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Bayesian knowledge tracing has been used widely to model student learning. However, the name

“Bayesian knowledge tracing” has been applied to two related, but distinct, models: The first is

the Bayesian knowledge tracing Markov chain which predicts the student-averaged probability of
a correct application of a skill. We present an analytical solution to this model and show that it

is a function of three parameters and has the functional form of an exponential. The second form
is the Baysian knowledge tracing hidden Markov model which can use the individual student’s

performance at each opportunity to apply a skill to update the conditional probability that the

student has learned that skill. We use a fixed point analysis to study solutions of this model and
find a range of parameters where it has the desired behavior.
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chain, hidden Markov model

1. INTRODUCTION

Since its introduction by Corbett and Anderson [1995], Bayesian knowledge trac-

ing (BKT) has been widely applied to studies of student learning and to various

tutor systems. In addition, BKT often serves as the starting point for more compli-

cated models of learning, for example [Baker and Aleven 2008; Lee and Brunskill

2012]. Researchers have applied BKT in two distinct ways: The full hidden Markov

model (HMM) and the associated Markov chain. The purpose of this paper is to

investigate solutions of both forms of the BKT model.

BKT predicts the probability that a student will correctly apply a skill when they

have an opportunity to apply it. Typically, this model is fit to student performance

data using either a residual sum of squares (RSS) test (sometimes described as

“curve fitting”) [Corbett and Anderson 1995] or a Maximum Likelihood test [Par-

dos and Heffernan 2010], with several studies comparing the two approaches [Baker

et al. 2011; Chang et al. 2006; Pardos et al. 2011; 2012]. For the RSS test, some au-

thors have used conjugate gradients [Corbett and Anderson 1995; Beck and Chang

2007] while other authors have used a grid search over the parameter space, or

“BKT-BF” [Baker et al. 2011], to perform the fit. Likewise, for the Maximum

∗Revised version, February 2017. The original paper labeled the two forms of BKT incorrectly

and did not correctly identify the origin of the Markov chain form of the model.
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Likelihood test, the most widely used fitting technique is the Expectation Maxi-

mization (EM) algorithm [Dempster et al. 1977; Chang et al. 2006].

How does the Markov chain form arise? If an RSS test is applied to the HMM,

for each step, the predictions of the HMM are averaged over the students in the

data set. In the limit of many students, this averaging procedure reduces the HMM

to the associated Markov chain. The BKT Markov chain is simple enough that it

can be solved analytically, which we will do here. We will see that the solution, in

functional form, is an exponential. Moreover, we will see that it is, in fact, a three

parameter model. As we shall see, this explains the “Identifiability Problem” first

noted by Beck and Chang [2007].

The BKT hidden Markov model [Corbett and Anderson 1995] can be used to

determine in real time whether a student has learned a skill. The probability

that the student has learned a skill is updated by student performance at each

opportunity to apply that skill. The model has four parameters which must be

supplied externally. Although the HMM is too complicated to solve analytically,

we will use a fixed point analysis to study the behavior of its solutions. Demanding

that the model behaves in a reasonable manner leads to significant constraints on

the model parameters.

2. MARKOV CHAIN FORM

The Bayesian knowledge tracing model [Corbett and Anderson 1995] has four pa-

rameters:

—P (L0) is the initial probability that the student knows a particular skill.

—P (G) is probability of guessing correctly, if the student doesn’t know the skill.

—P (S) is probability of making a slip, if student does know the skill.

—P (T ) is probability of learning the skill if the student does not know the skill.

Note that P (T ) is assumed to be constant over time.

We define step j to be the jth opportunity for a student to apply a given skill. Let

P (Lj) be the probability that the student knows the skill at step j. According to

the model, P (Lj) can be determined from the previous opportunity:

P (Lj) = P (Lj−1) + P (T ) (1− P (Lj−1)) . (1)

In this model, the probability that the student actually gets opportunity j correct

is:

P (Cj) = P (G) (1− P (Lj)) + (1− P (S))P (Lj) . (2)

Eqns. (1) and (2) define a hidden Markov model, where P (Lj) is the “hidden”

variable.
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Fig. 1. Solution of the Markov chain form of BKT, Eqn. (7). P (Cj) is the probability of the

student getting step j correct. Note that the solution has the functional form of an exponential.

If we interpret P (Lj) as the average value for a population of students, the

resulting Markov chain model can be solved exactly. First, we rewrite (1) in a more

suggestive form:

1− P (Lj) = (1− P (T )) (1− P (Lj−1)) . (3)

One can show that this recursion relation has solutions of the form:

1− P (Lj) = (1− P (T ))
j

(1− P (L0)) . (4)

Substituting (4) into (2), we get:

P (Cj) = 1− P (S)− (1− P (S)− P (G)) (1− P (L0)) (1− P (T ))
j
. (5)

Note that the form of P (Cj), as a function of j, depends on only three parameters:

P (S), P (T ), and (1− P (S)− P (G)) (1− P (L0)). If we define

A = (1− P (S)− P (G)) (1− P (L0)) (6)

and β = − log(1− P (T )), then we can rewrite (5) in a clearer form:

P (Cj) = 1− P (S)−Ae−βj . (7)

Thus, P (Cj) is an exponential; see Fig. 1.

3. IDENTIFIABILITY AND PARAMETER CONSTRAINTS

The fact that the BKT Markov chain is a function of three parameters was first

noticed by Beck and Chang [2007] where they call it the “Identifiability Problem.”
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Fig. 2. The relation between the guess rate P (G) and the initial probability of knowing a skill

P (L0) for the Markov chain associated with BKT. All points along the curve correspond to

identical Markov chains. The curve is a plot of the solutions of Eqn. (6), with P (S) = 0.05 and

A = 0.416. The three points are the three parameter sets listed in Table 1 of [Beck and Chang

2007].

In their paper, they noted that multiple combinations of P (G) and P (L0) give

exactly the same student averaged error rate P (Cj), but do not explain the origin

of these degenerate solutions. From Eqn. (6), we see that different combinations

of P (G) and P (L0) that give the same value for A will result in models that have

the exact same functional form. An example showing the relation between P (G)

and P (L0) for a given model is shown in Fig. 2. Thus, we can see that Eqn. (6)

provides an explanation of the Identifiability problem.

In general, for a model to make sense, all probabilities must lie between zero and

one. For the BKT Markov chain, this means that 0 ≤ P (L0) ≤ 1 and 0 ≤ P (G) ≤ 1.

If we further demand that learning is positive (which may or may not be empirically

justified), then we have the constraint A > 0 or P (G)+P (S) < 1. These constraints

on P (L0) and P (G) correspond to the rectangular region shown in Fig. 2. In terms

of A, valid values of P (G) and P (L0) occur when 0 < A < 1 − P (S); for negative

learning, meaningful values occur when −P (S) < A < 0. This sets the range of

physically meaningful values of A when fitting to student data.

Note that it is reasonable for the Markov chain to find negative learning when

fitting to aggregated student data. If the students do well on the first opportunities

to apply a skill and then poorly on latter opportunities, then the best fit to the
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Fig. 3. Plot of the recursion relations for the BKT hidden Markov model, Eqns. (11) and (12). The

stable fixed point for each equation is marked by a dot. The dashed line represents the boundary

between increasing and decreasing solutions. Since the “step j correct” curve is above the dashed

line, Eqn. (11) causes the sequence {P (Lj |Oj)} to converge to the fixed point at 1. Likewise,

since the “step j incorrect” curve is below the line, Eqn. (12) causes the sequence {P (Lj |Oj)}
to converge to the lower fixed point. The model parameters are P (S) = 0.05, P (G) = 0.3,

P (T ) = 0.1, and P (L0) = 0.36.

student data will be a decreasing function, which corresponds to A < 0. However,

we will see that such model parameters are problematic when used as input for the

hidden Markov model.

4. HIDDEN MARKOV MODEL

In order to predict P (Lj) for an individual student in real time, the forward algo-

rithm may be employed. In this case, we find P (Lj |Oj), the probability that the

student has learned a skill just after completing step j given student performance

Oj on previous steps, where Oj = {o1, . . . , oj} is the student performance on the

first j opportunities and oi can be either correct or incorrect. This conditional

probability obeys the recursion [Baker et al. 2008]:

P (Lj−1|Oj) =
P (Lj−1|Oj−1) (1− P (S))

P (Lj−1|Oj−1) (1− P (S)) + [1− P (Lj−1|Oj−1)]P (G)
,

oj = correct (8)

P (Lj−1|Oj) =
P (Lj−1|Oj−1)P (S)

P (Lj−1|Oj−1)P (S) + [1− P (Lj−1|Oj−1)] (1− P (G))
,

oj = incorrect (9)

P (Lj |Oj) = P (Lj−1|Oj) + [1− P (Lj−1|Oj)]P (T ) . (10)
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These equations can be combined to give:

P (Lj |Oj) = 1− (1− P (T )) [1− P (Lj−1|Oj−1)]P (G)

P (G) + (1− P (S)− P (G))P (Lj−1|Oj−1)
,

oj = correct (11)

P (Lj |Oj) = 1− (1− P (T )) [1− P (Lj−1|Oj−1)] (1− P (G))

1− P (G)− (1− P (S)− P (G))P (Lj−1|Oj−1)
,

oj = incorrect . (12)

Their functional forms are plotted in Fig. 3.

While this recursion relation cannot be solved analytically, we can learn much

about its solutions by conducting a fixed point analysis. This is a technique that is

covered in many differential equations textbooks; for example, see [Blanchard et al.

2006]. The goal of a fixed point analysis is to determine the qualitative behavior of

the sequence {P (Lj |Oj)}nj=0 as a function of j. If P (Lj |Oj) > P (Lj−1|Oj−1), then

we know that P (Lj |Oj) increases with j. Likewise, if P (Lj |Oj) < P (Lj−1|Oj−1),

then we know that P (Lj |Oj) decreases with j. Thus, the boundary between increas-

ing and decreasing solutions is P (Lj |Oj) = P (Lj−1|Oj−1), shown as the dashed line

in Fig. 3. A fixed point is a value of P (Lj |Oj) such that the recursion relation obeys

P (Lj |Oj) = P (Lj−1|Oj−1). In the example at hand, there are two kinds of fixed

points:

Stable fixed point. If P (Lj |Oj) is near the fixed point, then P (Lj |Oj) converges

to the fixed point as j increases;

Unstable fixed point. If P (Lj |Oj) is near the fixed point, then P (Lj |Oj) moves

away from the fixed point with increasing j.

Let us apply these ideas to Eqns. (11) and (12). For Eqn. (11), we find a stable

fixed point at 1 and an unstable fixed point at

− P (G)P (T )

1− P (G)− P (S)
. (13)

Similarly, Eqn. (12) has an unstable fixed point at 1 and a stable fixed point at

(1− P (G))P (T )

1− P (G)− P (S)
. (14)

The two stable fixed points are plotted as dots in Fig. 3.

In order for P (Lj |Oj) to remain in the interval [0, 1] for any starting value

P (L0) ∈ [0, 1] and any sequence of correct/incorrect steps Oj , we need the sta-

ble fixed point (14) to lie in the interval [0, 1] and the unstable fixed point (13) to

remain negative. This gives us the following constraints on allowed values for the
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Fig. 4. Plot of the constraint on the learning rate P (T ) as a function of the guess rate P (G)

and the slip rate P (S) given by Eqn. (16). Valid parameters for the BKT hidden Markov model

lie in the region that is below this surface and above the P (T ) = 0 plane. The vertical surface

represents the other constraint P (G) +P (S) < 1, Eqn. (15); valid model parameters lie to the left

of this surface.

model parameters:

P (G) + P (S) < 1 , (15)

0 < P (T ) < 1− P (S)

1− P (G)
. (16)

If we instead choose parameters consistent with negative learning, P (S)+P (G) > 1,

we find that the behavior of P (Lj |Oj) becomes inverted: P (Lj |Oj) decreases for

correct steps and increases for incorrect steps.

Baker, Corbett, and Aleven [2008] discuss the need to choose model parameters

such that the forward algorithm behaves in a sensible fashion. In particular, they

point out that correct actions by the student should cause the estimate of learning

P (Lj |Oj) to increase. They define models that do not have this property to be

“empirically degenerate.” Our constraint (15) identifies precisely which models will

be “empirically degenerate.” Note that [Baker et al. 2008] impose the somewhat

stronger constraints P (S) < 1/2 and P (G) < 1/2 on grounds that slip and guess

rates that are very large are simply nonsensical.
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In terms of the parameter space, Eqn. (16) provides a significant constraint on

allowed values of model parameters; see Fig. 4. In fact, it completely supersedes

the other constraint P (G) + P (S) < 1.

Finally, the “Identifiability Problem” for the BKT hidden Markov model does

not exist, so long as there are both correct and incorrect steps. This fact can be seen

by examining Eqns. (11) and (12) where we see that P (G) has a different functional

form in the numerator of each equation. Thus, any redefinition of 1 − P (Lj |Oj)
cannot be compensated for by a redefinition of other parameters in both (11) and

(12). That is, all four model parameters are needed to define the HMM.

5. CONCLUSION

In conclusion, the hidden Markov chain associated with BKT, when expressed in

functional form, is an exponential function with three parameters. The Markov

chain is obtained by averaging the HMM over students, which happens when com-

paring model predictions to student data using a RSS test. This suggests that

the use of a maximum likelihood test should be the preferred method for finding

parameter values for the BKT hidden Markov Model.

Our other result is that the functional form of the Markov chain corresponds to an

exponential, rather than a power law. Heathcote, Brown, and Mewhort [2000] argue

that learning for individuals is better described by an exponential while (as shown

in earlier studies) learning averaged over individuals is better described by a power

law function. However, this analysis was performed using mainly reaction time

(latency) for tasks that were already learned, while we are interested in the initial

acquisition of a skill. A recent study that focused on students learning physics skills

found that student learning was better explained by a power law function, even for

individual students [Chi et al. 2011]. Together, these results call into question the

practice of using the BKT to model student data. Perhaps a model that has power

law behavior would work better?

We see that the hidden Markov model itself does not suffer from the Identifiability

Problem: all four model parameters affect model behavior separately. We also

see that, for the model to behave properly, there are significant constraints on

the allowed values of P (S), P (G), and P (T ) and that parameters consistent with

negative learning are not allowed. Violations of these constraints should correspond

to the “empirically degenerate” models found in [Baker et al. 2008]. Also, it would

be interesting to apply to see how often these constraints are violated in situations

where BKT is employed, such as in the Cognitive Tutors [Ritter et al. 2007]. A

violation of these constraints could lead to incorrect estimates of student learning.
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Finally, a fixed point analysis like the one that we conducted here could be applied

to more complicated models of learning, such as [Baker and Aleven 2008; Lee and

Brunskill 2012]. This may give us greater insight into the qualitative behaviors of

these models as well as constrain model parameters.
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