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In recent years, there has been a proliferation of adaptive learner models that seek to predict student 

correctness. Improvements on earlier models have shown that separate predictors for prior successes, failures, 

and recent performance further improve fit while remaining interpretable. However, students who engage in 

“gaming” or other off-task behaviors may reduce the predictiveness of learner models that treat counts of 

prior performance equivalently across gaming and non-gaming student populations. The present research 

evaluated how sub-groups of students that varied in their potential gaming behavior were differently fit by a 

logistic learner model, and whether any observed differences between sub-groups could inspire the creation 

of new predictors that might improve model fit. Student data extracted from a college-level online learning 

application were clustered according to speed and accuracy using Gaussian mixture modeling. Distinct 

clusters were found, with similar cluster patterns detected in three separate datasets. Subsequently, each 

cluster was separately fit to a Performance Factors Analysis model (PFA). Significantly different parameter 

coefficients across clusters implied that students more likely to have been gaming benefitted less from prior 

failures. These differences inspired new and modified predictors that were found to improve overall model fit 

- an improvement that varied in magnitude across clusters. The present findings indicate that incorporating 

trial duration into counts of prior failures can improve the predictive power of learning models. 

Keywords: learning, learner models, Performance Factors Analysis, clustering, student variability, feature 

engineering 

 

1. INTRODUCTION 

A major research focus in educational data mining involves developing models to estimate the 

probability that a student will correctly answer some future question. Several models have been 

developed, leveraging information about performance on prior test items to infer the students’ 

knowledge level (e.g., Ayers and Junker, 2006; Cen et al., 2006; Corbett and Anderson, 1992; 

Galyardt and Goldin, 2015; Gong et al., 2011; Pavlik Jr. et al., 2009; Piech et al., 2015). The 

actual knowledge and motivations of students are of course unknowable, and thus models also 

benefit from drawing on cognitive theories of learning and behavior to infer future performance 

from prior behavior.  

The present work demonstrates how the future performance of sub-groups of students can be 

predicted to different extents by common features of a logistic regression adaptive learning 

model, and how trial duration can be used to address these differences and improve model fit. 

The intuition for why this may be true is relatively straight-forward – the success of some 

features of these models depends on behaviors and motivations that may vary substantially 
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across students. Previous research has demonstrated how distinct clusters of students can have 

widely variable patterns of behavior in learning systems (Desmarais and Lemieux, 2013). 

Clustering students has also helped develop separate models for distinct sub-groups, which have 

been shown to improve predictive accuracy (Pardos et al., 2012). Student clusters with distinctly 

off-task behavior may be predicted particularly poorly by specific features. For instance, some 

measures (such as a count of prior incorrect answers) may predict better future performance 

because when a student finds they are incorrect, they are more likely to attend to related 

information (Baker et al., 2004; Kornell et al., 2009), which is not true if off-task behavior 

interrupts restudy. However, student learning goals may not be aligned with those of the 

researcher or learning system developer (especially outside of a laboratory). This misalignment 

may result in large differences in the predictive utility of common features of learner models. 

We evaluated how the behavior of distinct sub-groups could lead to reduced utility of particular 

predictive features (such as counts of prior failures), and we then used that information to 

develop an improved learner model. 

We will begin by describing some well-known learner models and explanations for their 

efficacy. Subsequently, we will describe research on “gaming” behavior (Baker, Corbett and 

Koedinger, 2004), how such behavior could negatively impact performance, as well as how it 

may influence the predictive utility of learner models. We then describe how accounting for 

gaming behavior may influence learner model predictiveness, which motivated our creation of 

new features that incorporated trial duration information. 

2.   LEARNER MODELS 

Many modern models of learning are built upon the framework of item response theory (IRT) 

models, which aim to predict performance on dichotomous outcomes (successes or failures) by 

estimating a skill parameter for each student (Rasch, 1961). The fit of a learner model can be 

further improved by grouping items based on shared underlying procedural rules or information 

(Fischer, 1973), which are also called knowledge components (KCs). Many modern logistic 

regression models utilize this approach, such as the Additive Factors Models (AFM; Cen, 

Koedinger and Junker, 2006), Performance Factors Analysis (PFA; Pavlik Jr., Cen, and 

Koedinger, 2009), and Recent-Performance Factors Analysis (R-PFA; Galyardt and Goldin, 

2015). These types of models differ by how they use prior performance to predict future 

performance. AFM, for example, counts the number of prior practice attempts for a given KC, 

the assumption being that more practice attempts with a KC will lead to better future 

performance. However, a common theme to describe the evolution of logistic regression learner 

models is that not all learning events are equally meaningful (e.g., Chi et al., 2011; Pavlik Jr. et 

al., 2011). 

The PFA model differs from AFM by how it distinguishes between successful and 

unsuccessful trials. Successful trials (e.g., applying the appropriate procedural rule or recalling 

the correct information) may benefit later performance differently than failed attempts and are 

more efficient (Carrier and Pashler, 1992; Izawa, 1970; Pavlik Jr. and Anderson, 2008). 

Furthermore, correct responses for a KC indicate more knowledge prior to the testing event 

(Pavlik Jr., 2007). In addition to failed attempts being inefficient (in terms of practice time), 

reviewing feedback may not necessarily elicit the same cognitive processes necessary for 

successful responding later (Morris, Bransford, and Franks, 1977). But failed attempts may also 

benefit learning if feedback is provided (Kornell, Hays, & Bjork, 2009). Furthermore, errors 

made with high confidence are better corrected from feedback than those made with low 
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confidence (Butler et al., 2011). In short, both successful and unsuccessful trials can improve 

later performance, but they are likely doing so in different ways. By partitioning counts of prior 

practice according to success or failure, the PFA model typically outperforms AFM. This 

partitioning also allows greater insight into what types of practice are most helpful for different 

types of material. Failures at tests may impact learning of some materials more than others (e.g., 

Kelly et al., 2015). The R-PFA model, taking a mechanism from related research (Gong, Beck 

and Heffernan, 2011) includes a parameter that weighs recent performance more heavily, based 

on the notion that recent correct answers about a particular KC are more informative than older 

responses. This idea is clearly reasonable if one considers that learning may entail sudden 

increases in understanding, rather than being a purely gradual process (Baker et al., 2011). One 

implementation of the recency predictor is the number of prior successful trials divided by the 

number of total trials, with an exponential decay parameter d. A d = 1 provides equal weight to 

previous trials, with lower d resulting in more weight to recent trials. 

Another prominent approach to student modeling is Bayesian Knowledge Tracing (BKT, 

Corbett and Anderson, 1992). The original version of this model assumed knowledge had two 

possible states (known or unknown), that students learned at the same rate, and that each KC 

could be defined by its own set of parameters. Two important distinctions between BKT and 

logistic models are how they can be modified and the interpretability of parameter estimates 

from the models, since BKT uses failure to infer the knowledge state directly. Within the 

framework of logistic regression, the additive nature of predictors makes it easier to interpret 

the effect of individual predictors and also makes it simpler to add or subtract them and interpret 

the resulting change in fit. The relative influence of particular predictors across clusters was an 

important aspect of our research, and thus we chose to utilize logistic regression rather than 

BKT.  

Although the aforementioned logistic regression models typically consider the quantity of 

prior practice as a linear effect, it is important to note that in many cases log-transforming the 

counts of prior practice improves model fit (e.g., Chi, Koedinger, Gordon, Jordan, and VanLehn, 

2011). The benefit of this transformation is explained by the observed power-law relationship 

between performance measures and practice (Newell and Rosenbloom, 1981). In the present 

analyses, we applied log transformations to predictor variables derived from counts of prior 

successes or failures.  

3.   GAMING AND OFF-TASK BEHAVIOR 

The underlying motivations of students is another important area of educational data mining 

research. Specifically, relevant to the present study is how students’ motivations for completing 

a learning task may influence how they interact with the system, which in turn can influence the 

extent that model features may effectively track (and predict) their performance. Student 

motivations can be particularly influential in educational software because students may be able 

to choose whether to attempt to answer a question, how long to spend trying to answer a 

question, and when to solicit hints from the learning system. Students that do not behave as 

intended (e.g., rushing through tasks or seeking hints instead of attempting to answer questions) 

are frequently referred to as “gamers” (Baker, Corbett and Koedinger, 2004). There is ample 

evidence that student study preferences are at odds with what is suggested by learning science 

research. For instance, most students’ metacognitive beliefs about how to best learn are 

miscalibrated (Kornell and Bjork, 2007; McCabe, 2011), and they typically do not recognize 

that attempting to answer a question can be an efficient way to improve memory (e.g., Roediger 
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and Butler, 2011). Some students may simply not want to engage fully with the learning system 

but still technically complete tasks as required by instructors or learning systems. Unfortunately, 

data from off-task students is often superficially similar to more diligent students. For example, 

diligent students may incorrectly answer a question and subsequently attend to feedback. In 

contrast, gamer students may not be attempting to recall answers at all; they may be skipping 

through to view the answers instead (Aleven and Koedinger, 2001; Wood and Wood, 1999). 

Gamers may even ignore corrective feedback, seeking instead to complete the task as quickly 

as possible. Baker et al. (2004) developed a model to predict these gamer students using data 

from an intelligent tutoring system (ITS). Most relevant to the present research, they found that 

speed of actions taken after errors could accurately classify gamers. Subsequent research has 

demonstrated that this approach can generalize to students learning other materials on other 

tutoring platforms (Baker et al., 2008). In short, trial duration appears to be able to identify 

gamer students whose learning is more poorly predicted by learner models, which may be 

because counts of prior practices for gamers are not tracking the same underlying processes.  

4.   GAMING BEHAVIOR AND PREDICTIVENESS OF LEARNER MODELS 

If a student engaging in gaming chooses an answer randomly in order to skip to the corrective 

feedback, they are depriving themselves of known benefits of self-testing (Rowland, 2014), 

benefits that exist even if the student could not have known the answer (Grimaldi and Karpicke, 

2014). While missing an opportunity to practice answering a question may reduce the efficacy 

of that particular study event, the consequences may extend to subsequent trials in an adaptive 

system. This is because the assumptions underlying a learner model may be violated in various 

ways. For instance, a count of prior failures may overestimate later performance for students 

who are ignoring corrective feedback and rushing to the end of a session. This issue would 

directly reduce the efficacy of adaptive systems that determine optimal practice schedules based 

on the relative benefit of possibly successful practice versus the possible cost of a failure (that 

would likely entail a more time-consuming and effortful restudy trial). Such maladaptive 

behavior may be partially captured by trial duration and has also been previously used to 

improve learner models of mathematics (Rihák, 2015). 

In the present study, trial duration was used to improve the predictiveness of a logistic 

regression learner model. Distinct subgroups that varied according to potential gaming behavior 

were identified to a) allow evaluation of whether the subgroups of students were fit differently 

by typically effective models and then b) inspire new and adjusted predictor features that 

incorporated trial duration and improved overall prediction across the heterogeneous subgroups. 

Models of learning are constrained by the validity of the predictor features and their 

correspondence to the outcome measures (correctness in this case). Incorporating trial duration 

into the computation of predictor features was predicted to improve this correspondence.  

5.   THE DATA 

The data used in the present analyses were extracted from an online learning platform for college 

students. In this system, students studied chapters of a textbook, and at the end of chapter 

sections, they were quizzed with questions pertaining to previously studied textbook content. 

When a student was presented with a question, they were asked first to give a confidence rating 

(coded as low or high) once they felt prepared to provide an answer. The student would then 

select their chosen answer among multiple alternatives. Immediately afterward, the student 
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would be provided with corrective feedback that included the correct answer as well as an 

explanation. Students could proceed at their own pace at every stage of each quiz question. Each 

of the datasets we analyzed contained 1035-1210 student participants, and each dataset 

concerned a different topic (Finance, Management, and Nutrition). Participation varied 

substantially; the number of trials (questions answered) per student ranged from as few as 4 

trials to over 1000. Time intervals between quiz sessions also varied, some students had no 

intersession intervals (only using the system once) and others returned multiple times with over 

a month between some sessions. Of the available data for each quiz question, this paper used a 

deidentified student ID, a KC ID code, a timestamp, the correctness of the response 

(dichotomous), and trial duration. Other participant data were ignored for this analysis. 

6.   CLUSTERING 

Participants were clustered according to their overall median trial duration time and overall 

proportion correct. Median trial duration was included because of evidence that trial durations 

correlate with gaming behavior (Baker, Corbett and Koedinger, 2004). However, faster trial 

durations can also indicate better mastery of learning material or of apparent gaming that 

benefits learning (Shih et al., 2008). These latter two points are why proportion correct was also 

included as a second input feature. The goal was to use these two features as dimensions of the 

clustering space to potentially find sub-groups of students that traded accuracy for speed. At one 

extreme, some participants may rush through the task simply to view answers and have low 

median trial duration and proportion correct. Others may be more diligent and have long trial 

durations and high proportion correct. Finally, other subgroups of participants may fall 

somewhere in between these two extremes. Our question was how these subgroups might be 

predicted differently by our model. There are many researcher degrees of freedom when it 

comes to choosing clustering features; we chose to limit our clustering analysis to the essential 

dimensions of interest - speed that may indicate gaming that is contextualized by accuracy1. We 

also hoped that fewer input features could make any distinct clusters more interpretable and 

large enough to be fit by our learner model.  

Before clustering, the data were preprocessed. In some cases, the system did not detect that 

a student had logged out and would report outlier trial durations (e.g., a day-long trial) or a trial 

duration was not successfully recorded. In those instances, the trial duration was imputed to the 

median of the other trial durations from that student. This was done for approximately 1% of 

trials. Finally, only trials for which the trial duration was below the 95th percentile were used 

to calculate median trial durations and proportion correct. This resulted in the exclusion of 

another 4% of trials. Participants were clustered using a Gaussian mixture modeling-based 

method (Fraley et al., 2012). With this approach, the data were each assumed to be 

independently drawn from some unknown population density. The fitting task was to estimate 

the number of population groups g that are most likely to have together generated the entire 

dataset submitted for clustering. The modeling algorithm attempted to find the optimum number 

of g components that maximized a penalized likelihood. The ellipsoids that represented these g 

components could vary in their shape, orientation, and density. Means and variances of the 

components were fit via maximum likelihood. This flexible methodology gave more freedom 

 
1 We also explored clustering solutions with trial duration separated into durations of successes and 

failures. Highly similar clusters were obtained, as well as a similar pattern of results with subsequent 

model fitting. 
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for the patterns in the data to determine clusters, with fewer constraints imposed by assumptions 

of the clustering technique.  

The results of the mixture modeling indicated that the datasets were best described with four 

or five components (or clusters) depending on the dataset. To evaluate the robustness of these 

solutions, we performed 10-fold cross-validated discriminant analysis on each dataset 

separately. The labels assigned by the original clustering solution were treated as the “known” 

labels to test against the cross-validation predictions. There was low classification error, ranging 

from 1.8 to 2.2% across datasets. The clusters that emerged from our analysis (Figures 1, 2 and 

3, see Table 1 for descriptive statistics) seemed to loosely follow continuums from slower and 

more accurate (e.g., blue squares) to much faster and less accurate (e.g., red circles). However, 

clusters 1 and 2 in the nutrition dataset were more similar in correctness to cluster 3 than cluster 

4, differing mainly in terms of median trial duration. The same clustering methods revealed 

similar2 patterns in the other two datasets. 

 

 

 

Figure 1: A plot of the nutrition dataset clusters. 

 
2 Although the management dataset had a five-cluster solution, the clusters still tracked the 

speed/accuracy tradeoff indicated in the two datasets. Subsequent analyses described later revealed a 

correlation between PFA model coefficient values and cluster trial duration that was also consistent 

across datasets. 
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Figure 2: A plot of the finance dataset clusters. 

 

Figure 3: A plot of the management dataset clusters. 
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Table 1: Descriptive statistics of proportion correct and trial duration of clusters for each dataset. 

Nutrition Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Mean Accuracy (SD) .76(.11) .70(.17) .67(.12) .31(.07) 

Median Duration (MAD) 26.80(6.07)  44.80(10.97) 14.55(3.63)  5.70(2.08) 

Sample Size 362 57 573 55 

Finance  Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Mean Accuracy (SD) .72(.10) .65(.11) .49(.10) .31(.06) 

Median Duration (MAD) 44.65(9.04) 24.97(6.95) 13.20(3.56)  5.10(1.48) 

Sample Size 101 539 413 157 

Management Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Mean Accuracy (SD) .85(.06) .84(.05) .72(.09) .68(.14) 41(.08) 

Median Duration (MAD) 41.65(9.45) 20.88(5.82) 24.80(7.41) 58.60(19.12) 8.82(4.52) 

Sample Size 272 55 368 294 46 

7.   LEARNER MODELS 

Our starting model was a modified PFA model (see Equation 1), hereafter referred to as LPFA. 

There were two predictors, log-transformations of prior success (logsuc) and failure trials 

(logfail) estimated for each KC level (1 was added to all values so that they were defined at 0 

attempts). We chose this model because it allowed us to potentially detect different effects of 

successes versus failures. This model also provides reasonable fit while remaining simple 

enough to be fit to smaller clusters without overfitting. Due to the small number of trials from 

some students, we chose to treat student intercepts as random effects (Bates et al., 2014). 

Students sometimes only practiced a given KC a few times and typically did not practice all 

KCs. This variability prompted us to treat KC intercepts and slopes (of logsuc and logfail) as 

random effects. Our approach was modeled after that of Goldyardt and Goldin (2015) and 

DeBoeck et al. (2011). We also tried an alternative random effects structure in which random 

intercepts and slopes were correlated but did not find substantive differences in the final results. 

Logsuc, logfail, and modified versions of those predictors were treated as fixed effects. The 

model was written in R as follows: glmer(y ~ logsuc + logfail + (1|student) + (1|kc) 

+ (0+logsuc|kc) + (0+logfail|kc), family=binomial(“logit”)). Reported R2 in 

Tables 2 and 3 pertain only to the fixed effects included in the models. 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑡) =  𝛽1log𝑒 𝑆𝑖𝑗 +  𝛽2log𝑒 𝐹𝑖𝑗 + 𝜃𝑖 + 𝜃𝑗 + µ𝑠𝑗𝑆𝑖𝑗 + µ𝑓𝑗𝐹𝑖𝑗 

 

 

 

Equation 1: LPFA predicts future performance using the logs of prior successes S and failure 

counts F for each student i and KC j. θi and θj represent random intercepts for student ability 

Fixed Random 
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and KC difficulty, respectively. µsjSij and µfjFij represent random slopes for logsuc and logfail 

across KCs. 

Table 2: Coefficients of the fixed effects for the LPFA model fit to each of the three datasets, as 

well as to each cluster within each dataset separately. Values in parentheses are standard errors. 

RMSE is average of subject-level root mean squared error. The R2 column denotes a pseudo R2 

estimate of fixed effects (Johnson, 2014; Nakagawa and Schielzeth, 2013). See Nakagawa, 

Johnson, and Schielzeth (2017) for examples and explanations of the logic of the method. * = p 

< .01. ** = p < .001.  

Nutrition  Logsuc Logfail AIC R2 RMSE 

Cluster 1(n=362) .774(.236)** 4.960(.184)** 12259   .455 .3063 

Cluster 2(n=57) .695(.396)** 3.544(.213)** 3411   .413 .3355 

Cluster 3(n=573) .889(.167)** 3.750(.140)** 36772   .366 .3487 

Cluster 4(n=55) -.329(.203)** 1.393(.069)** 12982   .138 .3933 

Fit to All Data .569(.130)** 2.901(.109)**  68846   .313 .3632 

 

Finance Logsuc            Logfail    AIC    R2    RMSE 

Cluster 1(n=101) 2.420(.778)** 4.280(.249)**   2612  .384 .3350 

Cluster 2(n=539) 1.170(.168)** 3.554(.078)** 32587 .354 .3608 

Cluster 3(n=413) 1.091(.142)** 2.272(.062)** 60467 .257 .3904 

Cluster 4(n=157) -.663(.085)** 1.042(.039)** 53403 .096 .3804 

Fit to All Data .090(.085)** 1.800(.048)**     156207 .273 .4000 

 

Management Logsuc Logfail AIC R2    RMSE 

Cluster 1(n=272) 1.219(.188)** 4.177(.157)**     9643 .314 .3153 

Cluster 2(n=55) .744(.259)** 3.187(.179)**     3516 .293 .3648 

Cluster 3(n=368) 1.303(.113)** 2.381(.069)**   36712 .251 .3954 

Cluster 4(n=294) .886(.098)** 2.328(.108)** 21712 .170 .3671 

Cluster 5(n=46) .184(.216)** 1.530(.071)**  11091 .160 .4092 

Fit to All Data 1.088(.090)** 2.177(.056)** 83571 .204 .3834 

 

Data were fit to the LPFA model via maximum likelihood. If a student only had a single trial 

regarding a particular KC, that trial was excluded to facilitate fitting the model. This resulted in 

excluding 42.9% of the trials for the model fitting portion of the analysis (across all three 

datasets). Table 2 displays parameter coefficients from fitting each cluster in the nutrition dataset 

with the LPFA model separately, as well as coefficients for when all students in that dataset 

were fit with one LPFA model. The separate fits for each cluster allowed us to evaluate how the 

importance of logsuc and logfail may have varied. The model fits and coefficients did indeed 

vary considerably across clusters (see Table 2). Clusters that tended to have longer trial 

durations and higher accuracy were better fit (e.g., cluster 1 in each dataset). Very fast and 
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inaccurate participants were poorly fit by the model (i.e., the red clusters in each dataset). 

Inspection of the coefficients for the overall fit and clusters revealed some interesting patterns. 

The log of prior failures predictor (logfail) coefficients varied widely across clusters, which was 

especially notable due to how much stronger a predictor it was than logsuc. The coefficients for 

the log of prior successes predictor (logsuc) also varied but were more similar across clusters.  

In general, faster trial durations seemed to correlate with smaller coefficients for logsuc and 

logfail. One consequence of this variability is that overall coefficient estimates for logsuc and 

logfail were suboptimal for large sub-groups of students when the model was fit to the entire 

dataset.  

How can this variability among students be accounted for to improve overall fit? Some 

students who spent considerably less time on trials (red clusters) did not appear to benefit from 

failures to the same extent as those who spent more time per trial. The material students were 

studying could be fairly complex, and reviewing corrective feedback may have been time-

consuming. It has been previously demonstrated that failed tests can improve learning, but they 

do require attention to meaningful feedback (Kornell, Hays and Bjork, 2009). In the present 

case, speeding through questions may have attenuated potential benefits from failed quiz 

questions. In contrast, speeding through and consistently answering correctly may indicate skill 

mastery, and so it is less reliable predictor. This apparent relationship between trial duration and 

logfail predictiveness motivated modifications to that predictor. We first demonstrate how 

separate logfail predictors for each cluster can improve fits. Although logsuc was also a 

significant predictor, we demonstrate in the following analyses that separating the logsuc 

parameter by cluster improved model fit much less than with logfail. Subsequently, we show 

how weighing counts of prior failures by the students’ cumulative median trial duration 

accounted for a substantial proportion of the benefit conferred by separate logfail predictors for 

each cluster.  

Each dataset was fit to a modified version of the model that included a single logsuc predictor 

as before, but separate logfail predictors for each cluster of students (LFperCluster in Table 3). 

This is in contrast to the analysis described in Table 2, in which each cluster was fit separately 

to the original LPFA model. Thus, LFperCluster had five or six fixed effect parameters instead 

of two (an extra logfail predictor for each cluster in the dataset, two datasets had four clusters, 

one had five). Partitioning logfail by cluster improved model fit for all three datasets (see Table 

3). Overall, there was a clear benefit of allowing the influence of logfail to vary by cluster. The 

benefit of separating logfail by cluster did not appear to be simply due to adding extra predictors; 

randomly assigning cluster membership almost entirely removed the benefit. In other words, the 

benefit of additional logfail predictors per cluster depended on accurate cluster membership, not 

simply having additional logfail predictors. If cluster membership was randomly assigned, 

model fit was not substantially improved beyond the modified PFA model (and sometimes had 

higher AIC due to extra predictors). One hundred simulation runs indicated random cluster 

assignment was significantly worse than with correct cluster membership, p < .000001.  

In a separate analysis, we attempted to fit separate logsuc predictors to each cluster instead 

of separate logfail predictors (LSperCluster in Table 2). LSperCluster only reduced AIC 12% 

as much as LFperCluster. In the present datasets, trial duration appears to be more relevant to 

modulating the influence of counts of prior failures than of prior successes. Trial duration may 

be less relevant for logsuc predictiveness because both fast and slow successful trials can 

indicate prior learning and successful retrieval. In contrast, fast failed trials may be insufficient 

to review the corrective feedback at all, with longer trials being much more likely to cause more 

learning. In sum, we think the result is due to how separate logfail predictors for each cluster 
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allowed more diligent students (who were typically clustered together) to have larger logfail 

coefficients that may have better reflected their increased attention to corrective feedback. 

 

Table 3: Descriptive statistics of five model fits to the three datasets. ΔAIC denotes the relative 

reduction in AIC from the LPFA model (Equation 1). LFperCluster is a model with separate 

logfail predictors for each cluster within a given dataset. LFxLD is a model with a single 

modified logfail predictor - logfail times prior median trial duration on previous failed attempts 

(measured in seconds). LSperCluster and LSxLD are models with the same principles applied 

to counts of successes. The R2 column denotes a pseudo R2 estimate of fixed effects (Nakagawa, 

Johnson and Schielzeth, 2017). 

Dataset Model AIC ΔAIC Specificity   Sensitivity       R2 RMSE 

Nutrition LPFA 68846  .826 .709 .313 .3632 

Nutrition LFperCluster 65607 -3239 .845 .710 .365 .3381 

Nutrition LSperCluster 68467 -409 .828 .714 .319 .3606 

Nutrition LFxLD 66558 -2288 .832 .713 .335 .3453 

Nutrition LSxLD 68868 +22 .827 .708 .312 .3634 

Finance LPFA 156207  .909 .394 .212 .4000 

Finance LFperCluster 150535 -5672 .904 .444 .239 .3747 

Finance LSperCluster 155358 -849 .909 .400 .198 .3986 

Finance LFxLD 151226 -4981 .901 .428 .219 .3832 

Finance LSxLD 156277 +70 .909 .390 .210 .4003 

Management LPFA 83571  .713 .829 .204 .3834 

Management LFperCluster 82618 -953 .726 .828 .227 .3656 

Management LSperCluster 83617 +46 .713 .830 .203 .3826 

Management LFxLD 82455 -1116 .721 .830 .219 .3700 

Management LSxLD 84604 +33 .713 .829 .203 .3836 

 

One important limitation of the above model is that the improvement was based on a 

clustering solution derived from the entire dataset. This post hoc method would, therefore, be 

difficult to utilize in a learning system. The clusters depicted in Figure 1-3 seemed to be tracking 

the diminishing benefits of logfail as a function of trial duration. Some participants were clearly 

spending far less time reviewing the material on a given trial, but the counts are treated similarly 

by the original model. In the following analysis, we hypothesized that the same benefit of 

separate logfail predictors per cluster could be captured by weighting the count of prior failures 

by the median trial duration of previous attempts for a given student.  

7.1. A MODIFICATION TO THE LOGFAIL PREDICTOR 

For each student, for each trial t, a median trial duration was calculated from the previous trials 

1:t-1 for which the student was incorrect. For the first trial for a particular student, the value was 

set to zero. The logarithm of this value plus one (to prevent undefined values) was multiplied 

by the original logfail predictor to generate a new composite measure, referred to hereafter as 
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LFxLD (LogFail times LogDuration). The logarithm of the median value was used because of 

evidence that study duration provides steeply diminishing benefits to learning (Metcalfe & 

Kornell, 2003; Pavlik, 2007). The logic underlying the composite measure is that the predictive 

utility of the count of prior successes or failures is likely influenced by how long the student 

spent on those attempts. If a student failed many times previously but had very fast trial 

durations on those attempts, they are unlikely to have successfully encoded the feedback 

information. Conversely, a student with longer trial durations is more likely to have attended to 

the feedback. We expected that the effect of trial duration on prior attempts to be substantially 

more important for unsuccessful trials. We chose to calculate median trial duration at the student 

level because we believed the tendency to rush through trials may be a more trait-based 

behavior, and not especially sensitive to specific KCs. Furthermore, the datasets tended to have 

few trials per KC for a given student which resulted in lower reliability if medians were 

computed per KC per student. Regardless, calculating median trial duration at KC level for each 

student provided very similar results (albeit slightly worse) to those reported below. Replacing 

logfail with LFxLD improved model fit for all three datasets (see Table 3). Importantly, the 

LFxLD model provided approximately 85% of the reduction in AIC conferred by including 

separate logfail predictors for each cluster. Although separate logsuc predictors were not very 

helpful in the previous analysis, for completeness we created an analogous predictor from 

successful trials (LSxLD). LSxLD did not reliably improve fits in the present datasets (see Table 

3). The clear contrast between LFxLD (clearly better than LPFA) and LSxLD (slightly worse 

than LPFA) highlights how the meaningfulness of trial duration can depend on student 

performance on that trial. A straightforward explanation for these results is that LFxLD is 

accounting for how time-on-task variability influences learning benefits. This variability may 

be especially relevant when the study materials are complex, and the feedback is an explanation 

of a concept (as opposed to simpler feedback consisting of the correct vocabulary word) as it 

often was for our questions.  

How uniform was the benefit of this new model across different students? Separate fits per 

cluster indicated that the LPFA model (Equation 1) was typically better fit to clusters made up 

of slower and more accurate students. Faster and less accurate students were not well predicted. 

The speed/accuracy tradeoff appears to be a continuum, but some of the fastest clusters were 

spending too little time per trial to really gain to any degree. Thus, one might expect that LFxLD 

not improve fit very much for very fast students – longer trial durations may only predict more 

learning from failures once beyond a minimum threshold needed to read feedback. Figure 4 

depicts the relative benefit of the LFxLD model over LPFA, as a function of student median 

trial duration. Students with longer median trial durations tended to have larger reductions in 

RMSE from LFxLD model versus LPFA in all three datasets, ts > 17.56, ps < .00001. 

Correlations averaged -.49(.016). 

If trial duration modulates the predictiveness of logfail, then the slope of that predictor should 

vary across students according to their respective median trial duration. Such a finding would 

provide converging evidence for the influence of trial duration on predictiveness of prior counts 

of performance. We tested this hypothesis by refitting the LPFA model and included random 

slopes for logsuc and logfail predictors nested within student. Our hypothesis was that the 

student-level slopes would be positively correlated with their respective median trial durations. 

The per-student slopes for logsuc and logfail were both significantly correlated with median 

trial duration in all three datasets, rs > .3, ps < .0001. It might be surprising at this point that 

logsuc slopes were correlated with median trial duration. However, in these datasets, the actual 

magnitude of the slopes for logsuc was typically 4 times smaller than that for logfail. Thus, the 

actual impact on model performance was small despite the significant correlation. In short, 
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analysis of the individual slopes provided converging evidence that failure trial duration 

modulated the predictiveness of counts of prior performance.  

 

 

Figure 4: LFxLD model correctness RMSE for each student in nutrition dataset subtracted from 

their respective RMSE from LPFA model fit, as a function of their median trial duration in 

seconds. The gray line indicates a linear regression slope. The dashed line marks where the two 

models are equivalent. 

8.   DISCUSSION 

In the present study, the predictive utility of counts of prior failures was found to vary 

substantially across students. Clustering by trial duration and accuracy revealed sub-groups of 

slower students that were well predicted by the LPFA model, with prior successes and especially 

failures predicting performance. Other faster students were more poorly fit by the LPFA model 

and had notably smaller coefficients for predictors based on counts of prior failures (logfail). 

Partitioning the logfail predictor by cluster substantially improved model fit in all three datasets. 

However, the clusters seemed to capture a more general trend of a tradeoff between trial duration 

and learning from errors. Replacing the original logfail predictor with one that was multiplied 

by the logarithm of prior median trial duration (LFxLD) improved the model fit almost as much 

as having separate logfail predictors per cluster. The regression slope in Figure 4 indicates that 

these altered predictors were especially beneficial for students with longer median trial durations 

(who were typically higher-performing overall). Longer median trial durations were correlated 

with larger relative benefits of LFxLD over LPFA. Many learner models are biased towards 

predicting success (Gong, Beck and Heffernan, 2011), and have significant difficulty with poor 

performers. It may be that the faster but poorer performing students are in essence completing 

a different task; they may be trying to finish as many trials as possible, rather than learn from 
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the materials. This distinction implies that improving fits to these students may require different 

features (or interventions to change their behavior; Baker et al., 2006). 

Student motivations and understanding of how to learn are closely related to the efficacy of 

self-regulated study. Learning can be difficult to change with external motivators (Kang and 

Pashler, 2014) or with verbal instruction about best study practices (Yan et al., 2016). The model 

fit improvement conferred by LFxLD may be related to student motivations and preconceptions 

about how to learn. The apparent clusters seemed to be mostly explained by a continuous 

relationship between logfail predictiveness and trial duration, although the overall model fit (and 

relative benefit of new models) was generally lower for poorer performing and faster students. 

Fast and inaccurate students may have had particularly misaligned motivations or 

preconceptions about studying. They were basically not doing the task in a way that standard 

learner models could predict. This limitation indicates that learner models either need to account 

for their unexpected behavior or that the behavior of those students needs to be changed to suit 

the model. The latter may be easier; a separate classifier could be employed to detect these 

students and modify their study behavior with targeted interventions. Early classification would 

also allow data from these off-task students to be excluded or down-weighted when estimating 

parameters for other on-task students. Some learning systems may benefit from accounting for 

trial duration more than others. Weighing counts of prior trials could be especially relevant in 

learning environments when students can choose whether or for how long that they attend to 

feedback (as in the present datasets). Alternative implementations of feedback may indirectly 

reduce the influence of time-on-task. For instance, if students are required to provide overt 

responses in response to the feedback (e.g., clicking on the correct answer) they may be less 

likely to rush through the feedback portion of the task. Similarly, imposing minimum trial 

durations may also reduce the influence of time-on-task, but of course this would not guarantee 

student attention and would reduce efficiency for students who learn more quickly.  

8.1. LIMITATIONS & FUTURE DIRECTIONS 

In the present study, we analyzed datasets in which feedback consisted of text explaining the 

target concept. In contrast, many learning systems provide hints that may be specific to the 

particular type of error that the student committed. Students may also solicit hints themselves. 

For a given problem, multiple hints may be provided in a sequence concerning the same 

problem. These structural differences between the learning systems raises the question of how 

trial duration could be incorporated across systems. Trial durations are likely to still be 

informative, but their dependence within a sequence of hints may be a relevant factor to consider 

when using them to weigh counts of prior attempts. Additionally, in a sequence of hints 

concerning one problem, the hints themselves may not be equally informative for the student or 

predictive for a learner model. For instance, the first hint may offer a small amount of additional 

information to the student, with subsequent cues offering more information or even an entire 

worked solution (Koedinger and Aleven, 2007). The predictiveness of trial duration on an initial 

hint may be contingent on time spent on subsequent hints. A motivated (non-gamer) student 

may rush through initial hints in order to view a final worked example, where they may spend 

more time (Shih, Koedinger and Scheines, 2008). This pattern of shorter followed by longer 

durations within one sequence of hints may predict learning when performed by a diligent 

student, and thus a cumulative median (as was used in the present study) could be suboptimal 

relative to utilizing a model of trial duration (Shih, Koedinger and Scheines, 2008). 

The above example illustrates how student strategies could influence the predictiveness of 

across-trial dependence and trial duration. These patterns of behavior may result in more distinct 

14 Journal of Educational Data Mining, Volume 11, No 2, 2019



clusters of students, but the clustering strategy in the present study would not be helpful – the 

clustering solution was based on the entirety of the data, and thus the cluster labels wouldn’t be 

available during learning. However, if versions of new features similar to LFxLD would be even 

more effective given accurate cluster labeling, it may be worth inferring cluster membership 

given incomplete data during learning. For instance, in the present datasets, cluster membership 

(given the full dataset) could be predicted with approximately 75% accuracy given the mean 

accuracy and median trial duration from the initial 30% of trials from each student. Early cluster 

prediction could also be improved by tailoring the selection of early practice items to optimize 

estimation of the cluster input features (e.g., an appropriate mixture of harder and easier trials 

could provide more accurate estimates of trial duration). Given a high confidence cluster 

prediction, the relation between trial duration and counts of practice (including hints) may be 

more effectively customized to students with various learning strategies. 

Mean accuracy and median trial duration were chosen as input features for clustering to 

facilitate grouping students who varied in how they traded speed for accuracy. Two features 

were used to increase the likelihood of obtaining interpretable results. However, in some 

contexts, other features could be valuable inputs for clustering analysis. For example, a students’ 

tendency to ask for hints, and how early in practice they do so, may be useful features that could 

group students according to their comfort with attempting more difficult problems. If the text of 

specific problems is available (not in the present datasets) trial duration could also be measured 

relative to what would be expected given an average attentive reader. Adults can read 

approximately 300 words per minute (Rayner et al., 2016), and can type approximately 52 words 

per minute (Dhakal et al., 2018). Those measures together could help weight a previous attempt 

based on likely completion times (e.g., a question containing 50 words is extremely unlikely to 

be read, processed, and correctly answered in 3 seconds).  

Finally, the nonlinear relationship between trial duration and correctness may vary in ways 

not explored in the present study. We characterized the interaction with a log-transform of trial 

duration times the practice count, but another transformation may be more optimal. The 

particular transformation may also depend on what is being learned (e.g., learning facts versus 

procedural skills), since the meaning of fast or slow practice may differ based on the cognitive 

processes needed for the task. 

8.2. CONCLUSION 

Overall, the present study illustrates how incorrect trial duration can improve the predictive 

power of counts of prior incorrect performance. Accounting for this relationship could 

significantly improve model fit depending on the context of the learning system. Such 

improvements may therefore improve pedagogical selection by providing a more accurate input 

to infer when items have been learned. Because the benefit to fit was greatest for students with 

longer durations, who were given more credit for their additional time spent, the LFxLD feature 

may improve the pedagogy of adaptive learning systems by reducing excessively repetitive item 

selection for these careful students. 
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