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Digital game-based assessments generate student process data that is much more difficult to analyze than 

traditional assessments. The formative nature of game-based assessments permits students, through applying 

and practicing the targeted knowledge and skills during gameplay, to gain experiences, receive immediate 

feedback, and as a result, improve their skill mastery. Both Bayesian Knowledge Tracing and Dynamic 

Bayesian Networks are capable of updating students’ mastery levels based on their observed responses during 

the assessment. This paper investigates the use of these two models for analyzing student response process 

data from an interactive game-based assessment, Raging Skies. The game measures a set of knowledge and 

skill-based learner outcomes listed in a Canadian Provincial Grade 5 science program-of-study under the 

Weather Watch unit. To evaluate and compare the performance of Bayesian Knowledge Tracing and Dynamic 

Bayesian Networks, the classification consistency and accuracy are examined. 

Keywords: game-based assessment, Evidence-Centered Design, Bayesian Knowledge Tracing, Dynamic 

Bayesian Networks, formative feedback, process data analysis 
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1.  INTRODUCTION 

The increasing concern of traditional standardized assessment measuring isolated skills, 

together with the rapid advance of digital technologies, has catalyzed the development of digital 

simulation- and game-based assessments (Bertling et al., 2015; DiCerbo, 2017)). These new 

assessment types can incorporate dynamic, interactive, real-world tasks in the digital 

environment such as a nature conservatory (Taiga Park; Barab et al., 2010) or a science 

laboratory (TreSim; Bennett et al., 2007). Digital simulation tasks are often complex in nature 

and require students to demonstrate skills in settings that resemble real-life situations (AERA, 

APA, and NCME, 2014). Students interact with the digital environment iteratively by first 

observing and learning the contexts and tasks, acting based on their evaluation and judgment, 

seeing the consequences, and reacting accordingly. The computer logs of students’ actions 

throughout the game, often called log data, process data, trace data, or more recently, evidence 

trace files, can be captured and analyzed for evidence of the targeted knowledge and skills in 

the content domain (Ercikan and Pelligrino, 2017; Shute and Ventura, 2013). However, as 

argued by Behrens et al. (2012), “Technology in and of itself cannot determine what actions are 

important to capture, what to notice about them, and how to make sense of them: “data” is not 

the same thing as “evidence” (p. 29). 

The 2011 National Research Council report titled Learning Science through Computer 

Games and Simulations pointed out that, “the most important technical challenge to embedding 

assessment in simulations and games is how to make use of the rich stream of data and complex 

patterns generated as learners interact with these technologies to reliably and validly interpret 

their learning” (p. 99). Quellmalz et al. (2009) evaluated the assessment practices in recent 

research on science simulations in 79 articles and found that process data were rarely used for 

assessment purposes. Thus, there is a need to continue to study how to analyze complex and 

fine-grained process data in order to make inferences about students. This paper examines the 

use of Bayesian Knowledge Tracing and Dynamic Bayesian Networks for analyzing the process 

data of a digital game-based assessment, called Raging Skies (Chu and Chiang, 2018; Chu et 

al., 2018), for the purpose of estimating the probabilities of students’ mastery of the set of 

knowledge and skills measured by the game.   

Raging Skies was developed based on the Evidence-Centered game Design (ECgD; Mislevy 

et al., 2014) that synthesizes the assessment design framework and the game design framework 

into one unified process. The assessment design framework utilizes Evidence-Centered Design 

(ECD; Mislevy, 2006; Mislevy et al., 2003), focusing on how to develop assessment tasks that 

can elicit evidence to support the inferences to be made about students’ acquisition of targeted 

knowledge and skills. The core of the ECD framework includes a series of models: a proficiency 

model, task model, and evidence model. A proficiency model specifies the collection of targeted 

knowledge and skills to be assessed by the game. A task model specifies the types of questions 

or tasks that will allow students to demonstrate their proficiencies identified in the proficiency 

model. An evidence model identifies the behaviors and work products that will serve as evidence 

to reveal student proficiencies. The game design framework guides the development of 

recreational games that incorporate game features into digital environments (e.g., Forsyth et al., 

2017; Millis et al., 2016) and emphasizes iterative implementation, testing, and enhancing of 

the game product. The overall production framework of Raging Skies using ECgD has been 

discussed in Chu and Chiang (2018) and Chu et al. (2018).  
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The current paper focuses on the scoring procedure for Raging Skies. The game was designed 

primarily as a formative assessment tool (Black and Willam, 1998) to evaluate students’ mastery 

of a set of knowledge and skills. By receiving formative feedback and practicing with multiple 

tasks, students are expected to improve their knowledge and skills during gameplay. The 

learning aspect of the game poses a challenge to the use of traditional measurement models (e.g., 

classical test theory or item response theory) in which student ability levels are assumed to stay 

the same during the assessment. As a result, we proposed to use Dynamic Bayesian Networks 

and Bayesian Knowledge Tracing to estimate and update student mastery of knowledge and 

skills for game- and simulation-based assessments. To evaluate the performances of these two 

models, classification consistency and accuracy were examined and compared based on a 

simulation approach (Almond et al., 2015). The rest of the paper is structured into five additional 

sections. Section 2 provides an overview of Raging Skies. Sections 3 and 4 briefly review the 

models of Dynamic Bayesian Networks and Bayesian Knowledge Tracing. Section 5 presents 

the methods and results of a pilot study in which student process data were collected while they 

were playing Raging Skies. In Section 6, we conclude the paper with a brief summary and a 

discussion of limitations and future directions. 

2.  AN OVERVIEW OF RAGING SKIES 

A team of researchers and digital-game developers created a computer game-based assessment 

entitled Raging Skies to measure a set of knowledge and skill-based learner outcomes listed in 

Alberta’s Grade 5 science program-of-study under the Weather Watch unit (Alberta Education, 

1996). The domain of science is often chosen as the content area for game-based assessments 

(e.g., Pellegrino and Quellmalz, 2010; Shute and Ventura, 2013; Stevens et al., 2013). This is 

mostly due to the increased emphasis of world science standards on scientific inquiry and 

problem-solving using technology as key competencies and proficiencies (International Society 

for Technology in Education, 2007; National Research Council, 2011). These competencies and 

proficiencies are challenging to assess with conventional item formats like multiple-choice and 

numerical response questions (e.g., OECD, 2010; Quellmalz et al., 2007).  

2.1. STUDENT MODEL: TARGETED KNOWLEDGE AND SKILLS 

The knowledge and skills measured by Raging Skies were chosen based on a review of the 

Weather Watch unit of Alberta’s Grade 5 science program of studies (Alberta Education, 1996). 

This unit has two general learning expectations: 1) students can “observe, describe and interpret 

weather phenomena; and relate weather to the heating and cooling of Earth's surface”; and 2) 

students can “investigate relationships between weather phenomena and human activity” (p. 27, 

Alberta Education, 1996). To make the assessment more focused and manageable, we decided 

to concentrate on the first general learning expectation for the targeted knowledge and skills 

measured by the game. Specifically, six weather-related knowledge outcomes were chosen as 

the measurement target of Raging Skies: 

 

• Describe patterns of air movement that result when one area is warm, and another area 

is cool 

• Describe and demonstrate methods for measuring wind speed 

• Describe and demonstrate methods for finding wind direction 

• Describe and measure different forms of precipitation, in particular, rain, hail, sleet, 

and snow 
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• Describe and measure the amount of precipitation 

• Identify some common types of clouds and relate them to weather patterns. 

 

While these knowledge outcomes are specific to the Weather Watch unit, they form the basis 

for higher-level process skills related to scientific inquiry. The targeted skill-based outcomes 

primarily focus on observations and interpretations. Specifically, students can “record 

observations and measurements accurately, using a chart format” and “state an inference, based 

on results” (p. 24, Alberta Education, 1996). These skill-based outcomes are a subset of the 

learning expectations for the overarching competencies that are present throughout the program 

of studies. 

2.2. TASK MODEL 

To develop assessment tasks, the types of scenarios in which people use the targeted knowledge 

and skills were first identified. Game scenarios need to be realistic and entertaining to students 

while ensuring the game mechanics allow assessment tasks to be seamlessly integrated. The 

chosen storyline was that of storm chasers who use various weather instruments (e.g., 

anemometer or wind vane) to collect information regarding the weather phenomenon, identify 

the type of storms, and report on them. In order for the assessment to provide the necessary 

opportunities to collect evidence of students’ performances for each student variable, the team 

of content experts and digital-game developers worked collaboratively to develop assessment 

tasks that can integrate the targeted knowledge and skill within the gameplay.  

 
Table 1: Storm types and features for assessment tasks in Raging Skies. 

 Storm Features 
 

Cloud type Precipitation 

type  

Precipitation 

amount  

Wind 

speed 

(km/hr)  

Wind 

direction 

Air 

movement 

Single-cell 

thunderstorm 

Cumulonimbus None or 

Rain 

None or 

Light 

20-69  Straightline Strong 

Multi-cell 

thunderstorm 

Cumulonimbus None or 

Rain 

None or 

Light 

30-100  Straightline Strong 

Supercell 

thunderstorm 

Cumulonimbus 

or Wall Cloud 

Rain Light 101-130 Counter-

Clockwise 

Strong 

F1 tornado Cumulonimbus Rain or Hail 

 

  

Light 130-200  Counter-

Clockwise 

Strong 

F3 tornado Cumulonimbus Rain or Hail Light 200-320  Counter-

Clockwise 

Strong 

F5 tornado Cumulonimbus Rain or Hail Light 321-400  Counter-

Clockwise 

Strong 

 

A total of six types of storms were selected, including single-cell thunderstorm, multi-cell 

thunderstorm, supercell thunderstorm, F1 tornado, F3 tornado, and F5 tornado. Each type of 

storms is associated with a variety of storm features, including cloud types (cumulus, cirrus, 

cumulonimbus, wall cloud, altocumulus, and stratus cloud), precipitation types (rain, hail, 

rain/snow, ice pellets, snow, and none), precipitation amount (light, medium, and heavy), wind 

speed (on a scale of 0 to 400 km/h), wind directions (straight, clockwise, and counterclockwise), 
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and type of air movement (light, medium, and strong). Table 1 lists all six types of storms and 

corresponding storm features. 

2.3. EVIDENCE MODEL 

In the game, students are asked to collect information on six storm features which represent 

different aspects of the storm; each storm feature is purposefully designed to be connected to 

one of the specific skills. Therefore, students’ performance on these six observable variables is 

used to indicate their proficiency on the six specific skills measured by the game, which in turn 

serves as the indirect evidence of the general skill of observing, describing, and interpreting 

weather phenomena. Figure 1 depicts the observable variables constituting the evidence to 

support claims of student proficiency of the knowledge and skills measured by the game. Upon 

the completion of measuring all six storm features, students are asked to identify the storm type, 

which could serve as the direct evidence for inferences about the general skill of the game. 

 

Figure 1: Evidence model of observable variables constituting the evidence to support claims of 

proficiency of student variables. 

2.4. GAME DESIGN 

Research in motivation and game design has suggested that players are intrinsically motivated 

when the game environment has elements of fantasy, curiosity, control, and challenge (Gee, 

2007; Habgood and Ainsworth, 2011; Lepper & Malone, 1987; Malone & Lepper, 1987; Rieber, 

1996). To stimulate fantasy and curiosity in the gameplay, real-time footage of storms (shared 

with the production team by real-life storm chasers’ car dash cameras) across North America 

was used to make the game situations realistic. A total of 11 storms, each belonging to one of 

the six types of storms, were built into the game. The footage was overlaid with animated 

elements to emulate a first-person experience. Students are introduced into the game as storm 
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chasers. Their tasks are to use appropriate weather tools located on their vehicle to gather 

information on each of the storm features and identify the corresponding storm type. Figure 2 

shows a diagram of the vehicle dashboard that players use throughout the game to access the 

tools for measuring storm features. Students may click on the icons on the dashboard to activate 

the different tools used to collect data regarding the weather outside of the vehicle. In order to 

keep students engaged and add a competitive element into the game to increase re-playability, 

a reward system with in-game monies is used that allows students to upgrade/customize their 

equipment.  
To be challenging while creating an enjoyable experience for players, game activities should be 

designed at an optimal level of difficulty to prevent players from being either too bored or frustrated 

(Malone & Lepper, 1987). To accomplish this, Raging Skies tailors task difficulties to students’ 

performance level. The difficulty of each storm task was manipulated to be easy, moderate, or 

difficult, depending on the type of information students can access and the number of chances 

they have to get the storm correct. That is, each student is exposed to the same 11 storms in the 

game, but the difficulty of each storm could be different depending on students’ prior 

performance. For the easy difficulty level, students need to identify the cloud type among four 

options, and they have access to a cloud guide that provides them with real-world photos for 

each cloud type. Moreover, they can see the storm profiles directly next to their measurement 

in the storm log, and they get three chances to get a storm correct. For the medium difficulty 

level, students need to identify the cloud type among five options, and they have access to a 

cloud guide that provides them with real-world photos for each cloud type. Now students can 

see their measurements on one screen, but the storm profiles are available under a separate tab, 

and students get 2 chances to get a storm correct. For the most difficult level, the student has 

five options to choose from for cloud type and no cloud guide, students don’t have access to the 

storm profiles and only get to review their measurements in the storm log, and students get 2 

chances to get a storm correct.  
 

 

Figure 2: Screen capture of the vehicle dashboard from Raging Skies. 

To promote a sense of control for players, the order of storm tasks presented to each student is 

chosen by the student. The first storm task is manipulated to be at the lowest difficulty level. To 

get players started, a guided tutorial during the first administered task is provided. Then the 
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second task, also manipulated as an easy task, is presented to students. If students earn at least 

60% of the available in-game cash for a storm on this storm task, they are routed to a more 

difficult storm. Alternatively, a weak performance on this storm task (i.e., they earn less than 

60% of available in-game cash) would lead to the following task at the same difficulty level. 

That is, the difficulty of storm task administered next is based on students’ performance on 

previous storm tasks. This adaptive process continues throughout the assessment so that each 

student will have a customized experience that matches their performance. Throughout the 

assessment, students are presented with all eleven storms tasks so that enough evidence may be 

collected to ensure that reliable claims may be made regarding their performance.  

 

 

Figure 3: Screenshot of the feedback report students receive after a storm task. 

2.5. FORMATIVE FEEDBACK 

The amount of in-game money rewarded to students is designed to serve as an indicator of their 

performance during the storm task. As such, the amount of in-game money received by the 

student is a form of formative feedback regarding their performance in measuring the six 

different features of the storm and identifying the storm type during each storm task. An example 

of a student feedback report is provided in Figure 3. Student overall performance in identifying 

the storm type is presented first. The amount of $500 in-game money is rewarded if the student 

is able to correctly identify the storm type. Next, the report outlines student performance in 

measuring the six different elements of the storm, each worth of a maximum of $100 in-game 

money. If the student is correct at the first attempt, the maximum amount is rewarded; $50 in-

game money is given if the student is correct at the second attempt. Extra bonus in-game money 

can be earned if a student is able to identify the storm within a specified time framework ($500) 

or if the student is able to successfully identify the storm type and all the storm features ($100). 

These two bonus items are intended to further increase student gameplay and engagement.  In 

addition, storm tasks with a higher difficulty rating are associated with more in-game money. 

For example, students may receive a maximum of $1300 during an easy difficulty level storm 

task, but they may receive up to $1700 during a moderate difficulty level storm task.  

After students complete all the storm tasks, a summative report is generated to give students 

an overall picture of their performance. A sample summative report is presented in Figure 4. 

The report shows different storm tasks administered to the student and student performance in 
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identifying the storm type after each task. In this example, the student correctly identifies the 

storm types for five out of the eleven storm tasks completed by the student.  

 

 

Figure 4: Screenshot of the summative report students receive after the completion of all storm 

tasks. 

The feedback report after each storm task as well as the summative report after the entire 

game are generated based on simple descriptive statistics of the observable variables listed in 

the evidence model. For example, the in-game money is a weighted sum of the values of 

individual observable variables. The final summative scores are frequency counts of the number 

of storms correctly identified by each student. If the teacher considers the game as primarily a 

complementary learning tool to help his/her students learn different types of storm and 

associated storm features, we consider these simple reports to be sufficiently informative and 

accurate. However, if the teacher would like to use the game as part of the classroom assessment 

for the grade 5 weather unit, a more rigorous scoring procedure that estimates student 

proficiency levels based on observable evidence collected by the game is needed. 

For the purpose of scoring, conventional measurement models such as classical test theory 

and item response theory, or the more recent cognitive diagnostic models all assume student 

proficiency levels are unchanged during the course of the assessment. However, the assumption 

may not be tenable for Raging Skies. Although the main purpose of Raging Skies is to measure 

student’s mastery of a set of knowledge and skills and provide formative feedback, Raging Skies 

is expected to help students improve their knowledge and skills as they progress through the 

game by completing different tasks and receiving feedback regarding their performance after 

each task. This feedback allows students to learn from their mistakes so that they may improve 

their performance on later tasks. This learning aspect of the game poses potential challenges on 

the measurement models used to calibrate student proficiency levels. We propose in this paper 

to use Dynamic Bayesian Networks and Bayesian Knowledge Tracing (Corbett and Anderson, 

1994) as the analytic model for Raging Skies. In the next section, Bayesian Knowledge Tracing 

will be briefly reviewed. 
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3.  BAYESIAN KNOWLEDGE TRACING 

Bayesian Knowledge Tracing has been intensively studied and used in the literature of 

intelligent tutoring systems to model students’ changing knowledge states during practice. To 

update the current state of mastering skill 𝑘, Bayesian Knowledge Tracing models the following 

four parameters:  

 

𝑝(𝐿0𝑘) ― The initial probability of mastering skill 𝑘,  

𝑝(𝑇𝑘) ― The probability of transitioning from non-mastery to mastery after an opportunity 

to apply skill 𝑘,  

𝑝(𝑆𝑘) ― The probability of making a mistake when applying skill 𝑘 by a student who has 

mastered the skill, and 

𝑝(𝐺𝑘) ― The probability of correctly applying skill 𝑘 by a student who hasn’t mastered the 

skill.  

 

With the above parameters, the conditional probability of mastering skill 𝑘 at time 𝑡 given 

the student response to a task, either correct or incorrect, can be calculated, respectively, as 

follows: 

𝑝(𝐿𝑡𝑘|𝑐𝑜𝑟𝑟𝑒𝑐𝑡) =
𝑝(𝐿𝑡−1𝑘)[1 − 𝑝(𝑆𝑘)]

𝑝(𝐿𝑡−1𝑘)[1 − 𝑝(𝑆𝑘)] + [1 − 𝑝(𝐿𝑡−1𝑘)]𝑝(𝐺𝑘)
 

 

𝑝(𝐿𝑡𝑘|𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡) =
𝑝(𝐿𝑡−1𝑘)𝑝(𝑆𝑘)

𝑝(𝐿𝑡−1𝑘)𝑝(𝑆𝑘) + [1 − 𝑝(𝐿𝑡−1𝑘)][1 − 𝑝(𝐺𝑘)]
 

 

Thus, using the student’s actual response, the probability of mastering skill 𝑘 at time 𝑡 can 

be updated using the following equation: 

 

𝑝(𝐿𝑡𝑘) = 𝑝(𝐿𝑡𝑘|𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) + 1 − [𝑝(𝐿𝑡𝑘|𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)]𝑝(𝑇𝑘) 

 

For Raging Skies, each student completes multiple tasks, and each task asks the student to 

measure six different storm features and then identify the storm type based on these features. 

When considering the measurement of each storm feature as a subskill, the mastery of each 

subskill can be updated after the student makes a measurement of the storm feature for each 

storm task. The updated probability of mastering the subskill after the final task can be 

considered as the final estimate of the probability of student mastery of the subskill. The profile 

of the mastery of the subskills can provide important information about the strengths and 

weaknesses of student skills in the content area. To identify the storm type, students must 

consider all the storm features and make an overall judgment, which could serve as the evidence 

for the general skill of observing, describing, and interpreting the weather phenomenon. The 

probability of mastering the general skill based on student performance in identifying storm 

types can be estimated and updated using Bayesian Knowledge Tracing as well. 

4.  DYNAMIC BAYESIAN NETWORKS 

Dynamic Bayesian Networks (DBNs; Murphy, 2002) can be considered as a special case of 

Bayesian networks (BNs) with a time dimension (Mihajlovic and Petkovic, 2001). BNs use 
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probabilistic graphical models to represent uncertain relations among a group of random 

variables (Jensen, 1996). In BNs, the conditional dependency and probability among random 

variables are estimated based on Bayesian inferences. Figure 5 presents a simple BN, in which 

random variables X, Y, and Z are graphically represented by the nodes in this directed acyclic 

graph (DGA), and the causal relationships between variables are represented by the directional 

edges. The joint distribution of all random variables can be expressed by the chain rule:  

𝑃(𝑋, 𝑌, 𝑍) = 𝑃(𝑋|𝑍)𝑃(𝑌|𝑍)𝑃(𝑍), where 𝑃(𝑋|𝑍)𝑃(𝑌|𝑍) = 𝑃(𝑋, 𝑌|𝑍) given that X and Y are 

conditionally independent. If we consider Z as a cause and consider X and Y as its corresponding 

effects, we can use BNs to make a diagnosis (i.e., finding 𝑃(𝑍|𝑋)  or 𝑃(𝑍|𝑌)) or make a 

prediction (i.e., finding 𝑃(𝑋|𝑍)  or 𝑃(𝑌|𝑍) ) by inferring their corresponding conditional 

distributions in the model. To estimate these conditional distributions, training data can be used 

by formularizing the problem as a maximum likelihood estimation as in other statistical models 

(e.g., Heckerman et al., 1995). 

 

Figure 5: A simple Bayesian network with three nodes. 

However, the above BN models cannot be used directly for events occurring over a period 

of time. In Dynamic Bayesian Networks (DBNs), the temporal dependencies between events 

are considered in making inferences of conditional probabilities. Figure 6 presents a simple 

DBN with a latent variable (represented by the shaded nodes) and an observed variable 

(represented by the blank nodes). Notably, there are T time slices in the model, which are 

interconnected by the temporal relations between the latent variables. Each time slice itself can 

be considered as a BN, and in this sense, the DBN is a set of interconnected BNs. The nodes 

and edges can be interpreted in the same manner as BNs. DBNs model the changing states of 

variables over time. The variable’s state at a given time slice is dependent on both the variable’s 

states at the previous time slice and the current states of other connected variables. According 

to Figure 2, for instance, the state of 𝑥𝑡 is dependent on both 𝑥𝑡−1 and 𝑦𝑡. As such, the DBN 

formularizes the joint probability distribution over the latent variable 𝑋 = {𝑥0, … , 𝑥𝑇−1} and the 

observed variable 𝑌 = {𝑦0, … , 𝑦𝑇−1} as: 

 

𝑃(𝑋, 𝑌) =∏𝑃

𝑇−1

𝑡=1

(𝑥𝑡|𝑥𝑡−1)∏𝑃(𝑦𝑡|𝑥𝑡)

𝑇−1

𝑡=0

𝑃(𝑥0) 

 

which consists of three sets of parameters: the prior state distribution 𝑃(𝑥0), the observation 

distribution 𝑃(𝑦𝑡|𝑥𝑡)  indicating the dependence of the observed variable 𝑦  on the latent 

variables 𝑥  at time slice t, and the state transition distribution 𝑃(𝑥𝑡|𝑥𝑡−1)  indicating how 

variable 𝑥 at time slice t are influenced by its states at the previous time slice (Mihajlovic and 

Petkovic, 2001). In DBNs, one is mostly interested in reasoning how latent variables change 

over time given the evidence of observed variables. This problem can be formularized as an 

inference problem of estimating the conditional distribution 𝑃(𝑋0
𝑇−1|𝑌0

𝑇−1), where 𝑋0
𝑇−1 =

{𝑥0, … , 𝑥𝑇−1} and 𝑌0
𝑇−1 = {𝑦0, … , 𝑦𝑇−1}.   

Z 

X Y 
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Figure 6: A simple DBN with a latent variable and an observed variable for T time slices. 

5.  PILOT STUDY 

5.1. DATA 

Raging Skies was piloted with Grade 5 students. In the pilot, a total of 505 students from 28 

classrooms across a large metropolitan city in Canada were invited to play the game. Consent 

forms were obtained from all students and their parents. Student actions during the game were 

logged and saved for later analysis. However, 41 students did not have responses on either the 

pre-test, the post-test, or the online questionnaire. And four students’ hand-writing game ID 

numbers could not be matched on their log data files. Therefore, the log data of these students 

were removed, which resulted in a final sample of 460 students (male = 223, female = 213, other 

= 8, missing = 16). The final log data file for data analysis includes 182,891 observations of 

students’ gameplay actions. 

5.2. DATA PREPROCESSING 

To start, we preprocessed the log data in order to proceed with BKT and DBN analysis. Both 

procedures can model students’ responses at each step of solving a problem to update the 

mastery probabilities of each skill. Typically, each problem step corresponds to the use of one 

skill. In Raging Skies, the mastery probabilities of six subskills representing six different storm 

features, including wind direction, precipitation amount, cloud type, wind speed, precipitation 

type, and air movement, were estimated and updated each time the skill was used. In addition, 

students’ final decisions of storm types were used to estimate students’ overall ability to observe, 

describe, and interpret the weather phenomenon. In total, each storm task includes seven 

problem steps, and in each step, the mastery probability estimate of one of the seven skills is 

updated. In the game, there are 11 storms and 77 distinct problem steps. Thus, students have 

multiple opportunities to apply each skill. Students can start with any problem steps except that 

the decision of storm types, which is always the last step in each task. Thus, students have 

different sequences of problems steps for each storm task. For the six storm features, students 

can have two or three attempts to provide their answers, which leads to many “retry” actions in 

the data. However, the “retry” actions were removed from the data because BKT typically 

models the first attempts of solving a problem (Corbett and Anderson, 1994). We also removed 

all irrelevant actions (e.g., using reward money to upgrade equipment), which results in a log 

    1
x  2

x  1T
x

−  

 0
y   1

y  2
y  1T

y
−  

… 
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file data of 47,199 observations for later analysis. Thereafter, we recoded each step as 1 or 2 

(correct or incorrect) based on the match and mismatch between students’ responses and the 

answer keys. The final data for BKT modeling includes four columns: students’ anonymous ID 

numbers, step labels, skill labels, and step scores. The data processing was conducted with the 

R software (R Core Team, 2018). 

A descriptive analysis of students’ gameplay features was first conducted to gain a general 

understanding of students’ gameplay and learning behaviors. Table 2 provides the mean and 

standard deviation of each gameplay feature. Results show that the total number of clicks had 

large standard deviations, implying that students’ gameplay behaviors showed large variability. 

On average, students chase 14 storms, suggesting that students tended to play the game more 

than once. Moreover, students had about 47 retry attempts on average, which indicated that 

students often failed to correctly solve many problem steps on their first attempts. Given that 

students may take different sequences of problems steps for each storm task, Table 2 also 

displays the average number of times each storm feature was tackled by students as their first 

problem step during the game. Results show that students were more likely to choose wind 

direction, precipitation type, or air movement as their first steps. A possible reason is that these 

storm features are relatively straightforward, and students are more confident in identifying 

them correctly.  

 
Table 2: Descriptive summary of in-game behaviors. 

Behavior M SD 

Number of in-game clicks 397.59 162.79 

Number of storm tasks 14.2 6.64 

Total time on tasks (min) 22.01 6.69 

Mean time per task (min) 1.76 0.99 

Number of retry attempts 46.84 19.11 

Number of first steps as Air Movement per student 4.73 5.30 

Number of first steps as Cloud Type per student 3.34 3.75 

Number of first steps as Precipitation Amount per student 1.68 0.62 

Number of first steps as Precipitation Type per student 5.34 4.60 

Number of first steps as Wind Direction per student 5.99 5.74 

Number of first steps as Wind Speed per student 1.40 0.88 

5.3. BAYESIAN KNOWLEDGE TRACING ANALYSIS AND RESULTS 

We applied the standard BKT model to train the data by the tool hmm-scalable 

(https://github.com/IEDMS/standard-bkt), which is a command line utility implemented in 

C/C++ for fitting BKT models to large datasets. For the model settings, the default values in the 

tool were retained. Specifically, the starting values of the four model parameters were set as 

follows: 𝑝(𝐿0𝑘) = .5 (the initial probability of mastering skill 𝑘), 𝑝(𝑇𝑘) = .4 (the probability 

of transitioning from non-mastery to mastery after an opportunity to apply skill 𝑘), 𝑝(𝐺𝑘) = .2 

(the probability of correctly applying skill 𝑘 by a student who hasn’t mastered the skill), and 

𝑝(𝑆𝑘) = .2 (the probability of making a mistake when applying skill 𝑘 by a student who has 

mastered the skill). The maximum iteration was set as 200, and the Baum-Welch solver was 

used for modeling. 
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Table 3: Model parameters, mastery probability, and mastery ratio of students for each KC. 

Skill 𝑝(𝐿0𝑘) 𝑝(𝑇𝑘) 𝑝(𝑆𝑘) 𝑝(𝐺𝑘) 𝑝̅𝑚𝑎𝑠𝑡𝑒𝑟𝑦𝑘 %𝑚𝑎𝑠𝑡𝑒𝑟𝑦𝑘 

Wind Direction 0.500  0.090  0.093  0.300  0.821 0.815 

Precipitation Amount 0.500  0.009  0.300  0.128  0.164 0.128 

Cloud Type 0.500  0.018  0.300  0.195  0.412 0.367 

Wind Speed 0.500  0.000  0.300  0.000  0.003 0.004 

Precipitation Type 0.500  0.001  0.300  0.105  0.012 0.011 

Air Movement 0.500  0.085  0.072  0.300  0.751 0.735 

Overall skill 0.500  0.008  0.300  0.280  0.208 0.146 

 

To fit the BKT model, we used 10-fold stratified cross-validation. Specifically, for each fold, 

students were randomly divided into 10 subgroups, of which nine groups were used for training, 

and one group was used for testing. Two commonly-used fit measures, root-mean-squared error 

(RMSE) and accuracy, were used for model evaluation. The RMSE and accuracy were averaged 

across 10 folds. A lower RMSE value and a higher accuracy value were indicators of good 

model-data fit. The 10-fold cross-validation results show that the standard BKT model fits the 

data with an acceptable RMSE of 0.39 and a good accuracy of 0.77. The four model parameters 

for each skill are presented in Table 3. Wind speed and precipitation type had the lowest 

transitioning parameters 𝑝(𝑇𝑘), indicating that the successive learning opportunities may not be 

very helpful for improving students’ chance of mastering these two skills. Wind direction and 

air movement had the largest transitioning parameters, around 9%, indicating that each time 

students used these skills, their chance of mastering these skills increased by 9%. Regarding the 

slip parameter 𝑝(𝑆𝑘), except for wind direction and air movement, other KCs achieve its upper 

boundary, indicating that students are very likely to make a mistake when applying these skills 

even if they have mastered them. Moreover, wind speed has much lower guess parameter, 

𝑝(𝐺𝑘) = .000, than other skills, indicating that it is almost impossible for students to identify 

the wind speed correctly by chance. The mean of students’ final estimated probability of skill 

𝑘, 𝑝̅𝑚𝑎𝑠𝑡𝑒𝑟𝑦𝑘, and the percentage of students who have mastered skill 𝑘, %𝑚𝑎𝑠𝑡𝑒𝑟𝑦𝑘, are also 

reported in Table 3. Results suggested that the majority of students had mastered wind direction 

and air movement but relatively fewer students for other skills. 

 
Table 4: Learning process of an example student while attempting the Air Movement outcome. 

ID Learning Opportunity First Attempt Correct Incorrect 

10254253 1 Incorrect 0.61  0.39  

10254253 2 Incorrect 0.41  0.59  

10254253 3 Incorrect 0.36  0.64  

10254253 4 Incorrect 0.36  0.64  

10254253 5 Correct 0.36  0.64  

10254253 6 Incorrect 0.49  0.51  

10254253 7 Correct 0.38  0.62  

10254253 8 Correct 0.53  0.47  

10254253 9 Incorrect 0.72  0.28  

10254253 10 Incorrect 0.45  0.55  

10254253 11 Correct 0.37  0.63  
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Based on the skill parameters and the student’s current response, BKT predicts the student’s 

probability of correctly answering the next question. For example, Table 4 demonstrates a 

student’s learning processes of the skill air movement and reports model-predicted probabilities 

during gameplay. It can be seen that at each learning opportunity, given whether the student 

produced a correct or incorrect response, the probability of a correct response for the next 

problem either increases or decreases. Students’ probabilities of mastery are updated along with 

these learning opportunities, and the correct rates of the last steps are used to calculate students’ 

final estimated probabilities of skill mastery. 

 

 

Figure 7: Learning curves for different skills by BKT. 

Figure 7 plots the learning curves of individual skills in which the horizontal axis represents 

the learning opportunities, and the vertical axis represents the mean error rate. It can be seen 

that the BKT model fitted the data well given that the model-predicted error rates (represented 

by the solid lines) overlap the observed error rates (represented by the dotted lines). The error 

rates of wind direction, air movement, and cloud type decreased along with more learning 

opportunities. However, the error rates of wind speed and precipitation type and amount 

remained high regardless of the number of learning opportunities.  

The BKT results suggest possible enhancements of the game in future development. For 

example, results of Tables 3 and Figure 7 both indicated that students encounter problems of 

mastering skills such as wind speed, precipitation type, and amount. And what is more 

concerning is that more practice does not lead to substantial improvement. These results may 

suggest that students need more game time before substantial improvements can be achieved. 
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In addition, it might be helpful to provide clearer instructions at the beginning of the game by 

adding definitions of key terms, expectations, and requirements. Possibly adding worked 

examples or scaffolding may also assist students in better learning these skills. 

5.4. DYNAMIC BAYESIAN NETWORKS ANALYSIS AND RESULTS 

The DBN analysis was conducted using GeNIe, which is a free software for building graphical 

decision-theoretic models by the Decision Systems Laboratory at the University of Pittsburgh. 

GeNIe is a user-friendly development environment where the DBN model can be graphically 

constructed. In this study, the DBN structure was pre-established, and the model parameters 

were learned using the data of students’ first completion of the game. It should be noted that 

some students played the game more than once during the data collection. Given that the DBN 

analysis requires all the students to have the same number of time points, only data from the 

first completion of the game was used in the analysis. The model parameters were initialized by 

uniformization in learning. After learning, the model was tested on the same dataset to compare 

students’ real responses and the model-predicted responses. 

The structure of the DBN used in this study is presented in Figure 8. In our study, students’ 

gameplay behaviors in chasing each storm could be modeled by a conventional BN. That is, for 

each storm, the six task steps of identifying air movement, cloud type, precipitation amount, 

precipitation type, wind direction and wind speed, and the final step of identifying storm type 

constitute the seven observed variables. Students’ latent skills underlying the six task steps and 

the final decision of storm types constitute the seven latent variables. In addition, we specify 

that students’ six task step skills affect their abilities of storm identification in the BN. Having 

one conventional BN for each of the 11 storms, we are able to construct a DBN to model the 

dependencies of students’ skills over the 11 storms. As we mentioned previously, a DBN is 

conventional BNs with additional temporal features, so there are 11 time slices in the DBN 

given the 11 storms. Specifically, in the DBN, we specify that each latent skill at time 

slice i affects the same skill at time slice i + 1, indicating that the posterior probability 

distributions of skills at time slice i are the inputs of their posterior probability distribution 

estimation at time slice i + 1. As such, the model is capable of modeling how students’ latent 

skills change with the increase of gameplay opportunities (i.e., the 11 storms). In Figure 8, the 

rectangle nodes represent all observed variables, and the round nodes indicate the latent 

variables. It should be noted that Figure 8 presents an integrated DBN of the 11 time-specific 

DBNs.  

 

Figure 8: Structure of a Dynamic Bayesian Networks for Raging Skies (11 time slices). 
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Table 5: Posterior mastery probability of each skill for each time slice estimated by DBN. 

Skill 1 2 3 4 5 6 7 8 9 10 11 

Wind Direction 0.23 0.30 0.36 0.41 0.46 0.51 0.55 0.59 0.63 0.66 0.69 

Precipitation Amount 0.44 0.41 0.39 0.37 0.35 0.34 0.33 0.32 0.31 0.30 0.29 

Cloud Type 0.46 0.44 0.41 0.39 0.38 0.36 0.35 0.34 0.33 0.33 0.32 

Wind Speed 0.49 0.16 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

Precipitation Type 0.94 0.05 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

Air Movement 0.09 0.17 0.25 0.31 0.37 0.43 0.48 0.53 0.57 0.61 0.64 

Pick Storm 0.70 0.32 0.26 0.24 0.23 0.23 0.22 0.22 0.22 0.21 0.21 

 

Table 5 shows the posterior mastery probability of each skill for each time slice estimated by 

DBN. According to Table 5, wind direction and air movement showed the highest posterior 

mastery probabilities, 0.69 and 0.64, respectively. The posterior mastery probabilities of other 

skills stayed the same or decrease along with the increase of gameplay opportunities. Notably, 

precipitation type and wind speed showed extremely low mastery probabilities for most time 

slices, indicating that the gameplay contributed little to students’ learning and acquisition of 

these two skills. 

The learning curves of individual skills from DBN analysis are shown in Figure 9. Again, we 

only modeled the first completion of the game using DBN, so the learning curves are presented 

for a total of 11 opportunities of applying each skill. It can be seen that the model-predicted 

error rates (represented by the solid lines) almost fully overlap the observed error rates 

(represented by the dotted lines), which indicates that the DBN model fitted the data very well. 

Similar to the learning curves by BKT, the error rates of wind direction and air movement 

decreased along with more learning opportunities, and wind speed and precipitation type and 

amount consistently showed high error rates for all learning opportunities. 

5.5. CLASSIFICATION CONSISTENCY AND ACCURACY OF BKT AND DBN RESULTS 

To evaluate and compare the performance of BKT and DBN, we adopt the simulation approach 

introduced by Almond et al. (2015) for calculating the classification accuracy and consistency 

of BKT and DBN results. Classification accuracy refers to the degree to which the estimated 

skill mastery pattern based on the observed item response patterns agrees with the student’s true 

skill mastery pattern. Specifically, based on the estimated BKT (or DBN) model, we simulated 

1,000 skill mastery probability profiles and their corresponding responses over the seven 

observable variables. This new dataset is then tested by the BKT (or DBN) model. An accuracy 

matrix can then be obtained for each skill given that both true and estimated skill mastery 

profiles of each simulated student are known. The classification accuracy index can be 

calculated by computing the trace of the accuracy matrix, indicating the extent to which the 

classification based on the assessment agrees with the truth. 
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Figure 9: Learning curves for different skills by DBN. 

Classification consistency refers to the degree to which classifications agree on the basis of 

two independent administrations or two parallel forms of the test. To obtain the classification 

consistency index, we simulated a parallel dataset of the same 1,000 students to calculate its 

accuracy matrix. Then the classification consistency index can be obtained by the product of the 

two accuracy matrices of these two parallel assessments. Results of the classification accuracy 

and consistency of the estimated BKT and DBN models are presented in Table 6. Inspection of 

Table 6 revealed that for both BKT and DBN, the classification accuracy indices across different 

skills were relatively high, ranging from .75 to 1.00 for BKT, and from .74 to 1.00 for DBN. 

This result indicates that the inferences made by the two models regarding student skill mastery 

are relatively accurate when compared to student true skill mastery patterns. However, for both 

models, the classification consistency indices were comparatively low for wind direction (.58 

for BKT and .46 for DBN), cloud type (.38 for BKT and .40 for DBN) and air movement (.50 

for BKT and .43 for DBN). These results suggest that inconsistent inferences might be made 

across parallel forms or two administrations for wind direction, cloud type, and air movement.  

Future modifications of the game are called for to improve classification consistencies of these 

skills. In terms of the comparison of the performances between the two models, BKT tends to 

outperformance DBN across different skills. 
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Table 6: Classification accuracy and consistency indices calculated using pilot data. 

  Wind  

Direction 

Precipitation 

Amount 

Cloud 

Type 

Wind 

Speed 

Precipitation 

Type 

Air 

Movement 

Overall 

BKT 
Accuracy 0.86  0.94  0.75  1.00  0.99  0.88  0.84  

Consistency 0.58  0.88  0.38  1.00  0.97  0.50  0.72  

DBN 
Accuracy 0.81 0.74 0.78 1.00 0.92 0.83 0.80 

Consistency 0.46 0.46 0.40 1.00 0.85 0.43 0.63 

6.  DISCUSSION 

This paper explores the use of Bayesian Knowledge Tracing (BKT) and Dynamic Bayesian 

Networks (DBNs) for analyzing student process data in game-based assessments. We argue that 

it is important to employ and compare multiple analytic models for the process data from game-

based assessments given that the field is still in its infancy and it is not clear how to best analyze 

this new assessment data type in extracting evidence of student knowledge and skills. We find 

that BKT and DBNs are especially useful for game-based assessments because they both allow 

the state of student mastery of knowledge and skills to change over the course of the game. This 

is desirable as game-based assessments are typically considered as a formative learning and 

assessment tool with the potential to help students improve their skills during the gameplay.   

To demonstrate the use of BKT and DBNs and evaluate their performance, process data from 

a game-based assessment, called Raging Skies, was analyzed with the two models. Raging Skies 

measured a set of knowledge and skills related to an elementary school science program of 

study. The assessment tasks were designed to be dynamic and interactive, as well as to mimic 

real-life tasks. Formative feedback was provided to students during the assessment to identify 

specific areas for further improvement. BKT and DBN proved to be valuable and informative 

for analyzing the process data of Raging Skies. The two models not only updated students’ 

mastery levels during the game but also provide insights regarding student learning trajectories. 

This type of information serves as indirect validity evidence, which can reveal problematic 

aspects of assessment tasks and improve game design accordingly. To evaluate the performance 

of the two models, the classification consistency and accuracy of BKT and DBN results were 

estimated using a simulation approach (Almond et al., 2015). BKT was found to outperform 

DBN for a majority of skills assessed by Raging Skies. A possible explanation is that DBN 

represents a more complex model with more model parameters. For example, the distribution 

of the observed variable 𝑦  on the latent variables 𝑥 , 𝑃(𝑦𝑡|𝑥𝑡) , and the state transition 

distribution of skill mastery, 𝑃(𝑥𝑡|𝑥𝑡−1), need to be estimated for each time slice. For a game 

with many tasks and levels, the DBN model can become very complex. Given that Raging Skies 

has a total of 11 tasks, our sample size may not be adequate for estimating all the DBN model 

parameters accurately and reliably.  In comparison, BKT assumes that model parameters do not 

vary with time, which represents a much simpler model and requires a smaller sample size, 

which might explain why the classification accuracy and consistency of BKT results were found 

to be relatively higher compared to those of DBN. However, the finding of BKT outperforming 

DBN may not be generalizable to other games and situations. Future studies are needed to 

investigate whether the results of the current study can be replicated under other data conditions.  

In addition, the built-in feedback report after each storm task as well as the summative report 

after the entire game is designed to provide immediate feedback to students during gameplay 

regarding their performance on the key learning contents of the game. The intention is to help 
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identify areas that need additional instructional and learning activities for the student. However, 

the effectiveness of this type of feedback is an empirical question, which requires a further 

experimental study with additional data collection and analysis. 

Finally, BKT and DBT work well with games in which each step of the game can be scored 

right or wrong. However, for more open-ended tasks that allow for multiple processes and 

solutions, data may not be as well-structured in the sense of no clear right or wrong solution for 

each step. Models designed for well-structured student responses may not be directly applied. 

Methods of analyzing and interpreting unstructured data must be developed and examined to 

derive valid, fine-grained inferences about student learning and problem-solving. Possible 

solutions to this challenge will greatly enhance the practical use of game-based assessments that 

aim to be authentic and measure higher-level skills in different assessment contexts. 
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