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In this paper, we describe our solution to predict student STEM career choices during the 2017 

ASSISTments Datamining Competition. We built a machine learning system that automatically reformats 

the data set, generates new features and prunes redundant ones, and performs model and feature selection. 

We designed the system to automatically find a model that optimizes prediction performance, yet the final 

model is a simple logistic regression that allows researchers to discover important features and study their 

effects on STEM career choices. We also compared our method to other methods, which revealed that the 

key to good prediction is proper feature enrichment in the beginning stage of the data analysis, while feature 

selection in a later stage allows a simpler final model.  

Keywords: STEM careers, automated prediction, penalized logistic regression, forward-backward search 

algorithm, interpretable machine learning 

 

1. INTRODUCTION 

Researchers from Worcester Polytechnic Institute and the University of Pennsylvania 

organized a data mining competition using educational data from ASSISTments, an online 

learning platform that supports student learning through the use of scaffolding, hints, 

immediate feedback, and detailed solutions for middle school mathematics. The aim of the 

competition was to help educators, researchers, and policymakers understand how students’ 

experiences in middle school mathematics classes are related to eventually choosing a STEM 

(Science, Technology, Engineering, and Mathematics) career. Indeed, reliable STEM career 

prediction will help students uncover their STEM interests and further support their academic 

growth in STEM fields. The data set provided in this competition contains students’ 

interaction information with the platform when they were in middle school. The data analysis 

challenge is to predict which students pursued careers in STEM fields after they graduated 

from college.  

In the past two decades, we have seen a large number of high-quality works using students’ 

academic performance and learning behavioral data to predict outcome variables, such as 

standardized test score, dropout from school, college enrollment, and major choice. For 

example, Feng, Heffernan, and Koedinger (2009) investigated how students’ interaction data 

extracted from the ASSISTments platform can be used to reliably evaluate students’ math 
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proficiency. They were especially interested in building features related to student help 

seeking behaviors and used the Bayesian Information Criterion (BIC) to compare linear 

regression models with different groups of predictors. They showed that students’ end-of-year 

exam scores can be better predicted by leveraging the interaction data that reflect assistance 

requirement, effort, and attendance. Pardos, Baker, San Pedro, Gowda, and Gowda (2014) also 

studied the ASSISTments system, but they focused on the correspondence between student 

affect and behavioral engagement and scores on a high-stakes math exam. Using eight 

machine learning models, they constructed a set of affect and engagement behavior detectors 

to estimate the probability that a student is in a state of boredom, engaged concentration, 

confusion, and so on. They further built a model to predict students’ math exam scores and 

showed that the constructed detectors helped the model achieve high prediction accuracies.      

Baker, Berning, Gowda, Zhang, and Hawn (2019) presented a case study on automatically 

identifying students that have a high risk of dropping out of high school, using data on 

students’ discipline, attendance, course-taking, and grades. The logistic regression model used 

in the study helped the authors not only select students at risk, but also found which factors 

played the largest roles in prediction, which provided information to educators that can be 

used in individualized interventions. Knowles (2015) described how to create a statewide 

dropout early warning system that can accurately predict the likelihood of graduation for high 

school students in the State of Wisconsin. The paper thoroughly demonstrated the workflow of 

the whole system, from data cleansing to model training and searching. To balance the 

tradeoff between the correct classification of dropouts and false alarms, the receiver-operating 

characteristics (ROC) metric is used to identify the best models from a large collection of 

candidates, from linear logistic regression models to complex nonlinear models, such as 

support vector machines. This work was also implemented in the open source R package, 

EWStools (Knowles, 2014).  

Instead of using traditional explanatory variables in college enrollment research, such as 

family background, career aspiration, and assessment scores, San Pedro, Baker, Bowers, and 

Heffernan (2013) studied how student online learning behaviors observed in middle school 

related to their college choice. They built a logistic regression model using automatically 

generated affect and engagement features to achieve decent accuracy at predicting college 

attendance. Their study was further extended to predicting STEM and Non-STEM college 

major enrollment by San Pedro, Ocumpaugh, Baker, and Heffernan (2014).  

The above three selected sets of works studied test scores, dropouts, and college choices, 

respectively, by linking them to student learning behaviors. In comparison, the current 

competition aims at predicting a longer-term outcome than that studied in any previous work 

of this nature — to predict STEM career choices after college using middle school learning 

behaviors. To meet this challenge, we produce a prediction system with the following 

properties. First, the system should fit existing data well, and make good predictions on new 

data. Secondly, we would like the system to be automatic, that is, to avoid unnecessary human 

intervention. Thirdly, the system should help identify a small number of the most influential 

predictors and allow relatively easy interpretation of the final predictive model. Briefly, our 

system attains the first property above by selecting models and their parameters using 

crossvalidation (CV) techniques with respect to a metric determined by the competition 

organizers. The second property is attained by doing aggregation over records from the 

original data set, using not just the means, but also additional values including various 

quantiles, the minimums, and the maximums, and by further forming an extensive collection 

of transformed variables as well as two-way interactions. With an extra rich pool of candidate 

features to exploit, we have a better chance of finding a good model. Finally, we attain the 

20 Journal of Educational Data Mining, Volume 12, No 2, 2020



  

 

third aforementioned property of the system by adopting a forward-backward strategy (FBS) 

in variable selection, where the inclusion or exclusion of variables is based on internal CV 

performances. This is different from traditional variable selection methods and algorithms 

based on p-values, information criterion, or penalized regression. As a result of adopting FBS, 

despite a large enriched dataset from which we search for a good model, the final model itself 

is a rather simple logistic linear regression model that involves only a handful of variables. 

This makes our system different from the state-of-the-art machine learning methods, in the 

sense that researchers using our system have a chance to interpret and explore relationships 

between the selected variables and the STEM career. By comparison, it is harder to demystify 

machine learning models that crank out black-box predictions.  

The rest of the paper is structured as the following. Section 2 introduces the process of data 

preparation, new feature generation, and simple pruning, which results in an enriched data set 

for the next step. Section 3 describes the process of model building (including the use of 

feature selection strategies), with the goal of optimizing model performance in terms of a 

criterion set by the competition organizers. Section 4 discusses the pros and cons of our final 

model to that of several others. Section 5 concerns the interpretation of our final model.  

Finally, Section 6 discusses future research directions. 

2. DATA PREPARATION 

2.1. OVERVIEW OF THE DATA SET 

The competition provided an extensive click-stream data set extracted from the ASSISTments 

database. It contained user interaction information from 591 students who used the system 

during their middle school years, as well as whether each of them pursued a career in STEM 

fields (1) or not (0) after college. The entire data set was divided by the competition organizer 

into three parts: the training set, the validation set, and the test set. Visible to participants of 

the competition were user interaction data for all three sets, and career choice data (the target 

variable) for the training set only. Data on career choice for the validation and the test set were 

withheld by the organizer for evaluation purposes. Specifically, competition participants used 

the training set to build models and made predictions on the validation and the test sets. Each 

day, each team could submit one set of predictions to be scored. The score was a combination 

of root mean squared error (RMSE) and area under the curve (AUC) based on predictions for 

the validation set. On each day before the conclusion of the competition, the organizer would 

post a public leaderboard showing each team’s best submission to date and the corresponding 

evaluation metric values, to help the teams improve their models. Eventually, when the 

competition concluded, teams were ranked by the performance of their final model over the 

test set.    

    Although there are only 591 students, each student has hundreds of interactions with the 

system. The resulting data set is rather large, with 316,974 records (rows), each with 76 

variables (columns). Each record captures one action (such as solving a multiple-choice 

question related to square root finding) of a student, along with some context information. 

Examples of context information are: average student knowledge level (according to the 

Bayesian Knowledge Tracing (BKT) algorithm, Corbett and Anderson, 1995), average student 

carelessness (San Pedro, Baker, and Rodrigo, 2014), average student boredom effect (Pardos, 

Baker, San Pedro, Gowda, and Gowda, 2014), and knowledge estimates based on BKT at the 

previous and the current time step. A detailed description of the variables can be found on the 

competition webpage: https://sites.google.com/view/assistmentsdatamining/data-mining-
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competition-2017. Besides the main data set, the organizers also provided each student’s state 

test score during that year. We included this variable in our analysis, but it was not selected by 

our model selection procedure in predicting STEM career choice.  

 

2.2. DATA SET REFORMATION 

To make predictions of the STEM career choice for each student, we first reformatted the 

main data set into a tabular data set with 591 rows, and one row for each student. Specifically, 

for any given variable from the activity information in the original data set, we aggregated the 

many rows of its value for a single student to a few summaries, as our new variables. Below, 

we describe the different aggregation methods used for the four different types of variables: 

single-valued, binary-valued, nominal-valued, and continuous-valued.  

First, some variables were already aggregated by the competition organizers. Examples are 

average student knowledge level (“AveKnow”), total number of student actions in system 

(“NumActions”), and average student carelessness (“AveCarelessness”). Given any student, 

each of these columns contains one common value across the multiple rows of this student’s 

actions. And this common value is directly assigned to the corresponding variable in the 

reformatted data.  

For binary-valued variables, we used two methods of aggregation for the rows of each 

student: summation and relative frequency. For example, the variable “correct” in the original 

data set takes the value 1 if a student’s response to a problem is correct, and 0 otherwise. We 

summed up all its values for a student to get the total number of the correct answers. Also, we 

calculated the proportion of the correct answers among all problems attempted.  

For nominal variables, we used two methods of aggregation: the number of different values 

that occurred, and the average number of records per value (the total number of records 

divided by the number of distinct values that occurred). For example, the variable 

“problemType” in the original data set describes the type of the current problem the student 

was worked on. There are a dozen different values possible for this variable, including 

“textfile question”, “radio question”, and so on. One student may have worked on 3 types of 

problems, while another may have encountered all types. We believe the number of types of 

problems a student attempted reflects the breadth of the students’s STEM interests, hence our 

first aggregation. In addition, the number of problems attempted per type reflects the depth of 

the effort made by a student for each type he or she chose to work on, hence our second 

aggregation.  

For continuous variables, we calculated the following 13 summary statistics for each of 

them: the minimum, the maximum, the mean, the standard deviation, and 9 different 

percentiles (from the 10th to the 90th). In addition to the continuous variables from the 

original dataset, we formed new ones based on the continuous variables “Ln” and “Ln-1”. 

Here, “Ln” is a measure of the proficiency level for the skill needed for the current problem at 

the current time, and “Ln-1” is that of the previous time step. The proficiency level is 

measured by the estimates of a student’s math knowledge using the BKT method (Corbett and 

Anderson, 1995). Also, the cognitive skill needed for the current problem is provided in the 

nominal variable, “skill”, reported in terms of knowledge components (KC). The detailed 

definition and usage of KC in the ASSISTment system can be found in Razzaq, Heffernan, 

Feng, and Pardos (2007). Given the above descriptions, it is natural to combine the value of 

“skill” with that of “Ln” and “Ln-1” to generate potentially useful new variables that reflect 

students’ proficiency level and their improvements per skill. Specifically, we first formed 
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eight new continuous variables: over the set of records that correspond to a specific skill of a 

student, we calculate the minimum, the mean, the maximum, and the difference between the 

maximum and the minimum of “Ln” and “Ln-1”, respectively. Then, for each of the eight new 

variables, we computed the 13 summary statistics mentioned in the beginning of this 

paragraph. As a result, we have enriched the data set with many variables. Take, for example, 

a student who practiced on 10 different skills. We can first obtain the maximum “Ln” value 

within each skill, which reflects the highest proficiency level the student ever achieved on 

each skill. Then we include new variables based on summaries like the mean, the standard 

deviation, and the minimum of the 10 maximum “Ln” values, which reflect the average 

maximum proficiency, the variation in maximum proficiency, and the proficiency of the 

weakest skill of the student.  

After the inclusion of additional variables, the new data set has 591 rows and 717 columns. 

Unlike in the physical sciences, there is rarely scientific theory in social sciences and in the 

educational field that analytically relates the target variable to the features. It is possible that 

some of these 717 features facilitates the prediction of the target variable, STEM career 

choice, in different linear and non-linear fashions, and they can be impactful by themselves 

and/or through interactions. To include or approximate the many possible types of 

relationships among the variables, we generated abundant new features based on the 717 

aggregations. Details are described in the next subsection. 

 

2.3. FEATURE GENERATION 

2.3.1. Generation of new univariate features 

Since all 717 variables are technically non-negative continuous variables, we considered nine 

mathematical transformations to each of them, including logarithm with the natural base, and 

power functions with the power of -3, -2, -1, -0.5, 0.5, 1, 2, and 3, respectively. Here, the 

logarithm transformation helps symmetrize heavily right-skewed distributions. Various power 

transformations are also common techniques to potentially stabilize the variance of the 

variables and make their distribution more normal-like. To reduce redundancy, we only kept 

generated variables that are different enough from existing variables and at the same time are 

highly correlated to the target. Specifically, we adopted Pearson’s correlation coefficient, and 

for a generated variable to be included, its absolute correlation with the original variable 

should not exceed 0.7, and its correlation with the target variable should exceed 0.15 and be at 

least 0.1 more than the correlation between the original and the target variable. In principle, all 

the aforementioned thresholds can be treated as parameters to be tuned, say, by CV. 

 

2.3.2. Interaction features generation 

Once the univariate transformations and screenings are done, we further enrich the pool of 

predictors with seven kinds of pair-wise interactions: multiplication, addition, subtraction, 

variable A divided by variable B, variable B divided by variable A, and the minimum and the 

maximum of the two variables. To avoid dividing by zero, the denominators were set to 1 plus 

the value of the denominator variables in the division operations. We again include a fast 

screening step to eliminate the interaction variables that either look similar to existing 

variables or are poorly correlated with the target. The same thresholds were used as that of the 

univariate screening, except that the absolute correlation between the interaction variable and 
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target variable is required to exceed 0.01 plus the maximum of the absolute correlations 

between the two original variables and the target variable. These screening criteria helped 

retain promising predictors while avoid inter-collinearity problems for later regression 

analysis. 

After the above screening processes, there is still a rich pool of 2217 variables. Also, the 

total number of students remained 591, with 467 of them in the training set. 

 

2.3.3. Feature elimination 

In the early stage of the competition, we used the above enriched data set in the subsequent 

model building procedure (including variable selection) for data analysis, described in Section 

3. However, feedback from the public leaderboard suggested that the models that performed 

better on our internal CV set tended to do worse on the validation set. This somewhat 

surprising result prompted us to investigate discrepancies among the training, the validation 

and the test set. Indeed, we found serious discrepancies in the distributions of several 

predictors in the three sets. This type of problem is often referred to as the covariate shift 

problem in machine learning research (Sugiyama, Krauledat, and Müller, 2007). Besides 

problems that concern the predictors, there is also an imbalance label problem. Indeed, we 

deduced that the distribution of the target variable is much more imbalanced in the validation 

set than in the training set. Actually, only 5% of the students in the validation set had chosen a 

STEM career, compared to 25% in the training set. After all, we decided that features 

generated in Section 2.3 that suffered from the discrepancy problems were not the most 

promising predictors for the test set. So, we designed the following additional feature 

elimination step.       

First, we identify the variables for which the distributions in the training set and the test set 

are the most different based on a measure of discrepancy (MOD) that we now describe. (For 

the calculation of MOD, we simply combined the validation and test set as one test set.) Given 

any variable, we obtained ten percentiles (from the 10th to the 100th) of its values in the 

training set and recorded the percentiles theses values corresponded to in the test set. For 

example, if the 50th percentile of a variable in the training set was 224.5, and the value 224.5 

happened to be the 57th percentile of this variable in the test set, then we recorded an absolute 

difference of 57-50 = 7 percentage points for this variable. Then, among the 10 absolute 

differences (one for each of the 10 percentiles inspected), the maximum value was defined to 

be the MOD. Any variable with MOD greater than a given threshold value will be eliminated. 

To choose a good threshold value, we considered six integer values, from 4 to 9, which led to 

six different data sets. For each data set, we performed the analysis of Section 3.2. Among the 

90 (15 times 6) combinations of models and data sets. We chose as the final model the one 

with the best CV result based on the evaluation metric defined by the organizer (see Section 

3.1). It turned out that the optimal value for the MOD threshold was 6. 

3. MODEL BUILDING 

3.1. MODEL EVALUATION AND MODEL SELECTION 

The competition organizer used an interesting, nonstandard evaluation metric (EM): the sum 

of the (1-RMSE) and AUC. As far as we know, no existing statistical or machine learning 

methods are designed to optimize (that is, to maximize) this EM directly. Recall that we 
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intended to obtain a final model that allows certain degrees of interpretability. Therefore, we 

decided not to pursue the state-of-the-art predictive methods such as gradient boosting 

machine (GBM) (Friedman, 2001), which makes predictions using highly sophisticated 

combinations of all available features. Instead, we decided to consider logistic regression 

models built upon different subsets of features and identify the model with the best 

crossvalidated performance in the aforementioned EM. Note that there was an astronomical 

number of 2p different models to consider, where p was the number of features, which was in 

the thousands for the enriched dataset from Section 2. Hence strategies were needed to find the 

optimal or close-to-optimal model, which we discuss in the next subsection. 

 

3.2. THE FORWARD-BACKWARD STRATEGY (FBS) 

In searching for an optimal subset of variables, a common strategy in the literature is the 

Forward-Backward Strategy (FBS), which updates the current model by including or 

excluding one variable in each step. As for which variable to include or exclude, standard 

practice involves fitting the resulting model using logistic regression and checking if the 

associated gain or loss in fitting is worthwhile, say, if it improves value of some information 

criteria like AIC or BIC. Since this competition defined its own EM, we decided to modify the 

above standard practice by (1) evaluating a model using cross-validated EM instead of popular 

information criteria, and (2) fitting a model using a slightly more general approach than 

logistic regression.   

For (2), we considered five different penalized logistic regression methods and let the 

training data help decide which one eventually yields the best final model. The five different 

penalties are the least absolute shrinkage and selection operator (LASSO, Tibshirani, 1996), 

the Ridge penalty (Hoerl and Kennard, 1970), the Elastic Net penalty (Zou and Hastie, 2005), 

the smoothly clipped absolute deviation penalty (SCAD, Fan and Li, 2001), and the minimax 

concave penalty (MCP, Zhang, 2010). Each of these penalty functions has its own tuning 

parameter(s). For simplicity, we allowed the parameters to take values on a pre-defined grid, 

and eventually experimented with 15 different combinations of penalty methods and their 

tuning parameter values. The R package ncvreg (Breheny and Huang, 2011) can be used to 

implement all the above penalized logistic regression methods with efficient coordinate 

descent algorithms.  

Next, we explain the CV-based criteria of including or excluding a variable. Despite the 

seemingly lengthy description to follow, the procedure is entirely automated by a searching 

system that we coded in R (R Core Team, 2017). The training set is partitioned into five 

subsets with roughly equal numbers of students. When evaluating a model in a step, a five-

fold CV is performed by holding out one subset as the internal test set, while using the rest for 

training. A repeat over all five folds generates five values of the EM.   

To start, we fix a penalized method, such as the Lasso. In the forward stage, we first find 

the variable that has the highest absolute correlation with the target variable and call it the best 

one-variable set. A five-fold CV is conducted with the given penalized method using this 

variable, which resulted in five EM values that we call the current best CV values. Next, to 

find the best two-variable set, we enumerated all the remaining variables, paired one at each 

time to the best one-variable set and use the penalized method in another five-fold CV to get a 

set of five new values of the EM. If the mean of the new EM values is greater than a small 

positive threshold value plus the mean of the current best values, and that the minimum of the 

new EM values is greater than the current best minimum minus a small positive number, then 
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the best two-variable set and the best CV values are updated accordingly. Once every variable 

was screened, the best two-variable set was found, and we moved on to find the best three-

variable set, and so on. The forward stage stopped when no more variable met the criteria to 

enter the best set. The above strategy of considering both the mean and the minimum (that is, 

the worst case) of the CV values came from the intention to attain good average performance 

while being robust over the five folds.  

In the backward stage, we excluded one variable from the current best set each time and 

compared the model performance with the current best model using the same criteria as in the 

forward stage. When no more variables can be dropped, the backward stage halted, giving a 

final set of variables.   

Note that we can execute the FBS process using different penalized logistic regression 

models, and they may lead to different final sets. A comparison among these different final 

sets can be done, simply by consulting their respective set of five CV EM values, which were 

part of the output of the FBS process. Our final model is based on the final set that has the 

highest mean CV EM. 

 

4. COMPARISON OF THE FINAL MODEL AND OTHERS 

4.1. OUR FINAL MODEL 

The eventual best subset of features was selected by using the MCP logistic method through 

the FBS and retained 14 features. As is typical in making predictions using methods that 

include variable selection steps, we refitted the data with the 14 selected features. This time, a 

Ridge model was used for estimating coefficients because it had the best performance among 

all regression models experimented on in terms of internal CV, and it turned out to also have 

the best performance on the validation set used for the public leaderboard standing. A 

parsimonious model like ours avoids overfitting the observed data and is likely to generate 

smaller prediction error for future observations. 

4.2. COMPARING DIFFERENT PREDICTION METHODS 

It is natural to wonder how much our model improved upon simpler ones, and how it 

compares to other more advanced prediction methods. Recall that two main ideas that lead to 

our final model are feature enrichment and feature selection. Through comparisons with 

different methods that use some or none of these ideas, we show that feature enrichment is the 

step that brought major improvement in prediction for many different follow-up prediction 

methods, while feature selection using our FBS is the step that led to a parsimonious final 

model, hence better interpretability.   

 

(1) Using basic features only. In the original data set, there were ten aggregated 

variables, including “AveKnow”, “AveCarelessness”, “AveCorrect”, and so on. Using only 

these 10 aggregated variables, we implemented the classical logistic regression method, 

several penalized logistic regression methods, and the sophisticated GBM method. The 

value of EM of these predictions on the test set is shown in Table 1. For clarity, among the 

penalized regression methods, only the performance of the Lasso method (with its penalty 

parameter optimized by internal CV) is included because it performed better than its peers.   
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(2) Using enriched features, but without FBS. There are 2217 features in our enriched 

dataset after the feature generation and screening steps described in Section 2. Since there 

are more features than the number of subjects, the classical logistic regression method is 

not applicable, but penalized methods are. Many penalized methods select variables 

automatically and possess various theoretic properties. In brief, under certain conditions, 

the model resulting from certain penalized methods approaches the “true” model when the 

number of students increases. Therefore, we implemented several penalized methods on our 

enriched data set directly (without FBS). For example, the Lasso method (with its penalty 

parameter optimized by CV) generated a model that retained 22 features.  

(3) Using features selected by the FBS. Recall that 14 variables remain after feature 

enrichment and selection using FBS. Our final model is a Ridge regression model. We also 

constructed GBM based on the same 14 variables.     

 

4.2.1. Implications of Table 1  

First of all, we mention that the test set is the set used by the competition organizers to rank 

the participating teams. Since prediction performance in EM will change for a different test 

Table 1: Summary of EM 

Model_#features EM Improvement  
relative to 
logistic_10 

Based on 10 basic 
features 

  

logistic_10 0.994 0 

lasso_10 0.982 -1.2% 

gbm_10 1.03 3.6% 

Based on 2217 
enriched features 

  

lasso_22 1.033 3.9% 

gbm_2217 1.086 9.3% 

Based on 14 
enriched features 
selected by FBS 

  

ridge(FBS)_14 (final) 1.048 5.5% 

gbm(FBS)_14 1.067 7.4% 
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set, the numbers reported in Table 1 and the implied rankings of the different methods involve 

uncertainty. Nevertheless, some insights can be drawn. One can see that all prediction 

methods based on enriched features performed better than all methods based on the original 

10 features, indicating the importance of generating more features.  

Based on the enriched features, the two GBM methods perform the best, followed by our 

method (ridge(FBS)_14). The GBM based on 2217 features had the best prediction 

performance, but it does not explicitly show how each feature affects the target variable and 

does not help researchers interpret the most influential features.  

In terms of feature selection, the FBS we used is a key step to reduce the number of 

features to only 14, a variable set for which both the GBM (gbm(FBS)_14) and our more 

interpretable penalized regression method (ridge(FBS)_14) perform reasonably well. Note that 

for feature selection, one could have used a penalized regression method that is less costly 

than the FBS, but the latter seems to have an advantage in selecting the most useful features: 

recall that the Lasso method selected 22 variables, while our regression model based on FBS 

used only 14 features  and improved the EM value on the test set by 15% compared to the 

Lasso.  

An explicit formula for prediction using our model is provided in the next section, which 

provides data analysts and domain experts a chance to study and explain it. The same type of 

inference is hard to do with GBM.  

 

5. INTERPRETATIONS OF THE FINAL MODEL 

The final logistic regression model with estimated coefficients for each predictor is: 

 

𝑙𝑜𝑔 (
𝑃(𝑌 = 1|𝑋)

1 − 𝑃(𝑌 = 1|𝑋)
) = −1.154 + 0.085𝑋1 + 0.061𝑋2 − 0.122𝑋3

+0.105𝑋4𝑋5 − 0.051𝑋5𝑋6 + 0.113𝑋7 − 0.079𝑋8

−0.157𝑋9 − 0.101
𝑋10

𝑋4 + 1
+ 0.087

𝑋12
𝑋11 + 1

−0.168
𝑋6

𝑋13 + 1
+ 0.047

𝑋15
𝑋14 + 1

+ 0.113
𝑋16

𝑋14 + 1

+0.126
𝑋18

𝑋17 + 1

 

 

Here, 𝑃(𝑌 = 1|𝑋) represents the probability of choosing a STEM career given a set of values 

of the predictors, 𝑋. Table 2 below lists the variables used in equation (1). There were 14 

predictors that were formed by 18 variables. Each of the 14 predictors has been standardized 

to have mean 0 and standard deviation 1, so that the regression coefficients are comparable in 

size. 

We now give a couple of examples to show what the coefficients in our model may imply. 

The variable X1 is described in Table 2. It measures the variability in the number of times 

scaffolding hints had been accessed among the different skills the student had practiced. In 

model (1), the coefficient of X1 is 0.085, which means that students with larger values of X1 

have a higher tendency to choose STEM careers. Specifically, by holding the value of other 

variables unchanged, increasing the value of X1 by one standard deviation increases the odds 
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of choosing a STEM career for a student by about 9% (exp(0.085)-1). Note that an association 

between X1 and the target does not imply causation. However, seeing the association from the 

model allows researchers to further explore the data set or the literature to see what other 

variables are highly correlated with X1 that may have an impact on the STEM career choice. 

We found that the students who practiced many skills but mainly focused on a handful of them 

tended to have large values of X1. It could be that these students had decent interest in learning 

mathematics and also made efforts to improve their weaknesses; students who have such an 

attitude and approach for math learning are more likely to choose STEM careers. 

For another example, we look at the interaction term that has X10 in the numerator, and X4 

in the denominator (and recall from Section 2 that the plus one in the denominator is just for 

technical reasons). Here, X10 is the total number of hints used by a student, and X4 is the 

number of sessions, that is, the number of logins to the ASSISTments system. Thus, their ratio 

reflects the number of hints a student accessed per session. The regression coefficient is -

0.101, suggesting that students who depend more on hints are less likely to pursue STEM 

careers. For example, take two students A and B who have the same records except that the 

number of hints per session A needed is one standard deviation higher than B. In this case, the 

odds that student A chooses a STEM career is predicted to be 90% (exp(-0.101)) that of 

student B. Note that the above is a naive attempt to interpret the effect of a predictor in our 

regression model. It is most likely that two students who need very different numbers of hints 

per session will have different learning behaviors that result in different values for many other 

predictors as well. More comprehensive ways to interpret regression models and the real 

impact of different predictors are available and are under continuous development. We will 

not go over similar interpretations of the effect of each predictor due to space limitations.  

 
Table 2: Predictors and their descriptions.  

Predictor Name Symbol Description of the predictor, or  

how its value is obtained for each student 

fsca_oppo.sd X1 The standard deviation of the number of times a student 

accessed the scaffolding hints among all skills the student has 

worked on 

sumt3.0. X2 The minimum value of “sumTime3SDwhen3RowRight” 

ln_diff_mean.0. X3 First, take Ln and Ln-1, variables described in Section 2.2, 

which measure the proficiency level for the skill needed for 

the current problem at the current and the previous time, 

respectively. Then, the mean of their differences reflects the 

average instantaneous speed of improvement in proficiency 

for a particular skill. Finally, we take the minimum of this 

speed across all skills, which reflects the speed of 

improvement for the skill that was the least improved upon. 

num_session X4 The number of sessions 
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perc_ogi X5 The proportion of non-scaffolding problems the student 

practiced 

5help.70. X6 First find the sums of the number of helps requested for the 

past 5 problems at each time, and then obtain the 70th 

percentile of the sums 

perc_sca X7 The proportion of scaffolding problems the student practiced 

hint.20. X8 The number of hints used for the first one fifth of problems 

hint.40. X9 The number of hints used for the first two fifths of problems 

hint.100. X10 The total number of hints used 

8help.80. X11 First find the sums of the number of helps requested for the 

past 8 problems at each time, and then obtain the 80th 

percentile of the sums 

num_sca X12 The number of scaffolding problems the student practiced 

num_prob_type X13 The number of problem types the student practiced 

perc_prob_type X14 Total number of activities divided by num_prob_type  

8help.50. X15 First find the sums of the number of helps requested for the 

past 8 problems at each time, and then obtain the 50th 

percentile of the sums 

8help.90. X16 First find the sums of the number of helps requested for the 

past 8 problems at each time, and then obtain the 90th 

percentile of the sums 

5help.40. X17 First find the sums of the number of helps requested for the 

past 5 problems at each time, and then obtain the 40th 

percentile of the sums 

num_ogi X18 The number of non-scaffolding problems the student practiced 
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6. SUMMARY 

For the competition, we built a machine learning pipeline to automate predictions for students’ 

choice of STEM career. The pipeline consists of feature extraction, feature generation and 

basic screening, feature selection using FBS, and automatic model selection based on internal 

CV. The end product of the pipeline is a logistic regression model that involves both original 

features and generated ones, including two-way interactions. We showed how to interpret the 

effects of some of the predictors in the final model.   

We also compared our model to several others that use different features and different 

model structures. Based on the comparison results, we believe that the key for good prediction 

of students’ STEM career choice is to form a good set of basic summaries of their learning 

behavior (Section 2.2) and generate a rich enough set of features and interactions based on the 

basic summaries (Section 2.3), before further modeling and feature selection steps. Despite the 

advance in automatic machine learning tools, these initial steps of forming meaningful 

features and interactions are best done by domain experts and data analysts together. Only 

after this initial step of material collection and generation, can one expect to use machine 

learning techniques to harness the power of data for prediction. While highly sophisticated 

nonlinear and/or multi-level machine learning methods such as neural network, support vector 

machine and GBM might produce good predictions, models with relatively simple structures 

such as our regression model can also perform well, and provide more insights to researchers 

for current and future studies.  
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