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We introduce a model which combines principles from psychometric and connectionist paradigms to
allow direct Q-matrix refinement via backpropagation. We call this model dAFM, based on augmentation
of the original Additive Factors Model (AFM), whose calculations and constraints we show can be exactly
replicated within the framework of neural networks. In order to parameterize the Q-matrix definition in
the model, the associations between questions and knowledge components (KC) need to be represented
by adjustable weights. Furthermore, student KC opportunity counts, instead of serving as fixed inputs,
need to be calculated dynamically as the Q-matrix changes during training. We describe our solutions to
these two modeling challenges and evaluate several variants of our fully realized model on datasets from
the Cognitive Tutor and ASSISTments. We compare learning the Q-matrix from scratch vs. refining an
expert specified KC model and evaluate various procedures for refinement. In our quantitative predictive
analysis, we find that dAFM learns a better generalizing Q-matrix than the original expert model in all
our primary datasets. Using a development set, we also find that the dAFM Q-matrix is superior to KC
representations extracted from trained Deep Knowledge Tracing and skip-gram models. Examples are
shown of questions whose fit was improved by dAFM with depictions of their original and refined KC
associations. We consistently find in our experiments that our dAFM variant which attempted to learn the
Q-matrix from scratch underperformed models which started with an expert defined Q-matrix that was
then refined. This observation continues a theme in EDM of utility found in the enduring value of expert
domain knowledge enhanced through data-driven refinement.
Keywords: neural networks, IRT, Q-matrix, KC model, DKT, skip-gram, learning, measurement

1. INTRODUCTION

Psychometric instruments have been concerned with the measurement of well-defined dimen-
sions of ability, assessed using responses to items designed to align with constructs correspond-
ing to those dimensions. The alignment of constructs to items is often represented by way
of a sparse matrix known as a Q-matrix (Tatsuoka, 1983), used by graphical models to esti-
mate cognitive mastery based on student response sequences (Corbett, 2001). Neural networks
have served as a connectionist alternative to classical graphical models of the mind (Fodor and
Pylyshyn, 1988), encoding a cognitive state as a continuous, or distributed vector representation.
In a neural network, individual node activations in the hidden layers do not directly correspond
to any particular construct. Instead, a construct may be represented by another vector in the
space having some relation to a cognitive state or may be distributed in its representation, much
like the vector offset representation of lexical relations in word embeddings (Levy and Goldberg,
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2014). This distributed representation underlies all deep-learning approaches to neural networks
and their many advances (LeCun et al., 2015). A key to the success of connectionist represen-
tations has been their ability to be learned from data by way of the backpropagation algorithm
(Rumelhart et al., 1986; Williams and Zipser, 1989). It is with this backdrop that we aim to
fuse these two modeling paradigms. We will be using the continuous, connectionist representa-
tion fitting algorithm of backpropagation within the framework of neural networks to adjust the
Q-matrix, while attempting to have each node in our Q-matrix representation maintain its local
psychometric interpretation as a construct, or knowledge component (KC), per dimension.

Additive Factors Model (AFM; Pavlik Jr et al. 2009a) is our model of choice, a mainstay in
educational data mining research (Pelánek, 2017; Koedinger et al., 2015; Pardos, 2017) and a
derivative of the psychometric measurement model, Item Response Theory (IRT; Rasch 1961).
AFM is a logistic model that predicts the probability of a student responding correctly to an
item as a function of the student’s ability, the sum of the difficulties of the KCs associated with
the item, and the growth (learning) rate of each of the KCs multiplied by the number of times
the student has encountered each KC. AFM has already been combined with a Q-matrix refine-
ment algorithm named Learning Factors Analysis (LFA; Cen et al. 2006; Koedinger et al. 2012),
which relies on A* search (Hart et al., 1968) to navigate the tree of operations (e.g., concatenate)
that can be performed on KCs in combination with a secondary list of item factors, which itself
can be an alternative KC model. In our approach, we translate AFM and the Q-matrix represen-
tation into the framework of neural networks where, instead of a distance heuristic determining
the branches of the A* tree to explore, different Q-matrices can be expressed as existing on
the loss surface of a neural network (Choromanska et al., 2015), traversed by gradient-based
optimizers using backpropagation. This approach removes the outer loop of an item to KC asso-
ciation search and internalizes it with the other parameters of the model. It requires no additional
list of item factors to conduct the search and focuses on improving the Q-matrix association of
items with KCs, keeping the number of KCs fixed.

We introduce dAFM1 as a neural network implementation of AFM, mathematically equiva-
lent to its original form but with the added ability to refine, or learn from scratch, its Q-matrix
from data. We will show how we address each of the major challenges in allowing for Q-matrix
learning, namely (1) posing the Q-matrix as a weight coefficient matrix, adjustable by backprop-
agation, and (2) dynamically re-calculating the student KC opportunity counts with respect to
the changing item to KC associations. We first train the dAFM model without modifying the
Q-matrix to arrive at the standard AFM construction, then allow the Q-matrix, and other AFM
parameters, to be fine-tuned. We then answer the following research questions:

– RQ1: Does dAFM refinement of a domain expert KC model (Clark et al., 2006) result in
improved response prediction over the original expert model?

– RQ2: Does a KC model learned from the ground-up by dAFM (without the benefit of an
expert model starting point) predict with accuracy equal to or greater than a domain expert
KC model refined by dAFM?

After related work, we will present the details of the original AFM model and its conver-
sion to a neural network, and then we will introduce the Q-matrix refinement capable dAFM
model. Several variants of dAFM and comparison models will then be described, followed by

1The meaning of the first letter of our model’s name is in reference to both the ’dynamic’ aspect of its Q-matrix
(Psychometric), and ’deep’ neural networks (Connectionist)
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presentation of initial prototyping results on a development dataset, then presentation of the
main prediction results on our five datasets. Lastly, a brief qualitative analysis will be presented
in which interpretation of the model refined Q-matrix is conducted, followed by a discussion of
limitations and conclusions.

2. RELATED WORK

The association of items to knowledge components in a Q-matrix directly affects how adaptive
instruction, predicated on cognitive mastery (Corbett, 2001), will perform. The value proposi-
tion is that, with an improved Q-matrix will come a reduction in student over and under practice
in an adaptive tutoring system (Cen et al., 2007). The phenomenon of expert blind spot (Nathan
et al., 2001) is one theoretical reason why an expert’s Q-matrix, architected through cognitive
task analysis (Clark et al., 2006), might not agree with the earlier stage abstractions of knowl-
edge components that students are learning. Large datasets of responses to items during the
learning process can be leveraged towards reducing the dissonance between these two models.

Learning curve analysis (Ritter and Schooler, 2001; Martin et al., 2011) was the first data-
driven technique used to modify a KC model in a learning context. The technique involves
the manual process of observing the average performance of students on KCs by opportunity
count and inspecting the item(s) associated with deviations from the expected inverse power
shape of this error curve (corresponding to the power law of learning). AFM was used to score
candidate KC models searched for using Learning Factors Analysis (Cen et al., 2006), an au-
tomated approach (Koedinger et al., 2012) to this curve smoothing idea. Aside from AFM,
matrix factorization (Desmarais et al., 2011; Desmarais and Naceur, 2013) and Bayesian net-
works (González-Brenes and Mostow, 2012) have been frameworks in which Q-matrix learning
has been explored. Non-negative matrix factorization has been used to learn the association of
test items to broad and distinct subjects from the bottom-up. Application of this model has been
limited to stationary, non-learning contexts since the two dimensions of matrix factorization
(student and item) prohibit the addition of a necessary temporal term to denote the chronology
of responses over time. Tensor factorization, incorporating time, has been applied to predicting
performance in a learning context (Sahebi et al., 2016) but its use in imputing the Q-matrix has
not been demonstrated and may not yet be tractable. Also from the stationary context, diagnos-
tic classification models (DCM; Liu et al. 2012) and cognitive diagnosis models (CDM; Chiu
2013; Sun et al. 2014) have explored Q-matrix refinement with the motivation that an improved
specification would also improve the accuracy and validity of examinee ability estimates. This
benefit was seen by (Liu et al., 2016) when adding step-level misconception KCs to the Q-matrix
in their AFM model. Related to the KC model improvement problem has been work exploring
prerequisite relationships (KC to KC) from data (Scheines et al., 2014; Piech et al., 2015; Chen
et al., 2016). Those works, which depart from the view of knowledge components as indepen-
dent, rely on a valid, fixed Q-matrix (item to KC) specification as an input. Also related is work
predicting the KC association of untagged items in a tutoring system based on semantics from
the item content (Rosé et al., 2005) and the contexts in which the item has appeared (Pardos and
Dadu, 2017).

With many modeling frameworks being employed across core psychometric and educational
data mining fields, the genre of hybridizing models has gained in momentum. The most fre-
quent hybridization has been combining Item Response Theory and its derivatives with Bayesian
Knowledge Tracing (BKT; Khajah et al. 2014; González-Brenes et al. 2014), a Hidden Markov
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based model (HMM) tracking cognitive mastery from temporal item responses in learning con-
texts. Deep Knowledge Tracing (Piech et al., 2015) is a recurrent neural network adaptation
to this same context. While inspired by BKT, and both having a recurring temporal structure,
it shares more in common with Performance Factors Analysis (PFA; (Pavlik Jr et al., 2009b)),
another IRT derivative, in that it models correct and incorrect responses with independent coef-
ficients and does not have an estimate of a student’s KC mastery separate from its prediction of
a student’s performance on an item of that KC. IRT and BKT, in contrast, have estimates of a
student’s latent ability and item parameters which describe how responses to those items affect
the ability estimate.

Neural networks have, for a time, been considered among the more opaque (Burrell, 2016)
machine learning models, popularly referred to as a “black box.” This negative perception of
their interpretability has been, in part, due to inappropriately viewing neural networks as models
of local instead of continuous representation. Choices in the design of model topology can aid
interpretability. The max-pooling design of Convolutional Neural Network (CNN; (Krizhevsky
et al., 2012)) layers necessitates that each successive layer represents an ever more abstracted
representation of the features of the input image. The single hidden layer topology of a word2vec
model and design choice to not use non-linear activations allows for a proper vector space to
be created whereby embedded elements can be compared algebraically in the space (Mikolov
et al., 2013). These are examples of how careful architecting of a neural network can bring
about desired interpretability. We follow this paradigm of deliberate design in our construction
of dAFM.

3. ADDITIVE FACTORS MODEL

Additive Factors Model (AFM) is a logistic model predicting a dichotomous item response as a
function of the student’s ability, the sum of KC difficulties associated with the item, and the KC
growth terms associated with the item multiplied by their opportunity counts. Formally2, this is
the probability that a student j will answer an item i correctly based on the student’s baseline
proficiency (θj), the baseline difficulty (βk) of the required KCs (qik), and the improvement (γk)
in those KCs as the student accumulates practice opportunities (Tjk). Training the model maxi-
mizes the likelihood of the predicted response, formulated in Figure 1. In this statistical model,
the discrete portion is represented by qik, which takes on a value of one if item i is associated
with KC k (according to the Q-matrix) and a zero if it is not. The knowledge components asso-
ciated with the item carry with them a measure of difficulty (βk) and an estimate of learning or
growth (γk) representing the amount gained by each practice opportunity (Tjk) to answer items
associated with the knowledge component k. The opportunity count (Tjk) is the total number of
times student j has previously attempted items of KC k associated with item i. Implicitly, Tjk is
referring to student j’s count immediately prior to answering item i.

2In the first incarnation of the Additive Factors Model (Cen et al., 2005), student is represented with a j and
item with an i, consistent with the notation used to describe IRT. In a follow-up paper (Cen et al., 2006), this
notation was swapped, with others following suit (Pavlik Jr et al., 2009a; Pavlik Jr et al., 2009b; Koedinger et al.,
2012), but without justification for the change given. Bayesian Knowledge Tracing model notation has differed as
well, denoting student with s (Corbett and Anderson, 1994) and more recent individualized approaches using u
(Yudelson et al., 2013). Given the lack of standard convention in the learner modeling literature, we return to the
original notation of j for student and i for item, used in the Psychometrics literature from which AFM was derived.
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ln
pij

1− pij
= θj +

K∑

k=1

qikβk +
K∑

k=1

qikγkTjk

Figure 1: Additive Factors Model logistic formulation

3.1. AFM POSED AS A NEURAL NETWORK

In this section, we describe how a mathematically equivalent AFM model can be implemented
in the form of a neural network architecture. We make this transition of the model into the
framework of neural networks so that we may later augment the model and reap the benefits of
backpropagation.

We will start by showing the equivalence of a standard logistic regression to a single-layer
feed-forward neural network with sigmoid activation, also known as the single-layer perceptron.
Let p(x) be the probability that the data point having a feature vector given by x, is associated
with a correct response. The β term is the weight coefficient vector and β0 is the bias, or
intercept. Formally, the logistic regression model (Eq. 1) and sing-layer perceptron (Eq. 2) are
described as:

ln
p(x)

1− p(x)
= β0 + x.β (1)

σ(x) =
1

1 + e−x
(2)

p(x) =
eβ0+x.β

1 + eβ0+x.β
=

1

1 + e−(β0+x.β)
= σ(β0 + x.β)) (3)

Observing the equations above, the p(x) is directly analogous to the sigmoid activation used
in neural networks. In Equation 3, x.β is the dot product of the weight coefficients and the input
vector, which is equivalent to a perceptron in a neural network. Like a perceptron, the output of
the single dense node is the sum of the incoming weights multiplied by their inputs with a bias
added and pushed through the squashing function of a sigmoid activation.

The input to the model (Figure 2) will comprise of the following input layers: A one-hot
vector representing student j, a multi-hot KC representation vector for the item i answered by
student j, equivalent to that item’s row in the Q-matrix, and a vector with the opportunity counts
of the KCs associated with item i and all other values zeroed. The parameters β, γ, and θ are
defined in terms of edge weights in the neural network topology. The student one-hot vector
is mapped to a single node using the weight vector θ, containing the general ability of each
student. The KC multi-hot vector is mapped using the weights β, the difficulty of each KC, and
the opportunity counts vector for KCs associated with the item is mapped with edge weights
γ, the growth rate of each KC. Finally, all three inputs are multiplied by their edge weight
vectors, summed at the single output node with the scalar sum, then passed through the sigmoid
activation to give pij , the probability of student j answering item i correctly.
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Student one-hot

1 0 0 0

σ

θ

KC multi-hot

0 0 1 0 0 1

β

KC opportunity Count

0 0 3 0 0 5

γ

pij

Figure 2: The AFM model posed as a feed-forward neural network with three separate input
layers representing the student, the KC(s) of the item the student answered, and the student
opportunity counts associated with the KC(s) of the item. The inputs are multiplied element-wise
with their respective weight vectors, summed, and sent through a sigmoid activation function to
predict correctness.

4. DAFM

With AFM posed as a neural network, we now introduce the Q-matrix learning augmented
version of the model, called dAFM.

4.1. REPRESENTING THE Q-MATRIX AS A WEIGHT COEFFICIENT MATRIX

AFM and most BKT models concentrate on measurement at the KC level and therefore have not
required there to be an identification of individual items as part of the input data. The Q-matrix
look-up is already implicitly applied in most datasets, with each response row containing the
KC tagged to the item being responded to.

In order to model the Q-matrix explicitly, a layer needed to be added (qk) that represented
associations of items to KCs, accepting the item i of student j as input in the form of a one-
hot representation of the item (qij). As per the all-connected nature of adjacent layers in a
connectionist model, this layer’s respective weight matrix (WQk) represents the mapping of
items to KCs and is initialized with binary values corresponding to the KC associations in an
existing expert Q-matrix. Therefore, the architecture is now able to represent the Q-matrix as a
weight matrix adjustable by backpropagation. Figure 3 illustrates this adjustable structure with
an example item input. The KC representation layer (qk) in this figure is representing the same
information as the KC multi-hot input layer of AFM in Figure 2.
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WQk =




0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 1 1 0 0

1 0 0 1 0 0




0 0 0 1 0 0 0
Item one-hot (qij)

KC representation layer (qk)
0 0 1 0 0 1

WQk

0 0 1  0  0  1 

Figure 3: The added dAFM representation layers allowing for backpropagation-based adjustment
of the Q-matrix. On the left is an example domain expert Q-matrix, with items as rows and KCs
as columns. On the right is an example of how the weights of the model are initialized to represent
the domain expert model item association to KC(s).

4.2. DYNAMIC CALCULATION OF OPPORTUNITY COUNTS

In AFM, the opportunity count of the student on the KCs involved in the item being predicted
is often part of the input data. These counts can be found as feature columns in the datasets
made available from Cognitive Tutors and can otherwise be manually generated. In dAFM, the
model is making modifications to the association of items to KCs, which in turn, retrospectively
changes the opportunity counts for every student. In this section, we describe how we addressed
the problem of modeling dynamic opportunity counts in dAFM. This approach is predicated on
the link between practice opportunity and growth (learning) as a desirable theoretical constraint
to retain from the original model.

To dynamically calculate opportunity counts as the Q-matrix is changing, we utilized a re-
current neural network model in which we have fixed both the recurrent weight matrix WTT and
the input weight matrix WQT to be the identity matrix (having all diagonal elements 1s and the
rest 0s) to make the RNN work as a counter. Let qk be the KC representation vector for the item
the student gave a response to at time slice t. At t = 0, the output is initialized to zero (i.e., the
student has not seen any items). At t = 1, the output vector Tk, which is of k dimensions, will
increase the opportunity count for the KC(s) which are associated with the question attempted
by the student at her first time slice. Figure 4 demonstrates the behavior of the above mentioned
RNN model, calculating counts according to the formula shown in Equation 4 using example
values for qk as inputs. As can be seen by the example in Table 3, the identity weight matrices
WQT and WTT (Eq. 5) are effectively a notational trick that allows element-wise addition be-
tween qk and Tk so that Tk accumulates (i.e., sums) the qk vectors over time. Thus, to solve the
problem of updating the opportunity count with the change in Q-matrix, the KC representation
layer qk is the input to the RNN model. The opportunity count Tk at t is dependent on this repre-
sentation and will therefore also change when the Q-matrix changes, starting back at t = 0 and
calculating the opportunity counts forward in time according to the current Q-matrix mapping
defined by WQk.
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TkWTT
TkWTT

TkWTT WTT

qk

t=1

WQT

qk

t=2

WQT

qk

t=3

WQT

Figure 4: A Recurrent Neural Network acting as a simple opportunity counter

Table 1: Example opportunity counts resulting from the accumulation of KC representations of
the items answered at each time slice

time slice KC multi-hot (qk) Opportunity counts (Tk)
t = 0 — Tk = [0, 0, 0, 0, 0]
t = 1 qk = [0, 0, 0, 1, 0] Tk = [0, 0, 0, 1, 0]
t = 2 qk = [0, 0, 1, 0, 0] Tk = [0, 0, 1, 1, 0]
t = 3 qk = [1, 0, 0, 1, 0] Tk = [1, 0, 1, 2, 0]
t = 4 qk = [0, 1, 0, 0, 0] Tk = [1, 1, 1, 2, 0]

Tk = qkWQT + Tk(t−1)WTT (4)

WQT = WTT =




1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1



k×k

(5)

4.3. DAFM FULL DEFINITION

Traditional Recurrent Neural Networks (RNNs) map an input sequence x1,...,xt to an output
sequence y1,...,yt. The architecture of dAFM incorporates an RNN to calculate opportunity
counts of a student at every time slice t and therefore also conforms to this input and output
format. In the dAFM model, the input sequence is qij1,..,qijt which is the sequence of item
i one-hots for a particular student j (depicted in Figure 3) corresponding to each of their t
responses in the tutoring system. The y1,...,yt output or label sequence is the binary correctness
of each of their t responses. The probability of a correct response to an item i at time slice t by
student j is defined as pijt, used to predict the label.

A full depiction of the dAFM topology is shown in Figure 5. The dAFM model involves
various parameters out of which a few are fixed (non-adjustable) while others are updateable by
backpropagation to minimize the binary cross-entropy loss of the response predictions.
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Figure 5: The dAFM model full topology specification across two time slices
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The trainable parameters in the dAFM model are described below:

• WQk: The Q-matrix that is represented as a weight coefficient matrix, adjusted to improve
an existing or randomly initialized Q-matrix.

• Wβ: A vector of length k (number of KCs) containing the intercepts (difficulties) associ-
ated with each KC.

• Wγ: The vector containing the growth (or learning) rate for every KC.

• Tk: The vector containing the opportunity counts for each KC which dynamically updates
during inference and during training as the Q-matrix WQk changes.

• Wθ: In dAFM, this is the ability average (or bias) for all students, represented by a single
scalar value. In the original AFM, this represents the individual ability estimates for all
students, which can be used when using item level cross-validation. In dAFM, we are fo-
cused on learning item to KC associations, and thus we validate at the student level, which
does not utilize individual student abilities. Individualizing θ in the model is prototyped
on a development set.

The non-trainable parameters in the dAFM model are:

• W1: A vector of all 1s meant to act as a pass-through of the input values multiplied with it
element-wise. It appears on several edges in the model and matches the size of the input,
either k or 3 in our model.

• WQT and WTT : These matrices are a part of the RNN dynamic opportunity counting and
are fixed to the identity to serve as a pass-through.

The step-wise procedure to compute the probability of student j answering an item i correct
at time slice t using the dAFM model is formalized below:

qk = qijtWQk

β = Wβ

γ = Wγ

Tk = qkWQT + Tk(t−1)WTT

qkβk = qk � β

qkγkTk = qk � γ � Tk

pijt = σ(θ + qkβk + qkγkTk)

The final dAFM formulation is very similar to that of AFM (seen in Figure 1), reflecting our
intent to adhere as closely as possible to the original model, augmenting only what is necessary
to enable Q-matrix adjustment.
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4.4. VARIANTS OF DAFM

We defined six variations of the dAFM model, five of which share the exact same topology
shown in Figure 5 and differ only in how they are trained with respect to an expert Q-matrix.
The sixth, QkDense, is the only variant to modify the topology. Variants which utilize an expert
Q-matrix are:

• dafm-afm: Refers to the same model as the base AFM, with no Q-matrix modification but
implemented in our neural network architecture. In this model, the Wβ , Wγ , and single
bias (θ) parameters are learned, while WQk is made non-adjustable.

• expert-init: In this model, all the parameters (including WQk) can train from the start with
WQk initialized based on the original expert Q-matrix.

• fine-tuned (FT): The model is trained in two phases. It begins with training the base AFM
parameters around the original Q-matrix (dafm-afm). In the second phase, it allows the
Q-matrix (WQk) to be adjusted, along with all the other parameters (expert-init). The
stopping criterion for both phases is when the validation loss no longer decreases.

• rounded fine-tuned: The same as fine-tuned except that the weights of the WQk matrix are
rounded to 0 or 1 after training. This rounding of neural network weights to get binary
KC associations is similar to the rounding of predicted KC imputations using non-negative
matrix factorization (Desmarais and Naceur, 2013).

• QkDense: In this model, dafm-afm is augmented with an additional dense layer of size k
placed just above the qk layer. The weights leading into this dense layer are initialized to
the identity to represent, initially, a pass-through of the KC association vector for the input
item. During training, only the original AFM parameters and the weights associated with
this layer are adjustable. This layer is meant to be able to learn skill-to-skill relationships.
For example, the weights could change such that two skills merge into one.

The variant which does not utilize an expert Q-matrix is:

• random-init: This model is the same as expert-init, except that instead of using an expert
Q-matrix as the starting weights for WQk, uniform random weights between 0 and 1 are
used (a random initial Q-matrix).

4.5. OPTIMIZATION

The training objective is to minimize the binary cross-entropy loss of predicting the first attempt
correctness for all the student responses in the training set. Let y be the target output, and ŷ be
the predicted probability of correct using the dAFM model. The loss for a single student is given
by:

L = −
T∑

j=1

(yj log(ŷj) + (1− yj) log(1− ŷj) (6)

This objective is minimized using RMSprop, Adam, and Adagrad as candidate optimizers in our
evaluation, all of which are based on stochastic gradient descent.
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Table 2: Dataset Description

Dataset students responses items KCs
Geometry 59 5,104 139 15
ASSISTments 2009-2010 6,806 331,774 12,609 319
ASSISTments 2012-2013 28,436 2,060,131 44,898 197
Cognitive Tutor Bridge 2006-2007 1,146 1,817,476 129,263 493
Cognitive Tutor Bridge 2008-2009 5,985 11,239,188 243,511 807

5. DATASETS

We used five datasets, ranging in size, for the evaluation of dAFM; Cognitive Tutor for Ge-
ometry, ASSISTments 2009-2010, ASSISTments 2012-2013, Cognitive Tutor Bridge to Alge-
bra 2006-2007, and Cognitive Tutor Bridge to Algebra 2008-2009. One unit from Bridge to
Algebra 2008-2009, INTRO-PERIM-AREA, was used as a development set to prototype early
approaches. Descriptive stats of the five datasets are shown in Table 2. All datasets used are
publicly available.

ASSISTments (Heffernan and Heffernan, 2014) is an online web tutoring platform used
primarily for middle and high school mathematics. Students’ assignments are selected entirely
by their teacher from a library of problem sets. Many ASSISTments problem sets implement
a simple form of adaptivity whereby students are marked as having completed the set if they
answer three items (or problems) correct in a row.

Cognitive tutors (Ritter et al., 2007) are intelligent tutoring systems with Carnegie Learning
producing products based on this paradigm mostly for high-school mathematics curricula. Units
are the top level of organization of a curriculum, followed by sections, then problems containing
the items (or steps) that students respond to. Instead of the three correct in a row heuristic of
ASSISTments, they employ Bayesian Knowledge Tracing to estimate when cognitive mastery
has been achieved for a student on a particular KC. When mastery is estimated to have been
achieved, the student no longer needs to answer items of that KC and can move on to the next
section once the other KCs in the section have also been mastered. The two large datasets from
the Cognitive Tutor Bridge to Algebra curriculum, with 1.8M and 11.2M responses, were made
available for a data mining competition to predict student responses within the tutor (Stamper
and Pardos, 2016). The much smaller Cognitive Tutor Geometry set (collected 1996-1997),
with only 59 students and 15 KCs, will serve as our dataset for qualitative analysis because of
the depictions of all the problems conveniently included in the dataset package.

6. METHODS AND EVALUATION

6.1. EXPERIMENTS

The largest Cognitive Tutor dataset was split up and trained by unit in order to keep within
memory constraints. All other datasets were wholly trained with a single model. The dimensions
of the layers in dAFM are all determined by the number of items in the dataset and the number
of KCs defined in the expert model. There are, therefore, very few hyperparameters to adjust
in the model. We conducted a hyperparameter search on three parameters: activation function,
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optimizer, and learning rate. The activation functions applied to the qk layer were: rectified
linear unit (ReLU), linear (pass-through), and sigmoid. We searched learning rates of 0.01 and
0.1 for the ASSISTments sets and the Cognitive Tutor ’06-’07 set, and 0.001, 0.01, and 0.1 on
the individual units of the Cognitive Tutor ’08-’09 set and on Cognitive Tutor Geometry. For
optimizers, we chose RMSprop, Adam, and Adagrad. Conducting this search on each of the six
dAFM variants resulted in 648 total models trained. The experiments were run on a machine
with 1TB of system memory and four Xeon processors with a total of 48 cores. The mini-batch
size was set to 16, 32, or 64, favoring batches (of entire student sequences), the largest of which
would fit into memory. Training time for each model varied between 6 and 20 hours.

All models were implemented in python and described using the Keras neural network
framework. The code for dAFM fine-tuned can be found in the appendix section. Full train-
ing examples and documentation for all model variants can be found in our code repo3.

6.2. EVALUATION

We split all datasets by student for evaluation, such that 80% of students were in train and 20% in
test, with 20% of the students in train serving as a validation set. The training and validation sets
were used to conduct all prototyping, and the test set was only allowed to be predicted once for
the best hyperparameter model from each dAFM variant. The validation set was also used as a
hill climbing set to determine the number of epochs to train for. A train/test hold-out strategy, as
opposed to k-fold cross-validation, was preferable as it produces a single trained model, instead
of k, for our qualitative study. Additionally, it made the training more manageable for our high
computation cost experiments. We chose root mean square error (RMSE), an error metric which
has been prescribed for skill model evaluation tasks like ours (Pelánek, 2015). It was applied to
the predictions of first response attempts across all the students in the test set and calculated per
student and then averaged across students to represent the reported metric.

To make the selection of which Q-matrix refined items would be used for qualitative study,
we broke down RMSE by item and looked to see which items’ RMSE most improved after
dAFM refinement as compared to using the original Q-matrix. Improvement was calculated by
both absolute RMSE decrease and decrease as a percent of original RMSE. This item improve-
ment comparison was conducted for predictions made on the test set. The problem with the most
improvement by percentage in the test set was chosen for presentation. We chose only among
the best models using the ReLU activation function for qk, as we wanted to avoid looking at
negative weight values, the interpretation of which is not clear. ASSISTments provides preview
links for problems linkable by their ASSISTment ID, found in the dataset; however, upon trying
to look-up the best performing problems, we were unable to identify them with the preview link,
and therefore only the Geometry set was qualitatively analyzed. Items from the other Cognitive
Tutor datasets were not qualitative analyzed because their depictions are not publicly available.

6.3. METHODS EXPLORED ONLY ON THE DEVELOPMENT SET

In this section, we present alternative approaches to neural network Q-matrix induction and
other modifications to dAFM prototyped on our development set, INTRO-PERIM-AREA, from
the Bridge to Algebra ’08-’09 dataset. This unit was attempted by 438 students and had 98,768
responses to 3,706 items. There were a total 44 KCs associated with these items. These ap-

3https://github.com/CAHLR/dAFM
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proaches showed less potential than the models used on our primary datasets, but nevertheless
may inform future work.

6.3.1. Deriving the Q-matrix from Continuous Representations of Items

Before applying dAFM, we explored deriving a Q-matrix from the continuous representations
extracted from the embedding of items from a Skip-gram applied to item sequences, utilizing the
same models used for imputing the KCs of untagged items (Pardos and Dadu, 2017). We also
explored deriving a Q-matrix from continuous representations found in various weight matrices
of Deep Knowledge Tracing. Once the continuous vector representations of the items were
extracted, k-means clustering was run on the vectors using various values of k with respect to
the original number of KCs in the expert model. The assigned clusters were then taken as the
KC, and this new Q-matrix was evaluated using dafm-afm, but with the cluster KC model used
in place of an expert model.

Deep Knowledge Tracing (Piech et al., 2015) introduced an RNN model for predicting stu-
dent responses to exercises based on their past responses. DKT maps an input sequence of fea-
ture vectors (x1, ..., xt) to target sequence vectors (a1, ...at). In the DKT model, xt is a one-hot
encoding of the KC associated with items concatenated with the student’s first attempt correct-
ness on those items, and at is the correctness of the item, whose identifier is specified by another
input, qt. The mathematical formulation for DKT is shown in Equations 7 and 8. In the pub-
lished DKT model, their input (xt) was sequences of correct and incorrect responses represented
at the KC level. In our adaptation for the purposes of learning an item embedding, we instead
present sequences of correct and incorrect responses represented at the item level. Similarly, in
the published DKT paper, the number of outputs appear to correspond to the number of KCs.
In our adaptation, the number of outputs equals the number of unique items. In Equation 9,
let δ(qt+1) be the one-hot encoding of the item answered at t + 1 used to mask the correctness
prediction outputs (yTt ) presented to the binary cross-entropy loss function (`).

ht = tanh(Whxxt +Whhht−1 + bh) (7)

yt = σ(Wyhht + by) (8)

L =
∑

t

`(yTt δ(qt+1), at+1) (9)

In DKT, since xt embeds the correct and incorrect token representing a response to an item,
Wxh will have separate representations for each. After training the model, there are four ways
to get the representation of each of the items out of the model:

• rnn-correct: Representations are taken from the Wxh matrix of only the correct attempt of
the items.

• rnn-incorrect: Representations are taken from the Wxh matrix of only for the incorrect
attempt of the items.

• rnn-correct-incorrect: Representations are taken from the Wxh matrix, and the correct and
incorrect attempts of the items are concatenated.
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• rnn-dense: Representations of items are taken from the output (Why) matrix.

Skip-gram was the second method we used in the development set, a three-layer neural
network with an input layer, hidden layer, and output layer. The input is the item one-hot with a
one-hot output for the items in context. The representations are provided by the weight matrix
that maps an input layer to the hidden layer. Past work (Pardos and Dadu, 2017) used this
embedding to impute the KC of an item based on its vector proximity to items with known KCs.
We adapt this same model and the findings from that study as justification for why the position
of items embedded in the space may suggest a KC association. There are two hyperparameters
in this model that we have used in our experiments–window size and the size of hidden layer
(the length of the representation vector). We used 20, 40, and 60 for the window size and 100
and 200 for the hidden layer size.

After extracting the question representation from the embeddings, we applied k-means clus-
tering on their continuous vectors to assign them to clusters which serve as the KCs in this
Q-matrix learned from scratch. We conducted our experiments by varying the number of clus-
ters and distance measure. Let k be the total number of KCs in the current KC model. The
different number of clusters tried were: k/2, k-k/10, k, k+k/10, and k*2. While the clustered
items are completely lacking in semantic interpretability, they represent a reasonable alternative
source for Q-matrix construction from other neural networks to compare with dAFM. Finally,
the dafm-afm model is applied, using the clustering derived Q-matrix, only learning the growth
and KC difficulty parameters, and then predicting students’ responses on a validation set evalu-
ated using RMSE.

6.3.2. Changing the Activation Function for qk Layer

The activation function of an item’s KC representation layer (qk) plays an important role in the
interpretation of a Q-matrix. If adhering to local representation and non-fuzzy, binary tagging,
the output of that layer should have values tending towards either 0 or 1. Additionally, because
the values of qk are directly added to a running opportunity count total, negative values lead to
a reduction in this count and would thus affect its intended interpretation. We tried achieving
values in the range of 0 to 1 by using a sigmoid activation with a high discrimination term to force
values towards the extremes. However, this suffered convergence problems during training. The
closer to a binary function this output becomes (higher discrimination term), the less informative
the gradient. This desired local binary representation at least appears to be at odds with model
optimization. When using the sigmoid activation to constrain outputs, we made sure to initialize
the 0s of WQk to −99 and 1s to 99 since a value of 0, representing no KC association when
using a linear activation, would result in 0.50 association when passed through a sigmoid.

6.3.3. Including Individual Student Ability Estimates and Section Information

As mentioned previously, dAFM uses average student ability Wθ to make predictions rather
than individual student ability. We here elaborate and motivate the decision to explore using
individual ability for training while still using average ability for prediction. In the original
AFM student model improvement work (Koedinger et al., 2012), cross-validation was done at
the item level, allowing for the use of individual student ability estimates across items. Since
dAFM focuses on learning refinements to item-KC associations, it would not be an appropriate
evaluation to test on items excluded from the training process. While this reduces the utility of
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Table 3: The table shows the error for the models that include student information.

Section AFM FT QkDense random-init expert-init rounded FT
Standard θ 0.3314 0.3308 0.3288 0.3427 0.3314 0.3312
Individualized θj 0.3314 0.3312 0.3286 0.3553 0.3376 0.3312

individualized ability estimates, and thus our choice not to use them outside of the development
set, the non-individualized parameters may be better learned when individualized ability esti-
mates are present and thus still benefit a student hold-out evaluation. This benefit was observed
by (Yudelson et al., 2013) when learning individualized parameters in BKT validated at the stu-
dent level. We tested this possibility by training dAFM expert-init with student individualized
θj along with an additional bias term. When testing on the validation set, no student one-hot
information was input. Instead, the bias term represented the average θ. The predictions from a
model trained with this individualization were compared to regular dAFM expert-init.

In the Cognitive Tutor, the cognitive mastery estimate of a KC is reset every section. Because
of this, the KCs provided can be thought of as pertaining specifically to each section, and thus
could be tokenized as the concatenation of section and KC. Section information has proven
useful in several of the top approaches to predicting responses in the Cognitive Tutor (Stamper
and Pardos, 2016). We tested the utility of incorporating section information into dAFM expert-
init by comparing the model with no section information to two variants; one which added a
one-hot of section to the concatenation layer (where the bias and other terms are merged), and
another where a KC associated with an item was concatenated with the section number the item
appeared in, leading to a mild increase in the total number of KCs (only mild because many KCs
are contained in only a single section). This was not a topology variation, rather an increase in
the dimensionality of the layers to correspond to the new k.

7. RESULTS

The results in this section report development set prototype model results as well as the degree to
which the dAFM model variants generalized from the training to the test sets of our primary five
datasets. Results of prediction on the validation set are also presented as well as an inspection
of KC association refinements for items whose predictions were most improved by dAFM.

7.1. DEVELOPMENT SET PROTOTYPING RESULTS

Here we present the results of methods trialed only on the development set, INTRO-PERIM-
AREA, from the Bridge to Algebra ’08-’09 dataset. As with the other datasets, this unit was split
into train, validation, and test sets; however, since these experiments were conducted during the
development stage, only predictions on the validation set were made.

Individualized Student Ability θj: We explored if refining the Q-matrix while modeling
individualized ability estimates lead to any improvements in the learning of the Q-matrix evident
in the prediction results on the validation hold-out. Table 3 shows that this was largely not the
case. The individualized parameters only lead to better prediction in one of the six models,
QkDense, and in that model, reducing error by 0.0002.

Adding Section Information: Section information has helped previous performance pre-
diction models in the response prediction task; however, Table 4 shows that both section one-hot
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Table 4: The effect of section information on the predictive performance for dAFM models.

Section AFM FT QkDense random-init expert-init rounded FT
No Section 0.3314 0.3308 0.3288 0.3427 0.3314 0.3312
KC-section 0.3315 0.3310 0.3289 0.3422 0.3315 0.3312
Section on-hot 0.3317 0.3315 0.3299 0.3434 0.3317 0.3316

Table 5: Comparison of dAFM models with linear and sigmoid activation functions

Models Linear Sigmoid
AFM 0.3314 0.3314
fine-tuned 0.3308 0.3312
QkDense 0.3288 0.3341
random-init 0.3560 0.3422
expert-init 0.3373 0.3314
rounded FT 0.3312 0.3698

and KC-section token concatenation produced poorer predictions in all six dAFM models.
Alternative qk Activation Function: A sigmoid activation for the qk layer would restrict

the range of values to between 0 and 1, and potentially lead to a more interpretable model than
with a linear, pass-through function. Table 5 shows that the best model is dAFM fine-tuned
with linear activation and that sigmoid is the better activation in two of the models (random and
expert init).

Using Continuous Representation Models to Derive the Q-matrix: Both DKT and Skip-
gram models can embed questions into a vector space. Given the pre-requisite relationships that
were found in DKT (Piech et al., 2015) and the KC imputation ability of embedding with Skip-
grams (Pardos and Dadu, 2017), it was conceivable that the embedding space might provide
fertile representational grounds for constructing a Q-matrix. Clustering the space into differ-
ent sizes of k using these models; however, did not produce a better predicting Q-matrix than
the dAFM models (except for random-init), as seen in Table 6. The best size k for DKT and
Skip-gram were the original KC model k (using rnn-incorrect item representations) and k-k/10,
respectively. While this was a null result, as neither method beat even the base AFM model,
outperforming the randomly initialized Q-matrix model of dAFM random-init suggests they
may have better promise in learning a Q-matrix from the ground up than doing so within the
framework of dAFM.

Table 6: Comparison of continuous representation learning approaches to dAFM models

DKT skip-gram AFM FT QkDense random expert rounded-FT
0.3472 0.3475 0.3314 0.3312 0.3286 0.3553 0.3376 0.3312
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Table 7: Results of dAFM and AFM model prediction performance with RMSE averaged across
all students in the validation set for our primary datasets. The best model per dataset is in bold

Dataset AFM FT QkDense random expert round-FT
Geometry 0.4715 0.4594 0.4716 0.4712 0.4601 0.4709
ASSISTments 09-10 0.4008 0.3757 0.3965 0.3857 0.3787 0.4080
ASSISTments 12-13 0.2971 0.2726 0.2884 0.2839 0.2758 0.2883
CogTutor Bridge 06-07 0.3603 0.3651 0.3596 0.4104 0.3665 0.3714
CogTutor Bridge 08-09 0.3672 0.3595 0.3667 0.3918 0.3772 0.3692

Table 8: Results of dAFM and AFM model prediction performance with RMSE averaged across
all students in the test set for our primary datasets. The best model per dataset is in bold

Dataset AFM FT QkDense random expert round-FT
Geometry 0.4252 0.4129 0.4307 0.4191 0.4207 0.4143
ASSISTments 09-10 0.4064 0.3810 0.4014 0.3913 0.3844 0.4127
ASSISTments 12-13 0.3020 0.2797 0.2940 0.2907 0.2824 0.2945
CogTutor Bridge 06-07 0.3502 0.3573 0.3498 0.3954 0.3590 0.3625
CogTutor Bridge 08-09 0.3629 0.3552 0.3626 0.3870 0.3687 0.3650

7.2. MAIN PREDICTION RESULTS

Results of the six dAFM models’ predictions on our five primary datasets are shown in Table
7 (validation) and Table 8 (test). The AFM model (dafm-afm) represents the baseline stan-
dard model with its expert Q-matrix, while expert (expert-init), FT (fine-tuned), and round-FT
(rounded fine-tuned), represent dAFM’s attempt at refining the expert model using different
training regimes. Only random (random-init) represents a Q-matrix model learned from the
ground-up in dAFM and QkDense represents the learning of a fuzzy (non-binary) skill merging.
Comparing the base AFM model to random, AFM generalizes better than the ground-up learned
Q-matrix model in the large Cognitive Tutor Bridge datasets, but AFM is worse in the other
three in both the validation and test set predictions. Comparing a random to an expert initialized
Q-matrix, the expert refined model outperforms the KC model learned from the ground-up in
all cases except for on the validation set of Geometry. Like the random model, the expert-init
dAFM model is better than AFM in three datasets, but also underperforms it in the large Cogni-
tive Tutor datasets. If the learned AFM model, including its Q-matrix, is fine-tuned, the resultant
model shows improvement in all datasets except for the CogTutor Bridge ’06-’07 dataset and is
the best model all-around in eight of the ten experiments (combining validation and test results).
Rounding the weights of the fine-tuned model did not lead to improvement in any of the exper-
iments. The performance of the base AFM model in the ’06-’07 CogTutor dataset suggests a
very strong expert KC model, also evidenced by having the largest difference in error between
expert-init and random-init predictions. For this dataset, only the skill merging layer variant
(QkDense) outperformed the base model, as it also did in all other datasets except for Geometry.

The relative results between models and datasets in the validation and test set were nearly
identical, suggesting that our hyperparameter search and evaluation methodology did not overfit
the validation set. The Adagrad optimizer produced the best scoring models for all datasets
except for the much smaller Geometry, where Adam was best.
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Table 9: Comparison of linear and ReLU activation for the Qk layer on the Geometry dataset

Models Linear (validation) ReLU (validation) Linear (test) ReLU (test)
AFM 0.4715 0.4715 0.4252 0.4252
fine-tuned 0.4556 0.4594 0.4114 0.4129
QkDense 0.4695 0.4716 0.4268 0.4307
random-init 0.4717 0.4712 0.4145 0.4191
expert-init 0.4582 0.4601 0.4232 0.4207
rounded FT 0.4694 0.4709 0.4200 0.4143
Average 0.4660 0.4674 0.4202 0.4205

7.3. QUALITATIVE STUDY OF Q-MATRIX REFINEMENTS

In this section, we look into the dAFM refinements made to the Q-matrix. We break down the
dAFM fine-tuned predicted performance by problem on the test set and then sort by problems
most improved by the Q-matrix refinement from the original expert model (Table 10). The most
improved problem is selected from The Cognitive Tutor Geometry dataset, which has imagery of
its 40 problems. We show a screenshot of the problem, its old and dAFM refined KC mapping,
and reflect on the interpretability and plausibility of the refinement.

Since we are concerned with interpretability over predictive performance here, we consider
an activation function for qk not yet discussed. The linear (pass-through) activation function used
in the dAFM models has the undesirable property (wrt. interpretation) of allowing for negative
values in the Q-matrix. Avoiding negatives was the rationale for (Desmarais et al., 2011) in
choosing non-negative matrix factorization to derive the Q-matrix in their testing scenario. In the
development set, we explored using a sigmoid function to limit the range of outputs to between
0 and 1, but this led to convergence issues due to needing to set high magnitude positive and
negative weight values to represent an initial Q-matrix, due to the infinite domain of the sigmoid
function. To avoid this, we sought a function that would prohibit negatives, but have output
linear with its input for values 0 and above. A rectified linear unit (ReLU) fit this description
perfectly. We tested this activation with dAFM FT compared with linear to make sure we were
not sacrificing too much predictive gain in replacing the linear activation. We found that very
little was lost, with an average RMSE of 0.4205 compared to linear’s 0.4202 on the test set
(Table 9).

7.3.1. Geometry Problem Presentation

The problem Triangle Rectangle was reported in Table 10 as having the highest increase in
predictive accuracy when predicted in the test set using the dAFM fine-tuned Q-matrix model.
It was most improved in terms of both percentage and absolute point reduction in error and was
therefore the chosen problem for presentation.

Figure 6 shows the Triangle Rectangle problem. The problem statement asks for the area
of a scalene triangle, EBD, enclosed in a rectangle whose dimensions are provided. The table
below the problem statement shows the three items (steps) associated with the problem. The
last item represents the main question posed in the problem statement. The second item is filled
in by the tutor, as its value is given in the problem statement. The first item asks for the length
of the base of the scalene triangle. This item was originally tagged with the KC compose-by-
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Table 10: Top-2 improved problems when comparing predictions using the dAFM fine-tuned
model and the original expert model.

Evaluation Type Most Improved Problem Name Improvement Magnitude
Test set (Absolute) Triangle Rectangle 0.2828

Two Circles in a Square 0.1446
Test set (Percent) Triangle Rectangle 38.29%

Circle Radius 37.81%

multiplication. In dAFM, it has mainly been re-mapped to identifying triangle-side (weight
value = 1.05), shown in Figure 7. Three other KCs are also involved in the mapping with weight
values greater than 0: compose-by-multiplication (0.19), trapezoid-height (0.12), and pentagon-
side (0.08). The last problem asks for the area of the scalene triangle, EBD, and was tagged
with triangle-area in the original Q-matrix. In dAFM, this problem has been associated with
triangle-side (0.29), trapezoid-height (0.22), trapezoid-area (0.18), and triangle-area (0.11).
The full list of candidate KCs in the Geometry dataset is shown in Table 11.

These refinements suggested an emphasis on identification of the sides of the triangle and
of the rectangle over computing the area in solving the problems. They also favored mapping
to the trapezoid side and height KCs in favor of the more precise respective parallelogram KCs.
An inspection of the tagging of parallelogram questions in other problems would be needed to
derive a rationale for this. The pentagon-side association appears to be spurious, not strictly
related to the problem but perhaps correlated to performance in it, and correspondingly had the
lowest coefficient of association (0.08).

Table 11: List of 15 Knowledge Component in the Geometry dataset

circle-area compose-by-multiplication trapezoid-area
circle-circumference parallelogram-area trapezoid-base
circle-diameter parallelogram-side trapezoid-height
circle-radius pentagon-area triangle-area
compose-by-addition pentagon-side triangle-side

8. LIMITATIONS

The design of dAFM focused on refinement of item mappings to KCs and, separately, KC merg-
ing (with QkDense). It does not, as described, support the expansion of the number of KCs,
though contraction is possible if all items become unmapped from a KC and no new mappings
are made to it. The described model will also be limited in the predictive accuracy it is capable
of. Like the original AFM model, dAFM never observes the correctness of a response to an item
in its input, only as a label in its output. This is in contrast to Bayesian Knowledge Tracing,
Performance Factors Analysis, and Deep Knowledge Tracing, which do observe correctness in
their inputs. Correctness information can contribute to the estimation of individual abilities in
AFM and subsequently improve prediction performance, but under student-level validation such
as in real-world tracing scenarios, where re-training or online updates may not be practical or
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Figure 6: Screenshot of the top most improved Cognitive Tutor for Geometry problem (TRIAN-
GLE RECTANGLE) on the test set. Prompts for answers to two items (or steps of ’Question 1’)
are shown in the table at the bottom of the screenshot.

Skills

Problems TRIANGLE_RECTANGLE_(AREA QUESTION1)

TRIANGLE-SIDE

 

TRIANGLE-AREA

1 ￫ 0.11 

TRAPEZOID-HEIGHT TRAPEZOID-AREA

0 ￫ 0.18   

TRIANGLE_RECTANGLE_(BASE QUESTION1)

0 ￫ 1.05    

 

PENTAGON-SIDE

0 ￫ 0.08    

COMPOSE-BY-MULTIPLICATION

1 ￫ 0.19 

Figure 7: Plot showing expert and dAFM refined KC associations of items (bottom) to KCs (top)
in the problem called TRIANGLE RECTANGLE in The Cognitive Tutor for Geometry. Solid
black lines denote the original mapping, dotted lines denote the refined mapping, and the decimal
values followed by an arrow and another decimal value represent the original KC association
value and the dAFM refined value.

feasible, the model will predict according to the average growth curve modeled of the KCs.
BKT will similarly project a performance curve, given only its four KC parameter values and no
observed responses for inference.

It is unclear what class of problem Q-matrix refinement from observational data is. With
elements of attribution, credit, and blame assignment, it may very well be a problem adjacent
to or as hard as problems of causal inference (Shaver, 2012). With that in mind, refinements
ought to be validated by other means in addition to predictive generalization before it is better
understood what the conditions are under which valid inference can be made.

21 Journal of Educational Data Mining, Volume 10, No 2, 2018



Lastly, we note that the prototype model results were run on a subset of the data (the devel-
opment set), and thus the generalizability of these results is less supported than our more robust
primary dataset results.

9. CONTRIBUTIONS

We contributed a new framework, dAFM, to the family of models used to study data-driven
refinement of a Q-matrix. Through careful design, we reconstructed AFM as a neural network,
having the same free parameters as the original model, but with the added ability to adjust the
associations of items to KCs in its Q-matrix. Among our experiments, we found a two-phase
training process to be the best practice for refinement of the Q-matrix. First, fitting the base
parameters of AFM with the original expert Q-matrix unchanged, followed by fine-tuning the
base parameters while allowing the Q-matrix associations to also be fit to data. In four of the
five datasets from ASSISTments and Cognitive Tutors, this fine-tuning procedure produced a
Q-matrix leading to better predictive generalization than the original (answering RQ1: does a
dAFM refined Q-matrix outperform an expert model?). In the one dataset, Bridge to Algebra
’06-’07, where Q-matrix fine-tuning did not improve generalization, a learned transformation
among the KCs (i.e., merging via an added network layer) did produce predictions better than
the original.

Our second research question was if a Q-matrix learned from the ground-up would generalize
better than one refined from an existing expert model. We found this to be decidedly not the
case, with the ground-up model (random-init) underperforming the fine-tuned model in all ten
dataset experiments. The ground-up model did, however, outperform the (unmodified) original
AFM expert model in three of the datasets (the two ASSISTments sets and Geometry). Its
underperformance compared with expert models from the Bridge to Algebra datasets of the
Cognitive Tutor speaks to the rigor applied in the specification of those KC models, including
the internal refinements of the model conducted in that system.

We addressed the interpretation problem of negative Q-matrix values by adding a rectified
linear unit (ReLU) activation, which kept values positive with very little hit to generalization
performance. The sigmoid function, which would accomplish a similar goal, showed a greater
hit to performance when prototyped in our development dataset. Also prototyped in the de-
velopment set was the addition of individualized θi, which did not lead to learning of a more
generalizable Q-matrix. The incorporation of curriculum structure information, in the form of
sections in the Cognitive Tutor, also lead to no improvement. Lastly, we prototyped extracting
a Q-matrix from models using continuous representations of items. These representations were
sourced from different layers of DKT and Skip-gram embeddings of items. These representa-
tions, discretized through clustering, did not serve as a more generalizable Q-matrix than the
original expert model; however, they did outperform the Q-matrix learned from the ground up
(random-init) in dAFM.

ACKNOWLEDGEMENT

We thank Carnegie Learning and the ASSISTments Platform for their public sharing of datasets
to advance learning sciences research. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1547055.

22 Journal of Educational Data Mining, Volume 10, No 2, 2018



REFERENCES

BURRELL, J. 2016. How the machine thinks: Understanding opacity in machine learning algorithms. Big
Data & Society 3, 1.

CEN, H., KOEDINGER, K., AND JUNKER, B. 2005. Automating cognitive model improvement by A*
search and logistic regression. In Proceedings of AAAI 2005 Educational Data Mining Workshop,
J. E. Beck, Ed.

CEN, H., KOEDINGER, K., AND JUNKER, B. 2006. Learning factors analysis: A general method for
cognitive model evaluation and improvement. In Proceedings of the 8th International Conference on
Intelligent Tutoring Systems, M. Ikeda, K. Ashley, and T.-W. Chan, Eds. Springer-Verlag, 164–175.

CEN, H., KOEDINGER, K. R., AND JUNKER, B. 2007. Is over practice necessary? Improving learning
efficiency with the Cognitive Tutor through educational data mining. In Proceedings of 13th Inter-
national Conference on Artificial Intelligence in Education, K. Ashley and T. van Engers, Eds. IOS
Press, 511–518.
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PELÁNEK, R. 2017. Bayesian knowledge tracing, logistic models, and beyond: an overview of learner
modeling techniques. User Modeling and User-Adapted Interaction 27, 3-5, 313–350.

PIECH, C., BASSEN, J., HUANG, J., GANGULI, S., SAHAMI, M., GUIBAS, L. J., AND SOHL-
DICKSTEIN, J. 2015. Deep knowledge tracing. In Advances in Neural Information Processing Sys-
tems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds. 505–513.

RASCH, G. 1961. On general laws and the meaning of measurement in psychology. In Proceedings of the
4th Berkeley Symposium on Mathematical Statistics and Probability, J. Neyman, Ed. Vol. 4. 321–333.

RITTER, F. E. AND SCHOOLER, L. J. 2001. The learning curve. International Encyclopedia of the Social
and Behavioral Sciences 13, 8602–8605.

RITTER, S., ANDERSON, J. R., KOEDINGER, K. R., AND CORBETT, A. 2007. Cognitive Tutor: Applied
research in mathematics education. Psychonomic Bulletin & Review 14, 2, 249–255.
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APPENDIX

This section presents the programmatics of the dAFM fine-tuned model specification. Full ex-
amples with documentation of this and the other dAFM variants in the paper can be found at
http://github.com/CAHLR/dAFM.

The dAFM fine-tuned model trains in two phases. First, in which the Q-matrix (WQk) is non-
trainnable while the other parameters are allowed to train and second, in which all the parameters
can train without any restriction. The code, written in Keras, for the fine-tuned model is shown
below:

Phase 1: WQk is non-trainable.

B_k = TimeDistributed(Dense(skills, activation=’linear’,
use_bias=False, trainable=True), name="B_k")(virtual_input1)

t_k = TimeDistributed(Dense(skills, activation=’linear’,
use_bias=False, trainable=True), name="t_k")(virtual_input1)

bias_layer = TimeDistributed(Dense(1, activation=’linear’,
use_bias=False, kernel_initializer=initializers.Zeros(),
trainable=True), name="bias")(virtual_input1)

Q_k = TimeDistributed(Dense(skills, activation=activation,
kernel_initializer=self.f(Q_k_initialize), use_bias=False,
trainable=False), name="Q_k")(step_input)

Qk_mul_Bk = multiply([Q_k, B_k])
sum_Qk_Bk = TimeDistributed(Dense(1, activation=’linear’,

trainable=False, kernel_initializer=initializers.Ones(),
use_bias=False), name="sum_Qk_Bk")(Qk_mul_Bk)

T_k = SimpleRNN(skills, kernel_initializer=initializers.Identity(),
recurrent_initializer=initializers.Identity() , use_bias=False,
trainable=False, activation=’linear’, return_sequences=True,
name="T_k")(Q_k)

Qk_mul_Tk_mul_tk = multiply([Q_k, T_k, t_k])
sum_Qk_Tk_tk = TimeDistributed(Dense(1, activation=’linear’,

trainable=False, kernel_initializer=initializers.Ones(),
use_bias=False), name="sum_Qk_Tk_tk")(Qk_mul_Tk_mul_tk)

Concatenate = concatenate([bias_layer, sum_Qk_Bk, sum_Qk_Tk_tk])
output = TimeDistributed(Dense(1, activation="sigmoid",

trainable=False, kernel_initializer=initializers.Ones(),
use_bias=False), name="output")(Concatenate)

model1 = Model(inputs=[virtual_input1, step_input], outputs=output)
d_optimizer = {"rmsprop":optimizers.RMSprop(lr=learning_rate),

"adam":optimizers.Adam(lr=learning_rate),
"adagrad":optimizers.Adagrad(lr=learning_rate) }

model1.compile( optimizer = d_optimizer[optimizer],
loss = self.custom_bce)
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Phase 2: WQk is trainable and the trained weights of the other parameters obtained from Phase
1 are used to intialize the respective parameters.

B_k = TimeDistributed(Dense(skills, activation=’linear’,
kernel_initializer=self.f(model1.get_layer("B_k").get_weights()[0]),
use_bias=False), name="B_k")(virtual_input1)

t_k = TimeDistributed(Dense(skills, activation=’linear’,
kernel_initializer=self.f(model1.get_layer("t_k").get_weights()[0]),
use_bias=False), name="t_k")(virtual_input1)

bias_layer = TimeDistributed(Dense(1, activation=’linear’,
use_bias=False,
kernel_initializer=self.f(model1.get_layer("bias").get_weights()[0]),
trainable=True), name="bias")(virtual_input1)

Q_k = TimeDistributed(Dense(skills, activation=activation,
kernel_initializer=self.f(Q_k_initialize), use_bias=False,
trainable=False), name="Q_k")(step_input)
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