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In this paper, we present a method for recognizing algorithms from students’ programming submis-
sions coded in Java. The method is based on the concept of programming schemas and beacons. Schemas
are high-level programming knowledge with detailed knowledge abstracted out, and beacons are statements
that imply specific structures in a program. The method automatically searches for schemas from the
given program and compares the extracted schemas with those from the knowledge base to recognize the
algorithm-specific code for further processing. In the next step, several characteristics and beacons specific
to the given algorithm are computed from the code. These characteristics and beacons are then used as the
learning data and given to the C4.5 algorithm, which builds a classification tree that can be used to classify
previously unseen implementations of algorithms.

The method and its performance is demonstrated in the case of basic sorting algorithms and their varia-
tions implemented both in various learning resources, that is, textbooks and websites, (N = 209 programs)
and in genuine student submissions in a first year data structures and algorithms course (N = 159). The em-
pirical study conducted for evaluating the performance of the classification by leave-one-out cross-validation
technique shows that the estimated true positive rate is 97.0%. The results demonstrate the feasibility of the
idea of recognizing algorithms based on algorithm-specific programming schemas and beacons. The method
can be used as white-box analysis to verify that students have implemented the required algorithm and to
give feedback to students on their problematic implementations. We discuss the applications of the method
from both teachers’ and students’ point of view.

Keywords: Algorithm recognition, detecting programming schemas, roles of variables, white-box analysis, de-
cision tree classifiers

1. INTRODUCTION

Data structures and algorithms are central topics in programming education. Students

need to gain understanding of a variety of them, including basic algorithms and struc-

tures for storing, sorting and searching data, and they should learn to look for more ad-

vanced algorithms in various fields of computing. The learning goals generally include

understanding the main principles and implementation ways of the target algorithms,

as well as their theoretical properties concerning time and space efficiency. In this paper,

we focus on programming exercises where students need to implement algorithms, and

how can we provide automatic feedback on their work. Our special focus is in sorting al-

gorithms, through which we demonstrate the feasibility of the methodology, though the

methodology is general and can be applied to a wide area of algorithms.

Basic programming education requires that students solve a large number of practi-

cal exercises, which causes a heavy load for teachers in terms of feedback and assess-

ment. Therefore, many automatic assessment tools have been developed and applied

for programming education. Well-known tools include Boss [Joy et al. 2005], Course-

Marker [Higgins et al. 2002] and WebCat [Edwards 2003], among many others. Two

recent surveys map the field well. In 2005, Ala-Mutka [Ala-Mutka 2005] listed topics

which could be analyzed by the tools. These included 1) functionality, that is, whether the

program produces the requested correct output, 2) program run time efficiency, 3) test-
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ing skills, that is, how well students have tested their programs, 4) special features like

memory management, 5) coding style, 6) suspicious code, 7) software metrics, 8) program

design, 9) use of specific language features, and 10) plagiarism. More recently, Ihantola

et al. [Ihantola et al. 2010] analyzed more closely automatic assessment tools published

since 2005, that is, after Ala-Mutka’s survey. They recognized more recent trends in the

field, such as integration of automatic assessment tools and learning management sys-

tems, more sophisticated ways to evaluate program functionality, integration of manual

and automatic assessment, and development of various sandboxing approaches to secure

against malicious student code. Their paper has an extensive list of recent work in the

field. However, in these two comprehensive surveys, no tools have been reported, which

could automatically analyze and give feedback on what kind of algorithms students use

in their programs and how they have implemented them, although implementing vari-

ous basic algorithms and data structures is a standard practice in programming educa-

tion. In our research, we have therefore focused on the question: How could we automati-

cally recognize given algorithms or their variants from student source code? Functionality

testing methods commonly used in automatic assessment systems focus on testing the

correctness of program output. They provide very limited support for evaluating the al-

gorithmic solutions. As an example, if students are requested to implement some sorting

algorithm, the program output should obviously be a sorted data set, but sorting itself

may have been implemented using many different algorithms and their variants. It is

very cumbersome to use current methods to assess that students have actually used a

requested algorithm, or give any feedback on how well the implementation has been car-

ried out. Moreover, the feedback provided by functionality testing methods does not tell

anything to students about the quality of their solutions. Our aim is to develop meth-

ods that give instant feedback to students so that they can immediately understand the

problems with their solutions and try to fix it. Students can ask the system for help

whenever they encounter a problem. This is highly valuable, as it helps students to gain

deep understanding and learn better.

We have previously developed two methods for algorithm recognition: a beacon-based

classification method and a schema detection method. The former analyzes the given

(target) code in terms of various software metrics, roles of variables and various other

characteristics and beacons to build a characteristic vector which describes the algorith-

mic structure of the code. These are given to the C4.5 algorithm which builds a classifi-

cation tree that can be used to recognize unseen algorithms. The latter method analyzes

the code to match the target code against a given set of predefined schemas that corre-

spond to algorithms to be searched from the code. Both methods have been separately

successfully applied to analyze algorithm codes drawn from textbooks and websites, as

well as authentic student submissions (see [Taherkhani 2011b] and [Taherkhani 2011a],

respectively). The current paper has two main contributions. First, we introduce a com-
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bined method, which first extracts the schemas corresponding to the target algorithm

and then computes the software metrics and the other characteristics and beacons from

the schemas to be used in the classification. The combined method separates appli-

cation code, that is, code not related to target algorithms, from algorithmic code, and

thus further processes only the algorithmic code. This makes the recognition more reli-

able, as non-relevant code does not affect the computed characteristics and beacons. We

have implemented the combined method in a prototype instrument called Aari system

(an Automatic Algorithm Recognition Instrument). Second, this paper covers student-

implemented algorithm implementations to build a classification tree. We include prob-

lematic solutions implemented by students. This enables teachers to identify these prob-

lematic solutions and give feedback on them. It also allows students to understand their

misconceptions and get help from the system when encountering problem in their im-

plementations.

The paper is structured as follows. Section 2 presents related work. In Section 3 we

explain the overall principles of the analysis method. Section 4 demonstrates how the

method has been applied to identifying basic sorting algorithms. Section 5 presents the

data set, which is followed by introducing the classification tree built for recognizing

sorting algorithms in Section 6. Section 7 presents the experimental data analysis car-

ried out for evaluating the method. Section 8 elaborates on the application of the pro-

posed method in education. Section 9 includes a discussion on the results and Section 10

concludes the paper.

2. RELATED WORK

Several techniques and tools have been introduced to facilitate program comprehension.

These techniques work mainly using a knowledge base, where a set of stereotypical pro-

gramming schemas, which are called plans, idioms, etc., are stored. In order to recognize

the given program, it is matched against these plans. If a match between the plans of

the given program and those from the knowledge base is found, these plans of the given

program can be considered as identified, since the corresponding plans of the knowledge

base are known. This process can be carried out using top-down, bottom-up or hybrid

approaches.

Top-down approaches need the specification of the given program to select the suit-

able schemas from the knowledge base. Although this can be a more effective approach

than bottom-up, its major disadvantage is that specifications of target programs are

not necessarily available (see, as an example, [Johnson and Soloway 1984]). Bottom-up

approaches start from small plans and continue recognizing bigger plans using the in-

formation about already recognized smaller plans that are parts of bigger ones. This

approach may become ineffective as the size of knowledge base grows (see, for exam-
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ple, [Harandi and Ning 1990]). Hybrid techniques make use of both approaches (see,

e.g., [Quilici 1994]).

The knowledge extracted by program comprehension tools can be used for different

purposes including restructuring programs, teaching novices, generating documentation

from code and finding the location of those parts of code that can be reused [Quilici 1994].

Program comprehension has also been studied from a theoretical perspective and vari-

ous models for program comprehension and programming schemas have been introduced

(see, e.g., [Brooks 1983], [Pennington 1987] and [Soloway and Ehrlich 1984]). The results

of these program comprehension models can be used to develop more efficient tools that

assist programmers and maintainers in program comprehension related tasks. In her

survey on theories, methods and tools in program comprehension, Storey notices that

the characteristics that influence cognitive strategies used by programmers, influence

the requirements or supporting tools as well. As an example, top-down and bottom-up

strategies introduced in program comprehension models are reflected in a supporting

tool so that the tool should support “browsing from high-level abstractions or concepts to

lower level details, taking advantage of beacons in the code; bottom-up comprehension

requires following control-flow and data-flow links” [Storey 2006].

Concept location is a subfield of program comprehension that deals with finding

code fragments that implement particular features and domain concepts in a program.

Concept location approaches can be divided into dynamic and static techniques [Dit

et al. 2013]. Dynamic techniques analyze execution traces and map them to code (see,

e.g., [Eisenberg and Volder 2005; Edwards et al. 2006]). Static techniques are based on

program dependencies and textual information within code (e.g., [Marcus et al. 2004;

Gay et al. 2009]). Concept location approaches are mostly interactive and iterative [Gay

et al. 2009], that is, a user initiates the process by formulating a domain concept as a

query. Queries are mapped to code using information retrieval methods, such as Latent

Semantic Indexing (LSI) (see, e.g., [Marcus et al. 2004]). The results of the query are then

evaluated by the user. If the results are not satisfactory, the user reformulates the query

and restarts the process. Both dynamic and static techniques have their limitations. Hy-

brid approaches are developed to address these limitations by using static information

to filter the execution traces (see, e.g., [Poshyvanyk and Marcus 2007b; Liu et al. 2007]).

As an example, in [Poshyvanyk and Marcus 2007b], the effectiveness and precision of

the feature location method is improved by combining LSI information retrieval tech-

nique and scenario-based probabilistic ranking (a dynamic technique). Poshyvanyk et

al. [Poshyvanyk and Marcus 2007a; Poshyvanyk et al. 2012] introduced a method that

combines formal concept analysis and LSI. By producing more relevant search results,

the method reduces the effort needed for locating concepts.

Clone detection techniques are used for locating clones in source code. Clone means

duplication of some piece of a source code, which is either intentionally copied by a pro-
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grammer from somewhere else in the same software to be reused directly or with some

small modifications, or is created by him or her without awareness of the existence of the

same code elsewhere in the software. Since clones make the maintenance task more dif-

ficult, clone detection is an essential task in software engineering. Several techniques for

detecting clones have been introduced, including the following: textual approach (text-

based comparison between code fragments, see, e.g., [Marcus and Maletic 2001; Ducasse

et al. 1999]), lexical approach (the source code is transformed into a sequence of tokens

and these are compared, see, for example, [Basit et al. 2007; Baker 1995]), metrics-based

approaches (the comparison is based on the metrics collected from the source code, as,

for example, in [Mayrand et al. 1996; Kontogiannis et al. 1996]), tree-based approaches

(clones are found by comparing the subtrees of the abstract syntax tree of a program,

see, e.g., [Baxter et al. 1998; Yang 1991]) and program dependency graphs (the program

is represented as program dependency graphs and isomorphic subgraphs are reported

as clones, as, e.g., in [Krinke 2001; Komondoor and Horwitz 2001]). Roy et al. [Roy et al.

2009] and Bellon et al. [Bellon et al. 2007] compare and evaluate a number of different

clone detection techniques and tools in their surveys.

Algorithm recognition is close to clone detection, since the purpose of algorithm recog-

nition is to look for similar patterns of algorithmic code in the source code, in the same

way that clone detection techniques look for similar code fragments. Similarity in clones

is either based on semantic or program text. Detecting semantic similarity is an unde-

cidable problem in general and therefore most approaches and surveys focus on program

text similarity [Bellon et al. 2007; Tiarks et al. 2011]. From this perspective, clones can

be classified into four types [Tiarks et al. 2011]: 1) exact clone (type-1) is an exact copy

of consecutive code fragments without modifications (except for whitespace and com-

ments); 2) parameter-substituted clone (type-2) is a copy where only parameters (identi-

fiers or literals) have been substituted; 3) structure-substituted clone (type-3) is a copy

where program structures (complete subtrees in the syntax tree) have been substituted.

For parameter-substituted clones, a leaf in the syntax tree can be replaced by another

leaf, whereas for structure-substituted clones, larger subtrees can be substituted; and 4)

modified clone (type-4) is a copy whose modifications go beyond structure substitutions

by added and/or deleted code. Recognizing algorithms from source code can be consid-

ered as the type-4 and semantic clones, where according to the recent surveys [Bellon

et al. 2007; Tiarks et al. 2011] the current techniques and tools perform poorly.

Machine learning methods are widely used in education to explore and understand the

data gathered from educational setting. For example, in [Amershi and Conati 2009], a

combination of supervised and unsupervised classification is used to build student mod-

els for exploratory learning environments and to identify how students behave while in-

teracting with these environments. The researchers in [Miksatko and Mclaren 2008] use

inexact graph matching, text analysis and machine learning classifiers to automatically
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detect pedagogically interesting patterns produced while students interact with tools for

e-discussions. In [Drummond and Litman 2010], supervised machine learning, namely

the C4.5 decision tree algorithm, is used to automatically detect student zoning out (i.e.,

“thinking about other things while [performing a learning task]”, as describe in [Drum-

mond and Litman 2010]). The researchers in [Dominguez et al. 2010] used data mining

in an e-learning system to generate individualized feedback for students in order to help

them find course notes relevant to their problems. Labeke et al. [Labeke et al. 2008] use

string similarity metrics to compare and rank timelines of lifelong learners. The authors

define timelines as a chronological record of lifelong learners’ relevant life episodes and

argue that by making it possible to define and share timelines, their system support

lifelong learners to develop their common ideas together.

Metzger and Wen [Metzger and Wen 2000] introduce methods for algorithm recogni-

tion and replacement with a focus on development of compilers for parallel processing

machines as an area of source code optimization. The aim is to improve existing algo-

rithm implementations or replace them with more efficient ones that compute the same

results.

3. THE OVERALL METHOD

Figure 1 illustrates the overall process of building a classification tree for algorithm

recognition and evaluating the performance of the classification presented in this paper.

The process consists of four steps, which are represented as rectangles with white back-

ground. Ellipses illustrate the inputs and outputs of the process. The first step is “Detect

schemas and related beacons”, where the input program is analyzed for recognizing pro-

gramming schemas and extracting the implemented algorithm from the program. In

order to detect schemas and distinguish between two or more algorithm implementa-

tions that have similar schemas, it is also necessary to compute the beacons related to

these schemas in this step. We will demonstrate this in the case of sorting algorithms in

Sections 4. If the implemented algorithm is extracted successfully, the output of the first

step is “Detected algorithm”, the pure algorithm implementation code with application

data processing code left out. Otherwise the output is the same original input program.

The second step, “Extract and store characteristics and beacons” computes the charac-

teristics and beacons that are not computed yet. The output of this step is a vector repre-

sentation of the input algorithm, which is stored in a database to be used in the following

step. Because this is the learning data, type information of algorithm implementations

is provided by a user to annotate each instance by its correct type. This is illustrated

by the “Type information” input in Figure 1 that is inserted into the learning data us-

ing a dashed arrow. The third step is “Build a decision tree”, where the type-annotated

vector representations of the analyzed algorithms are used by the C4.5 algorithm to con-

struct a classification tree. The final step evaluates the estimated performance of the
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Figure 1. An overview of the process of building a decision tree and evaluating the estimated performance of
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Figure 2. An overview of the process of recognizing previously unseen algorithm implementations

classification using leave-one-out cross-validation technique and outputs the results of

the evaluation.

Note that Steps 3 and 4 in Figure 1 are independent from each other, that is, the

evaluation of the performance of the classification by cross-validation can be carried

out before building a classification tree. We, however, discuss the steps in the presented

order, as this clarifies the structure of the paper. Note also that Steps 1 and 2 of the

figure are executed as many times as there are instances in the data set, whereas Steps

3 and 4 only once.

Figure 2 shows the process of recognizing previously unseen instances of a data set.

The steps with white background are identical in this process and the process illus-

trated in Figure 1. The different steps are represented by gray rectangles. The pro-

cess starts with testing the input program automatically by an automatic assessment

system that gives feedback about the correctness of the program in terms of black-box

testing. This preprocessing phase is performed as a part of input data validation. Only

programs which pass all tests are processed further, that is, our method only aims at

recognizing algorithms which work correctly. After this, the input program is processed

for schema detection and characteristic and beacons extraction and storing in the same

way discussed above (Steps 1 and 2). Since the resulted vector representations of input

algorithm implementations are not known, there is no type information associated with

them. Recognizing unknown algorithm implementations is performed in Step 3 “Recog-

nize unseen instances”, which gets a readily constructed classification tree as an input.
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Each instance of the given unseen data set is assigned a type by traversing the classifi-

cation tree according to the characteristics and beacons of that instance. The output of

this final step is the input algorithm implementation labeled by the identified type.

We have previously conducted an empirical study to classify the instances of an un-

seen data set using another classification tree, as reported in [Taherkhani et al. 2012a].

Conducting a similar empirical study for the classification tree described in the present

study is out of the scope of this paper. Instead, as discussed above, we evaluate the es-

timated performance of the classification using leave-one-out cross-validation (Step 4 in

Figure 1).

In this section, we describe the first and second steps of the process of Figure 1 in

general. In the next section, we show how these steps work in practice by applying them

to sorting algorithms. Sections 6 and 7 explain the third and fourth steps of the process

for sorting algorithms, respectively.

It should be noted that we use the term characteristics to mean the common features

that are used for all fields of algorithms (e.g., software metrics), whereas by beacons we

mean the features that are specific to a particular field of algorithms. We compute the

beacons and use them together with the characteristics to be able to differentiate be-

tween different types of algorithms in a particular algorithm field, as well as between

the algorithms of that field and other fields. We will present the computed beacons for

sorting algorithms in Section 4. The computed characteristics are discussed in this sec-

tion.

3.1. Detecting schemas

We have developed a technique for automatic schema detection that is based on the

studies about how programming schemas are created and used in different program-

ming tasks, such as program comprehension. Programming schemas can be considered

as formalized knowledge structures [Détienne 1990]. They are high-level programming

knowledge that abstract detailed knowledge, and therefore, their possession allows ex-

perts to understand programs that perform the same tasks, but differ in low-level imple-

mentation details.

In their study on programming schemas, Soloway and Ehrlich concluded that experts

perform significantly better in program comprehension tasks with programs that use

stereotypical schemas (they use the term plans for schemas) and conform to rules of pro-

gramming discourse. The reason is that experts have developed programming schemas

and conventions and they use them in their tasks. On the other hand, for novices,

whether the target programs use stereotypical schemas and conform to rules of pro-

gramming discourse or not, has not much impact on performance, as they lack schemas

[Soloway and Ehrlich 1984].
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In the same way that experts use schemas as abstract structures to recognize pro-

grams performing the same task but implemented with different details, a tool can be

developed that stores these high level schemas in its knowledge base and uses them to

recognize its inputs. High-level schemas are first extracted from the input program ig-

noring implementation details. The extracted schemas are then matched against those

schemas from the knowledge base. The knowledge base consists of the schemas of all the

algorithms that the tool supports. If the high-level schemas of two or more algorithms

are similar, algorithm-specific beacons can be used to distinguish between them. We will

explain beacons in the next subsection.

Note that a single schema could sufficiently represent simple algorithms, like Bubble

sort, in the knowledge base. However, for more complex algorithms, we might need to in-

clude several schemas or subschemas in the knowledge base in order to recognize various

implementation instances of these algorithms. These algorithms can be implemented in

several considerably different ways. As an example, while different implementations of

Quicksort follow the same basic idea (partition of the given list followed by recursive

execution of the algorithm for both partitions), they might differ, for example, in par-

titioning part, due to using different patterns of loops and swap operations. We will

discuss this more in Section 4, where we present the schemas for sorting algorithms. For

a more comprehensive description of the presented schema detection technique, see our

previous paper [Taherkhani 2011a].

Note that in order to identify schemas and distinguish between the algorithms and

algorithm variations that may have similar schemas, we need to identify the schema-

related beacons as algorithm-specific features in the first step of Figure 1. We will ex-

plain this in the context of sorting algorithms and their variations in Section 4.

3.2. Creating characteristic and beacon vectors

We use the term characteristics for the shared features of all algorithms and the term

beacons to denote algorithm-specific features that can be used to distinguish a particular

algorithm from other algorithms.

We divided the characteristics into the following three groups: numerical characteris-

tics, truth value characteristics and structural characteristics, as shown in Table I. The

numerical characteristics are common software metrics that represent features of the

code as positive integers. The first six characteristics in the table are Halstead’s met-

rics [Halstead 1977]. Structural characteristics enable us to identify language constructs

and different patterns as well as algorithm-specific beacons.

We have developed a prototype named Aari that can compute the characteristics and

beacons for programs written in Java. The output of this step of computing the character-

istics and beacons for a target algorithm implementation is a new representation of the

algorithm implementation. That is, the algorithm implementation is now converted into

77 Journal of Educational Data Mining, Volume 5, No 2, 2013



Table I. The numerical, truth value and structural characteristics

Numerical characteristics Description
N1 Total number of operators.
N2 Total number of operands.
n1 Number of unique operators.
n2 Number of unique operands.
N Program length (N = N1 + N2).
n Program vocabulary (n = n1 + n2).
NAS Number of assignment statements.
MCC Cyclomatic complexity (i.e., McCabe complexity) [McCabe 1976].
LoC Lines of code.
NoV Number of variables.
NoL Number of loops.
NoNL Number of nested loops.
NoB Number of blocks.
Truth value characteristics
Recursive Whether the algorithm uses recursion.
Tail recursive Whether the algorithm is tail recursive.
Roles of variables Roles of the variables in the program.
Auxiliary array Does the algorithm use an auxiliary array (for the

algorithms that use arrays in their implementation).
Structural characteristics
Block/loop information Information about blocks and loops, their starting and

ending lines, length and interconnection between them
(how they are positioned in relation to each other).

Loop counter information Information about initializing and updating the value
of loop counters. This allows us to determine, as an
example, incrementing and decrementing loops.

Dependency information Direct and indirect dependencies between variables
(variable i is directly dependent on variable j, if i gets
its value directly from j. If there is a third variable k
on which j is directly or indirectly dependent, i also
becomes indirectly dependent on k. A variable can be
both directly and indirectly dependent on another one).

a characteristic- and beacon-vector, which is a technical definition of the implementation.

For recognizing the target algorithm, we need to recognize this technical definition.

The importance of beacons in programming and program comprehension related tasks

is emphasized by several program comprehension models. Soloway and Ehrlich [Soloway

and Ehrlich 1984] call beacons as critical lines and define them as highly informative

lines that can be considered as important representative of a plan. Existence of critical

lines in a program strongly suggests presence of the corresponding plan in that program.

Therefore, critical lines help experts recognize and verify plans. Brooks [Brooks 1983]

defines beacons as statements that suggest existence of a specific structure in a program.

For example, using swap operation particularly inside a pair of loops is an indication of

sorting elements of an array.

One of the beacons that appeared very useful in our method is roles of variables which

we explain next.

3.3. Roles of variables

Roles of variables are abstracts patterns, how variables are used in programming. These

patterns recur in different programs, and can be recognized as a set of standard ways of

using variables [Sajaniemi 2002]. For example, a variable that is used for storing a value

in a program for a short period of time can be assigned a temporary role. As Sajaniemi

and Navarro Prieto argue, roles of variables are a part of programming knowledge that
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have remained tacit [Sajaniemei and Prieto 2005]. Experts and experienced program-

mers have always been aware of existing variable roles and have used them, although

the concept has never been articulated. Giving an explicit meaning to the concept makes

it a valuable tool that can be used in teaching programming to novices by showing the

different ways how variables can be used in a program.

Studies carried out to investigate the impact of using roles of variables in education

show that when utilized in elementary programming courses, roles provide a conceptual

framework for students that helps them construct programs and comprehend them bet-

ter [Kuittinen and Sajaniemi 2004; Byckling and Sajaniemi 2006; Sajaniemi and Kuit-

tinen 2005]. Using roles in programming courses also helps students learn strategies

related to deep program structures (“knowledge concerning data flow and function of

the program reflect deep knowledge which is an indication of a better understanding of

the code” [Kuittinen and Sajaniemi 2004]) as opposed to surface knowledge (“program

knowledge concerning operations and control structures reflect surface knowledge, i.e.,

knowledge that is readily available by looking at a program” [Kuittinen and Sajaniemi

2004]). Although roles of variables were originally introduced to help students learn pro-

gramming, the concept can offer an effective and unique tool to analyze a program for

different purposes. In our research, we have extended the application of roles of variables

by applying them in the problem of algorithm recognition.

As reported in [Sajaniemi 2002], Sajaniemi identified nine roles that cover 99% of all

variables used in 109 novice-level procedural programs. Currently, based on a study on

applying the roles in object-oriented, procedural and functional programming [Sajaniemi

et al. 2006], a total of 11 roles are recognized. These roles are presented in Table II1. Note

that the three last roles shown in the table are related to data structures.

Roles are cognitive concepts [Ben-Ari and Sajaniemi 2004; Gerdt and Sajaniemi 2004],

implying that human inspectors may have a different interpretation of the role of a single

variable. However, as Bishop and Johnson [Bishop and Johnson 2005] and Gerdt [Gerdt

and Sajaniemi 2006] describe, roles can be analyzed automatically using data flow anal-

ysis and machine learning techniques.

We used the tool developed by C. Bishop and C. G. Johnson [Bishop and Johnson 2005]

for automatic detection of roles. After several improvements, the tool is now able to

detect the roles we use as beacons in this paper very accurately.

4. APPLYING THE METHOD TO SORTING ALGORITHMS

In this section, we discuss the application of the method to sorting algorithms. We first

present the schemas for the analyzed sorting algorithms. For more information about

1See the roles of variables Home Page (http://www.cs.joensuu.fi/∼saja/var roles/) for a more comprehen-
sive information on roles.
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Table II. The roles of variables and their descriptions

Role Description
Stepper A variable that systematically goes through a succession of values.

Temporary A variable that holds a value for a short period of time.

Most-wanted holder A variable that holds the most desirable value that is found so far.

Most-recent holder A variable that holds the latest value from a set of values that is
being gone through, and a variable that holds the latest input value.

Fixed value A variable that keeps its value throughout the program.

One-way flag A variable that can have only two values and once its value has
been changed, it cannot get its previous value back again.

Follower A variable that always gets its value from another variable, that is,
its new values are determined by the old values of another variable.

Gatherer A variable that collects the values of other variables. A typical
example is a variable that holds the sum of other variables in a
loop, and thus its value changes after each execution of the loop.

Organizer A data structure holding values that can be rearranged is a typical
example of the organizer role. For example, an array to be sorted
in sorting algorithms has an organizer role.

Container A data structure into which elements can be added or from which
elements can be removed.

Walker Is used for going through or traversing a data structure.

the schemas of sorting algorithms see [Taherkhani 2011a]. After this, we discuss the

beacons specific to the sorting algorithms that we used to build the classification tree.

4.1. Schemas for sorting algorithms

We present the schemas for Bubble sort, Insertion sort, Selection sort, Quicksort and

Mergesort. These algorithms have been chosen for the analysis, because 1) they are

commonly used in textbooks of algorithms, and 2) they form two clearly different groups

of algorithms which internally have very similar structures. The latter case emphasizes

the need to be able to differentiate between closely related algorithms. To complicate the

matter further, we discuss the schemas of two variations: Insertion sort WS (Insertion

With Swap) and Selection sort WILS (Selection With Inner Loop Swap). Insertion sort

WS is a variation of Insertion sort where instead of shifting the elements in the inner

loop, they are swapped. Selection sort WILS is a variation of Selection sort that swaps

each element that is in a wrong position compared to the element pointed by the loop

counter of the outer loop, instead of storing its position and swap it once in the outer

loop. To make the difference clear, a typical implementation of standard Selection sort

and Selection sort WILS is shown in Figure 3.

The implementations of Insertion sort WS and Selection sort WILS use unnecessary

swaps and thus are somewhat more inefficient than the implementations of the stan-

dard corresponding algorithms. We noticed these variations in students’ submissions in

our work reported in [Taherkhani et al. 2012b], where we classified students’ implemen-

tations of sorting algorithms to see what kind of misconceptions they have related to
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these algorithms. Though we recognize that tuning selection sort or insertion to gain

efficiency is not a value as such, compared to switching to a more efficient algorithm like

Quicksort, these cases can be used to demonstrate small performance issues in coding

in general. We therefore set a goal that we could use the gained information to develop

methods and tools to give automatic feedback on the students’ problematic solutions.

int i, j, temp;     int i, j, temp, min; 

for(i = 0; i < table.length-1; i++){   for(i = 0; i < table.length-1; i++){ 

 for(j = i+1; j < table.length; j++){ min = i; 

  if(table[j] < table[i]){ for(j = i+1; j < table.length; j++){ 

 temp = table[i]; if(table[j] < table[min]){ 

 table[i] = table[j]; min = j; 

 table[j] = temp; } 

 }  } 

 } temp = table[min]; 

} table[min] = table[i]; 

 table[i] = temp; 

       } 

 Fig. 3a)       Fig. 3b) 

Figure 3. Fig. 3a shows a typical implementation of Selection sort WILS that uses swap in the inner loop
instead of the outer loop. A typical implementation of a standard Selection sort is shown in Fig. 3b

The schemas for Bubble sort, Insertion sort, Selection sort, Insertion sort WS and Se-

lection sort WILS are illustrated in Figure 4. Figure 5 shows the schemas for Quicksort

and Mergesort. The nesting relationship between the loops and blocks are depicted by

the indentations. In [Taherkhani et al. 2012b] and [Taherkhani 2011a], we have dis-

cussed the implementational definitions for these sorting algorithms. For example, im-

plementations of Bubble sort include two nested loops and a swap operation performed

in the inner loop. Moreover, the two items that are compared in the inner loop in each

pass are adjacent. The schemas illustrated in Figures 4 and 5 further abstract these

implementational definitions.

As Figure 4 shows, the schemas of Bubble sort, Insertion sort WS and Selection sort

WILS are similar. We use algorithm-specific beacons to differentiate between them. Im-

plementations of Insertion sort WS are distinguished using the following beacons. The

outer loop of the two nested loops used in these implementations is incrementing and

the inner loop decrementing. Moreover, the inner loop counter is initialized to the value

of the outer loop counter. The beacon that differentiates between implementations of

Bubble sort and Selection sort WILS is that in Bubble sort, as discussed above, the two

compared elements in the inner loop in each pass are adjacent, whereas this is not the

case in Selection sort WILS implementations (see [Taherkhani et al. 2012b] for more

detailed discussion about these features of these algorithms).

In addition to the variations discussed above, in this paper we include two optimized

versions of Quicksort and Bubble sort algorithms as well. For Quicksort, the optimiza-

tion concerns the strategy of selecting the pivot item. We cover two classes of Quicksort

implementations. The first class includes the Quicksort implementations that select sim-

ply the left or right end of the given array as the pivot (we call the implementations of
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Figure 5. Schemas for implementations of Quicksort and Mergesort. Three dots shown in the Mergesort
schemas indicate that merging may have other schemas as well

this class simply Quicksort). This choice of the pivot item results in a worst-case perfor-

mance on an already sorted array. The second class (i.e., the optimized class) includes

the Quicksort implementations that select the middle index or the median of the first,

last and middle items of the given array as the pivot (for the rest of the paper we call

the implementations of this class Quicksort EP, i.e., Quicksort with Efficient Pivot se-

lection). Dividing Quicksort implementations into these two different classes allows us

to give feedback to students about their choice of pivot. In the same way, we divided

the implementations of Bubble sort into two classes: Bubble sort WF (Bubble sort With

Flag) and Bubble sort. The implementations of the class Bubble sort WF are optimized

by using a boolean value as a one-way flag role to indicate whether a swap is done in

the inner loop. If no swap is done, the array is sorted and the algorithm can terminate.

The implementations of the class Bubble sort do not use such a boolean value, and thus

always do all the comparisons, even if the given array is already sorted. Even though

students are not encouraged to use Bubble sort algorithm at all, this division of Bub-
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ble sort implementations allows us to give more detailed feedback to students about the

algorithm they have implemented.

Note that the schemas for the implementations of Quicksort and Quicksort EP are the

same, as they are for the implementations of Bubble sort and Bubble sort WF. These

optimized and non-optimized versions are separated by beacons, as we will discuss next.

4.2. Beacons for sorting algorithms

Based on the analyses, we found a set of beacons specific to the analyzed sorting al-

gorithms that can be used to separate these algorithms from each other, as well as to

distinguish between these and other algorithms. These beacons are computed automat-

ically and used along with the characteristics discussed in Section 3 in building the

decision tree that we will present in Section 6.

There are several beacons and as we will discuss in Section 6, not all of them are used

as a test in the decision tree. The C4.5 algorithm selects those beacons that can separate

the algorithm implementations of the learning data best. The beacons and the algorithm

they primarily indicate are as follows:

— MWH: whether the implementation of the algorithm includes a variable appearing in

a most-wanted holder role. MWH mainly indicates implementations of Selection sort.

— One way flag: whether the implementation includes a variable appearing in a one-way

flag role. This mainly indicates implementations of Bubble sort WF.

— TEMP: whether the implementation includes a variable appearing in a temporary role.

This mainly indicates implementations of the algorithms that use swap operations.

— In-place: whether or not the algorithm implementation uses extra memory. This indi-

cates implementations of the algorithms that do not use auxiliary arrays.

— Two nested loops: whether the implementation uses two nested loops. This mainly in-

dicates implementations of the non-recursive sorting algorithms and their variations.

— Swap outer loop: whether a swap operation is used in the outer loop of the two nested

loops. This mainly indicates implementations of Selection sort.

— Swap inner loop: whether a swap operation is used in the inner loop of the two nested

loops. This mainly indicates implementations of Bubble sort, Bubble sort WF, Insertion

sort WS and Selection sort WILS.

— OIID: Outer loop Incrementing Inner Decrementing; whether from the two nested

loops used in the implementation of the algorithm, the outer loop is incrementing and

the inner decrementing. This mainly indicates implementations of Insertion sort and

Insertion sort WS.

— IITO: Inner loop counter Initialized To Outer loop counter; whether from the two

nested loops used in the implementation of the algorithm, the inner loop counter is
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initialized to the value of the outer loop counter. This mainly indicates implementa-

tions of Insertion sort and Insertion sort WS.

— Shift inner loop: whether a shift operation is used in the inner loop of the two nested

loops. This mainly indicates implementations of Insertion sort.

— Outer loop ini one: whether from the two nested loops used in the algorithm, the outer

loop counter is initialized to one. This mainly indicates implementations of Insertion

sort and Insertion sort WS. In these implementations, often the first element is sup-

posed to be sorted and the second element is compared with the first one and changed

with it if needed. Some implementations, however, initialize the outer loop counter to

zero and thus perform a useless extra check in the inner loop.

— Adjacent compared: whether the two compared elements in the inner loop are adjacent.

This mainly indicates implementations of Bubble sort and Bubble sort WF.

— Pivot: whether the implementation includes pivot selection. This mainly indicates im-

plementations of Quicksort and Quicksort EP.

— Efficient pivot: whether the implementation includes efficient pivot selection. This

mainly indicates implementations of Quicksort EP.

5. DATA SET

In this work, our goal has been to build a decision tree classifier to classify implementa-

tions of the aforementioned sorting algorithms and their variations. Therefore, the data

set used for training the classification tree includes only the implementations of these

sorting algorithms.

The data we used consists of two data sets: the MULTI-SOURCE data set and the

SUBMISSIONS data set. We have collected and used these data sets previously to build

a classification tree and evaluate the performance of the classification (the data set

MULTI-SOURCE used in [Taherkhani 2011b]), to categorize student-implemented sort-

ing algorithms and their variations (the data set SUBMISSIONS used in [Taherkhani

et al. 2012b]), to validate Aari system with authentic students’ submissions (the data set

SUBMISSIONS used in [Taherkhani et al. 2012a]), and to evaluate the performance of

the schema detection techniques (a combination of the data sets MULTI-SOURCE and

SUBMISSIONS used in [Taherkhani 2011a]). The instances of the first data set, that

is, the MULTI-SOURCE data set, were collected mainly from textbooks and the Web.

The second data set (SUBMISSIONS) includes the authentic student submissions in a

first year course on data structures and algorithms. The implementations of the data

set SUBMISSIONS were collected during two different sorting algorithm assignments;

at the very beginning of the course before teaching sorting algorithms, and after giving

a lecture on sorting algorithms. The number and percentage of the implementations of

each algorithm type for each data set and in total is shown in Table III.
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Table III. The number and the percentage of the implementations of each type
of sorting algorithm in the MULTI-SOURCE and SUBMISSIONS data sets and in
total

Algorithm MULTI-SOURCE SUBMISSIONS Total
Bubble sort 26 (12%) 14 (9%) 40 (11%)
Bubble sort WF 15 (7%) 15 (9%) 30 (8%)
Insertion sort 43 (21%) 17 (11%) 60 (16%)
Insertion sort WS 9 (4%) 10 (6%) 19 (5%)
Selection sort 43 (21%) 36 (23%) 79 (21%)
Selection sort WILS 0 (0%) 13 (8%) 13 (4%)
Quicksort 22 (11%) 15 (9%) 37 (10%)
Quicksort EP 17 (8%) 19 (12%) 36 (10%)
Mergesort 34 (16%) 20 (13%) 54 (15%)
Total 209 159 368

6. CLASSIFICATION TREE
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Figure 6. The decision tree classifier generated by the C4.5 algorithm for classifying sorting algorithms and
their variations

Classification trees or decision tree classifiers can be used to identify and classify in-

stances of a set into the right classes. Classification trees can be constructed using su-

85 Journal of Educational Data Mining, Volume 5, No 2, 2013



pervised learning, where first known instances of a training set are used to learn how to

classify these instances based on their attributes. After being constructed and trained,

classification trees are able to classify the instances of a previously unseen set based on

what they have learned in the learning phase. The C4.5 algorithm [Quinlan 1993] is a

well-known and commonly used algorithm for constructing classification trees. By using

the appropriate techniques for finding the attributes that can separate the classes in the

best possible way and for finding the right size for the classification tree, the C4.5 algo-

rithm is able to build understandable trees with highly accurate classification results.

Figure 6 shows the classification tree constructed by the C4.5 algorithm2 from the

instances described in Section 5. Aari analyzes each implementation of the data set and

stores the extracted characteristics and beacons in a database. Since the classification

tree is produced based on supervised learning and the instances of the data set are used

as the training data, each implementation is labeled by its correct type in the database

(see Figure 1).

The white ellipses in Figure 6 illustrate the internal nodes that are the tests that

determine the splits. The gray rectangles depict the leaves, that is, different sorting al-

gorithms to be recognized. The arcs are labeled with the values that show the outcome

of the test performed in each internal node. The classification tree has 12 leaves and 11

internal nodes. The beacons used as the tests to build the classification tree are the fol-

lowing: Recursive, Shift inner loop, Efficient pivot, Tail recursive, One way flag, MWH,

IITO, OIID Swap inner loop, and Lines of code (see Section 4 for the explanations of

these beacons). The beacon Recursive is the best split, which is performed in the root. It

divides the instances into two recursive and non-recursive groups.

For the recursive instances, the next beacon used as a test is Efficient pivot, which

separates the Quicksort implementations that use efficient pivots, from the Quick-

sort implementations that do not, and from the Mergesort implementations. The bea-

con Tail recursive is used next for separating the Quicksort implementations from

the Mergesort implementations. There were four implementations of Mergesort in the

student implementations that were incorrectly recognized as tail recursive. The test

Lines of code is used to separate these Mergesort implementations from the Quicksort

implementations. In addition to the algorithm-specific code, these implementations (like

all the other students’ implementations of the first sorting algorithm assignment; see

the data description in Section 5) included a template provided to the students that con-

tained a Java main method, a method that generated an array with random integers

and a method that printed the elements of the array before and after sorting.

For the non-recursive instances, the first beacon that is used as a test is

Shift inner loop. This beacon separates the implementations of Insertion sort from the

2Weka data mining software includes J48, an open source Java implementation of the C4.5 algorithm, which
we used to build the classification tree. URL: http://www.cs.waikato.ac.nz/∼ml/weka/
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implementations of the other non-recursive sorting algorithms and their variations. The

next beacon is the variable role One way flag, which separates the implementations of

optimized Bubble sort algorithm from the other instances. The variable role MWH is

the next beacon that is used to separate the implementations that include most-wanted

holder role from those that do not. In the students’ implementations, there were a few

implementations of Selection sort WILS that include MWH role, since they store the

value of the smallest (or largest) element or its position in each pass in the inner loop

(as in a standard Selection sort algorithm), even though they do not use it to swap in the

outer loop. These implementations perform swap in the inner loop and exchange each el-

ement smaller (or larger) than the element pointed by the loop counter of the outer loop

in each pass (see Figure 3). The beacon Swap inner loop is used next to separate these

inefficient Selection sort implementations from the standard Selection sort implemen-

tations. For those instances that do not have most-wanted holder role, IITO is the next

beacon used as a test to separate Bubble sort implementations from those instances that

include this beacon. In Bubble sort implementations, from the two nested loops used in

the implementation, the inner loop counter is not initialized to the value of the outer

loop counter, but rather to zero or to the length of the given array. The next beacon used

for distinguishing between those implementations that include IITO beacon (i.e., the im-

plementations of Insertion sort WS and Selection sort WILS) is OIID. In Insertion sort

WS, from the two nested loops used in the implementation of the algorithm, the outer

loop is incrementing and the inner decrementing, whereas the implementations of Selec-

tion sort WILS do not have this beacon. However, two instances of Insertion sort WS in

students’ work are implemented in a way that this beacon is not recognized in them. As

the results, the C4.5 algorithm uses the beacon Swap inner loop to differentiate between

these implementations and the implementations of Selection sort WILS. These two stu-

dent implementations of Insertion sort WS correctly shift the elements in the wrong

positions to right, but after each shifting, add the element pointed by the loop counter

of the outer loop into this recently shifted position in the inner loop, instead on doing it

once in the outer loop after all the necessary shifts are performed in the inner loop. This

make these implementations inefficient and thus we classify them as Insertion sort WS.

Figure 7 shows the implementation of these variations and compares it with a typical

implementation of a standard Insertion sort.

From the characteristics and beacons discussed in Sections 3 and 4, only 10 are se-

lected by the C4.5 algorithm for building the classification tree. The C4.5 algorithm tries

to minimize the depth of the classification tree and constructs an accurate classification

tree by using a minimum number of beacons. Building a manual classification tree that

fulfills these requirements is a very difficult and tedious task and to do it, we need to use

appropriate algorithms like the C4.5 algorithm.
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int i, j, target;     int i, j, target; 

for(i = 1; i < table.length; i++){   for(i = 1; i < table.length; i++){ 

 target = table[i]; target = table[i]; 

 j = i; j = i; 

 while(j > 0 && table[j-1] > target){ while(j > 0 && table[j-1] > target){ 

 table[j] = table[j-1]; table[j] = table[j-1]; 

 j--; j--; 

 table[j] = target; } 

 }  table[j] = target; 

}       } 

  

 Fig. 7a)       Fig. 7b) 

Figure 7. Fig. 7a shows an implementation of Insertion sort WS that adds the element pointed by the loop
counter of the outer loop into each shifted position in the inner loop. Fig. 7b illustrates a typical implementation
of a standard Insertion sort

The classification tree of Figure 6 is not able to classify algorithms other than the

analyzed sorting algorithms, as the purpose of building the tree has been to find a set of

most suitable beacons for classifying these sorting algorithms. The learning data that is

used to train the classification tree included only the implementations of these sorting

algorithms. Recognizing other algorithms would require computing the related schemas

and beacons and building the appropriate classification tree that can recognize them

based on these algorithm-specific schemas and beacons.

Each class represented as a leaf in a classification tree can be defined by a set of rules

which covers the corresponding path from the root to that leaf [Quinlan 1993]. This al-

lows us to present the beacon-based technical definitions of the analyzed algorithms and

their variations as rules. The nine classes included in the classification tree of Figure 6

can thus be defined by the sets of rules illustrated in Table IV. As an example, imple-

mentations of Selection sort are those that are not recursive, do not have shift in the

inner loop, do not have one-way flag role, have MWH role and do not have swap in the

inner loop.

Table IV. Definition of the analyzed algorithms and their variations as rules extracted from the decision tree classifier
of Figure 6

Algorithm class Rule
Selection sort ¬ Recursive ∧ ¬ Shift inner loop ∧ ¬ One way flag ∧ MWH ∧ ¬ Swap inner loop
Insertion sort ¬ Recursive ∧ Shift inner loop
Bubble sort ¬ Recursive ∧ ¬ Shift inner loop ∧ ¬ One way flag ∧ ¬ MWH ∧ ¬ IITO
Quicksort Recursive ∧ ¬ Efficient pivot ∧ Tail recursive ∧ Lines of code <= 73
Mergesort Recursive ∧ ¬ Efficient pivot ∧ (¬ Tail recursive ∨ (Tail recursive

∧ Lines of code > 73))
Selection sort WILS ¬ Recursive ∧ ¬ Shift inner loop ∧ ¬ One way flag ∧((MWH ∧ Swap inner loop)

∨ (¬ MWH ∧ IITO ∧ ¬ OIID ∧ Swap inner loop))
Insertion sort WS ¬ Recursive ∧ ¬ Shift inner loop ∧ ¬ One way flag ∧ ¬MWH ∧ IITO ∧ (OIID

∨ (¬ OIID ∧ ¬ Swap inner loop))
Bubble sort WF ¬ Recursive ∧ ¬ Shift inner loop ∧ One way flag
Quicksort EP Recursive ∧ Efficient pivot

7. ESTIMATED CLASSIFICATION PERFORMANCE

In this section, we present the empirical study conducted for evaluating the estimated

classification performance. The results of the empirical study conducted for evaluating

the performance of the schema detection method (i.e., the first step of the method) are
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Table V. Results of the classification performance

Algorithm Correct False Correct% False% Total
Bubble sort 38 2 95.0 5.0 40
Insertion sort 60 0 100.0 0.0 60
Selection sort 79 0 100.0 0.0 79
Mergesort 52 2 96.3 3.7 54
Quicksort 35 2 94.6 5.4 37
Insertion sort WS 15 4 78.9 21.1 19
Selection sort WILS 12 1 92.3 7.7 13
Bubble sort WF 30 0 100.0 0.0 30
Quicksort EP 36 0 100.0 0.0 36
Total 357 11 97.0 3.0 368

reported in [Taherkhani 2011a] (88.3% of the schemas were detected accurately). Thus,

in this paper we focus on the performance of the classification.

Cross-validation is a well-known technique for evaluating estimated classification per-

formance. In this technique, the instances of the data set are divided into N subsets.

These subsets consist of both training and validation instances. In order to evaluate the

classification performance, N different classification trees are generated. From the to-

tal N subsets, N − 1 subsets are used as training instances to generate a classification

tree and one subset is used as the validation instance to evaluate the performance of

the generated tree. Therefore, in cross-validation technique, all the subsets participate

in generating a tree as the training instances and in evaluating the performance of the

classification model as the validation instances. We use leave-one-out cross-validation

technique to evaluate the estimated classification performance. In leave-one-out cross-

validation, the data set is divided into as many subsets as there are instances in the

data set. This uses the data set even more efficiently, as each instance of the data set is

once left out to be used for validating the tree generated by the other instances of the

data set. There are total of 368 implementations in our data set, thus 368 classification

trees are generated in total, using 367 implementations as the training instances and

one implementation as the validation instance for each tree.

As shown in Table V, the estimated true positive rate calculated by the leave-one-out

cross-validation on the data set discussed above is 97.0%. From the 368 instances, the

number of the correctly classified instances is 357 and the number of the incorrectly

classified instances is 11 (i.e., 3.0%). The total number of the implementations of each

algorithm is shown in the column Total. The number of the correctly classified imple-

mentations of each algorithm class is shown in the column Correct and the number of

the incorrectly classified implementations of each algorithm class is illustrated in the

column False. The percentage of the correctly and incorrectly classified implementations

of each class is depicted in the column Correct% and False%, respectively.

We use the following widely used metrics in order to discuss the results of the clas-

sification performance in more detail: True Positive (TP), False Positive (FP) and False

Negative (FN). A TP case occurs when an implementation of an algorithm is correctly

recognized. A FP case occurs when an implementation is incorrectly assigned to a class.
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Table VI. The value of different metrics that demonstrate the estimated classification
performance achieved by leave-one-out cross-validation method

Algorithm TP FP FN FNR TPR (recall) Precision Total
Bubble 38 4 2 0.050 0.950 0.905 40
Insertion 60 0 0 0 1 1 60
Selection 79 0 0 0 1 1 79
Merge 52 1 2 0.037 0.963 0.981 54
Quick 35 1 2 0.054 0.946 0.972 37
Insertion WS 15 1 4 0.211 0.789 0.938 19
Selection WILS 12 2 1 0.077 0.923 0.857 13
Bubble WF 30 1 0 0 1 0.968 30
Quick EP 36 1 0 0 1 0.973 36
Total 357 11 11 - - - 368

Table VII. The confusion matrix that shows how each instance is recognized as the result of leave-one-
out cross-validation method; the row headings indicate the actual type of each algorithm and the column
headings indicate what type it was recognized as

Classified Bub. Inser. Selec. Merge Quick Inser. Selec. Bub. Quick
as –> WS WILS WF EP
Bubble 38 0 0 0 0 1 1 0 0
Insertion 0 60 0 0 0 0 0 0 0
Selection 0 0 79 0 0 0 0 0 0
Merge 1 0 0 52 1 0 0 0 0
Quick 0 0 0 1 35 0 0 0 1
Insertion WS 2 0 0 0 0 15 1 1 0
Selection WILS 1 0 0 0 0 0 12 0 0
Bubble WF 0 0 0 0 0 0 0 30 0
Quick EP 0 0 0 0 0 0 0 0 36

Finally, a FN case occurs when an implementation that belongs to a class is not assigned

to it.

Moreover, based on these metrics, we calculate the following measures for further

discussing the performance: true positive rate (TPR), false negative rate (FNR) and preci-

sion. TPR (i.e., recall), is the proportion of correctly recognized positive case implementa-

tions from all implementations that should have been recognized as positive cases : TPR

= TP/(TP + FN). Correspondingly, FNR is the proportion of incorrectly rejected imple-

mentations from all implementations that should have been recognized as positive cases:

FNR = FN/(TP + FN). Precision is proportion of correctly recognized positive case im-

plementations from all implementations recognized as positive cases, that is, precision =

TP/(TP+FP) [Tan et al. 2006]. Table VI summarizes the results of the classification and

the values of the computed metrics for each algorithm class.

To discuss the correctly and incorrectly classified implementations, a confusion matrix

can be used. A confusion matrix is an N × N matrix, where N is number of classes. Each

instance Iij shows the instance that is from the class Ii, but is identified as the class

Ij [Tan et al. 2006]. Those instances positioned on the diagonal are identified correctly.

Since there are nine different algorithm classes in our empirical study, we have confusion

matrix of size 9 × 9.

As can be seen from Table VII, for example, from 40 Bubble sort implementations 38

are classified correctly and two are classified incorrectly, one as an implementation of

Insertion sort WS, and one as an implementation of Selection sort WILS. As another

example, from the 37 implementations of Quicksort, 35 implementations are classified
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correctly and two implementations are misclassified, one as a Mergesort and one as a

Quicksort EP. All the implementations of Insertion sort, Selection sort, Bubble sort WF

and Quicksort EP are classified correctly.

8. APPLICATION IN EDUCATION

Algorithms constitute the basic building blocks of computer science. They have an impor-

tant role in programming and data structure courses. Although in real-life programming

projects programmers often use library functions, students should learn the core topics

and key algorithms in practice. Deep learning of algorithms involves programming as-

signments for implementing algorithms, in addition to lectures. As a result, students

need to implement several algorithms in order to successfully complete programming

courses. Students’ implementations need to be checked and personal feedback and sug-

gestions for improvement should be given to students as an important part of learning.

However, assessing programming assignments manually is a laborious task. The method

introduced in this paper enables teachers to automatically analyze students’ implemen-

tations in order to check whether they have implemented the required algorithm, and to

provide feedback on problematic solutions. Students can use this information to improve

their code and learn better.

In the following, we discuss the application of the method in education from both

teachers’ and students’ point of view.

8.1. From a teacher’s point of view

In the following, we discuss four ways of how the proposed method can help teachers

in their work of assessing student-implemented algorithms and giving feedback to stu-

dents.

First, different automatic assessment tools are developed to help teachers with their

workload of assessing students’ work. There is a wide range of topics that these tools

cover. For example, some tools check in a black-box manner that a submitted solution

works correctly (e.g., [Joy et al. 2005]), some check students’ testing skills and some

others evaluate programming style. Introduced in this paper, Aari system is a tool that

fills an important gap in this range: it checks that the submitted solution implements

the required algorithm. The existing automatic assessment tools cannot do this, as they

only check that the solution produces the expected output that correspond to a particu-

lar input, telling nothing about the algorithm that produces the output (i.e., sorting an

array or computing a minimum spanning tree). Knowing what algorithm the submission

implements is important because a teacher needs to be sure that students have indeed

implemented the required algorithm which can help them learn it in practice.

In data structures and algorithms courses, as an example, sorting is often covered by

introducing some basic sorting algorithms, such as Selection sort and Insertion sort, as
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well as some more efficient algorithms like Quicksort and Mergesort. If a teacher gives

an assignment of implementing a Quicksort algorithm so that students can gain a deep

understanding of the algorithm, he/she needs some means to check that they have in-

deed implemented a Quicksort, and not, for example, a Selection sort. In large courses

with several hundreds of students, this is a rather time-consuming task. The teacher

can apply the method introduced in this paper to ensure this and grade the assignments

automatically. Many institutions use automatic tools to check whether students’ submis-

sions work correctly (black-box testing), to help students learn algorithms by visual al-

gorithm animation and simulation (e.g., [Malmi et al. 2004]), and for other similar tasks.

Aari system can be integrated into these assessment tools and learning environments

that are already in used in institutions.

Second, a teacher can use the introduced method to discuss code level issues with stu-

dents. The method enables a teacher to identify many issues of code quality. He/she can

discuss bad programming practices that make the code complicated, such as using too

many unnecessary variables, extra storage, etc. These issues help the teacher highlight

important higher level principles with students. Why is it important to keep code simple

and readable? What is the relation between code readability vs. efficiency? Why bother

tuning algorithm code manually, when current compilers often do similar optimizations?

These issues detected automatically from students’ code allow the teacher urge students

to take a critical view on their code.

Third, our algorithm recognition method evaluates the quality of solution automati-

cally. This allow a teacher give better personal comments for the students and pick up

interesting examples to discuss with them. For example, Quicksort requires very well-

aimed modifications to select the pivot, in order to avoid its well-known O(n2) worst-case

performance with already sorted input. The teacher can use the results of recognizing

student-implemented Quicksort algorithms by Aari system to discuss this with students.

This is just an example of problems that might occur in students’ code and that need to

be addressed in all data structures and algorithms courses. Catching these issues by

manual investigation, especially in case of large courses and practical programming as-

signments, is very laborious and there is an obvious need for automating the feedback.

Fourth, students have misconceptions on different topics in basic programming

courses, including data structures and algorithms. This is shown, for example,

in [Seppälä et al. 2006] in case of heap algorithms and in [Taherkhani et al. 2012b]

in case of sorting algorithms. When implementing Insertion or Selection sort, many stu-

dents include unnecessary swaps in their code ([Taherkhani et al. 2012b]). In case of

Insertion sort, as an example, swapping two items in the inner loop instead of shifting

the item is a clear indication that the idea of the algorithm has not been understood

correctly. These types of misconceptions cannot be detected by existing black-box au-

tomatic assessment systems. Our method can detect these issues and help teachers to
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understand students’ misconceptions. This information can be used to give feedback to

students on their misconceptions and inappropriate solutions and ask them to correct

their solution.

8.2. From students’ point of view

Students could use the informative feedback that our method can provide on their im-

plementations to gain a better understanding of their code. As discussed above, students

have misconceptions on different algorithms. They, as an example, make problematic

implementation choices in the case of sorting algorithms. Using the proposed method,

students can get immediate feedback on these kinds of implementation choices. We can

reasonably assume that these types of feedback could be justified and beneficial for stu-

dents and make them rethink their solutions and resubmit a better version. It should be

noticed that we need to do similar studies to examine student-implemented variations

in other fields of algorithms in order to make Aari a comprehensive feedback providing

system.

Students could also use the proposed method to learn good programming style and

coding practices. A student can implement, say a Quicksort algorithm, which works cor-

rectly and uses efficient pivot selection, etc. In addition to make sure that his/her im-

plementation is correct in these regards, the student would also be interested to know

whether his/her code follows good programming style. He/she can submit his/her code to

the system and get feedback that the submission works and is efficiently implemented,

but, for example, uses more variables that are usually used in Quicksort implementa-

tions, uses unnecessary arrays, etc. The student can fix the code and resubmit it and

check the feedback again. The student can, for example, use the system’s feedback on

roles of variables to check the quality of his/her code. As discussed in Section 3, vari-

ous studies show that using roles of variables have an positive impact on programming

education by, for example, providing a conceptual framework for students that helps

them construct programs and comprehend them better [Kuittinen and Sajaniemi 2004;

Byckling and Sajaniemi 2006; Sajaniemi and Kuittinen 2005]. After detecting a correct

implementation of a Selection sort, as an example, Aari system can give feedback that

the implementation uses two most-wanted holder roles, which implies that in addition

to storing the position of the so far found smallest/largest item in the inner loop, the im-

plementation stores the value of the item in that position as well (we found that many

students indeed do implement Selection sort in this way, see [Taherkhani et al. 2012b]).

The student may find these types of feedback beneficial to avoid such a programming

style that unnecessarily complicates the code.

Another interesting way that a student could use our method is that when he/she en-

counters a problem while implementing an algorithm, he/she can submit the implemen-

tation to Aari system. If Aari recognizes the faulty algorithm, it can provide an appro-
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priate diagnosis and explanation for the problem and suggest a solution. This requires

storing algorithm implementations with common misconceptions, errors and problem-

atic solutions in the system’s knowledge base and implementing a mechanism to recog-

nize them. This idea is also discussed by Metzger and Wen [Metzger and Wen 2000] as

a potential application of their method in programming education.

We need to further evaluate our method in an educational setting and investigate

how students use the system and how useful they find it. Since the classification model

cannot predict unseen algorithm implementations with perfect correctness, making a

summative assessment on whether something is right or wrong might have a negative

effect. Therefore, we should give feedback in form of suggesting something that the stu-

dent should look at. In this regard, we need to situate it in the educational setting and

assess how it could improve education. We will investigate this in a separate work.

9. DISCUSSION

We have built a classification model for classifying basic sorting algorithms and their

variations which, when measured by leave-one-out cross-validation technique, reaches

an estimated true positive rate of 97.0%. Except for the implementations of Insertion

sort WS, all the implementations of the other classes are recognized with the true posi-

tive rate of above 90% (see Table VI). This suggests that the idea of automatic algorithm

recognition based on schemas and beacons is feasible. Moreover, since the results show

that we can identify these sorting algorithms and their variations that are so close to

each others in terms of implementational definitions (for example, Bubble sort, Bubble

sort WF, Insertion sort WS and Selection sort WILS), it is logical to conclude that the al-

gorithms from other fields could be recognized based on algorithm-specific schemas and

beacons with a reasonable degree of correctness as well. For the presented set of sort-

ing algorithms, we have found a number of beacons that help us distinguish between

the implementations of these algorithms. There are much more beacons for these al-

gorithms than what the C4.5 algorithm selects to build an accurate classification tree.

This gives us a reason to believe that also for identifying other algorithms, we can find a

set of distinguishing algorithmic-specific beacons. This, however, should be evaluated by

empirical tests.

Our data set contains the algorithm implementations collected from different sources

including textbooks and the Web (the MULTI-SOURCE data set) and authentic stu-

dent submissions (the SUBMISSIONS data set). Student submissions constitute about

half of the implementations of our data set. Novice programmers use such programming

style that makes the resulted code different from those written by experts. Novices use

extra variables, unnecessary assignment statement, etc. This wide variation in the im-

plementations of the data set that is used as a part of the training data to construct

the classification tree of Figure 6 suggests that the tree is trained so that it is able to
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classify the wide variation of unseen instances. Moreover, the results of the classification

performance can be regarded good also from this perspective.

9.1. Recognizing unseen data

In [Taherkhani et al. 2012a], we used the SUBMISSIONS data set to test how the clas-

sification tree built using the MULTI-SOURCE data set performs on previously unseen

implementations of Bubble sort, Insertion sort, Selection sort, Quicksort and Mergesort

algorithms. That classification tree was able to classify the students’ implementations

submitted in two separate rounds with the true positive rate of 71% and 81%, respec-

tively. The classification model discussed in this paper is expected to perform better on

unseen implementations of sorting algorithms implemented by students, since the afore-

mentioned student implementations are also used to train it, and more importantly, be-

cause the classification model has a mechanism to deal with the variations of these sort-

ing algorithms that students implement. As an example, there are four student imple-

mentations of Mergesort in the data set that use such an unconventional programming

style that Aari system incorrectly recognized them as tail recursive implementations

(see the classification tree of Figure 6). Presence of this kind of Mergesort implemen-

tations in the classification model means that if the similar unusual implementations

are encountered in an unseen data set, there is another test in the model (i.e., lines

of code) to check whether they are implementations of Mergesort algorithm, although

these cases are indeed expected to occur very rarely. This is also a question of validity of

our research: the classification tree will fail to recognize those instances that are imple-

mented in a considerably different way than the instances of its training set. As can be

seen from the confusion matrix of Table VII, this kind of unconventional programming

style also resulted in one Mergesort to be recognized as a Bubble sort because of failure

in detecting the recursion.

9.2. Roles of variables

Roles of variables can be utilized as good beacons in the process of algorithm recogni-

tion. We used three roles in this research, which are temporary, most-wanted holder and

one-way flag. Temporary role did not appear to be a powerful beacon for differentiating

between the implementations of the algorithms discussed in this paper, as it is used al-

most in all the implementations, for example, in swap operations (although most Merge-

sort implementations do not use swap because of merging, some of them do). However,

most-wanted holder and one-way flag roles are very good beacons. Most-wanted holder

role distinguishes all the implementations of Selection sort (and some implementations

of Selection sort WILS that have a variable appearing in most-wanted holder role, even

though they do not use it) from the other implementations. Likewise, one-way flag role

differentiates all the implementations of Bubble sort WF from the implementations of
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the other algorithms (see Figure 6). Although roles of variables alone are not enough

to differentiate between all the implementations, they provide a useful complementary

tool for recognizing and classifying algorithms when used along with the other beacons.

In this paper we have used roles of variables as truth value characteristics. In the case

of more complex algorithms, roles can also be computed as numerical characteristics, if

they appear to be more informative when used as such (e.g., if the number of particular

role in two or more different algorithm implementations can be a distinguishing factor).

We conducted a similar empirical study for building a classification tree and evaluat-

ing the performance of the classification in [Taherkhani 2011b]. That classification tree

was able to classify only implementations of Bubble sort, Insertion sort, Selection sort,

Quicksort and Mergesort algorithms. We used the first data set discussed in Section 5

in that empirical study. The estimated classification performance using leave-one-out

cross-validation technique was 98.1%. The method described in [Taherkhani 2011b] did

not make use of the schema detection technique, but processed all the code of the given

program as algorithm-specific code. The present paper addresses that issue and thus

improves the method discussed in [Taherkhani 2011b]. We will come back to this in the

following.

We also conducted an empirical study to evaluate the performance of the schema de-

tection technique in [Taherkhani 2011a] using the same data set as used in this paper.

The tested instances included the implementations of Bubble sort, Insertion sort, Inser-

tion sort WS, Selection sort, Selection sort WILS, Quicksort and Mergesort algorithms.

On average, 88.3% of these implementations were recognized accurately. We did not use

a classification tree for classifying the implementations in that work. Therefore, if a

schema is not detected for some input, recognition fails and the process terminates.

In this work, we have combined the schema detection and classification techniques. We

first identify the algorithm-specific code from the non-relevant application data process-

ing code and consider only the algorithm-specific code for further processing, leaving ap-

plication data processing code out of the process. Only if the schema detection fails, then

the original program is further processed. This makes the method more reliable com-

pared with the method used in [Taherkhani 2011b]. Moreover, in this paper, we approach

the algorithm recognition problem from the beacon perspective adapted from program

comprehension models. We introduce a set of beacons that in addition to the implementa-

tions of the algorithms tested in [Taherkhani 2011b], are able to distinguish between the

following four algorithm implementations as well: Bubble sort WF, Insertion sort WS,

Selection sort WILS and Quicksort EP. Recognizing these variations allows us to give

more detailed feedback to students about their problematic and inefficient solutions, in

addition to automatically recognize the submissions. In summary, we have achieved al-

most the same estimated classification performance as reported in [Taherkhani 2011b],

but with a more reliable method and with a classification tree that is able to recognize
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different variations of the basic sorting algorithms as well. The tree is also able to deal

with a wider variations of unseen instances, as it has been trained with the implementa-

tions from a wider variations. The method discussed in the present paper also improves

the method used in [Taherkhani 2011a] in the cases of failure in the schema detection

phase; the recognition process is continued in terms of beacon-based recognition using

the classification tree also for the failed cases.

Extending the method to cover other fields of algorithms includes efforts for data col-

lection, analyzing algorithms for identifying beacons, system development and perfor-

mance evaluation. We extended our method to 10 new algorithms, including searching,

heap, basic tree traversal and graph algorithms (a data set containing 222 implementa-

tions of these algorithms), as reported in [Taherkhani 2012]. It took about three months

work of one researcher to perform all the above mentioned steps. It should be noted that

for evaluating the performance of the method, we need to gather data from different

sources, since no data set exists or is publicly available for this purpose.

9.3. Limitations

Our method has its limitations. First, due to the statistical nature of the method, we

cannot claim that the method is able to recognize new previously unseen algorithms

100% accurately. However, even humans make errors and cannot always achieve perfect

correctness. The method can classify the solutions in a reasonable precision and thus

be of great help for teachers. Second, quality of learning data is very important in su-

pervised machine learning methods. Even though we have collected the instances of our

data sets randomly with no preferences to a particular source or alike (which makes

our samples representative) it is always possible that some testing instances are imple-

mented in such an idiosyncratic way that cannot be recognized correctly. Third, in order

to recognize each type of algorithm, the classification model needs to have a mechanism

for it, that is, we need to train the model for that algorithm. Algorithm implementations

that the classification tree has no mechanism to recognize will be falsely classified as

one of the classes that the tree has been trained to recognize. We have illustrated this

in [Taherkhani et al. 2012a], where we asked the students to implement any sorting

algorithm, and we conducted an empirical study to recognize the implementations us-

ing a classification tree which was trained to recognize implementations of Quicksort,

Mergesort, Selection sort, Insertion sort and Bubble sort algorithms. Evaluating the de-

cision tree of Figure 6 on unseen data is beyond the scope of this paper and the reader is

encouraged to read [Taherkhani et al. 2012a] for more information on this.

10. CONCLUSION AND FUTURE WORK

We have introduced a method for algorithm recognition that first detects the algorithm-

specific code and then extracts the algorithm-specific beacons that are used to recognize
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implementations of algorithms by a classification tree. We have implemented the method

into Aari system for a set of sorting algorithms and their variations and shown that us-

ing leave-one-out cross-validation, the method achieves an estimated true positive rate

of 97.0%. This can be considered as a very good result that shows the feasibility of the

method. The results also show that implementations of sorting algorithms can be rep-

resented as characteristic- and beacon-vectors, and that the characteristics and beacons

discussed in this paper can describe them and distinguish between them very accurately.

By combining the schema detection and classification techniques, we enhance our previ-

ous methods discussed in [Taherkhani 2011b] and [Taherkhani 2011a].

We have used roles of variables as beacons in the method and demonstrated that roles

can provide a powerful tool in the process of algorithm recognition. From the 11 roles

recognized so far, as listed in Section 3, our classification tree uses only two roles. It

seems logical to expect that when other fields of algorithms are covered, other roles of

variables would also play a role in the process and roles of variables offer even stronger

beacons.

The proposed method can be used in educational environment for many purposes. An

instructor can utilize the method for checking that students have implemented the re-

quired algorithm. This will reduce the workload of the instructor, especially in large

courses. In this case, before applying the method to carry out the white-box analysis,

an automatic assessment system checks the correctness of the submissions in terms of

block-box analysis. In the situations where students are required to implement a partic-

ular algorithm but some implementations are classified as negative cases, an instructor

can check the result of the classification from the database, where the implementation

code and beacons are stored. The method can also be used for giving feedback to students

about their inefficient and problematic implementations and making them rethink their

solutions. Examples of these kinds of solutions include implementations of Insertion

sort and Selection sort algorithms that use unnecessary swaps (we have called these

implementations as Insertion sort WS and Selection WILS in this paper, respectively).

However, to evaluate how our method can support student learning, we need to investi-

gate the effects of the method on students and show it by empirical data. This is left for

future work.

Based on the evaluation results, the method presented in this paper has proved to

work well for sorting algorithms and their variations. We have extended the method

to cover algorithms from different fields as well. We collected a new data set including

222 implementations of searching, heap, basic tree traversal and graph algorithms. We

showed that the schema detection method successfully detected 94.1% of the instances,

and the estimated true positive rate of the classification was 97.3% (see [Taherkhani

2012]). This demonstrates that the method can be extended to cover other fields of algo-

rithms with good results. Thus, the proposed method could be used more widely in pro-
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gramming education to provide advanced feedback for students about their algorithmic

solutions, either automatically, or semi automatically — providing first valuable analy-

sis information for the teacher, who could then provide better feedback for students in

less time.
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