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In order to help undergraduate students towards successfully completing their degrees, developing tools
that can assist students during the course selection process is a significant task in the education domain.
The optimal set of courses for each student should include courses that help him/her graduate in a timely
fashion and for which he/she is well-prepared for so as to get a good grade in. To this end, we propose two
different grade-aware course recommendation approaches to recommend to each student his/her optimal
set of courses. The first approach ranks the courses by using an objective function that differentiates be-
tween courses that are expected to increase or decrease a student’s GPA. The second approach combines
the grades predicted by grade prediction methods with the rankings produced by course recommendation
methods to improve the final course rankings. To obtain the course rankings in both approaches, we
adapt two widely-used representation learning techniques to learn the optimal temporal ordering between
courses. Our experiments on a large dataset obtained from the University of Minnesota that includes stu-
dents from 23 different majors show that the grade-aware course recommendation methods can do better
on recommending more courses in which the students are expected to perform well and recommending
fewer courses which they are expected not to perform well in than grade-unaware course recommendation
methods.
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1. INTRODUCTION

The average six-year graduation rate across four-year higher education institutions has been
around 59% over the past 15 years (Kena et al., 2016; Braxton et al., 2011), while less than
half of college graduates finish within four years (Braxton et al., 2011). These statistics pose
challenges in terms of workforce development, economic activity and national productivity. This
has resulted in a critical need for analyzing the available data about past students in order to
provide actionable insights to improve college student graduation and retention rates. Some
examples of the problems that have been investigated are: course recommendation (Elbadrawy
and Karypis, 2016; Bendakir and Aı̈meur, 2006; Lee and Cho, 2011; Parameswaran and Garcia-
Molina, 2009; Parameswaran et al., 2010; Parameswaran et al., 2010; Parameswaran et al.,
2011), next-term course grade prediction (Polyzou and Karypis, 2016; Sweeney et al., 2016;
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Elbadrawy and Karypis, 2016; Morsy and Karypis, 2017; Hu and Rangwala, 2018), predicting
the final grade of the course based on the student’s ongoing performance during the term (Meier
et al., 2015), in-class activities grade prediction (Elbadrawy et al., 2015), predicting student’s
performance in tutoring systems (Thai-Nghe et al., 2011; Hershkovitz et al., 2013; Hwang and
Su, 2015; Romero et al., 2008; Thai-Nghe et al., 2012), and knowledge tracing and student
modeling (Reddy et al., 2016; Lan et al., 2014; González-Brenes and Mostow, 2012).

Both course recommendation (Bendakir and Aı̈meur, 2006; Parameswaran et al., 2011; El-
badrawy and Karypis, 2016; Bhumichitr et al., 2017; Hagemann et al., 2018) and grade predic-
tion (Sweeney et al., 2016; Elbadrawy and Karypis, 2016; Polyzou and Karypis, 2016; Morsy
and Karypis, 2017; Hu and Rangwala, 2018) methods aim to help students during the process of
course registration in each semester. By learning from historical registration data, course recom-
mendation focuses on recommending courses to students that will help them in completing their
degrees. Grade prediction focuses on estimating the students’ expected grades in future courses.
Based on what courses they previously took and how well they performed in them, the predicted
grades give an estimation of how well students are prepared for future courses. Nearly all of
the previous studies have focused on solving each problem separately, though both problems are
inter-related in the sense that they both aim to help students graduate in a timely and successful
manner.

In this paper, we propose a grade-aware course recommendation framework that focuses on
recommending a set of courses that will help students: (i) complete their degrees in a timely fash-
ion, and (ii) maintain or improve their GPA. To this end, we propose two different approaches for
recommendation. The first approach ranks the courses by using an objective function that differ-
entiates between courses that are expected to increase or decrease a student’s GPA. The second
approach uses the grades that students are expected to obtain in future courses to improve the
ranking of the courses produced by course recommendation methods.

To obtain course rankings in both approaches, we adapt two widely-known representation
learning techniques, which have proven successful in many fields, to solve the grade-aware
course recommendation problem. The first is based on singular value decomposition, which is
a linear model that learns a low-rank approximation of a given matrix. The second, which we
refer to as Course2vec, is based on word2vec (Mikolov et al., 2013) that uses a log-linear model
to formulate the problem as a maximum likelihood estimation problem. In both approaches,
the courses taken by each student are treated as temporally-ordered sets of courses, and each
approach is trained to learn these orderings.

1.1. CONTRIBUTIONS

The main contributions of this work are the following:

1. We propose a Grade-aware Course Recommendation framework in higher education that
recommends courses to students that the students are most likely to register for in their
following terms and that will help maintain or improve their overall GPA. The proposed
framework combines the benefits of both course recommendation and grade prediction
approaches to better help students graduate in a timely and successful manner.

2. We investigate two different approaches for solving grade-aware course recommendation.
The first approach uses an objective function that explicitly differentiates between good
and bad courses, while the other approach combines grade prediction methods with course
recommendation methods in a non-linear way.
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3. We adapt two-widely used representation learning techniques to solve the grade-aware
course recommendation problem, by modeling historical course ordering data and differ-
entiating between courses that increase or decrease the student’s GPA.

4. We perform an extensive set of experiments on a dataset spanning 16 years obtained from
the University of Minnesota, which includes students who belong to 23 different ma-
jors. The results show that: (i) the proposed grade-aware course recommendation ap-
proaches outperform grade-unaware course recommendation methods in recommending
more courses that increase the students’ GPA and fewer courses that decrease it; and (ii)
the proposed representation learning approaches outperform competing approaches for
grade-aware course recommendation in terms of recommending courses which students
are expected to perform well in, as well as differentiating between courses which students
are expected to perform well in and those which they are expected not to perform well in.

5. We provide an in-depth analysis of the recommendation accuracy across different majors
and different student groups. We show the effectiveness of our proposed approaches on
different majors and student groups over the best competing method. In addition, we ana-
lyze two important characteristics for the recommendations: the course difficulty as well
as the course popularity. We show that our proposed approaches are not prone to recom-
mending easy courses. Furthermore, they are able to recommend courses with different
popularity in a similar manner.

2. RELATED WORK

2.1. COURSE RECOMMENDATION

Different machine learning methods have been recently developed for course recommendation.
For example, Bendakir and Aı̈meur (2006) used association rule mining to discover signifi-
cant rules that associate academic courses from previous students’ data. Lee and Cho (2011)
ranked the courses for each student based on the course’s importance within his/her major, its
prerequisites, and the extent by which the course adds to the student’s knowledge state.

Another set of recommendation methods proposed in (Parameswaran and Garcia-Molina,
2009; Parameswaran et al., 2010; Parameswaran et al., 2010; Parameswaran et al., 2011) fo-
cused on satisfying the degree plan’s requirements that include various complex constraints.
The problem was shown to be NP-hard and different heuristic approaches were proposed in
order to solve the problem.

Elbadrawy and Karypis (2016) proposed using both student- and course-based academic
features, in order to improve the performance of three popular recommendation methods in
the education domain, namely popularity-based ranking, user-based collaborative filtering and
matrix factorization. These features are used to define finer groups of students and courses and
were shown to improve the recommendation performance of the three aforementioned methods
than using coarser groups of students.

The group popularity ranking method proposed by Elbadrawy and Karypis (2016) (grp-
pop), ranks the courses based on how frequently they were taken by students of the same major
and academic level as the target student. Though this is a simple ranking method, it was shown
to be among the best performing methods proposed by the authors. This is due to the domain
restrictions, where each degree program offers a specific set of required and elective courses for
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the students to choose a subset from, and a pre-requisite structure exists among most of these
courses.

Pardos et al. (2019) proposed a similar course2vec model that was done in parallel to our
proposed work1. They used a skip-gram neural network architecture that takes as input one
course and outputs multiple probability distributions over the courses. The approaches that are
presented here differ from that work because their model is grade-unaware, while ours is grade-
aware, which is a principal contribution of our work.

Another model (Backenköhler et al., 2018) that is also parallel and most relevant to our work
also proposed to combine grade prediction with course recommendation. Our work is different
in two aspects. First, Backenköhler et al. (2018) use a course dependency graph constructed
using the Mann-Whitney U-test as the course recommendation method. This graph consists of
nodes that represent courses and directed edges between them. A directed edge going from
course A to course B means that the chance of getting a better grade in B is higher when A is
taken before B than when A is not taken before B. One limitation of this approach is that, for
pairs (A, B) of courses that do not have sufficient data about A not being taken before B, no
directed edge will exist from A to B, despite the fact that there may be sufficient data about A
followed by B, which may imply that A is a pre-requisite for B. Our proposed representation
learning approaches for course recommendation, described in Section 3.1., on the other hand, are
able to learn all possible orderings for pairs of courses that have sufficient data. In addition, the
course embeddings are learned in a way such that courses taken after a common set of courses are
located close in the latent space, which enables discovering new relationships between previous
and subsequent courses that do not necessarily exist in the data.

Second, we propose a new additional approach for grade-aware course recommendation,
which modifies the course recommendation objective function to differentiate between good
and bad sequences of courses and does not require a grade prediction method.

2.2. COURSE SEQUENCE DISCOVERY AND RECOMMENDATION

Though our focus in this paper is to recommend courses for students in their following term,
and not to recommend the whole sequence of courses for all terms, our proposed models try
to learn the sequencing of courses such that they predict the next good courses based on the
previously-taken set of courses.

Cucuringu et al. (2017) utilized several ranking algorithms, e.g., PageRank, to extract a
global ranking of the courses, where the rank here denotes the order in which the courses are
taken by students. The discovered course sequences were used to infer the hidden dependen-
cies, i.e., informal prerequisites, between the courses, and to understand how/if course sequences
learned from high- and low-performing students are different from each other. This technique
learns only one global ranking of courses from all students, which cannot be used for personal-
ized recommendation.

Xu et al. (2016) proposed a course sequence recommendation framework that aimed to mini-
mize the time-to-graduate, which is based on satisfying pre-requisite requirements, course avail-
ability during the term, the maximum number of courses that can be taken during each term, and
degree requirements. They also proposed to do joint optimization of both graduation time and
GPA by clustering students based on some contextual information, e.g., their high school rank
and SAT scores, and keeping track of each student’s sequence of taken courses as well as his/her

1 An earlier version of our paper was published as a technical report at https://goo.gl/HrxVdr.
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GPA. Then, for a new student, he/she is assigned to a specific cluster based on their contextual
information and the sequence of courses from that cluster that has the highest GPA estimate is
recommended to him/her. This framework can work well on the more restricted degree pro-
grams that have little variability between the degree plans taken by students, given that there is
enough support for the different degree plans from past students. However, the more flexible
degree programs have much variability in the degree plans taken by their students, as shown
in Morsy and Karypis (2019). This makes an exact extraction system like the one above inappli-
cable for their students, unless there exists a huge dataset that covers the many different possible
sequences with high support.

2.3. REPRESENTATION LEARNING

Representation learning has been an invaluable approach in machine learning and artificial in-
telligence for learning from different types of data such as text and graphs. Objects can be
represented in a vector space via local or distributed representations. Under local (or one-hot)
representations, each object is represented by a binary vector of size equal to the total number
of objects, where only one of the values in the vector is one and all the others are set to zero.
Under distributed representations, each object is represented by a vector, which can come from
hand-engineered features that are usually sparse and high-dimensional, or a learned representa-
tion, called “embeddings” in a latent space that preserves the relationships between the objects,
which is usually low-dimensional and more practical than the former.

A widely used approach for learning object embeddings is Singular Value Decomposition
(SVD) (Golub and Reinsch, 1970). SVD is a traditional low-rank approximation method that
has been used in many fields. In recommendation systems, a user-item rating matrix is typically
decomposed into the user and item latent factors that recover the observed ratings in the matrix,
e.g., (Sarwar et al., 2000; Bell et al., 2007; Paterek, 2007; Koren, 2008).

Recently, neural networks have gained a lot of interest for learning object embeddings in
different fields for their ability to handle more complex relationships than SVD. Some of the
early well-known architectures include word2vec (Mikolov et al., 2013) and Glove (Penning-
ton et al., 2014), which were proposed for learning distributed representations for words. For
instance, neural language models for words, phrases and documents in Natural Language Pro-
cessing (Huang et al., 2012; Mikolov et al., 2013; Le and Mikolov, 2014; Pennington et al.,
2014; Mikolov et al., 2013) are now widely used for different tasks, such as machine translation
and sentiment analysis. Similarly, learning embeddings for graphs, such as DeepWalk (Perozzi
et al., 2014), LINE (Tang et al., 2015) and node2vec (Grover and Leskovec, 2016) were shown
to have performed well on different applications, such as multi-label classification and link pre-
diction. Moreover, learning embeddings for products in e-commerce and music playlists in
cloud-based music services has been recently proposed for next basket recommendation (Chen
et al., 2012; Grbovic et al., 2015; Wang et al., 2015).

3. GRADE-AWARE COURSE RECOMMENDATION

Undergraduate students often achieve inconsistent grades in the various courses they take, which
may increase or decrease their overall GPA. This is illustrated in Figure 1, which shows the
histogram of differences between each grade obtained by a student over his/her prior average
grade for the dataset used in our experiments (Table 1). As we can see, more than 10% of the
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Figure 1: Grade difference from the student’s average previous grade.

grades are a full letter grade lower than the corresponding students’ previous average grades2.
The poor performance in some of these courses can result in students having to retake the same
courses at a later time or to increase the number of courses that they will have to take in order
to graduate with a desired GPA. As a result, this will increase the financial cost associated with
obtaining a degree and can incur an opportunity cost by delaying the students’ graduation.

For the cases in which a student’s performance in a course is a result of him/her not be-
ing well-prepared for it (i.e., is taking the course at the wrong time in his/her studies), course
recommendation methods can be used to recommend a set of courses for that student that will
help (i) him/her in completing his/her degree in a timely fashion and (ii) maintain or improve
his/her GPA. We will refer to the methods that do those simultaneously as grade-aware course
recommendation approaches. Note that the majority of the existing approaches cannot be used
to solve this problem as they ignore the performance the student is expected to get in the courses
that they recommend.

In this work, we propose two different approaches for grade-aware course recommendation.
The first approach (Section 3.1.) uses two representation learning approaches that explicitly
differentiate between courses in which the student is expected to perform well and courses in
which the student is expected not to perform well. The second approach (Section 3.2.) combines
grade prediction methods with course recommendation methods to improve the final course
rankings. The goal of both approaches is to rank the courses in which the student is expected to
perform well higher than those in which he/she is expected not to perform well.

3.1. GRADE-AWARE REPRESENTATION LEARNING APPROACHES

Our first approach for solving the grade-aware course recommendation problem relies on mod-
ifying the way we use the previous students’ data to differentiate between courses in which the
student is expected to perform well and courses in which the student is expected not to perform

2 The letter grading system in this dataset has 11 letter grades (A, A-, B+, B, B-, C+, C, C-, D+, D, F) that
correspond to the numerical grades (4, 3.67, 3.33, 3, 2.67, 2.33, 2, 1.67, 1.33, 1, 0), with A being the highest grade
and F the lowest one.
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well. As such, for every student, we define a course taken by him/her to be a good (subsequent)
course if the student’s grade in it is equal to or higher than his/her average previous grade, oth-
erwise, we define that course to be a bad (subsequent) course. The goal of our method is to
recommend to each student a set of good courses.

Motivated by the success of representation learning approaches in recommendation sys-
tems (Koren, 2008; Chen et al., 2012; Grbovic et al., 2015; Wang et al., 2015), we adapt two
widely-used approaches to solve the grade-aware course recommendation problem. The first
approach applies the SVD linear factorization model on a co-occurrence frequency matrix that
differentiates between good and bad courses (Section 3.1.1.), while the second one optimizes
an objective function of a neural network log-linear model that differentiates between good and
bad courses (Section 3.1.2.).

In both approaches, the courses taken by each student are treated as temporally-ordered sets
of courses, and each approach is trained on these data in order to learn the proper ordering of
courses as taken by students. The course representations learned by these models are then used
to create personalized rankings of courses for students that are designed to include courses that
are relevant to the students’ degree programs and will help them maintain or increase their GPAs.

3.1.1. Singular Value Decomposition

SVD (Golub and Reinsch, 1970) is a traditional low-rank linear model that has been used in
many fields. It factorizes a given matrix X by finding a solution to X = UΣVT , where the
columns of U and V are the left and right singular vectors, respectively, and Σ is a diagonal
matrix containing the singular values of X. The d largest singular values, and corresponding
singular vectors from U and V, is the rank d approximation of X (Xd = UdΣdV

T
d ). This

technique is called truncated SVD.
Since we are interested in learning course ordering as taken by past students, we apply SVD

on a previous-subsequent co-occurrence frequency matrix F, where Fij is the number of students
in the training data that have previously taken course i before they took course j.

We form two different previous-subsequent co-occurrence frequency matrices, as follows.
Let n+

ij and n−ij be the number of students who have taken course i before course j, where course
j is considered a good course for the first group and a bad course for the second one, respectively.
The two matrices are:

1. F+: where F+
ij = n+

ij .

2. F+−: where F+−
ij = n+

ij − n−ij .

We scaled the rows of each matrix to L1 norm and then applied truncated SVD on them. The
course embeddings are then given by Ud

√
Σd and Vd

√
Σd for the previous and subsequent

courses, respectively.
Note that we append a (+), or (+-) as a superscript to the matrix and as a suffix to the

corresponding method’s name based on what course information it utilizes during learning and
how it utilizes it. A (+)-based method utilizes the good course information only and ignores
the bad ones, while a (+-)-based method utilizes both the good and bad course information and
differentiates between them.
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Recommendation. Given the previous and subsequent course embeddings estimated by SVD,
course recommendation is performed as follows. Given a student swith his/her previously-taken
set of courses, c1, . . . , ck, who would like to register for his/her following term, we compute
his/her implicit profile by averaging over the embeddings of the courses taken by him/her in all
previous terms3. We then compute the dot product between s’s profile and the embeddings of
each candidate course ct ∈ C. Then, we rank the courses in non-increasing order according to
these dot products, and select the top courses as the final recommendations for s.

3.1.2. Course2vec

The above SVD model works on pairwise, one-to-one relationships between previous and sub-
sequent courses. We also model course ordering using a many-to-one, log-linear model, which
is motivated by the recent word2vec Continuous Bag-Of-Word (CBOW) model (Mikolov et al.,
2013). Word2vec works on sequences of individual words in a given text, where a set of nearby
(context) words (i.e., words within a pre-defined window size) are used to predict the target
word. In our case, the sequences would be the ordered terms taken by each student, where each
term contains a set of courses, and the previous set of courses would be used to predict future
courses for each student.

MODEL ARCHITECTURE. We formulate the problem as a maximum likelihood estimation
problem. Let T i = {c1, . . . , cn} be a set of courses taken in some term i. A sequence Qs =
〈T 1, . . . , T m〉 is an ordered list of m terms as taken by some student s, where each term can
contain one or more courses. Let W ∈ R|C|×d be the courses’ representations when they are
treated as previous courses, and let W′ ∈ Rd×|C| be their representations when they are treated
as “subsequent” courses, where |C| is the number of courses and d is the number of dimensions
in the embedding space. We define the probability of observing a future course ct given a set of
previously-taken courses c1, . . . , ck using the softmax function, i.e.,

Pr(ct|c1, . . . , ck) = yt =
exp(w′Tcth)∑C
j=1 exp(w

′T
cj

h)
, (1)

where h denotes the aggregated vector of the representations of the previous courses, where we
use the average pooling for aggregation, i.e.,

h =
1

k
WT (x1 + x2 + · · ·+ xk),

where xi is a one-hot encoded vector of size |C| that has 1 in the ci’s position and 0 other-
wise. The Architecture for Course2vec is shown in Figure 2. Note that one may consider more
complex neural network architectures, which is left for future work.

We propose the two following models:

1. Course2vec(+). This model maximizes the log-likelihood of observing only the good
subsequent courses that are taken by student s in some term given his/her previously-taken

3 We tried using different window sizes for the number of previous terms. Using all previous terms achieved
better results than using one, two or three previous terms only.
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Figure 2: Neural network architecture for Course2vec.

set of courses. The objective function of Course2vec(+) is thus:

maximize
W,W′

∑

s∈S

∑

T i∈Qs

(
logPr(Gs,i|Ps,i)

)
, (2)

where: S is the set of students, Gs,i is the set of good courses taken by student s at term i,
and Ps,i is the set of courses taken by student s prior to term i. Note that i starts from 2,
since the previous set of courses Ps,i would be empty for i = 1.

2. Course2vec(+-). This model maximizes the log-likelihood of observing good courses and
minimizes the log-likelihood of observing bad courses given the set of previously-taken
courses. The objective function of Course2vec(+-) is thus:

maximize
W,W′

∑
s∈S

∑
T i∈Qs

(
logPr(Gs,i|Ps,i)

− logPr(Bs,i|Ps,i)
)
,

(3)

where: Bs,i is the set of bad courses taken by student s at term i, and the rest of the terms
are as defined in Eq. 2.

Note that Course2vec(+) is analogous to SVD(+) and Course2vec(+-) is analogous to SVD-
(+-) in terms of how they utilize the good and bad courses in the training set.

MODEL OPTIMIZATION. The objective functions in Eqs. 2 and 3 can be solved using Stochas-
tic Gradient Descent (SGD), by solving for one subsequent course at a time. The computation
of gradients in the two equations requires computing Eq. 1 for all courses for the denominator,
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which requires knowing whether a course is to be considered a good or a bad subsequent course
for a given context. However, not all the relationships between every context (previous set of
courses) and every subsequent course are known from the data. Hence, for each context, we only
update the subsequent course vector when the course is known to be a good or bad subsequent
course associated with that context. In the case that some context does not have a sufficient
pre-defined number of subsequent courses with known relationships, then we randomly sample
a few other courses and treat them as bad courses, similar to the negative sampling approach
used in word2vec (Le and Mikolov, 2014).

Note that in Course2vec(+-), since a course can be seen as both a good and a bad subsequent
course for the same context in the data (for different students), then, in this case, we randomly
choose whether to treat that course as good or bad each time according to a uniform distribution
that is based on its good and bad frequency in the dataset. In addition, for both Course2vec(+)
and Course2vec(+-), if the frequency between a context and a subsequent course is less than
a pre-defined threshold, e.g., 20, then we randomly choose whether to update that subsequent
course’s vector in the denominator each time it is visited. The code for Course2vec can be found
at https://zenodo.org/record/3464635#.XZFTEJNKjNY, which is built on the
original word2vec code that was implemented for the CBOW model4.

Recommendation Given the previous and subsequent course embeddings estimated by Course2vec,
course recommendation is performed as follows. Given a student swith his/her previously-taken
set of courses, c1, . . . , ck, who would like to register for his/her following term, we compute the
probability Pr(ct|c1, . . . , ck) for each candidate course ct ∈ C according to Eq. 1. We then rank
the courses in non-increasing order according to their probabilities and select the top courses as
the final recommendations for s. Note that since the denominator in Eq. 1 is the same for all
candidate courses, the ranking score for course ct can be simplified to the dot product between
w′ct and h, where h represents the student’s implicit profile.

3.2. COMBINING COURSE RECOMMENDATION WITH GRADE PREDICTION

The second approach that we developed for solving the grade-aware course recommendation
problem relies on using the grades that students are expected to obtain in future courses to im-
prove the ranking of the courses produced by course recommendation methods. Our underlying
hypothesis behind this approach is that a course that both is ranked high by a course recommen-
dation method and has a high predicted grade should be ranked higher than one that either has a
lower ranking by the recommendation method or is predicted to have a lower grade in it. This in
turn will help improve the final course rankings for students by taking both scores into account
simultaneously.

Let ĝs,c be the predicted grade for course c as generated from some grade prediction model,
and let r̂s,c be the ranking score for c as generated from some course recommendation method.
We combine both scores to compute the final ranking score for c as follows:

rank-scores,c = ĝαs,c × (|r̂s,c|)(1−α) × sign(r̂s,c), (4)

where α is a hyper-parameter in the range (0, 1) that controls the relative contribution of ĝs,c and
r̂s,c to the overall ranking score, and sign(r̂s,c) denotes the sign of r̂s,c, i.e., 1 if r̂s,c is positive and
−1 otherwise. Note that both ĝs,c and r̂s,c are standardized to have zero mean and unit variance.

4 Original code is at: https://goo.gl/UvUuMQ
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In this work, we will use the representation learning approaches described in Section 3.1. as
the course recommendation method. We will also use the grade-unaware variations of each of
them (see Section 4.2.) to compare combining the grade prediction methods with both recom-
mendation approaches.

To obtain the grade prediction score, we will use Cumulative Knowledge-based Regression
Models (CKRM) (Morsy and Karypis, 2017). CKRM is a set of grade prediction methods
that learn low-dimensional as well as textual-based representations for courses that denote the
required and provided knowledge components for each course. It represents a student’s knowl-
edge state as the sum of the provided knowledge component vectors of the courses taken by
them, weighted by their grades in them. CKRM then predicts the student’s grade in a future
course as the dot product between their knowledge state vector and the course’s required knowl-
edge component vector. We will denote the recommendation method that combines CKRM with
SVD and Course2vec as CKRM+SVD and CKRM+Course2vec, respectively.

4. EXPERIMENTAL EVALUATION

4.1. DATASET DESCRIPTION AND PREPROCESSING

The data used in our experiments was obtained from the University of Minnesota and spans a
period of 16 years (Fall 2002 to Summer 2017). From that dataset, we extracted the degree
programs that have at least 500 graduated students through Fall 2012, which accounted for 23
different majors from different colleges. For each of these degree programs, we extracted all the
students who graduated from this program and extracted the 50 most frequent courses taken by
the students as well as the courses that belonged to frequent subjects, e.g., CSCI is a subject that
belongs to the Computer Science department at the University. A subject is considered to be
frequent if the average number of courses that belong to that subject over all students is at least
three. This filtering was made to remove the courses we believe are not relevant to the degree
program of students. We also removed any courses that were taken as pass/fail.

Using the above dataset, we split it into train, validation and test sets as follows. All courses
taken before Spring 2013 were used for training, courses taken between Spring 2013 and Sum-
mer 2014 inclusive were used for validation, and courses taken afterwards (Fall 2014 to Summer
2017 inclusive) were used for test purposes.

At the University of Minnesota, the letter grading system has 11 letter grades (A, A-, B+, B,
B-, C+, C, C-, D+, D, F) that correspond to numerical grades (4, 3.667, 3.333, 3, 2.667, 2.333,
2, 1.667, 1.333, 1, 0). For each (context, subsequent) pair in the training, validation, and test
set, where the context represents the previously-taken set of courses by a student, the context
contained only the courses taken by the student with grades higher than the D+ letter grade,
which the student does not have to repeat. The statistics of the 23 degree programs are shown in
Table 1.

4.2. BASELINE AND COMPETING METHODS

We compare the performance of the proposed representation learning approaches against com-
peting approaches for grade-aware course recommendation, which are defined as follows:

• Grp-pop(+-): We modified the group popularity ranking method developed in Elbadrawy
and Karypis (2016) and explained in Section 2. for grade-aware course recommendation.
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Table 1: Dataset statistics.

Major # Students # Courses # Grades

Accounting (ACCT) 661 55 7,614
Aerospace Engr. (AEM) 866 72 13,280
Biology (BIOL) 1,927 113 15,590
Biology, Soc. & Envir. (BSE) 1,231 56 9,389
Biomedical Engr. (BME) 1,002 64 13,808
Chemical Engr. (CHEN) 1,045 82 10,219
Chemistry (CHEM) 765 78 7,814
Civil Engr. (CIVE) 1,160 74 15,992
Communication Studies (COMM) 2,547 90 17,135
Computer Science & Engr. (CSE) 1,790 98 13,520
Electrical Engr. (ECE) 1,197 84 12,781
Elementary Education (ELEM) 1,283 60 15,303
English (ENGL) 1,790 113 12,451
Finance (FIN) 1,326 55 12,150
Genetics, Cell Biol. & Devel. (GCD) 843 92 9,726
Journalism (JOUR) 2,043 91 23,549
Kinesiology (KIN) 1,499 161 23,451
Marketing (MKTG) 2,077 51 13,084
Mechanical Engr. (MECH) 1,501 79 25,608
Nursing (NURS) 1,501 88 18,239
Nutrition (NUTR) 940 71 12,400
Political Science (POL) 1,855 111 13,904
Psychology (PSY) 3,047 100 25,299

For each course c, let n+
c and n−c be the number of students that have the same major and

academic level as the target student s, where c was considered a good subsequent course
for the first group and a bad one for the second group. We can differentiate between good
and bad subsequent courses using the following ranking score (which is similar to the
(+-)-based approaches):

rank-scores,c = n+
c − n−c . (5)

• Grp-pop(+): Here, the group popularity ranking method considers only the good subse-
quent courses, similar to SVD(+) and Course2vec(+). Specifically, the ranking score is
computed as

rank-scorec = n+
c ,

where n+
c is as defined in Eq. 5.

• Course dependency graph: This is the course recommendation method utilized in (Back-
enköhler et al., 2018) (see Section 2.1.).

We also compare the performance of the representation learning approaches for both grade-
aware and grade-unaware course recommendation. The grade-unaware representation learning
approaches are defined as follows:

• SVD(++): Here, SVD is applied on the previous-subsequent co-occurrence frequency
matrix: F++: where F++

ij = n+
ij + n−ij .

• Course2vec(++). This model maximizes the log-likelihood of observing all courses taken
by student s in some term given the set of previously-taken courses, regardless of the
subsequent course being a good or a bad one. This can be written as:

maximize
W,W′

∑

s∈S

∑

T i∈Qs

(
logPr(Cs,i|Ps,i)

)
,
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where: Cs,i is the set of courses taken by student s at term i, and the rest of the terms are
as defined in Eq. 2.

Note that, here we append a (++) suffix to the grade-unaware variation of the method’s name
since it utilizes all the course information without differentiating between good and bad courses.

4.3. EVALUATION METHODOLOGY AND METRICS

Previous course recommendation methods used the recall metric to evaluate the performance
of their methods. The goal of the proposed grade-aware course recommendation methods is
to recommend to the student courses which he/she is expected to perform well in and not rec-
ommend courses which he/she is expected not to perform well in. As a result, we cannot use
the recall metric as is, and instead, we use three variations of it that differentiate between good
and bad courses. The first, Recall(good), measures the fraction of the actual good courses that
are retrieved. The second, Recall(bad), measures the fraction of the actual bad courses that
are retrieved. The third, Recall(diff), measures the overall performance of the recommendation
method in ranking the good courses higher than the bad ones.

The first two metrics are computed as the average of the student-term-specific corresponding
recalls. In particular, for a student s and a target term t, the first two recall metrics for that (s, t)
tuple are computed as:

1. Recall(good)(s,t) =

∣∣∣Gs,n(s,t)

∣∣∣
ng
(s,t)

.

2. Recall(bad)(s,t) =

∣∣∣Bs,n(s,t)

∣∣∣
nb
(s,t)

.

Gs,n(s,t)
and Bs,n(s,t)

denote the set of good and bad courses, respectively, that were taken by s
in t and exist in his/her list of n(s,t) recommended courses, n(s,t) is the actual number of courses
taken by s in t, and ng(s,t) and nb(s,t) are the actual number of good and bad courses taken by s
in t, respectively. Since our goal is to recommend good courses only, we consider a method to
perform well when it achieves a high Recall(good) and a low Recall(bad).

Recall(diff) is computed as the difference between Recall(good) and Recall(bad), i.e.,

3. Recall(diff) = Recall(good) - Recall(bad).

Recall(diff) is thus a signed measure that assesses both the degree and direction to which a
recommendation method is able to rank the actual good courses higher than the bad ones in its
recommended list of courses for each student, so the higher the Recall(diff) value, the better the
recommendation method is.

To further analyze the differences in the ranking results of the proposed approaches, we also
computed the following two metrics:

• Percentage GPA increase/decrease: Let cur-goods and cur-bads be the current GPA
achieved by student s on the good and bad courses recommended by some recommenda-
tion method, respectively, and let prev-gpas be his/her GPA prior to that term. Then, the
percentage GPA increase and decrease are computed as:

% GPA increase =
cur-goods − prev-gpas

prev-gpas
× 100.0.
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% GPA decrease =
prev-gpas − cur-bads

prev-gpas
× 100.0.

• Coverage for good/bad terms: The number of terms where some recommendation method
recommends at least one good (or bad) subsequent course will be referred to as its cover-
age for good (or bad) terms. The higher the coverage for good terms by some method, the
more students will get good recommendations that will maintain or improve their overall
GPA. On the other hand, the lower the coverage for bad terms, the less students will get
bad recommendations that will decrease their overall GPA.

We compute the above two metrics for the terms on which the recommendation method recom-
mends at least one of the actual courses taken in that term. For each method, the percentage
GPA increase and decrease as well as the coverage for good and bad terms are computed as the
average of the individual scores. Since we would like to recommend courses that optimize the
student’s GPA, the higher the GPA percentage increase and the coverage for good terms and the
lower the GPA percentage decrease and the coverage for bad terms that a method achieves, the
better the method is.

Note that a recommendation is only done for students who have taken at least three previous
courses. For each (s, t) tuple, the recommended list of courses using any method are selected
from the list of courses that are being offered at term t only, and that were not already taken by
s with an associated grade that is either: (i) ≥ C+, or, (ii) ≥ µs − 1.0, where µs is the average
previous grade achieved by s. Therefore, we only allow recommending repeated courses in the
case that the student has achieved a low grade in it such that the course’s credits do not add to
the earned credits, or when they a achieve bad grade in them relative to their grades in previous
terms. This filtering technique significantly improved the performance of all the baseline and
proposed methods.

4.4. MODEL SELECTION

We did an extensive search in the parameter space for model selection. The parameters in the
SVD-based models is the number of latent dimensions (d). The parameters in the Course2vec-
based models are the number of latent dimensions (d), and the minimum number of subsequent
courses (samples), in the denominator of Eq. 1 that are used during the SGD process of learning
the model. We experimented with the parameter d in the range [10 − 30] with a step of 5, with
the minimum number of samples with the values {3, 5} , and with the parameter α in Eq. 4 in
the range [0.1− 0.9] with a step of 0.2.

For each major, the training set was used for learning the distributed representations of the
courses, whereas the validation set was used to select the best performing parameters in terms
of the highest Recall(diff).

5. RESULTS

We evaluate the effectiveness of the proposed grade-aware course recommendation methods in
order to answer the following questions:

RQ1. How do the SVD- and Course2vec-based approaches for course recommendation compare
to each other?
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Table 2: Prediction performance of the proposed representation learning-based approaches for
grade-aware course recommendation.

Metric SVD Course2vec
(+) (+-) (+) (+-)

Recall(good) 0.468 0.396 0.448 0.351
Recall(bad) 0.372 0.206 0.404 0.202
Recall(diff) 0.096 0.190 0.044 0.149

Note: Underlined entries indicate best performance.

RQ2. How do the combination of grade prediction with representation learning approaches com-
pare to each other?

RQ3. How do the two proposed approaches for solving grade-aware course recommendation
compare to each other?

RQ4. How do the proposed approaches compare to competing approaches for grade-aware
course recommendation?

RQ5. What are the benefits of grade-aware course recommendation over grade-unaware course
recommendation?

RQ6. How does the recommendation accuracy vary across different majors and student sub-
groups?

RQ7. What are the characteristics of the recommended courses, in terms of course difficulty and
popularity?

5.1. COMPARISON OF THE REPRESENTATION LEARNING APPROACHES FOR GRADE-
AWARE COURSE RECOMMENDATION

Table 2 shows the prediction performance of the two proposed representation learning ap-
proaches for grade-aware course recommendation. The results show that SVD(+) achieves the
best Recall(good), while SVD(+-) achieves the best Recall(diff). Course2vec(+-) achieves the
best Recall(bad), which is comparable to SVD(+-).

By comparing the corresponding SVD and Course2vec approaches, we see that SVD outper-
forms Course2vec in almost all cases. We believe this is caused by the fact that there is a limited
number of positive training data for Course2vec since only the good courses are used as positive
examples for learning the models. This is supported by the comparable prediction performance
of the (++)-based approaches that use all the available training data as positive examples, which
are shown in Table 5.

By comparing the (+)- and (+-)-based methods, we see that the (+-)-based model achieves
a worse Recall(good), but a much better Recall(bad). For instance, SVD(+-) achieves a 15%
decrease in Recall(good) and a 45% decrease in Recall(bad) over SVD(+). This is expected since
utilizing the bad course information gives the models more power to learn to rank these courses
low, but it also adds some noise, since different students with the same or similar previous set of
courses can achieve different outcomes on the same courses.
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Table 3: Prediction performance of combining CKRM with the representation learning-based
approaches for grade-aware course recommendation methods.

Metric CKRM + SVD CKRM + Course2vec
(++) (+) (+-) (++) (+) (+-)

Recall(good) 0.438 0.417 0.385 0.411 0.417 0.338
Recall(bad) 0.279 0.230 0.189 0.269 0.264 0.183
Recall(diff) 0.158 0.187 0.197 0.142 0.152 0.155

Note: Underlined entries indicate best performance.

5.2. COMPARISON OF THE GRADE-AWARE RECOMMENDATION APPROACHES COM-
BINING GRADE PREDICTION WITH COURSE RECOMMENDATION

Table 3 shows the prediction performance of the grade-aware recommendation approaches that
combine CKRM with the grade-aware and grade-unaware representation learning methods. The
results show that CKRM+SVD(++) achieves the best Recall(good), while CKRM+Course2vec-
(+-) achieves the best Recall(bad). Overall, CKRM+SVD(+-) achieves the best Recall(diff).
Combining CKRM with the grade-unaware, i.e., (++)-based, approaches helped in differen-
tiating between good and bad courses, by achieving a high Recall(diff) of 0.158 and 0.142
for SVD and Course2vec, respectively. However, despite these performance improvements,
the combinations that use the grade-aware recommendation methods do better. For instance,
CKRM+SVD(+) outperforms CKRM+SVD(++) by 15% in terms of Recall(diff).

The results also show that the SVD-based (+)- and (+-)-based approaches outperform their
Course2vec counterparts in terms of Recall(diff), similar to the results of SVD and Course2vec
alone (Section 5.1.). Unlike the difference in the performance of SVD(+) vs SVD(+-), CKRM-
+SVD(+) achieves a similar Recall(diff) to that achieved by CKRM+SVD(+-) (and the same
holds for the Course2vec-based approaches). The difference is that CKRM+SVD(+) achieves
higher Recall(good) and Recall(bad) than CKRM+SVD(+-).

5.3. COMPARISON OF THE PROPOSED APPROACHES FOR GRADE-AWARE COURSE
RECOMMENDATION

Comparing each of the SVD- and Course2vec-based approaches with and without CKRM (sh-
own in Tables 2 and 3), we see that combining CKRM with the (+)-based approaches improved
their performance with 95% and 245% increase in Recall(diff) for SVD and Course2vec, respec-
tively. On the other hand, combining CKRM with the (+-)-based approaches achieves compara-
ble performance to using the corresponding (+-)-based approach alone.

By further analyzing these ranking results, Figure 3 shows the percentage GPA increase and
decrease as well as the coverage for good and bad terms for each SVD-based method with and
without CKRM5. CKRM+SVD(+) outperforms SVD(+) in all but one metric, which is coverage
for good terms, where it achieves slightly worse performance than SVD(+). On the other hand,
CKRM+SVD(+-) has comparable performance to SVD(+-), which is analogous to their recall
metrics results.

5 The results of the Course2vec-based methods are similar, and are thus omitted.
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Figure 3: Performance of the different SVD-based methods with and without CKRM (refer to
Section 4.3. for the metrics definitions).

5.4. REPRESENTATION LEARNING VS COMPETING APPROACHES FOR GRADE-AWARE
COURSE RECOMMENDATION

Table 4 shows the prediction performance of the representation learning and competing ap-
proaches for grade-aware course recommendation. Grp-pop(+-) achieves the best Recall(diff)
among the three competing (baseline) approaches. The results also show that SVD(+) achieves
the best Recall(good), while grp-pop(+-) achieves the best Recall(bad). Overall, SVD(+-) achie-
ves the best Recall(diff).

5.5. GRADE-AWARE VS GRADE-UNAWARE REPRESENTATION LEARNING APPROACHES

Table 5 shows the performance prediction of the representation learning approaches for grade-
aware, i.e., (+)- and (+-)-based approaches, and grade-unaware, i.e., (++)-based approach, cour-
se recommendation. Each of SVD(+) and Course2vec(+) achieves a Recall(good) that is com-
parable to or better than that achieved by its corresponding (++)-based approach. In addition,
both the (+)- and (+-)-based methods achieve much better (lower) Recall(bad). For instance,
SVD(+) and SVD(+-) achieve 0.372 and 0.206 Recall(bad), respectively, resulting in 26% and
59% improvement over SVD(++), respectively.

By comparing the (++)-, (+)-, and (+-)-based approaches in terms of Recall(diff), we can see
that the (++)-based approaches achieve negative recall values which indicate that they recom-
mend more bad courses than they recommend good ones. The (+)-based approaches do slightly

Table 4: Prediction performance of the representation learning-based vs competing approaches
for grade-aware course recommendation.

Metric Dependency Grp-pop Grp-pop SVD SVD Course2vec Course2vec
Graph (+) (+-) (+) (+-) (+) (+-)

Recall(good) 0.382 0.425 0.367 0.468 0.396 0.448 0.351
Recall(bad) 0.260 0.343 0.188 0.372 0.206 0.404 0.202
Recall(diff) 0.122 0.082 0.179 0.096 0.190 0.044 0.149

Note: Underlined entries indicate best performance.
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Table 5: Prediction performance of the representation learning based approaches for grade-aware
and grade-unaware course recommendation.

Metric SVD Course2vec SVD Course2vec SVD Course2vec
(++) (++) (+) (+) (+-) (+-)

Recall(good) 0.453 0.455 0.468 0.448 0.396 0.351
Recall(bad) 0.502 0.493 0.372 0.404 0.206 0.202
Recall(diff) -0.048 -0.038 0.096 0.044 0.190 0.149

Note: Underlined entries indicate best performance.

better, while the (+-)-based approaches achieve the highest Recall(diff). This is expected since
the (++)-based methods treat both types of subsequent courses equally during their learning,
and so they recommend both types in an equal manner. This shows that differentiating between
good and bad courses in any course recommendation method is very helpful for ranking the
good courses higher than the bad ones, which will help the student maintain or improve their
overall GPA.

In terms of percentage GPA increase and decrease (shown in Figure 3), SVD(+-) outperforms
SVD(++) by 2% in percentage GPA increase and 2.5% in percentage GPA decrease. Moreover,
SVD(+-) achieves ∼ 62% less coverage for the bad terms than SVD(++), while it achieves
∼ 10% less coverage for the good terms.

5.6. ANALYSIS OF RECOMMENDATION ACCURACY

Our discussion so far focused on analyzing the performance of the different methods by look-
ing at metrics that are aggregated across the different majors. However, given that the structure
of the degree programs of different majors is sometimes quite different, and that different stu-
dent groups can exhibit different characteristics, an important question that arises is how the
different methods perform across the individual degree programs and different student groups
and if there are methods that consistently perform well across majors as well as across student
groups. In this section, we analyze the recommendations done by one of our best performing
models, CKRM+SVD(+-), against the best performing baseline, i.e., grp-pop(+-), in terms of
Recall(diff), across these degree programs and student groups (RQ6).

5.6.1. Analysis of Different Majors

Table 4 shows the recommendation accuracy, in terms of Recall(diff), across the 23 majors, by
both grp-pop(+-) and CKRM+SVD(+-) (Fig 4a). First, we can see that there is a huge vari-
ation in the recall values across the majors, ranging from 0.05 to ∼0.5. Second, we see that
CKRM+SVD(+-) consistently outperforms grp-pop(+-), except for the nursing major. To fur-
ther look into why this happens, we investigated some of the characteristics of the students’
degree sequences. For each major, we computed the pairwise percentage of common courses
among students who belong to that major, which is shown in Figure 4b. In addition, we com-
puted the similarity in the sequencing, i.e., ordering, of the common courses between each pair
of students, which is shown in Figure 4c. For computing the pairwise degree similarity, we uti-
lized the formula proposed in (Morsy and Karypis, 2019), which computes the degree similarity
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Figure 4: Per-major recommendation accuracy and the characteristics of the students’ degrees.
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between a pair of degree plans d1 and d2 as:

sim(d1, d2) =

∑
(x,y)∈|C1∩C2| T (t1,x − t1,y, t2,x − t2,y)

|C1 ∩ C2|
, (6)

where Ci is the set of courses taken in degree i, and ti,x is the time, i.e., term number, that course
x was taken in di, e.g., the first term is numbered 1, the second is numbered 2 and so forth.
Function T (dt1, dt2) is defined as:

T (dt1, dt2) =





1, if dt1 = dt2 = 0

exp
(
−λ(|dt1 − dt2|)

)
, if dt1 × dt2 ≥ 1

0, otherwise.

(7)

where λ is an exponential decay constant. Function T assigns a value of 1 for pairs of courses
taken concurrently, i.e., during the same term, in both plans, and assigns a value of 0 for pairs
of courses that are either: (i) taken in reversed order in both plans, or (ii) taken concurrently in
one plan and sequentially in the other. For pairs of courses taken in the same order, it assigns a
positive value that decays exponentially with |dt1 − dt2|.

We found that there is a high correlation between the Recall(diff) values and both the aver-
age pairwise percentage of common courses and the average pairwise degree similarity among
students of these majors (correlation values of 0.47 and 0.5 for grp-pop(+-), and 0.47 and 0.38
for CKRM+SVD(+-), respectively). This implies that as the percentage of common courses and
degree similarity between pairs of students decrease, accurate course recommendation becomes
more difficult since there is more variability in the set of courses taken as well as their se-
quencing. The nursing major, where grp-pop(+-) outperforms CKRM+SVD(+-) has the highest
average pairwise percentage of common courses,∼76%, as well as the highest average pairwise
degree similarity, ∼0.86, compared to all other majors. This implies that the nursing major is
the most restricted major and that students tend to follow highly similar degree plans and take
very similar courses at each academic level. The group popularity ranking in this case can easily
outperform other recommendation methods.

5.6.2. Analysis of Different Student Groups

Figure 5 shows the recommendation accuracy in terms of Recall(diff), for grp-pop(+-) and
CKRM+SVD(+-) across different student sub-groups. Figure 5a shows the recommendation ac-
curacy among different GPA-based student types, A vs B vs C. We notice that, first, CKRM+SVD(+-
) outperforms grp-pop(+-) for all student groups. Second, we found that CKRM+SVD(+-)
achieves the highest Recall(diff) for the type-B students, followed by type-A, and then by type-
C. This could be due to the following reasons. After analyzing the training data, we found that
the type-A and type-B students constitute ∼96% of the student population. After analyzing the
average pairwise percentage of common courses and degree similarity among each GPA-based
groups of students, as well as among pairs of different GPA-based groups, we found that type-C
students follow more diverse sequencing for their degree plans that type-A or type-B students,
as illustrated in Table 6, while there was no difference among the different groups in the average
pairwise percentage of common courses. As discussed in Section 5.6.1., there is a high corre-
lation between the pairwise degree similarity and recommendation accuracy. Since there is no
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Figure 5: Recommendation accuracy on different student sub-groups.

enough training data for the type-C students to learn their sequencing of the courses, this can
explain why the recommendation accuracy for them was the lowest.

Figure 5b shows the recommendation accuracy among different student sub-groups based on
their academic level. At the University of Minnesota, there are four academic levels, based on
the number of both earned and transferred credits by the beginning of the semester: (1) fresh-
man (≤ 30 credits), (2) sophomore (> 30 and ≤ 60 credits), (3) junior (> 60 and ≤ 90 credits),
and senior (> 90 credits). First, we can notice that CKRM+SVD(+-) outperforms grp-pop(+-)
across all student groups. Second we see that, as the student’s academic level increases, and
hence he/she has spent more years at the university and took more courses, both methods tend to
achieve more accurate recommendations. This can be due to the following reasons. First, since
we filter out the courses that have been previously taken by the student before making recom-
mendations (see Section 4.3.), this means that as the student’s academic level increases, there is a
smaller number of candidate courses from which the recommendations are to be made. Second,
for CKRM+SVD(+-), as the student takes more courses, his/her implicit profile that is computed
by aggregating the embeddings of the previously-taken courses becomes more accurate.

6. CHARACTERISTICS OF RECOMMENDED COURSES

An important question to any recommendation method is what the characteristics of the recom-
mendations are. In this section, we study two important characteristics for the recommended
courses, (i) the difficulty of courses (Section 6.1.), and (ii) their popularity (Section 6.2.) (RQ7).

Table 6: Average pairwise degree similarity between different pairs of GPA-based student groups.

Student Pair Degree Similarity

A-B 0.597
A-C 0.535
B-C 0.534
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Table 7: Statistics for the grades of all and recommended courses.

Course Set Mean Median Std. Dev.

All 3.50 3.61 0.51
SVD(++) 3.24 3.24 0.27
SVD(+) 3.40 3.40 0.24
SVD(+-) 3.56 3.55 0.20

6.1. COURSE DIFFICULTY

As our proposed grade-aware recommendation methods are trained to recommend courses that
help students maintain or improve their GPA, these methods can be prone to recommending
easier courses in which students usually achieve high grades. Here, we investigate whether
this happens in our recommendations or not. Table 7 shows the grade statistics of all courses,
as well as the courses recommended by all variations of grade-unaware and grade-aware SVD
variations. The mean grade is 3.5 for all courses, while for the recommended courses, it is 3.24,
3.4, and 3.56, for SVD(++), SVD(+) and SVD(+-), respectively. These statistics show that the
grade-aware SVD approaches tend to only slightly favor easier courses in their recommendations
than the grade-unaware SVD approach.

6.2. COURSE POPULARITY

Since the university administrators need to make sure that students are enrolled in courses with
different popularity, as there is a capacity for each course and classroom, course popularity is an
important factor for course recommendations.

We also analyze the results of our models in terms of the popularity of the courses they
recommend. Figure 6 shows the frequency of the actual good courses in the test set, as well as
the frequency of the good courses recommended by both grp-pop(+-) and CKRM+SVD(+-)6.

The figure shows that both grp-pop(+-) and CKRM+SVD(+-) recommend courses with dif-
ferent popularity7, similar to the actual good courses taken by students. Comparing CKRM+-
SVD(+-) to grp-pop(+-), we can notice that, grp-pop(+-) tends to recommend a higher number of
the more popular courses, while CKRM+SVD(+-) recommends more of the less popular ones,
which can be considered a major benefit for the latter method.

7. DISCUSSION AND CONCLUSION

In this paper, we proposed grade-aware course recommendation approaches for solving the
course recommendation problem. The proposed approach aims to recommend to students good
courses on which the student’s expected grades will maintain or improve their overall GPA. We
proposed two different approaches for solving the grade-aware course recommendation problem.
The first approach ranks the courses by using an objective function that differentiates between
sequences of courses that are expected to increase or decrease a student’s GPA. The second
approach combines the grades predicted by grade prediction methods in order to improve the

6 Because we recommend n(s,t) courses, which is the total number of (good and bad) courses taken by student s
in term t (see Section 4.3.), the number of recommendations can be higher than the number of actual good courses.

7 Since we use a filtering technique before making recommendations, grp-pop(+-) can recommend courses with
little popularity (see Section 4.3.)
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Figure 6: Popularity of the actual good courses, as well as courses recommended by grp-pop(+-)
and CKRM+SVD(+-).

rankings produced by course recommendation methods. To obtain course rankings in the first
approach, we adapted two widely-known representation learning techniques; one that uses the
linear singular value decomposition model, while the other uses log-linear neural network-based
models.

We conducted an extensive set of experiments on a large dataset obtained from 23 differ-
ent majors at the University of Minnesota. The results showed that (i) the proposed grade-
aware course recommendation approaches outperform grade-unaware recommendation meth-
ods in recommending more courses that increase the students’ GPA and fewer courses that
decrease it; (ii) the proposed representation learning-based approaches outperform competing
approaches for grade-aware course recommendation; and (iii) the approaches that utilize both
the good and bad courses and differentiate between them achieve comparable performance to
combining grade prediction with the approaches that either utilize the good courses only or those
that differentiate between good and bad courses.

We also provided an in-depth analysis of the recommendation accuracy across different ma-
jors and student groups. We found that our proposed approaches consistently outperformed the
best baseline method across these majors and groups. We also analyzed the characteristics of
the recommendations in terms of course difficulty and popularity. We found that our proposed
grade-aware course recommendation approaches are not prone to recommending easy courses
and that they recommend courses with high and low popularity in a similar manner. This shows
the effectiveness of our proposed grade-aware approaches for course recommendation.

Time-to-degree is another important factor for academic success, which is the number of
years or terms that the student enrolls in to finish his/her degree. An interesting research di-
rection would be to investigate the effect of our recommendations on the time-to-degree, and
accordingly, develop recommendation approaches that consider both the student’s GPA and
time-to-degree.
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