, 30 models were trained and the outcome metrics of those 30

10https://github.com/nirmalpatel/naep-competition-submission/blob/main/mod
el/build ensemble.R

44 Journal of Educational Data Mining, Volume 13, No 2, 2021

https://github.com/nirmalpatel/naep-competition-submission/blob/main/model/build_ensemble.R
https://github.com/nirmalpatel/naep-competition-submission/blob/main/model/build_ensemble.R


different models were averaged and considered as the outcome for the given algorithm and its
parameters. We decided to optimize and look for the algorithm parameters that led to the highest
Kappa metric of the model.

7. RESULTS

We had several algorithms in our ensemble that made the predictions. Out of them all, the
Stochastic Gradient Boosting (GBM) and Support Vector Machines with Radial Basis Function
Kernel algorithms correlated with the ensemble predictions the most (r = 0.92). Out of these
two algorithms, the GBM algorithm provided a measure for relative importance of the predictor
variables. Figures 17, 18, and 19 show the relative importance of the predictor variables for the
10, 20, and 30-minute models.

In the figures, we can see that the 20-minute GBM model relied heavily on a smaller number
of features (high importance for a few variables), the 10 minute model relied on a moderate
number of features (a good distribution of the importance), and the 30-minute model had many
features with high importance. Note that the variables for the modeling were selected by the
Genetic Algorithm beforehand, and the GBM algorithm did not get to see the variables that
were thrown out by the GA Feature Selection algorithm. One clear distinction between the 30-
minute model and the other two models is that the 30-minute model had several high importance
variables involving the time spent on different questions. It is likely that at the end of the 30
minutes, the distribution of the time spent on the questions is highly indicative of the student
behavior in the time period that is adjacent (Block B). For the 10-minute model, since the student
has not fully allocated the times to each of the question, and we don’t know how they will go
about doing it, features other than the time spent features remain more important. In the 20-
minute model, it is at once both surprising and interesting to see that the ‘behavior prototype’
related features have a very high importance. Given that the variable selection was based on a
stochastic algorithm, we cannot be sure that this was the globally optimal set of variables.

7.1. COMPETITION OUTCOME

In the final evaluation, our winning model11 stood at #2 on both the public validation set and
the private test set. This correspondence between these formative and summative scoreboards
was notable: the #18 model on the public validation set scored #1 on the final score board. The
top-scoring model on the public validation set dropped to #3 on the final score-board. These
evaluations were done on two metrics: Adjusted AUC and Adjusted Kappa. They were defined
by the competition organizers as follows:

The final ranking was done by a sum of Adjusted AUC and Adjusted Kappa. The outcome
metrics for our solution are given in the Table 3. From the Adjusted AUC formula, we can

11https://sites.google.com/view/dataminingcompetition2019/winners

45 Journal of Educational Data Mining, Volume 13, No 2, 2021

https://sites.google.com/view/dataminingcompetition2019/winners


Figure 17: Relative variable importance for the 10 minute model variables.

46 Journal of Educational Data Mining, Volume 13, No 2, 2021



Figure 18: Relative variable importance for the 20 minute model variables.

47 Journal of Educational Data Mining, Volume 13, No 2, 2021



Figure 19: Relative variable importance for the 30 minute model variables.

48 Journal of Educational Data Mining, Volume 13, No 2, 2021



Table 3: Results of the competition for our solution.

Set Adjusted AUC Adjusted Kappa Aggregated Score
Public Validation Set 0.3660 0.2617 0.6277
Private Test Set* 0.3257 0.2268 0.5524
* Used for final ranking

see that our model’s actual AUC was 0.66. The AUC can be interpreted as the probability
that a randomly chosen positive example (efficient behavior) is ranked above a randomly chosen
negative example (inefficient behavior), according to the model’s internal value for the examples.
In the predictive modeling context, the Kappa value can be interpreted as how well the classifier
performed, controlling for the baseline accuracy. One specific interpretation of the Kappa metric
would tell us that on the test set, our solution achieved a rate of classification 22.7% of the
way between whatever the baseline accuracy was and 100% accuracy. On the training set, the
baseline accuracy (or the proportion of the majority class, which was the efficient behavior) was
60%.

8. OPEN-SOURCE CODE

The open-source R code that can fully reproduce our features, models, and the final outcomes
is available at https://github.com/nirmalpatel/naep-competition-subm
ission. The code does not contain the raw NAEP process data, which is the only addition
required to run our code. If the reader has access to a different or a larger sample of NAEP
process data in the same format as described in Table 1, our code will work directly with it.
Please note that the model building process is time-consuming, and on a 4 GHz 8 Thread Intel
CPU, it generally takes around 1.5 hours to train the ensemble.

9. DISCUSSION

Some of the more interesting features of our solution were the similarities of individual students
with the efficient and inefficient ‘behavior prototypes’. Here, we had a very specific set of behav-
iors, taken from a specific set of students, that nevertheless appeared to generalize to the wider
set of students. To examine other aspects of these features, we looked at how they correlated
with the full feature set. The correlations changed considerably from the 10-minute dataset to
the 30-minute dataset, so we restricted our correlation analysis to the 30 minute dataset because
by that time, all of the student activity in the block was completed.

The first thing we noticed was that the correlation of student similarity to the efficient and
inefficient ‘behavior prototypes’ was almost always the same, meaning that if a feature was
positively correlated with efficient behavior similarity, then it was also as positively correlated
with inefficient behavior similarity. However, the difference of the similarities with the efficient
and inefficient ‘behavior prototypes’ almost never correlated in the same way as the individ-
ual similarities. We also noted from the feature selection that the difference was much more
important than the individual similarities in the 20 and 30-minute models, while the 10-minute
model had the inefficient behavior similarity as more important. It is very likely that the process
data of a single student has both efficient and inefficient processes within it, and a big absolute

49 Journal of Educational Data Mining, Volume 13, No 2, 2021

https://github.com/nirmalpatel/naep-competition-submission
https://github.com/nirmalpatel/naep-competition-submission


value of the difference feature will tell us how ‘one sided’ the student behavior was. In other
words, larger distance between the similarities means that the student was either more efficient
or more inefficient. In our case, we calculated the difference as the Efficient Similarity - Ineffi-
cient Similarity. This can be seen as the ‘adjusted similarity to the efficient behavior.’ Here are
two interesting correlations that the adjusted similarity to the efficient behavior had with other
features:

• We noticed that the adjusted similarity to the efficient behavior was significantly nega-
tively correlated (R = −0.63) with the progress navigator opens, probably telling us that
the efficient students used the progress navigator less.

• We also saw that the adjusted efficient behavior similarity was significantly correlated
(R = 0.62) with the percentage of forward problem switches. This may tell us that
efficient students went forward more.

Although we can learn about such differences using the provided outcomes, seeing them via
the novel ‘behavior prototype’ calculation method tells us that computing the similarity of an
individual student to different behavioral patterns is a good way to generate important behavior
detection features.

We also looked closely at the Minimum Time to Select an MCQ Option (Minimum TTC or
Minimum Time to Choice) feature which was the most important feature for both the 10-minute
and 30-minute models. It turned out that a number of features representing how much problem
switching and navigating students did were negatively correlated with the Minimum TTC (R
ranging from -0.30 to -0.42). This probably indicates that students who frequently switched
between items during the test were more likely to rapidly click an MCQ option (or vice versa).
It is possible, though, that efficient students also quickly switch through many problems, just
because they have left out some problems to finish at the end. In this case, their Minimum TTC
would be high, even with a high problem switching rate. In fact, a two sample t-test showed that
the efficient students as marked by the training labels had a significantly higher Minimum TTC
than the inefficient students (Average Efficient Min TTC = 12.7 seconds, Average Inefficient
Min TTC = 10.7 seconds, t = 5.2, p = 0.0, calculated on Winsorized samples).

One of the things that we found puzzling in the Curriculum Pacing analysis was the frequent
up-down switches between adjacent problems. Given that many students showed a straight path
from start to finish, the up-down switches should not be a feature of bad data. In that case, such
up-down pattern might indicate that the student is trying to decide which problem to work on,
impatiently or otherwise. For example, we can see that Student 31 in Figure 7 seems to flip
around twice across a two set of problems. In the same plot we can also see that many students
exhibit such flipping around behavior through the test. If such question flipping behavior exists
at scale, we need to understanding it from the students about why they do it. Is it to decide which
question they should work on? If they are equally unsure about which question they need to
work on, maybe they can randomly pick one rather and give it a try. And if such random picking
strategy turns out to be a good one for the sake of test-taking, additional UI improvements can
be made into the NAEP Digital Test where frequent flipping between the questions can lead up
to a prompt telling the students that if they are unsure what they need to work on, they can just
pick one question and focus on it for a while.

We hypothesize that the features representing the time spent on different problems can gen-
eralize across multiple behavior detection scenarios. Our hypothesis is based on 3 different

50 Journal of Educational Data Mining, Volume 13, No 2, 2021



observations. First: We saw that the #1 winning entry of the competition only had time spent on
problem features, and while it was at a distant rank of 18th in the validation set, the same entry
came up at the top of the test set. Second: We also started our model building by using the time
spent on the problem features. These features gave us an aggregated score of about 0.53 on the
validation set; by contrast, our final model gave us an aggregated score of about 0.63, showing
us that about 80% of the ‘modeling work’ was done by just these features. Third: A study by
(Şahin, 2019) also showed that using the time spent on problem was useful in predicting student
outcomes of the NAEP test. These observations tell us that the time spent on problem features
might be more generalizable to different behavior detection scenarios. We also hypothesize that
there might be a way to improve the generalization of the time spent on problem features by
normalizing the time, as some problems will generally take more or less time to complete than
the others.

10. CONCLUSION AND FUTURE WORK

Overall, this work provided us with positive feedback about the future of Process Analysis in the
field of Educational Data. As Learning Analytics practitioners, we knew about the importance
of Process Analysis, but during this challenge, we discovered that not only can Process Analysis
tell us meaningful data stories (which is of utmost importance in for educational data practice), it
can also help us build high-performance predictive models. This leads us to believe that Process
Analysis is a promising paradigm for exploring student data and generating novel hypotheses
about student learning and behavior.

Our feature selection routine left out many features that we derived during our initial data
analysis process. Doing a factor analysis of the full feature set might reveal different latent
factors that are present in the dataset. A more complex study to understand these latent factors
may require the use of techniques like Structural Equation Modeling. A preliminary factor
analysis on the 30-minute model features revealed one general factor representing what appeared
to be the overall level of student engagement with the test and its items. This underlying factor
had various interesting features loaded on it, such as hiatus distribution, ‘behavior prototype’
related features, and how much time students spent interacting with the MCQ options. This
preliminary finding was interesting and may lead to further studies of test-taking engagement
patterns.

In our Curriculum Pacing analysis, we were able to observe several patterns in the variety
of test-taking students. Some students moved through the test in a linear fashion, some jumped
around, and some even worked backwards from the end. The reader might be able to personally
relate to the experiences of test-takers when observing the patterns presented in Figures 6 and
7. It would be very interesting to run a clustering analysis on a larger sample of the NAEP
data to discover the test-taking processes exhibited by the students at scale, and see if any of
the clusters are related with high or low outcomes. Surely, the patterns are not the causes but
only the symptoms of the different levels of student knowledge and cognitive function. And,
of course, it would be extremely useful to run similar analyses that involve the outcomes of
student performance on individual items. For various reasons related to privacy and test valid-
ity, this competition could not disclose student demographics, item performance data or details
about the items (wording or options). We strongly believe that Process Analysis of a larger and
more comprehensive sample of the NAEP data can lead to many interesting Learning Science
discoveries. For instance, we anticipate the utility of using process analysis to understand the

51 Journal of Educational Data Mining, Volume 13, No 2, 2021



effects of student disabilities and NAEP testing accommodations. We also expect that Process
Analysis methods could inform test-taking UI improvements which could support more efficient
test-taking behaviors by all students.

11. ACKNOWLEDGMENTS

Many thanks to the competition organizers for motivating this research in the Educational Data
Mining community. We hope that our work on Educational Process Analysis can support and
inspire others.

REFERENCES

ALEVEN, V. AND KOEDINGER, K. R. 2000. Limitations of student control: Do students know when
they need help? In Proceedings of the 5th International Conference on Intelligent Tutoring Systems,
G. Gauthier, C. Frasson, and K. VanLehn, Eds. Springer, Berlin, Heidelberg, 292–303.

ALEVEN, V., MCLAREN, B., ROLL, I., AND KOEDINGER, K. 2006. Toward meta-cognitive tutoring:
A model of help seeking with a cognitive tutor. International Journal of Artificial Intelligence in
Education 16, 2, 101–128.

BAKER, R., WOOLF, B., KATZ, I., FORSYTH, C., AND OCUMPAUGH, J. 2019. Nation’s Report Card
Data Mining Competition 2019. https://sites.google.com/view/dataminingcomp
etition2019/home.

BAKER, R. S. 2015. Behavior Detection, Big Data and Education, 2nd ed. Teachers College, Columbia
University, New York, NY, Chapter 3.

BAKER, R. S., CORBETT, A. T., AND KOEDINGER, K. R. 2004. Detecting student misuse of intelligent
tutoring systems. In Proceedings of the 7th International Conference on Intelligent Tutoring Systems,
J. C. Lester, R. M. Vicari, and F. Paraguaçu, Eds. Lecture Notes in Computer Science, vol. 3220.
Springer, 531–540.

BAKER, R. S., CORBETT, A. T., KOEDINGER, K. R., EVENSON, S., ROLL, I., WAGNER, A. Z.,
NAIM, M., RASPAT, J., BAKER, D. J., AND BECK, J. E. 2006. Adapting to when students game an
intelligent tutoring system. In Proceedings of the 8th International Conference on Intelligent Tutoring
Systems, M. Ikeda, K. D. Ashley, and T.-W. Chan, Eds. Springer, 392–401.

BAKER, R. S., CORBETT, A. T., KOEDINGER, K. R., AND WAGNER, A. Z. 2004. Off-task behavior
in the Cognitive Tutor classroom: When students “game the system”. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, E. Dykstra-Erickson and M. Tscheligi, Eds.
ACM, 383–390.

BAKER, R. S. J. D. 2007. Modeling and understanding students’ off-task behavior in intelligent tutoring
systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, M. B.
Rosson and D. J. Gilmore, Eds. ACM, 1059–1068.

BERGNER, Y. AND VON DAVIER, A. A. 2019. Process data in NAEP: Past, present, and future. Journal
of Educational and Behavioral Statistics 44, 6, 706–732.

BOGARÍN, A., CEREZO, R., AND ROMERO, C. 2018. A survey on educational process mining. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8, 1, e1230.

BOGARÍN, A., ROMERO, C., CEREZO, R., AND SÁNCHEZ-SANTILLÁN, M. 2014. Clustering for im-
proving educational process mining. In Proceedings of the 4th Learning Analytics and Knowledge

52 Journal of Educational Data Mining, Volume 13, No 2, 2021

https://sites.google.com/view/dataminingcompetition2019/home
https://sites.google.com/view/dataminingcompetition2019/home


Conference, M. D. Pistilli, J. Willis, D. Koch, K. E. Arnold, S. D. Teasley, and A. Pardo, Eds. ACM,
11–15.

CETINTAS, S., SI, L., XIN, Y. P. P., AND HORD, C. 2009. Automatic detection of off-task behaviors
in intelligent tutoring systems with machine learning techniques. IEEE Transactions on Learning
Technologies 3, 3, 228–236.

DATA QUALITY CAMPAIGN. 2018. What parents and teachers think about educational data. https:
//dataqualitycampaign.org/resource/what-parents-and-teachers-think
-abouteducation-data/.

GARCÍA, E., ROMERO, C., VENTURA, S., DE CASTRO, C., AND CALDERS, T. 2010. Association
rule mining in learning management systems. Chapman & Hall/CRC Data Mining and Knowledge
Discovery Series. CRC Press, Boca Raton, FL, Chapter 7, 93–106.

GOLDHAMMER, F., MARTENS, T., CHRISTOPH, G., AND LÜDTKE, O. 2016. Test-taking engagement
in PIAAC. Tech. Rep. 133, Organisation for Economic Co-operation and Development, Paris.

GÜNTHER, C. W. AND VAN DER AALST, W. M. P. 2007. Fuzzy mining–adaptive process simplification
based on multi-perspective metrics. In International Conference on Business Process Management.
Springer, 328–343.

GUO, H., RIOS, J. A., HABERMAN, S., LIU, O. L., WANG, J., AND PAEK, I. 2016. A new procedure
for detection of students’ rapid guessing responses using response time. Applied Measurement in
Education 29, 3, 173–183.

HOLSTEIN, K., MCLAREN, B. M., AND ALEVEN, V. 2018. Student learning benefits of a mixed-reality
teacher awareness tool in AI-enhanced classrooms. In Proceedings of the 19th International Confer-
ence on Artificial Intelligence in Education, C. P. Rosé, R. M. Maldonado, H. U. Hoppe, R. Luckin,
M. Mavrikis, K. Porayska-Pomsta, B. M. McLaren, and B. du Boulay, Eds. Lecture Notes in Com-
puter Science, vol. 10947. Springer, 154–168.

KONG, X. J., WISE, S. L., AND BHOLA, D. S. 2007. Setting the response time threshold parame-
ter to differentiate solution behavior from rapid-guessing behavior. Educational and Psychological
Measurement 67, 4, 606–619.

KUHN, M. AND JOHNSON, K. 2013a. Applied Predictive Modeling. Springer, New York, NY.

KUHN, M. AND JOHNSON, K. 2013b. An introduction to feature selection. In Applied Predictive Mod-
eling. Springer, New York, NY, 487–519.

LEE, Y.-H. AND JIA, Y. 2014. Using response time to investigate students’ test-taking behaviors in a
NAEP computer-based study. Large-scale Assessments in Education 2, 1, 1–24.

LYNCH, C. F., BARNES, T., XUE, L., AND GITINABARD, N. 2017. Graph-based educational data
mining. In Proceedings of the 10th International Conference on Educational Data Mining, X. Hu,
T. Barnes, A. Hershkovitz, and L. Paquette, Eds. International Educational Data Mining Society.

PATEL, N., SELLMAN, C., AND LOMAS, D. 2017. Mining frequent learning pathways from a large
educational dataset. arXiv preprint arXiv:1705.11125.

PATEL, N., SHARMA, A., SELLMAN, C., AND LOMAS, D. 2018. Curriculum pacing: A new approach
to discover instructional practices in classrooms. In Proceedings of the 14th International Conference
on Intelligent Tutoring Systems, R. Nkambou, R. Azevedo, and J. Vassileva, Eds. Lecture Notes in
Computer Science, vol. 10858. Springer, 345–351.

PATIKORN, M. AND HEFFERNAN, N. 2019. Dataset. https://sites.google.com/view/da
taminingcompetition2019/dataset#h.p ndPGLzSaEKFb.

53 Journal of Educational Data Mining, Volume 13, No 2, 2021

https://dataqualitycampaign.org/resource/what-parents-and-teachers-think-abouteducation-data/
https://dataqualitycampaign.org/resource/what-parents-and-teachers-think-abouteducation-data/
https://dataqualitycampaign.org/resource/what-parents-and-teachers-think-abouteducation-data/
https://sites.google.com/view/dataminingcompetition2019/dataset#h.p_ndPGLzSaEKFb
https://sites.google.com/view/dataminingcompetition2019/dataset#h.p_ndPGLzSaEKFb


PEDRO, M. O. C. Z. S., BAKER, R. S. J. D., AND RODRIGO, M. M. T. 2011. Detecting carelessness
through contextual estimation of slip probabilities among students using an intelligent tutor for math-
ematics. In Proceedings of the 15th International Conference on Artificial Intelligence in Education,
G. Biswas, S. Bull, J. Kay, and A. Mitrovic, Eds. Lecture Notes in Computer Science, vol. 6738.
Springer, 304–311.

PEDRO, M. O. C. Z. S., RODRIGO, M. M. T., AND BAKER, R. S. J. D. 2011. The relationship between
carelessness and affect in a Cognitive Tutor. In Proceedings of the 4th International Conference on
Affective Computing and Intelligent Interaction, S. K. D’Mello, A. C. Graesser, B. W. Schuller, and
J. Martin, Eds. Lecture Notes in Computer Science, vol. 6974. Springer, 306–315.

ROWE, J. P., MCQUIGGAN, S. W., ROBISON, J. L., AND LESTER, J. C. 2009. Off-task behavior in
narrative-centered learning environments. In Proceedings of the 14th International Conference on
Artificial Intelligence in Education, V. Dimitrova, R. Mizoguchi, B. du Boulay, and A. C. Graesser,
Eds. Frontiers in Artificial Intelligence and Applications, vol. 200. IOS Press, 99–106.

ŞAHIN, F. 2019. Exploring the relations between students’ time management strategies and test perfor-
mance. Paper presented at the Annual meeting of the National Council for Measurement in Education.

ŞAHIN, F. AND COLVIN, K. F. 2020. Enhancing response time thresholds with response behaviors for
detecting disengaged examinees. Large-scale Assessments in Education 8, 5, 1–24.

SLATTOW, G. 1977. Demonstration of the PLATO IV computer-based education system. Final report.
January 1, 1972-June 30, 1976. Tech. rep., University of Illinois.

TRČKA, N., PECHENIZKIY, M., AND VAN DER AALST, W. 2010. Process mining from educational data.
Chapman & Hall/CRC Data Mining and Knowledge Discovery Series. CRC Press, Boca Raton, FL,
Chapter 9, 123–142.

WALONOSKI, J. A. AND HEFFERNAN, N. T. 2006. Detection and analysis of off-task gaming behavior
in intelligent tutoring systems. In Intelligent Tutoring Systems, M. Ikeda, K. Ashley, and T.-W. Chan,
Eds. Lecture Notes in Computer Science, vol. 4053. Springer Berlin Heidelberg, 382–391.

WIXON, M., DE, B. R. S. J., GOBERT, J. D., OCUMPAUGH, J., AND BACHMANN, M. 2012. WTF?
Detecting students who are conducting inquiry without thinking fastidiously. In Proceedings of the
20th International Conference on User Modeling, Adaptation, and Personalization, J. Masthoff,
B. Mobasher, M. C. Desmarais, and R. Nkambou, Eds. Lecture Notes in Computer Science, vol.
7379. Springer, 286–296.

ZHOU, M., XU, Y., NESBIT, J. C., AND WINNE, P. H. 2010. Sequential pattern analysis of learning
logs: Methodology and applications. Chapman & Hall/CRC Data Mining and Knowledge Discovery
Series. CRC Press, Boca Raton, FL, Chapter 8, 107–121.

54 Journal of Educational Data Mining, Volume 13, No 2, 2021


