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This study aims to identify effective affective states and behaviors of middle-school students’ online 

mathematics learning in predicting their choices to study science, technology, engineering, and mathematics 

(STEM) in higher education based on a positive-affect-to-success hypothesis. The dataset (591 students and 

316,974 actions) was obtained from the ASSISTments project. In the ASSISTments intelligent tutoring 

system, students completed mathematical problem-solving tasks, and the data was processed to infer their 

action-level affective states and behaviors, which were averaged to form student-level measures. The 

students’ future STEM choice was predicted by the student- and action-level affective states and behaviors 

using logistic regression (LR), ordinary least squares regressions with standardized scores (ORz), and random 

forest with permutation importance and SHAP values (RFPS). The results revealed that student- and action-

level gaming behavior consistently predict STEM choice. In addition to gaming, female students are more 

likely to study STEM if they are less bored and more off-task, and male students if more concentrated and 

less frustrated. ORz generates theoretically plausible results and identifies sufficiently distinguishable 

affective states and behaviors. Suggestions for educational practice and research are provided for adaptive 

teaching. 

Keywords: affect, gender differences, intelligent tutoring systems, mathematical problem solving, STEM 

choice

 

1. INTRODUCTION 

Science is about not only understanding but prediction. Using students’ past learning 

phenomena (e.g., past online learning) to predict long-term outcomes (e.g., future educational 

choices) is one of the greatest benefits of conducting relevant scientific research (e.g., cohort 

study). For traditional educational researchers, however, using middle-school students’ affective 

states and behaviors during online mathematical problem solving to predict students’ choice to 

study science, technology, engineering, and mathematics (STEM) in higher education is a 

scientific challenge. The challenges begin even before developing literature-based hypotheses 

and delving into data analysis. They start when identifying the subtle online process (affective 

states and behaviors) and linking it to the long-term effect (STEM choice) and continue 

throughout the research process. Yet these challenges can all be resolved. 

Firstly, the issue of identifying subtle online behavior has been resolved by recent 

advancements in computer science for learning purposes. On the one hand, educational 

researchers have developed methods to examine their data that mainly focus on student-level 

48 Journal of Educational Data Mining, Volume 12, No 2, 2020

Mei-Shiu Chiu
National Chengchi University
chium@nccu.edu.tw

mailto:chium@nccu.edu.tw
mailto:meishiuchiu@gmail.com


affect as a relatively long-term tendency in approaching mathematical learning. On the other 

hand, advancements in online learning have led to the development of new relevant concepts 

and data-science methods to analyze the new forms of data (De Witte, Haelermans, & Rogge, 

2015; Kai, Almeda, Baker, Heffernan, & Heffernan, 2018). The main new form of data is action-

level data; that is, students’ direct or inferred behaviors recorded by information and 

communication technologies (e.g., intelligent tutoring systems and learning management 

systems) provide authentic data regarding learning processes (Tempelaar, Rienties, & Giesbers, 

2015). Related research advancements in data analysis methodologies have also emerged, 

including educational data mining and learning analytics (Baker & Inventado, 2014). For 

example, students’ online learning actions can be accessed, detected, and computed to form 

psychological constructs such as learning affect by affective computing (Baker, D’Mello, 

Rodrigo, & Graesser, 2010). 

Secondly, justifying students’ online learning processes leading to STEM choice may need 

support from a theoretical basis, conceptual reasoning, and educational practices. For the 

theoretical basis, the positive-affect-to-success (PAS) hypothesis assumes that “positive affect 

engenders success,” as suggested by Lyubomirsky, King, and Diener (2005, p. 803) and vice 

versa. The positive affects include long-term positive affective traits (i.e., happiness) and short-

term frequently experienced positive affective states (e.g., joy, interest, and pride), although 

happy people occasionally have negative affective states (e.g., anger, anxiety, and sadness) 

when receiving negative feedback about their performance. The occasional negative affective 

states in response to negative feedback, however, play a functional role for happy people to 

focus on solving current problems aiming to return to their generally long-term trait of positive 

affects (or happiness) and, in turn, for success, an experience like playing a challenging but 

solvable game (Gee, 2005a, 2005b). For conceptual reasoning, students’ STEM choice can serve 

as a criterion or learning outcome for educational researchers to identify effective affective and 

behavioral factors in mathematical problem solving. It is because affective states and behaviors 

are interwoven with cognitive processes in mathematical learning (McLeod, 1994), and 

mathematics are the basis for studying in STEM (Chiu, 2007), which may link to future STEM 

choice (Meece, Wigfield, & Eccles, 1990; Chiu, 2017). For educational practice, linking 

students’ online-learning action-level data to student-level data (e.g., future related educational 

choices) may serve as a basis for understanding students’ longitudinal learning processes 

(Banerjee, 2016) and identify effective factors for educational intervention. When affect 

becomes the focus, gender differences are of concern because there is a stronger relationship 

between affect and both achievement and participation in advanced STEM studies for female 

students than for male students (Glynn, Taasoobshirazi, & Brickman, 2007; Zeldin & Pajares, 

2000). 

The ASSISTments project provides necessary measures for the present investigation: (1) To 

predict students’ higher-education STEM choices using students’ affective states and behaviors 

in online mathematical problem solving in middle school, (2) to explore whether there are 

gender differences in the prediction patterns, and (3) to use typical data analysis methods from 

both the fields of education and data science. The following literature review will first provide 

the theoretical basis for the affective states and behavioral measures in the ASSISTments 

dataset. The second section focuses on empirical studies of factors predicting STEM choice. In 

the final section, the literature review focuses on gender differences. The rationales for selecting 

suitable data analysis methods are presented in Section 2.3 on data analysis. 
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1.1. AFFECTIVE STATES AND BEHAVIORS IN ASSISTMENTS 

The affective states and behavior measures in the ASSISTments dataset were initially developed 

on the basis of the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP; Ocumpaugh, 

Baker, & Rodrigo, 2015; Shute et al., 2015). The BROMP uses a dual coding scheme, by which 

observers record one of the students’ affective states and one of the students’ affective behaviors 

at one particular point of time (i.e., at the action level) if any. The BROMP records were 

synchronized to the log-file data of how students solved problems online. As a later development, 

the present data on students’ affective states and behaviors were inferred by automated detecting, 

modeling, or computing on the basis of student actions in using the ASSISTments intelligent 

tutoring platform, where students solved mathematical problems and obtained hints or 

scaffolding questions if requested (San Pedro, Baker, Gowda, & Heffernan, 2013b; Pardos, 

Baker, San Pedro, Gowda, & Gowda, 2014). The ASSISTments dataset contains four constructs 

on affective states (i.e., boredom, concentration, confusion, and frustration) and two constructs 

on affective behaviors (i.e., being off-task and gaming the system). The meanings of the six 

constructs and their relationships with related learning outcomes are depicted as follows. 

Boredom. Being bored is an aversive state that draws students’ attention and engagement 

away from participating in productive activities, is attributed to external settings, and relates to 

affective states such as anxiety, sadness, emptiness, and perception of slow time passing 

(Eastwood, Frischen, Fenske, & Smilek, 2012). Boredom relates to low student mathematical 

skill or knowledge (San Pedro et al., 2013b). 

Concentration. (Engaged) concentration refers to paying full attention to learning tasks (e.g., 

furrowing one’s brow while working) regardless of being on-task, off-task, or multitasking 

(Ocumpaugh et al., 2015). Concentration is a state of flow in psychology (Nakamura & 

Csikszentmihalyi, 2002) and was named flow in earlier affective computing research (D’Mello, 

Picard, & Graesser, 2007). Concentration in online mathematical learning during middle school 

positively relates to STEM vocational self-efficacy in high school, which is a predictor for future 

STEM career choice (Ocumpaugh, San Pedro, Lai, Baker, & Borgen, 2016). Concentration also 

relates to high mathematical knowledge (San Pedro et al., 2013b; Pardos et al., 2014). 

Confusion. Confusion occurs when students have difficulty in understanding learning tasks 

of noticeable concerns, which may be observed as facial expression, verbal requests for 

explanations, or body language for help (Ocumpaugh et al., 2015). Confusion during online 

mathematics learning in middle school relates negatively to STEM vocational interest in high 

school (Ocumpaugh et al., 2016). Prolonged confusion in computer programming relates to low 

course grades (Lee, Rodrigo, Baker, Sugay, & Coronel, 2011). 

Frustration. Frustration is manifested by students’ expression of annoyance, sorrow, and 

distress, which, however, may be cognitively interpreted and expressed differently or reversely 

in different situations (Ocumpaugh et al., 2015). For example, challenging but solvable tasks 

may lead to pleasurable frustration and engage students (Gee, 2005a). Real-time frustration 

experience through interacting with the computer on easy tasks elicited smiles for 90% of post-

graduate students in a US study (Hoque, McDuff, & Picard, 2012). Frustration relates to 

extremely high or low mathematical skill or knowledge (San Pedro et al., 2013b). A surprising 

finding is that frustration positively relates to higher online problem-solving test scores (Pardos 

et al., 2014). 

Off-task. Being off-task refers to engaging in behaviors other than the assigned learning 

tasks on the intelligent tutoring system (Baker & Rossi, 2013). However, off-task behaviors may 

not mean boredom and may re-engage students perhaps because there are many forms of off-

task behaviors, some apparently disruptive (e.g., threatening other students and sleeping) and 
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some not (e.g., staring into space, interacting with peers, playing with objects like pencils, and 

seeking teachers’ attention by putting heads on desks; Ocumpaugh et al., 2015, pp. 36 and 39). 

Given the diverse forms of off-task behaviors, it is hard to infer whether or not off-task behavior 

as a whole predicts STEM choice, as evidenced by a research finding that there are unstable 

relationships between off-task behavior and test scores during online problem solving (Pardos 

et al., 2014). 

Gaming. Gaming the system refers to students playing around with the system but not 

engaging with learning tasks (Ocumpaugh et al., 2015). Example gaming behaviors include 

sustained guessing (Baker et al. 2010), requesting hints, or responding too quickly depending 

on the degree of task difficulty, with successful problem-solvers gaming on easy tasks and 

unsuccessful problem-solvers gaming on difficult tasks (Baker & Rossi, 2013). Given that 

gaming the system has a confounding factor (i.e., task difficulty), it is hard to hypothesize 

gaming’s direction in predicting STEM choice even if gaming itself is negative in meaning, but 

one study has found a negative relationship between gaming behavior and online problem-

solving scores (Pardos et al., 2014). 

In summary, the above literature review on ASSISTments and affective computing suggests 

the six constructs have the following characteristics: (A) Concentration is positive in semantic 

meaning, and the other five constructs are negative. (B) The constructs are assessed by criteria 

of traditional educational learning outcomes such as student knowledge (task difficulty or 

correctness), engagement, interest, and self-efficacy. (C) According to the PAS hypothesis, the 

positive affective state (i.e., concentration) will positively predict STEM choice and the negative 

affective states (i.e., boredom, confusion, and frustration) negatively predict STEM choice 

(Lyubomirsky et al., 2005). The two behaviors are relatively uncertain because of diverse 

meanings and confounding factors. (D) As stated in the PAS hypothesis (in Section 1), happy 

people occasionally have a negative affect when facing negative feedback about their 

performances; the occasional negative affect actually positively relates to long-term happiness 

and then success. This is evidenced by the phenomenon that a brief period of confusion and 

frustration positively relate to learning gains, but lengthy-period confusion and frustration 

negatively relate to learning gains (Liu, Pataranutaporn, Ocumpaugh, & Baker, 2013). 

1.2. ONLINE AFFECTIVE STATES AND BEHAVIORS PREDICTING STEM CHOICE 

There appear to be few empirical studies predicting students’ STEM choice by students’ action-

level affective states and behaviors during online mathematical problem solving. The most 

relevant study is the research conducted by San Pedro, Ocumpaugh, Baker, and Heffernan 

(2014). They used independent t-test and logistic regression to identify effective factors 

distinguishing STEM and non-STEM college majors using student-level data on online 

mathematical learning from ASSISTments. The only significant and stable independent variable 

among the six constructs (Section 1.1) over the two algorithms (t-test and logistic regression) 

was gaming in a negative direction. (The other effective factor is student knowledge.) Another 

related study, using ASSISTments data and similar algorithms, indicated that students’ college 

enrollment could be “positively” predicted by boredom and confusion, controlling for 

mathematics knowledge, number of first actions, and carelessness (San Pedro, Baker, Bowers, 

& Heffernan, 2013a), which is hard to interpret given the negative essence of boredom and 

confusion (cf. Section 1.1). A note to make is that the two studies actually used student-level 

data by averaging action-level data on each construct for each student. 

Predicting students’ STEM achievements and choices has long been a research interest for 

educational researchers, who, however, only focus on student-level factors. Qualitative research 
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in education has identified factors relating to students’ STEM choice by interviewing STEM 

students and their teachers or parents. The most important factors are student affect, such as 

interest, curiosity, identity, and values. The next are school, family, and informal learning 

experiences (Cerinsek, Hribar, Glodez, & Dolinsek, 2013; Maltese & Tai, 2010). From a 

psycho-socio-cultural perspective, students’ STEM choice relates to affective factors within 

different cultural contexts, such as interest or optimism with learning materials or tasks, 

confidence or self-efficacy with grades, resilience or control with learning strategies, value with 

authorities in the society, and hope or goal with educational designs (Chiu, 2017). A quantitative 

study using structural equation modeling finds similar results: Interest plays a major, mediating 

role and is influenced by peers, family, educators, and prior knowledge; interest, in turn, 

influences self-efficacy and career outcome expectancy and then knowledge and career 

orientation for STEM (Nugent, Barker, Welch, Grandgenett, Wu, & Nelson, 2015). 

1.3. GENDER DIFFERENCES IN FACTORS PREDICTING STEM CHOICE 

There appear to be no studies to date focusing on gender differences in the patterns of factors 

predicting STEM choice. Most related studies focus on gender differences in STEM 

achievement, which has long been viewed as the major reason for the persistent 

underrepresentation of females in STEM. Recent cross-cultural or meta-analysis studies, 

however, indicate that social-cultural factors address gender differences in STEM choices and 

achievements (Else-Quest, Hyde, & Linn, 2010). A salient example is that from pre-K to high 

school, gender differences in STEM achievement are small and subject to gender equality in a 

certain culture or society, with gender-equal societies having fewer gender differences in STEM 

achievements or mainly mathematics achievement (Guiso, Monte, Sapienza, & Zingales, 2008). 

The diminishing gender differences in STEM or mathematics achievements lend support to the 

gender similarities hypothesis, which contends that gender similarities tell more stories than 

gender differences (Hyde, 2005). 

For the present study, it is interesting to extend the debate to whether there are more gender 

differences or similarities in problem-solving affective states and behaviors, which can serve as 

key precedents for achievements (Zhu, 2007). In terms of affective states, traditional educational 

research normally uses the term “affects” and defines “affects” as beliefs, attitudes, and 

emotions toward a particular school subject (e.g., mathematics), social context (e.g., learning 

environment), or learning task (e.g., geometric proof); detailed affective measures include self-

concept (e.g., “I am able to solve a problem”), interest (e.g., “I enjoy solving problems”), and 

anxiety (e.g., “I feel anxious about making mistakes when solving problems”; Clifford, 1988; 

McLeod, 1992). Educational research indicates that boys generally have more positive attitudes, 

affects, or emotions toward STEM than girls do (Barkatsas, Kasimatis, & Gialamas, 2009) with 

only some exceptions, especially for primary school students (Yüksel-Şahin, 2008). Males’ 

more positive affects (e.g., higher self-efficacy and lower anxiety) in turn may lead to higher 

mathematics achievements (Pajares & Miller, 1994) or directly lead to STEM choice controlling 

for achievements (Carli, Alawa, Lee, Zhao, & Kim, 2016; Organization for Economic 

Cooperation and Development [OECD], 2014). These studies appear to suggest that affects may 

play different roles in predicting STEM choices for different genders. Whether the affect and 

related behavior measures included in the ASSISTments dataset can serve the function 

suggested by educational literature is worth investigating. 

In terms of affect-related or affective behaviors, the negative relationships between off-task 

behavior and mathematics achievement were stronger for boys than for girls, especially for low-

level mathematical tasks (e.g., computation; Peterson & Fennema, 1985). Competitive 
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mathematics activities positively engage male low-achievers but negatively engage female low-

achievers; in contrast, cooperative mathematics activities positively engage female low-

achievers but negatively engage male high-achievers (Koehler, 1990). These results suggest that 

engaging in socially off-task activities may be irrelevant to or even supportive of learning for 

girls. 

1.4. THE PRESENT STUDY 

The above literature review suggests that, in predicting STEM choice, student- and action-level 

affective states and behaviors may perform differently for students as a whole and for both 

female and male students. Linking action-level data from online learning (i.e., affective states 

and behaviors during problem solving) with future student-level data (i.e., STEM choice) invites 

different data analysis methods from the fields of both education and data science. This 

methodology triangulation (i.e., multiple algorithm uses for the same phenomenon) can increase 

the understanding, accuracy, validity, and credibility of research results (Hussein, 2015). 

This study used data from the ASSISTments project, which provided necessary measures for 

the present investigation (cf. Sections 2.1 and 2.2). As suggested by related literature (Section 

1.1), desirable affective states (e.g., concentration) positively predict STEM choice and 

undesirable affective states (e.g., boredom) negatively predict STEM choice. The prediction 

directions are relatively uncertain for the two behaviors (i.e., off-task and gaming). As such, it 

was difficult to propose a hypothesis for the two affective behaviors. 

Given the above condition, this study poses two research questions (RQs), with RQ1 having 

one embedded hypothesis, as suggested by the PAS. The affective states are boredom, 

concentration, confusion, and frustration, and the behaviors are being off-task and gaming the 

system, terms used in ASSISTments (Section 1.1). 

 

RQ1: What student- and action-level affective states and behaviors in online mathematical 

problem solving predict STEM choice? [Hypothesis: Positive affective states (e.g., 

concentration) predict STEM choice positively, and negative affective states (e.g., boredom, 

confusion, and frustration) predict it negatively.] 

RQ2: Are there gender differences in the prediction pattern? 

2. METHOD 

2.1. DATA SOURCE AND PARTICIPANTS 

The data was obtained from the ASSISTments project. ASSISTments is a free online tutoring 

platform that provides students with mathematical problems designed by their teachers. Students 

solve the problems in school or as homework, and when students do not correctly solve 

problems, students can request hints and scaffolding questions to support their learning 

(Botelho, Baker, & Heffernan, 2017). While ASSISTments assists student learning, it can also 

assess student performance and record student actions (Heffernan & Heffernan, 2014). The 

dataset used in this study came from middle school students working on ASSISTments during 

2004–2005 (58% of the total student actions) and 2005–2006 (42% of the total student actions). 

The project also collected offline data on the students’ gender and whether the students 

studied STEM in higher education (i.e., variable name: isSTEM). This study only used 

observations where isSTEM had no missing data. This data selection procedure resulted in a 

final dataset of 591 students and their 316,974 action records in solving the mathematical 

53 Journal of Educational Data Mining, Volume 12, No 2, 2020



problems. Among the 591 students, there were 247 females and 237 males, with the others as 

missing data. The action numbers were 132,684 for females and 131,087 for males. 

2.2. MEASURES 

The outcome measure was at the student level, indicating whether the students study in the 

STEM fields or not. Its column name was “isSTEM” in the ASSISTments dataset with a 

dummy-coding scale (0 = no, 1 = yes). The mean of isSTEM was 0.212, indicating that 21.2% 

of the participants studied STEM in higher education. 

As partially indicated in Section 1.1, the affective state and behavior features in the present 

ASSISTments dataset were automatically detected, and the original data that trained the 

detectors was BROMP-based (San Pedro et al., 2013b; Pardos et al., 2014). The predictors 

included four affective states (i.e., boredom, concentration, confusion, and frustration) and two 

behaviors (i.e., off-task and gaming the system), in total six concepts, each at both the student 

level and the action level, which resulted in 12 (= 6 * 2) predictor measures. The action-level 

affective states and behaviors indicated each student’s affective states and behaviors while 

solving a particular problem, labeled “the student affect prediction of the current response” 

(column names: 'RES_BORED,' 'RES_CONCENTRATING,' 'RES_CONFUSED,' 

'RES_FRUSTRATED,' 'RES_OFFTASK,' 'RES_GAMING') in the ASSISTments dataset. The 

student-level affects and behaviors (column names: 'AveResBored,' 'AveResEngcon,' 

'AveResConf,' 'AveResFrust,' 'AveResOfftask,' 'AveResGaming') were the averages of the 

students’ action-level affects and behaviors; that is, for example, taking the average of 

'RES_BORED' values for a student would be the student’s 'AveResBored.' The 12 predictors 

used a continuous scale ranging from 0 to 1. 

2.3. DATA ANALYSIS 

2.3.1. Overview 

The research questions (RQs) were mainly a binary classification task with the goal to predict 

students’ STEM choice in higher education (0 = no; 1 = yes, i.e., a binomial, binary, or 

dichotomous dependent variable or outcome). The independent variables or predictors were the 

students’ affective states and behaviors during solving mathematical problems in middle school, 

which were continuous variables with diverse patterns of data distribution. Regression or tree 

classification methods could be used to answer the RQs. 

The data was analyzed using Python and its related packages, including pandas, numpy, 

seaborn, statsmodels.api, scipy.stats, sklearn, eli5, and shap. The code and results of data 

analysis, preparation, and exploration or binning (including descriptive statistics, data 

distribution plots of the measures, and related data analyses and results without being presented 

in this paper) were made available for public use on five Kaggle kernels (e.g., 

https://www.kaggle.com/meishiuchiu1/assistmentsaffecttrait-student-level-data). 

2.3.2. The three algorithms 

The RQs were answered by three data analysis methods: logistic regression (LR), linear or 

ordinary least squares regression (OR), and random forest with feature selection. All of the three 

algorithms were typical methods for predicting or classifying dependent variables by using 

multiple predictors or features. The differences between the three algorithms can be summarized 

as follows: LR is a typical method for predicting binominal dependent variables, which suited 
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the present student-level data structure; OR is a typical method for predicting continuous 

dependent variables, which did not suit the present student-level data structure but might suit 

the present action-level structure; random forest is a typical non-parametric regression tree 

algorithm and can identify degrees of feature importance in predicting dependent variables. The 

detailed rationales and procedures for using the three algorithms are addressed for each 

algorithm as follows. 

Firstly, LR was used because LR is the most common statistical method for identifying 

effective predictors (using maximum likelihood estimation) to distinguish a dichotomous 

outcome (Allison, 2012) and tends to perform suitably for individual-level outcomes. To 

interpret the regression coefficients for each predictor, given the large sample sizes of this study, 

it was easy to obtain coefficients that were significant but actually had little importance. Effect 

sizes, therefore, were proper criteria to assess the importance of the predictors. In LR, odds 

ratios were used as the effect sizes for the predictors. 

Secondly, linear or ordinary least squares regression (OR) was used, with all the measures 

being transformed into standardized z-scores (ORz). The rationale for using OR in this study 

was that the outcome was at the student level, but the predictors were initially recorded at the 

action level and then aggregated to the student level. By transforming all the outcome and 

predictor measures into z-scores, the data could be dealt with as continuous measures. The best 

choice might have been to analyze the dataset using multilevel modeling, but this is a complex 

modeling method and time-consuming in terms of data processing, especially given the large 

dataset at the action level and the large number of groups at the student level. ORz, therefore, 

served as a compromise for dealing with the present dataset. 

A major concern for using OR to analyze dichotomous dependent variables is that this 

algorithm might violate two of the five assumptions of OR (i.e., homoscedasticity and normality; 

Allison, 2012). The concern, however, can be released if the datasets have large sample sizes 

(or even small sample sizes and skewed distribution). OR can generate robust results similar to 

the results obtained by LR in empirical studies, especially for testing causal hypotheses or 

classifying cases, though LR provides more accurate predictions than OR for student-level data 

(Pohlmann & Leitner, 2003). 

One major merit of using OR is that interpreting OR results is more intuitive and meaningful 

than interpreting LR results, which can facilitate communicating research results to the general 

public (Hellevik, 2009). For example, the significant regression coefficient of an independent 

variable (predictor) in LR should be interpreted by log-odds (e.g., a logit coefficient of 0.300 

refers to log-odds increase by 0.300 for every 1-unit increase in the predictor). However, it is 

easier to understand a regression coefficient in OR (e.g., 0.300), which can be interpreted as the 

probability of the outcome increases by 0.300 units for every 1-unit increase in the predictor. 

Using ORz (as used in the study) can further facilitate the interpretation because after 

transforming all the measures into z-scores, the ORz regression coefficients are standardized 

(i.e., betas), in which the “unit” becomes the “standard deviation” of the measures. These can 

be interpreted as correlation (r) between the predictor and the outcome variable controlling for 

all other predictors in the ORz model. As such, the betas could serve as the effect sizes and use 

the effect size metrics for correlations: rs = 0.100 are small effect sizes, rs = 0.300 are medium 

effect sizes, and rs = .500 are large effect sizes (Cohen, 1992). Further, for example, the beta of 

0.300 for a predictor (e.g., concentration) could be interpreted as 9% (= 0.300*0.300) of the 

total variance of students’ STEM choice having come from concentration controlling for all 

other predictors in the ORz model. 

Thirdly, random forest is a typical, efficient, and accurate non-parametric regression tree 

algorithm to perform classification tasks especially for data with missing data or many 
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predictors (Strobl, Malley, & Tutz, 2009), which suited the aim of this study using six affective 

state and behavior predictors to predict whether students studied STEM or not (a classification 

task). Another reason is that random forest can present predictor importance, which can facilitate 

the comparison with regression coefficients (typical statistics indicating the relative importance 

of predictors) obtained by LR and ORz. Thus, permutation importance and SHAP values were 

used to identify the weights and direction for the predictors (Becker, 2019). Permutation 

importance (PI) was a performance metric on accuracy (how model performance decreases in 

prediction by randomly shuffling the cases of a predictor) for each predictor, with higher 

positive PI indicating higher accuracy and negative PI as a sign of small sample sizes. The 

variance for accuracy was calculated by the results of multiple shuffling. The summary plots of 

SHAP values (i.e., the impact of a predictor for a case on the model output, SHAP value = 0 as 

no impact, < 0 as negative impact, and > 0 as positive impact) could tell the direction of each 

predictor in the model. For example, if most cases with high concentration had high SHAP value, 

then concentration had a positive impact on isSTEM. The judgment on the directions of 

predictors, however, relied on visualization of the SHAP-value summary plot (e.g., Figure 1), 

which might be an unreliable task, especially with large sample sizes. The whole process was 

called the RFPS (Random Forest, Permutation-importance, and SHAP) procedure in this study, 

which might play similar roles to LR and ORz in identifying effective predictors or features and 

reduce concerns about “black box” in random forest algorithms. 

This study focused on identifying the importance of predictors or features. Although the 

global performance of the three algorithms was not the focus, basic evaluation metrics were 

partially considered. OR’s R-squared indicates the total variance of the outcome explained by 

all the predictors in the regression model. A smaller than .050 F-statistic p-value for OR 

indicates that at least one of the regression coefficients is not zero (Allison, 2012). LR uses 

pseudo R-squared as the evaluation statistics, which is explained as a pseudo R-squared with a 

smaller than .050 LLR (likelihood ratio chi-squared statistic) p-value indicating that at least one 

of the regression coefficients is not zero. LR’s pseudo R-squared, however, is not as robust as 

OR’s R-squared. Because both LR and random forest perform classification tasks, classification 

metrics were considered. Classification accuracy was an intuitive measure but might have been 

misleading for this study because the outcome variable (“isSTEM”) did not have roughly equal 

numbers in the two classes (cf. Section 2.1). AUC (or area under ROC [receiver operating 

characteristic] curve) was a relatively robust performance metric for skewed class distribution 

(Fawcett, 2006), normally ranging from 0.500 (random classification) to 1.000 (completely 

correct classification). For this study, higher AUC indicated a better algorithm for distinguishing 

between students choosing STEM and not. 

2.3.3. Multicollinearity in regression analysis 

Regression analysis should pay attention to the problem of multicollinearity, in which the results 

obtained by the individual-feature model (placing only one predictor into a regression analysis) 

will be different from the all-feature model (placing all the predictors into a regression analysis). 

Therefore, the problem of multicollinearity could be resolved by comparing the directions (signs) 

of the regression coefficients between the all- and individual-feature models. A note to make 

was that a simple relationship (or correlation) between a feature and its outcome in the 

individual-feature model might involve many confounding factors and does not allow for 

identifying the relative importance among the features, which could be achieved by the all-

feature model. The criterion for the sign change was that, for a particular construct, the sign of 

its significant regression coefficient (e.g., significantly positive) in its individual-feature model 
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changed to the opposite sign (e.g., significantly negative) in its all-feature model. In the case of 

non-significant coefficients, it is unclear whether a sign change actually represents a 

multicollinearity issue since the coefficients were not significant in either case. 

The problem of multicollinearity, however, would not be serious, and the all-feature model 

would be more suitable than the individual-feature model in this study. The two claims were 

justified as follows. 

Firstly, two measures could check for the problem of multicollinearity. Correlations between 

the predictors larger than 0.900 and the variance inflation factor (VIF) values of the predictors 

larger than 10 would suggest the existence of multicollinearity (Hair, Black, Babin, Anderson, 

& Tatham, 2006). The correlations between the predictors ranged from -0.724 to 0.886 on the 

student-level data (https://www.kaggle.com/meishiuchiu1/assistmentsaffectstate-action-level-

data) and ranged from -.455 to 0.509 on the action-level data (https://www.kaggle.com/ 

meishiuchiu1/assistmentsaffecttrait-student-level-data ) for the three samples (all, female, and 

male students) in this study. All the correlation coefficients were smaller than 0.900. The VIF 

values ranged from 1.101 to 9.982 on the student-level data and ranged from 1.008 to 1.786 on 

the action-level data (Tables 1-3). All of the VIF values were smaller than 10. VIF can be 

explained using an example from this study. In the student-level data in Table 1, the VIF of 

boredom is 8.724, which means that the standard errors of boredom in the all-feature model 

would have been increased by 4.362 (= square root of 8.724) times. 

Secondly, the predictors were collected based on the BROMP (cf. Section 1.1), which used 

a dual coding scheme (coding affective states and behavior simultaneously and separately) and 

assumed that affective states and behaviors should be partially orthogonal or uncorrelated 

(Ocumpaugh et al., 2015). The design of the BROMP justified the use of an all-feature 

regression model. Using an all-feature regression model could not only reflect that there was a 

co-occurrence of affective states and behaviors but also advance our knowledge of the relative 

importance of the affective states and behaviors in predicting STEM choice. For example, boys 

and girls might have had different patterns of the relative importance among the affective states 

and behaviors, which could facilitate the interpretation of the multicollinearity as an actual 

phenomenon, based on which to form a new theory. An example is that the internal/external 

frame of reference model (Chiu, 2012; Marsh & Hau, 2004) and the dimensional comparison 

theory (Jansen, Schroeders, Lüdtke, & Marsh, 2015) were supported by the results of 

multicollinearity, where there were sign changes from the models with individual predictors to 

the models with multiple highly correlated predictors (e.g., using mathematics and science 

achievements to predict mathematics and science self-concept). As such, this study would 

answer the research questions primarily using the results from the all-feature models. The 

individual-feature model was only used for discussing multicollinearity. 

3. RESULTS 

3.1. AFFECTIVE STATES AND BEHAVIORS PREDICT STEM CHOICE FOR ALL 

STUDENTS (RQ1) 

3.1.1. Multicollinearity checking 

On the student-level data, both LR and ORz did not reveal salient sign changes from the 

individual to all-feature models (Table 1). In LR, one construct’s regression coefficients 

remained the same significant signs, and five constructs changed from being significant in the 

individual-feature models to non-significant in the all-feature model. As “non-significant 
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coefficients,” they were therefore exempt from the problem of multicollinearity. ORz’s all- and 

individual-feature models had the same regression coefficient signs: Five constructs’ signs 

remained non-significant, and one construct’s sign remained the same sign (and significant) 

across the all- and individual-feature models. 

Table 1: Analysis results for all students. 

predictors 
algorithm 

boredom concentration confusion frustration off-task gaming 

Student-level data 
 VIF 8.724 2.346 1.339 1.123 4.527 2.190 
LR log odds -5.155 -2.020 -11.566 -9.946 -5.601 -8.138 

(individual std err 0.399 0.155 0.948 0.809 0.466 0.902 

-feature  p > |z| 0.000 0.000 0.000 0.000 0.000 0.000 
model) odds ratio 0.006 0.133 0.000 0.000 0.004 0.000 

LR log odds -12.182 2.875 0.205 -2.119 2.300 -3.618 
(all-feature std err 6.284 1.693 3.059 2.141 2.592 1.212 

model) p > |z| 0.053 0.089 0.947 0.322 0.375 0.003 

 odds ratio 0.000 17.730 1.227 0.120 9.970 0.027 

ORz beta 0.000 0.045 -0.005 -0.056 0.011 -0.083 
(individual std err 0.041 0.041 0.041 0.041 0.041 0.041 
-feature  p > |t| 0.996 0.271 0.910 0.176 0.792 0.043 

model) beta-squared 0.000 0.002 0.000 0.003 0.000 0.007 

ORz beta -0.165 0.039 -0.002 -0.045 0.082 -0.169 
(all-feature std err 0.121 0.063 0.047 0.043 0.087 0.061 

model) p > |t| 0.172 0.531 0.967 0.302 0.348 0.005 
 beta-squared 0.027 0.002 0.000 0.002 0.007 0.029 

RFPS accuracy 0.011 0.019 0.000 0.015 -0.015 0.000 
 variation 0.007 0.013 0.024 0.016 0.013 0.017 

 important yes yes no yes no no 

 impact direction negative? positive? ?  negative? ? ? 

Action-level data 
 VIF 1.776 1.276 1.068 1.008 1.363 1.141 
LR log odds -5.005 -1.969 -1.883 -1.705 -4.372 -2.210 

(individual std err 0.019 0.007 0.017 0.014 0.026 0.015 
-feature  p > |z| 0.000 0.000 0.000 0.000 0.000 0.000 

model) odds ratio 0.007 0.140 0.152 0.182 0.013 0.110 

LR log odds -1.789 -1.234 -0.013 -0.113 0.047 -0.633 
(all-feature std err 0.037 0.012 0.018 0.015 0.023 0.015 

model) p > |z| 0.000 0.000 0.480 0.000 0.046 0.000 
 odds ratio 0.167 0.291 0.987 0.893 1.048 0.531 

ORz beta 0.009 0.000 0.006 -0.001 0.011 -0.048 

(individual std err 0.002 0.002 0.002 0.002 0.002 0.002 

-feature  p > |t| 0.000 0.844 0.001 0.746 0.000 0.000 

model) beta-squared 0.000 0.000 0.000 0.000 0.000 0.002 

ORz beta -0.009 0.002 0.002 -0.002 0.004 -0.051 
(all-feature std err 0.002 0.002 0.002 0.002 0.002 0.002 
model) p > |t| 0.000 0.400 0.212 0.237 0.077 0.000 

 beta-squared 0.000 0.000 0.000 0.000 0.000 0.003 

RFPS accuracy 0.010 0.073 0.019 0.030 0.039 0.061 
 variation 0.001 0.002 0.001 0.001 0.001 0.001 

 important yes yes yes yes yes yes 
 impact direction ? ? ? ? ? ? 

Note. Green cells indicate the significant (important) results consistent with past literature and 

pink cells indicate the inconsistent results (base on the Hypothesis). The cells without colors 

indicate non-significant or uncertain results. The value “0.000” refers to “< 0.0005”. LR = linear 
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regression; ORz = ordinary least squares regressions with standardized scores; RFPS = random 

forest with permutation importance and sharp values; important = result judged by permutation 

importance; impact direction = result visually judged by Figure 1; “?” = uncertain direction in 

prediction. 

 

On the action-level data, both LR and ORz each had only one construct with a change in the 

signs of regression coefficients. In LR, off-task behavior changed from significantly negative in 

the individual-feature model to positive in the all-feature model (-4.372 to 0.047; Table 1). In 

ORz, boredom changed from positive (0.009) to negative (-0.009). The likely reason was that 

boredom had a relatively higher correlation with being off-task (0.503) than with all other 

predictors (-0.455 ~ -0.015), although none of the correlations were high enough (i.e., 0.900) to 

create a serious problem of multicollinearity. A note to make was that, for the student-level data, 

there were no salient sign changes even though the correlation between boredom and off-task 

behavior was much higher (0.868; https://www.kaggle.com/meishiuchiu1/assistmentsaffecttrait 

-student-level-data). This may have been because, compared with the action-level data, the 

student-level data had a smaller sample size, which resulted in more non-significant regression 

coefficients and thus exempted them from being identified as sign changes (e.g., off-task 

behavior with a sign change from significantly negative (-5.601) to non-significant (2.300); 

Table 1). 

In summary, the problem of multicollinearity in terms of sign changes from the individual- 

to all-feature models occurred only at the constructs of boredom and off-task behavior and only 

on the action-level data. The results were inconsistent with the low correlation coefficients and 

VIF values on the action-level data, which suggested a low possibility of multicollinearity (cf. 

Section 2.3.3). As has been stated, the BROMP coded affective states and behavior 

simultaneously and separately and assumed that affective states and behaviors were partially 

orthogonal or uncorrelated (Ocumpaugh et al., 2015). The simultaneous co-existence of the 

affective states and behaviors was obvious even though there was some possibility of 

multicollinearity in the all-feature models. In the all-feature models, the regression coefficients 

should be explained as the effect of the focused predictor on the outcome controlling for all 

other predictors in the model, which might reveal that there were co-occurrence and interactions 

between human affective states and behaviors. 

3.1.2. Student-level data 

Controlling for all other predictors in the models, the only significant student-level predictor of 

isSTEM was gaming, which predicted it in a negative direction, as indicated by the results 

obtained by LR (log odds = -3.618) and ORz (beta = -0.169) (Table 1). The effect sizes of 

gaming were the odds ratio of 0.027 for LR and the beta-squared of 0.029 for ORz. 

As indicated in Section 2.3.2, RFPS used accuracy measures with variation to assess the 

predictors’ degree of importance. The impact direction of a particular predictor was visually 

judged by the summary plots of SHAP values (Figure 1). For example, the measure “frustration” 

on the student-level data for the all-student sample had the most red dots (cases/students) (red 

indicating high in frustration) on the left-hand side (with negative SHAP values, indicating 

negative impacts of frustration on isSTEM) and the most blue dots (blue indicating low in 

frustration) on the right-hand side (with positive SHAP values). This result indicated that high 

frustration (red dots) had negative impacts on STEM choice (left-hand side) for students and 

vice versa, meaning that frustration was negatively related to STEM choice. RFPS obtained 

different results from those obtained by LR and ORz; that is, the outcome variable, isSTEM, 
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was negatively predicted by three important features: boredom (accuracy = 0.011; variation = 

0.007) and frustration (0.015; 0.016) and positively predicted by concentration (0.019; 0.013; 

Table 1; Figure 1), which matched the predictions of the hypothesis and literature (to be 

discussed in Section 4.1). 

 

 

Student-level data Action-level data 

All students 

  
Female students 

  
Male students 

 

 

Figure 1: The summary plots of SHAP values using RFPS on student- and action-level data for 

different student samples. Section 2.2 presents the information about the measure names in the 

ASSISTments dataset (e.g., “AveResFrust” and “RES-BORED”). 

 

3.1.3. Action-level data 

There were more significant predictors for the action-level data than for the student-level data, 

perhaps due to the large sample size for the action-level data. LR generated four significant 

predictors in the negative direction, boredom (log odds = -1.789; odds ratio = 0.167), 

concentration (-1.234; 0.291), frustration (-0.113; 0.893), and gaming (-0.633; 0.531), and one 

in the positive direction: off-task (0.047; 1.048; Table 1). The result that concentration 
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negatively predicted isSTEM was theoretically non-plausible (cf. the hypothesis). The non-

plausible result might come from the unsuitable use of LR for the action-level data. 

ORz generated theoretically plausible results but with only two significant predictors: Both 

boredom (beta = -0.009; beta-squared < 0.0005) and gaming (-0.051; 0.003) negatively 

predicted isSTEM (Figure 2). The results might have been plausible because using z-scores 

reduced the problem of multicollinearity, the original data collection design, and low 

correlations between the predictors (cf. Section 2.3.3). 

RFPS results indicated that all six predictors were important in predicting isSTEM: boredom 

(accuracy = 0.010; variation = 0.001), concentration (0.073; 0.02), confusion (0.019; 0.001), 

frustration (0.030; 0.001), off-task (0.039; 0.001) and gaming (0.061; 0.001; Table 1). However, 

the impact direction of the predictions was difficult to visually recognize (Figure 1). For 

example, the gaming behavior of the all-student sample revealed that a few red dots (cases being 

high in gaming behavior) were on the right-hand (positive SHAP values, indicating positive 

impacts of gaming on isSTEM), many blue dots (cases being low in gaming behavior) in the 

middle (near zero SHAP values), and some blue and red dots on the left-hand side (negative 

SHAP values). Even though the accuracy measure indicated that gaming was an important 

variable in predicting isSTEM, it was hard to judge whether gaming was positively or negatively 

related to isSTEM. The reasons might have been the large sample size and large variations in 

the SHAP values on the action-level data. 

3.2. GENDER DIFFERENCES (RQ2) 

3.2.1. Multicollinearity checking 

The female-student data had the same patterns of sign changes in the regression coefficient as 

the all-student data; that is, the problem of multicollinearity occurred only on the action-level 

data at the constructs of boredom and off-task behavior. In LR, off-task behavior changed from 

significantly negative in the individual-feature model to positive in the all-feature model (-5.293 

to 0.119; Table 2). In ORz, boredom changed from positive (0.008) to negative (-0.016). The 

changes were larger for the female-student data than for the all-student data. 

For male students, no sign changes occurred for either the student- or action-level data (Table 

3). Combining all the results for the samples of all, female, and male students suggested that the 

major sign changes occurred for the female-student data. The results also suggested that 

different patterns of how online-learning affective states and behaviors predicted STEM choice 

between female and male students would be found if analyzing female and male data separately, 

as done in this study. 

3.2.2. Student-level data 

For female students, isSTEM was negatively predicted by gaming using both LR (log odds = -

4.320; odds ratio = 0.013) and ORz (beta = -0.198; beta-squared = 0.039) all-feature models 

(Table 2). The results for females replicated the results obtained by LR and ORz for all the 

students (Table 1). RFPS obtained only one important predictor: off-task behavior (accuracy = 

0.016; variation = 0.050) positively predicted isSTEM. The seemingly positive prediction 

direction was as indicated in Figure 1: The ‘AveResOfftask’ for the female student-level data 

had mostly red dots (cases being high in off-task behavior) on the right-hand side (showing 

positive impacts on isSTEM) and mostly blue dots (cases being low in off-task behavior) on the 

left-hand side (showing negative impacts on isSTEM). 
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For male students, LR and ORz failed to identify any significant predictors (Table 3). 

However, RFPS obtained four important predictors: isSTEM was positively predicted by 

concentration (accuracy = 0.040; variation = 0.040) and negatively by frustration (0.017; 0.056), 

which supported the predictions. The outcome isSTEM was also predicted by off-task (0.020; 

0.039) with an uncertain direction and negatively by gaming (0.020; 0.039; Table 3; Figure 1). 

These two behaviors were relatively new in research on online learning, and no prediction 

direction was hypothesized (cf. Section 1.5). 

To summarize, the results of LR and ORz revealed that female and male students had the 

same prediction patterns, except for the negative effect of gaming for only female students. The 

RFPS results revealed more gender differences than LR and ORz results (Tables 2–3). 

3.2.3. Action-level data 

Both LR and RFPS obtained theoretically non-plausible and visually unidentifiable results using 

the action-level data for both female and male students (Tables 2–3). Similar results were 

obtained using the action-level data for all students by LR and RFPS (Table 1). As such, only 

the results obtained by ORz were interpreted in this section. 

For female students, the results using ORz revealed that both boredom (beta = -0.016; beta-

squared < 0.0005) and gaming (-0.057; 0.003) negatively predicted isSTEM, and being off-task 

(0.011; < 0.0005) positively predicted isSTEM. A note to make is that the effect sizes (i.e., beta-

squared) were very small even though the regression coefficient (i.e., betas) were significant. 

Male students had quite a different prediction pattern from female students. The only 

exception was the negative predictive capacity of gaming, which was the same for both genders 

(males’ gaming: beta = -0.038; beta-squared = 0.001). Additionally, male students’ STEM 

choice (isSTEM) could be positively predicted by concentration (0.009; < 0.0005) and 

negatively by frustration (-0.009; < 0.0005), which were plausible results based on the literature. 

3.3. DIFFERENT ALGORITHMS 

3.3.1. Student-level data 

For the student-level data, LR and ORz obtained the same results in the predictive directions of 

the regression coefficients, and RFPS obtained different “important predictors” over different 

student samples (Tables 1–3). The predictive direction of the important predictors identified by 

RFPS could be partially identified by the summary plots of SHAP values (Figure 1) but still 

could not be completely certain. 

Overall performance measures were used to examine the three algorithms over the three 

student samples (Table 4). LR performed better than ORz for the all-student sample: the LR 

model was significant (LLR p = 0.043), and the ORz model was not (p (F-statistic) = 0.077). In 

addition, the LR model had a larger effect size (pseudo R-squared = 0.019) than the ORz model 

(adj. R-squared = 0.009). However, for the female and males student samples, LR was not better 

than ORz because both LR and ORz models were not significant despite LR having larger effect 

sizes (female: 0.028; male: 0.023) than ORz (0.004; 0.003). 

LR also performed slightly better than RFPS because LR’s AUCs for the all-student and 

female-student samples (0.641 and 0.535) were higher than RFPS’s AUCs (0.540 and 0.492). 

However, for male students, RFPS (0.641) performed better than LR (0.571). 
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Table 2: Analysis results for female students. 

predictors 
algorithm 

boredom concentration confusion frustration off-task gaming 

Student-level data 
 VIF 8.612 2.440 1.325 1.127 5.551 1.977 
LR log odds -5.716 -2.223 -13.187 -10.292 -6.381 -10.177 

(individual std err 0.644 0.250 1.546 1.257 0.767 1.752 

-feature  p > |z| 0.000 0.000 0.000 0.000 0.000 0.000 
model) odds ratio 0.003 0.108 0.000 0.000 0.002 0.000 

LR log odds -19.914 4.210 -3.132 2.504 5.725 -4.320 
(all-feature std err 11.678 2.979 5.428 3.338 4.936 2.071 

model) p > |z| 0.088 0.158 0.564 0.453 0.246 0.037 

 odds ratio 0.000 67.367 0.044 12.226 306.493 0.013 

ORz beta -0.037 0.033 -0.060 0.032 -0.005 -0.070 
(individual std err 0.064 0.064 0.064 0.064 0.064 0.064 
-feature  p > |t| 0.559 0.603 0.349 0.616 0.942 0.274 

model) beta-squared 0.001 0.001 0.004 0.001 0.000 0.005 

ORz beta -0.312 -0.002 -0.041 0.032 0.184 -0.198 
(all-feature std err 0.186 0.099 0.073 0.067 0.150 0.089 

model) p > |t| 0.095 0.982 0.580 0.637 0.221 0.028 
 beta-squared 0.097 0.000 0.002 0.001 0.034 0.039 

RFPS accuracy -0.007 -0.007 -0.016 -0.029 0.016 -0.032 
 variation 0.016 0.016 0.029 0.024 0.050 0.020 

 important no no no no yes no 

 impact direction ? ? ? ? positive? ? 

Action-level data 
 VIF 1.766 1.288 1.068 1.007 1.361 1.129 
LR log odds -5.536 -2.179 -2.150 -1.833 -5.293 -2.654 

(individual std err 0.031 0.011 0.028 0.022 0.046 0.028 

-feature  p > |z| 0.000 0.000 0.000 0.000 0.000 0.000 

model) odds ratio 0.004 0.113 0.117 0.160 0.005 0.070 

LR log odds -1.975 -1.385 -0.070 -0.069 0.119 -0.785 
(all-feature std err 0.058 0.019 0.029 0.023 0.038 0.028 

model) p > |z| 0.000 0.000 0.017 0.003 0.002 0.000 
 odds ratio 0.139 0.250 0.932 0.934 1.126 0.456 

ORz beta 0.008 -0.003 0.000 0.005 0.017 -0.055 
(individual std err 0.003 0.003 0.003 0.003 0.003 0.003 
-feature  p > |t| 0.002 0.246 0.879 0.071 0.000 0.000 

model) beta-squared 0.000 0.000 0.000 0.000 0.000 0.003 

ORz beta -0.016 -0.004 -0.003 0.004 0.011 -0.057 
(all-feature std err 0.004 0.003 0.003 0.003 0.003 0.003 
model) p > |t| 0.000 0.256 0.301 0.201 0.001 0.000 

 beta-squared 0.000 0.000 0.000 0.000 0.000 0.003 

RFPS accuracy 0.063 0.056 0.034 0.021 0.016 0.006 
 variation 0.002 0.001 0.001 0.001 0.002 0.001 

 important yes yes yes yes yes yes 
 impact direction ? ? ? ? ? ? 

Note. The notes are the same as those in Table 1. 
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Table 3: Analysis results for male students. 

predictors 
algorithm 

boredom concentration confusion frustration off-task gaming 

Student-level data 
 VIF 9.982 2.711 1.457 1.101 4.511 2.289 
LR log odds -4.534 -1.760 -9.734 -9.314 -4.854 -6.117 

(individual std err 0.609 0.234 1.420 1.257 0.704 1.078 

-feature  p > |z| 0.000 0.000 0.000 0.000 0.000 0.000 
model) odds ratio 0.011 0.172 0.000 0.000 0.008 0.002 

LR log odds -6.031 1.944 1.744 -6.021 -0.228 -2.691 
(all-feature std err 8.722 2.397 4.188 3.571 3.811 1.669 

model) p > |z| 0.489 0.417 0.677 0.092 0.952 0.107 

 odds ratio 0.002 6.986 5.718 0.002 0.796 0.068 

ORz beta 0.027 0.051 0.020 -0.116 0.023 -0.087 
(individual std err 0.065 0.065 0.065 0.065 0.065 0.065 
-feature  p > |t| 0.678 0.436 0.764 0.074 0.721 0.184 

model) beta-squared 0.001 0.003 0.000 0.013 0.001 0.007 

ORz beta 0.044 0.113 0.016 -0.105 -0.033 -0.110 
(all-feature std err 0.205 0.107 0.078 0.068 0.138 0.098 

model) p > |t| 0.830 0.289 0.842 0.124 0.810 0.262 
 beta-squared 0.002 0.013 0.000 0.011 0.001 0.012 

RFPS accuracy -0.003 0.040 -0.033 0.017 0.020 0.020 
 variation 0.013 0.040 0.030 0.056 0.039 0.039 

 important no yes no yes yes yes 

 impact direction ? positive? ? negative? ? negative? 

Action-level data 
 VIF 1.786 1.266 1.071 1.008 1.372 1.150 
LR log odds -4.388 -1.707 -1.617 -1.550 -3.510 -1.767 

(individual std err 0.028 0.010 0.025 0.021 0.035 0.019 
-feature  p > |z| 0.000 0.000 0.000 0.000 0.000 0.000 

model) odds ratio 0.012 0.182 0.199 0.212 0.030 0.171 

LR log odds -1.578 -1.060 0.005 -0.166 0.000 -0.460 
(all-feature std err 0.056 0.018 0.027 0.022 0.035 0.021 

model) p > |z| 0.000 0.000 0.855 0.000 0.677 0.000 
 odds ratio 0.206 0.347 1.005 0.847 1.015 0.632 

ORz beta 0.008 0.006 0.007 -0.008 0.007 -0.037 
(individual std err 0.003 0.003 0.003 0.003 0.003 0.003 
-feature  p > |t| 0.003 0.047 0.017 0.003 0.016 0.000 

model) beta-squared 0.000 0.000 0.000 0.000 0.000 0.001 

ORz beta -0.002 0.009 0.004 -0.009 0.000 -0.038 
(all-feature std err 0.004 0.003 0.003 0.003 0.003 0.003 
model) p > |t| 0.604 0.006 0.199 0.001 0.999 0.000 

 beta-squared 0.000 0.000 0.000 0.000 0.000 0.001 

RFPS accuracy 0.0124 0.0924 0.0214 0.0377 0.0589 0.0805 
 variation 0.0014 0.002 0.0014 0.0015 0.0046 0.0009 

 important yes yes yes yes yes yes 
 impact direction ? ? ? ? ? ? 

Note. The notes are the same as those in Table 1. 
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Table 4: Overall performance of the three algorithms for different datasets. 

   All students Female students Male students 

Algorithm Data level student action student action student action 

LR LL -299.220 -161190.000 -116.840 -63440.000 -127.750 -71538.000 

 LL-null 304.920 -160430.000 -120.200 -63183.000 -130.740 -71166.000 

 LLR p 0.043 1.000 0.242 1.000 0.307 1.000 

 pseudo R2 0.019 -0.005 0.028 -0.004 0.023 -0.005 

 AUC 0.641 0.531 0.535 0.535 0.571 0.531 

ORz F-statistic 1.912 127.900 1.154 70.680 1.117 33.850 

 p (F-statistic) 0.077 0.000 0.332 0.000 0.353 0.000 

 adj. R2 0.009 0.002 0.004 0.003 0.003 0.002 

RFPS AUC 0.540 0.476 0.492 0.492 0.641 0.475 

Note. The orange cells indicate statistically significant results at p < 0.050. The value “0.000” 

refers to “< 0.0005”. LL = log likelihood; LLR = log-likelihood ratio.  

 

3.3.2. Action-level data 

In terms of regression coefficients, ORz tended to generate theoretically plausible results and 

could sensitively detect effective predictors for different student samples (Tables 1–3). Both LR 

and RFPS identified many significant predictors. However, LR generated non-plausible results, 

and RFPS found uncertain ones. 

In terms of overall algorithm performance, ORz performed better than LR because the LR 

models for all the three student samples were not significant (all LLR ps = 1.000) and the effect 

sizes (pseudo R-squared) became negative (-0.005; -0.004; -0.005), which showed that the LR 

models did not fit the empirical data. On the other hand, the ORz models were significant (all 

ps (F-statistic) < 0.0005), and their effect sizes were positive though small (0.002; 0.003; 0.002). 

LR performed better than RFPS because LR models had higher AUCs (0.531; 0.535; 0.531) 

than did the RFPS models (0.476; 0.492; 0.475). 

4. DISCUSSION 

4.1. METHODOLOGICAL ISSUES 

4.1.1. Two Approaches to the Concern of Multicollinearity 

Regression-related algorithms using multiple predictors (or features) need to examine 

multicollinearity. A salient indication of multicollinearity is sign changes of regression 

coefficient estimates from individual-feature to all-feature models, which normally occur when 

regression models include multiple highly correlated predictors. This study uses six predictors 

of similar constructs (i.e., affective states and behaviors), which inevitably increases the 

necessity to address the concern of multicollinearity. This study handles multicollinearity using 

two approaches: the methodological approach and the theoretical or conceptual approach. 
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The methodological approach. This approach sees including multiple highly correlated 

predictors into a regression analysis as an undesirable procedure, which will generate distorted 

and thus non-trustworthy regression coefficient estimates. Based on this approach, the aim is to 

reduce the problem of multicollinearity or provide evidence showing few problems of 

multicollinearity. For the former, to reduce the problem of multicollinearity, researchers can use 

statistical measures such as penalizing highly correlated predictors in ridge and Lasso 

regressions (Bowles, 2015), combining similar predictors to one factor by factor analysis or 

using z-scores (Aiken & West, 1991; as ORz used in this study). For the latter, researchers can 

provide evidence showing how severe is the problem of multicollinearity. For example, this 

study presents and compares the results obtained by individual-feature models and all-feature 

models. Sign changes do occur from individual to all-feature models, which indicates 

multicollinearity. However, the low correlations among predictors and the low VIF for each 

predictor (Hair et al., 2006) reflect a low degree of the problem of multicollinearity. 

The theoretical approach. In interpreting the results of regression analysis, the regression 

coefficient estimates for a particular predictor is the pure relationship between the outcome and 

the predictor controlling for, partial out, or relative to the other predictors in the regression 

model. This means that the results obtained by individual-feature models may be disguised 

predictive effects without including essential control variables in a regression model or without 

considering its relativity to other related, essential factors in the world. From this approach, 

judging the plausibility of the results obtained by individual-feature and all-feature models 

should depend on multiple criteria, as used in this study: the low (or below-criterion) 

correlations among predictors, the low (or below-criterion) VIF for each predictor, and the 

predictions based on a pre-determined theoretical framework (i.e., the PAS). The three criteria 

suggest that the results obtained from all-feature models tend to be more plausible than those 

from individual-feature models. 

4.1.2.  ORz as the best analysis method 

This study used three algorithms or data analysis methods (LR, ORz, and RFPS) to identify 

effective predictors for STEM choice. As indicated in Section 2.3.2, the three algorithms were 

appropriate for the present data and aims of this study because they are typical methods for 

predicting or classifying dependent variables. LR suited the present student-level data structure 

and the aim to predict whether go to STEM or not; ORz might suit the present action-level 

structure and the aim to predict STEM choice; random forest is a typical non-parametric 

regression tree algorithm with feature selection functions, which can assess the degrees of the 

importance of each feature in determining STEM choice. This triangulation among the three 

algorithms (Hussein, 2015) may help find suitable algorithms for educationally meaningful 

findings on the present novel datasets at both student and action levels from an intelligent 

tutoring system, ASSISTments. 

Combining the results of Sections 3.1–3 about LR and ORz, ORz tended to be a conservative 

but valid analysis method, which generated theoretically plausible predictions and significant 

overall model performance. LR identified non-plausible predictors that were contrary to the 

literature, and LR’s overall model performance showed a bad fit to the data. This study was 

actually a binary classification task. LR did perform best on the student-level data but became 

worse on the action-level data. ORz violated some of its assumptions for this task (Allison, 2012) 

but performed excellently on the action-level data and generated the same regression coefficient 

patterns as LR on the student-level data. This finding appears to be in accordance with empirical 

research perspectives that ORz is a suitable choice for most predictive tasks, even if its 
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assumptions were violated (Pohlmann & Leitner, 2003). Future research needs to validate these 

findings using different datasets. 

RFPS over-identified important predictors in indicating that all predictors were important on 

the action-level data. Most signs of the prediction were not visually identifiable using the 

summary plots of SHAP values in RFPS. Given the unreliability of using the SHAP-value 

summary plot to judge the directions of prediction, RFPS needs to develop further measures for 

certain predictive directions in order to fully solve the issue of the black box in the random forest 

algorithm. Another concern is that random forest is a proper algorithm for a dataset with a large 

number of features, but fewer cases than features (Strobl, Malley, & Tutz, 2009) and can be 

exempt from the problem of multicollinearity even with many features. Perhaps the task of this 

study contains only six features and many cases (especially on the action-level data) and is not 

suitable for using random forest. The ASSISTments dataset contains many more variables than 

those used in this study. Random forest may be more suitable for a study using all the variables 

in the ASSISTments dataset, which is an issue that could be addressed by future research. 

To summarize, ORz generally performed better than LR and RFPS did in terms of plausible 

regression coefficients and certain prediction directions on both student- and action-level data 

over the three student samples. Given the merits of ORz, the following discussion only focuses 

on the results obtained by ORz. However, the generally small effect sizes of the regression 

coefficients and the overall model performances in the models of this study (Tables 1–4) suggest 

taking a conservative approach to interpreting the results. 

4.2. EFFECTS OF THE PREDICTORS (RQ1) 

4.2.1. Gaming as the top stable, negative predictor 

Gaming the system is the most stable predictor of STEM choice in the negative direction at both 

student and action levels among the six affective states and behavioral constructs investigated 

in this study, a result consistent with San Pedro et al.’s (2014) and Pardos et al.’s (2014) studies 

using student-level data. Gaming the system is a behavior during online learning that includes 

continuously or quickly guessing solutions, requesting hints, or exploiting the functions in the 

system irrelevant to learning (Baker et al. 2010; Ocumpaugh et al., 2015). The result may also 

suggest that when considering affective states and behavior together (placing them all in one 

regression model), affective behavior (instead of affective states) will capture all the predictive 

capacity in predicting STEM choice, a result supporting the PAS at affective behavior. 

Gaming (the system) is new for traditional educational research on mathematical problem 

solving. Linking gaming to educational research on similar issues may further elaborate on the 

term. During mathematical problem solving, students need to experience the process of 

contemplating (Mason, Burton, & Stacey, 1996). The present use of the term ‘gaming the system’ 

may be a proxy for the concepts of ‘lacking contemplation,’ ‘hyperactivity,’ ‘impulsiveness,’ 

‘lack of discipline,’ or ‘lack of self-regulation’ in education and psychology research. Self-

regulation or executive functioning is a higher-order cognitive process for inhibitory control, 

planning, and flexible goal-directed behaviors (Bernier, Carlson, & Whipple, 2010). Future 

research may need to validate in greater depth whether or not gaming the system is “lack of self-

regulation” behavior in online learning. 

Another reason for the negative role of gaming in predicting STEM choice may be that the 

tasks in the present ASSISTments dataset are difficult enough and invite gaming behaviors for 

low mathematics achievers, which in turn can negatively predict STEM choice. As indicated in 

a related study, unsuccessful problem-solvers are likely to game the system on difficult tasks 
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(Baker & Rossi, 2013). Future research needs to control for task difficulty in investigating 

related topics. 

4.2.2. Boredom as the second negative predictor only at the action level 

Boredom is the second predictor of STEM choice in the negative direction but only at the action 

level, not at the student level, which partially fits the PAS hypothesis. The results suggest that 

boredom may be more of an action-level affective state than a student-level one. As defined in 

ASSISTments and evidenced in related studies, boredom is an aversive state that disengages 

students and relates to low knowledge, skills (Eastwood et al., 2012; San Pedro et al., 2013b), 

and poor learning (Baker et al., 2010). 

According to the educational literature on affective states during mathematical problem 

solving, boredom may occur at the start of the process of mathematical problem solving and 

correlate with interest and task attraction (Mason et al., 1996). Students’ STEM choice is largely 

determined by their affect toward STEM including interest and curiosity, identity, and values, 

and next by teaching activities and context such as parental encouragement and pressure, 

teachers’ pedagogies, and inside- and outside-school learning experiences (Cerinsek et al., 2013; 

Maltese & Tai, 2010). Diverse novel, interesting problem-solving designs (e.g., games) need to 

be incorporated into online mathematical problem-solving platforms in order to reduce students’ 

boredom. 

4.2.3. Other predictors 

The other three affective states in ASSISTments (i.e., concentration, confusion, and frustration) 

do not significantly predict STEM choice. The results do not fully support the major PAS 

hypothesis, which assumes that concentration should positively affect STEM choice, and 

confusion and frustration should negatively predict STEM choice. Past studies using the 

ASSISTments data suggest that STEM choice is (A) positively predicted by concentration given 

its capacity to predict mathematical knowledge (San Pedro et al., 2013b) and STEM vocational 

self-efficacy (Ocumpaugh et al., 2016), (B) negatively predicted by confusion given its capacity 

to predict STEM vocational interest (Ocumpaugh et al., 2016) and course grades (Lee et al., 

2011), and (C) uncertain in its capacity to be predicted by confusion and frustration. This is 

because frustration has an uncertain relationship with knowledge or task difficulty (San Pedro 

et al., 2013b), and short-period confusion and frustration relate positively to learning gains, but 

lengthy-period confusion and frustration negatively relate to learning gains (Liu et al., 2013). 

The uncertain relationship between confusion, frustration, and outcomes is suggested by the 

minor PAS hypothesis that occasional negative affect in response to negative feedback can 

partially explain long-term success (Lyubomirsky et al. 2005). In this sense, the present non-

significant results are reasonable because this study does not consider in-depth short- and long-

period affects. Future research needs to take into account the time factor in student experiences 

of the three affective states (i.e., concentration, confusion, and frustration). 

Off-task behavior also fails to predict STEM choice. Being off-task is negative in its meaning, 

and it is hard to hypothesize its role in predicting STEM choice due to the diversity of off-task 

behaviors (e.g., staring into space, interacting with peers, and playing with objects; Ocumpaugh 

et al., 2015). 

The non-significant results for the three affective states, however, are reasonable because the 

significance has been captured by the most relatively important features or predictors (i.e., 

gaming and boredom) in the all-feature regression model. In terms of educational literature, the 

result appears to be reasonable if we consider STEM choice as a complex decision determined 
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by diverse student personal, social, and cultural factors (Chiu, 2017). In addition to personal 

cognitive, affective, and behavioral aspects of STEM learning and problem solving, students’ 

pursuit of advanced STEM studies and careers may be determined by sociocultural factors. For 

example, students are likely to choose STEM if they perceive STEM as special, beneficial, 

practical, influential, and conducive to future career development, meeting their ideal job-

related reputation or expectations (Gazley et al., 2014; Hsu, Roth, Marshall, & Guenette, 2009). 

Combining diverse online and off-line personal and sociocultural data may provide a clearer 

picture of effective predictors for STEM choice. 

4.3. GENDER DIFFERENCES (RQ2) 

4.3.1. Few gender differences at the student level 

For student-level constructs, female students’ gaming negatively predicts their STEM choice, 

but there is no effective predictor for male students. Educational research indicates that girls use 

more self-regulated learning skills (e.g., record keeping, monitoring, goal-setting, planning, and 

environmental structuring) than boys (Zimmerman & Martinez-Pons, 1990). In addition to the 

tendency to use self-regulated learning strategies, compared with boys, girls are more reluctant 

to compete with others, to take action because of extrinsic motivation, and to respond to the 

environment strongly (OECD, 2015). Because girls are less likely to respond strongly to the 

environment and more self-regulated, girls’ gaming the system may be more a sign of being less 

likely to choose STEM than it is for boys. 

This speculation, however, needs to be examined by future research. It may be particularly 

important to better understand the relationship between online gaming behavior and self-

regulation. As suggested, “gaming the system” behavior may be correlated with self-regulation 

in a negative direction, in which individuals attempt to succeed in problem solving without 

focusing on learning the intended curricula but on irrelevant tasks such as intentionally rapid 

guessing, making mistakes, and requesting hints (Baker, Corbett et al., 2013). Based on these 

understandings, researchers could investigate gender differences in how gaming behavior 

predicts their STEM choices. 

4.3.2. Many gender differences at the action level 

For action-level constructs, gaming is the only common significant predictor of STEM choice 

for both female and male students. The main gender differences are that boredom negatively 

predicts females’ STEM choice, and being off-task positively predicts females’ STEM choice; 

by contrast, frustration negatively predicts males’ STEM choice, and concentration positively 

predicts males’ STEM choice. The results imply that there are more gender differences at the 

action level than gender similarities (Hyde, 2005). Females and males may have different 

patterns of affective states and behaviors in approaching mathematics problem solving, which 

may, in turn, play a role in their future STEM choice. The results are consistent with the stable 

research findings that there are gender differences in STEM-related affects (e.g., Carli et al., 

2016; OECD, 2014). 

The findings of this study may be used to provide insights into appropriate designs for both 

genders. For example, females may need to feel interested (not bored) in solving mathematical 

problems. Females may also need to take time off from online learning tasks when they need to 

ponder or handle other (e.g., social) matters not directly related to learning tasks. Females 

generally have more interest in social communication and others’ feelings in solving game-

based mathematical problems (Ke, 2008), which implies that off-task social behavior may 
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dominate females’ learning with little harm or even positive support to learning. A related study 

indicates that the negative relationships between off-task behavior and mathematics 

achievement are stronger for boys than for girls (Peterson, & Fennema, 1985), which also 

partially suggest that being off-task appears to be more harmful to boys than girls. If the 

speculation is a wise guess, then female students especially need a mathematics learning 

platform that provides some interesting elements and allows for seemingly irrelevant social 

behaviors during online mathematical problem solving. 

For males, educators may need to manage degrees of task difficulty (Gee, 2005a; San Pedro 

et al., 2013b) and notice male students’ sensitivity to failure in mathematical problem solving, 

which may be a major source of frustration. The interaction between task difficulty and 

frustration and the way to manage this interaction are complex problems, which appear to be an 

issue for boys. Concentration is a positive predictor for males. The results are consistent with 

past research findings that concentration relates to STEM vocational self-efficacy (Ocumpaugh, 

San Pedro, Lai, Baker, & Borgen, 2016) and mathematical knowledge (San Pedro et al., 2013b). 

This also leads to an interesting comparison with females’ being off-task as a positive predictor. 

Females pay more attention to social affairs and males to tasks in game-based mathematical 

problem solving (Ke, 2008), which invites future research to investigate this likely gender 

difference further.  

4.4. CONTRIBUTIONS, LIMITATIONS, AND SUGGESTIONS FOR FUTURE RESEARCH 

4.4.1. Contributions 

ASSISTments provides valuable big data on student action-level data, which is rarely researched 

in traditional education. This study offers a pioneering approach to such research and contributes 

to two aspects in particular. 

Firstly, it uses both student-level and action-level data in mathematical problem solving to 

predict future STEM choice. 

Secondly, gender differences are investigated. For educational practice, the differential 

teaching for addressing gender differences in affective states and behaviors during online 

mathematical problem solving, as suggested by the present findings, may be a key to 

encouraging both genders to pursue STEM advanced studies and careers, especially for female 

students, who are persistently underrepresented in STEM (Else-Quest et al., 2010; Koller, 

Baumert, & Schnabel, 2001). 

4.4.2. Limitations and future research 

Despite the novel dataset, new topics, and diverse data analysis methods used in this study, this 

study has the following limitations for future researchers to consider. 

STEM choice relates to high STEM or mathematics ability (Nugent et al., 2015; San Pedro 

et al., 2014). It, therefore, can infer that affective states or behaviors linking to higher STEM 

achievement may link to STEM choices such as a low degree of boredom (Tze, Daniels, & 

Klassen, 2016) and a high degree of motivation (including confidence, interest, value, control, 

and goal; Pintrich, 2003). Future research may need to include student knowledge in the 

proposed model. 

Research has indicated that the relationships between affective states or behaviors and 

problem-solving scores may be moderated by problem types. For example, there is a negative 

relationship between boredom and online problem-solving scores on original problems but a 
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positive relationship on scaffolding problems (Pardos et al., 2014). This study does not include 

problem types as a moderator, which can be addressed by future research. 

Student selection bias may be an issue. The data is collected through an online tutoring 

platform (i.e., ASSISTments). If the platform is used as homework, then family computer 

availability and skills may influence student performance. If the platform is used at school, a 

control-experimental design may be the best choice to draw a cause-and-effect relationship, 

which may partially resolve the problem of selection bias. 

The problem of multicollinearity should be further addressed. One solution would be to use 

factor analysis to reduce measure numbers (i.e., combining correlated measures into factors). 

Another solution would be to use regression algorithms penalizing highly correlated predictors 

(e.g., Ridge and Lasso linear regressions; Bowles, 2015). Given that there were only six 

predictors in the regression models, however, there appeared to be no need to perform other 

complicated linear regressions that are not typical in educational research. Further, multilevel 

analysis may be needed for the present data structure. However, the disadvantages of using 

multilevel analysis are its model complexity and time-consuming computation. ORz appears to 

be an effective method but needs to be examined further for its validity in handling the present 

type of dataset, which had multiple levels of data, a dichotomous outcome, and a large number 

of observations. 

Gender difference is a complex issue and may be an outcome from interactions between 

multiple biological, psychological, and social factors (Halpern, Wai, & Saw, 2005). There are 

still debates between gender differences and similarities (Hyde, 2005). Any research results or 

claims relating to gender differences should be explained and used with caution. Gender 

differences in affective states and behaviors during mathematical problem solving may vary by 

culture (Ho et al., 2000), by age, in different time periods, for different problem types, and on 

online and offline platforms. The results obtained in this study need to be examined further with 

data from other cultures, cohorts, and platforms and on different problem-solving tasks. 

This study uses diverse measures to assess the overall performances of the three algorithms 

(LR, ORz, and RFPS; Section 3.3). However, there is a lack of systematic literature review, 

research design, data analysis, and discussion to generate robust findings across the three 

algorithms that can be applied to guiding future research into selecting proper algorithms for 

these particular types of data. This topic can be addressed by future research on data analysis 

algorithms. 

Some findings of this study may not be robust. For example, the predictive directions of 

features obtained by the random forest plus related feature selection algorithm are not reliably 

or identifiable by visualization. The effect sizes of the features’ effects are very small even for 

significant effects, which may be due to the large sample sizes in this study. This is especially 

true for the results obtained by using the action-level data. The low effect size, however, is 

reasonable because it is challenging to predict a student’s STEM choice using that student’s 

affective states and behaviors during one mathematical problem. Nonetheless, these findings 

may provide insight for understanding the relationships between students’ online learning 

behavior, adaptive teaching, and career development. 

4.5. CONCLUSION 

Understanding which factors contribute to STEM choice and how educational designs can 

promote this choice remains a challenge. Based on the triangulation between educational 

literature, three student samples, and three data analysis methods, this study uses data on 
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students’ affective states and behaviors from an online mathematics learning platform (i.e., 

ASSISTments) to predict STEM choice and provides the following major findings. 

 

1. Gaming the system at both student and action levels stably predicts STEM choice in a 

negative direction. Whether “gaming the system” is a sign of “lack of self-regulation” in 

educational and psychological literature needs to be clarified in terms of its predictive 

capacity for STEM choice. 

 

2. At the action level of problem solving, in addition to less gaming, female students are 

more likely to study STEM if they show less boredom and have more off-task behaviors 

(perhaps because females may engage in socially or other off-task behaviors that support 

their learning; Section 4.3.2; Ke, 2008; Peterson, & Fennema, 1985). Male students are 

more likely to study STEM if they exhibit more concentration and less frustration. 

Differential intervention for both genders could be designed for both off-line and online 

learning platforms in order to encourage both genders to pursue advanced studies and 

careers in STEM. 
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