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________________________________________________________________________ 

 
Over the past decade, there has been growing interest in real-time assessment of student engagement and 

motivation during interactions with educational software. Detecting symptoms of disengagement, such as off-

task behavior, has shown considerable promise for understanding students’ motivational characteristics during 

learning. In this paper, we investigate the affective role of off-task behavior by analyzing data from student 

interactions with CRYSTAL ISLAND, a narrative-centered learning environment for middle school microbiology. 

We observe that off-task behavior is associated with reduced student learning, but preliminary analyses of 

students’ affective transitions suggest that off-task behavior may also serve a productive role for some students 

coping with negative affective states such as frustration. Empirical findings imply that some students may use 

off-task behavior as a strategy for self-regulating negative emotional states during learning.  

 

Based on these observations, we introduce a supervised machine learning procedure for detecting whether 

students’ off-task behaviors are cases of emotion self-regulation. The method proceeds in three stages. During 

the first stage, a dynamic Bayesian network (DBN) is trained to model the valence of students’ emotion self-

reports using collected data from interactions with the learning environment. In the second stage, a novel 

simulation process uses the DBN to generate alternate futures by modeling students’ affective trajectories as if 

they had engaged in fewer off-task behaviors than they did during their actual learning interactions. The 

alternate futures are compared to students’ actual traces to produce labels denoting whether students’ off-task 

behaviors are cases of emotion self-regulation. In the final stage, the generated emotion self-regulation labels 

are predicted using off-the-shelf classifiers and features that can be computed in run-time settings. Results 

suggest that this approach shows promise for identifying cases of off-task behavior that are emotion self-

regulation. Analyses of the first two phases suggest that trained DBN models are capable of accurately 

modeling relationships between students’ off-task behaviors and self-reported emotional valence in CRYSTAL 

ISLAND. Additionally, the proposed simulation process produces emotion self-regulation labels with high levels 

of reliability. Preliminary analyses indicate that support vector machines, bagged trees, and random forests 

show promise for predicting the generated emotion self-regulation labels, but room for improvement remains. 

The findings underscore the methodological potential of considering alternate futures when modeling students’ 

emotion self-regulation processes in narrative-centered learning environments. 

________________________________________________________________________ 
 

 

1. INTRODUCTION  

One-on-one, face-to-face human tutoring has long been considered the gold standard for 

effective instruction because of its significant pedagogical benefits compared to 

traditional classroom lectures [Bloom, 1984]. The benefits of expert tutoring have been 

hypothesized to derive from increased levels of feedback and scaffolding, including 

support for knowledge self-repair and increased rates of problem completion [VanLehn, 

2011]. While it is infeasible for every student to have his or her own personal human 

tutor, the intelligent tutoring systems community has sought to bridge this gap by 

endowing educational software with the pedagogical capabilities of expert human tutors 
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[VanLehn, 2006; VanLehn, 2011]. These efforts have led to significant improvements in 

educational software’s effectiveness, and in some cases intelligent tutoring systems have 

produced learning gains comparable to human tutors [Bloom, 1984]. However, as with 

any educational tool, student learning is dependent on how effectively the software is 

used. Even advanced educational software will not help students who fail to use it 

properly because they are disengaged.  

Students demonstrate a broad range of learning behaviors when interacting with 

intelligent tutoring systems [Aleven, McLaren, Roll, & Koedinger, 2006; Beal, Mitra, & 

Cohen, 2007; Bunt & Conati, 2003; Graesser, Person, & Magliano, 1995]. In particular, 

there has been growing interest in how student motivation affects learning and problem 

solving. This line of research has raised important questions about how and why students 

disengage from educational software, as well as the cognitive impacts of disengagement 

[Baker, Corbett, Koedinger, & Wagner, 2004; Beal, Qu, & Lee, 2006; Muldner, 

Burleson, Van de Sand, & VanLehn, 2010]. Disengagement can take a variety of forms, 

including hint abuse [Aroyo et al., 2007; Beal et al., 2006], off-task conversation [Baker, 

2007] and gaming the system [Baker et al., 2004a]. In general, students who abuse or 

disengage from an intelligent tutoring system learn less effectively than students who do 

not disengage [Baker et al., 2004; Cocea, Hershkovitz, & Baker, 2009; Gong, Beck, 

Heffernan, & Forbes-Summers, 2010]. Consequently, a growing body of research has 

investigated techniques for automatically detecting and preventing harmful learning 

behaviors such as gaming the system [Baker, Corbett, Roll, & Koedinger, 2008; Beal et 

al., 2006; Beal et al., 2007; Cetintas, Luo, Xin, Hord, & Zhang, 2009]. 

Recent work investigating off-task behavior and student emotion has begun to raise 

questions about whether off-task behavior is universally unproductive for learning [Baker 

et al., 2011]. On the one hand, empirical findings suggest that off-task behavior is 

associated with boredom, which has been shown to be harmful for learning [Baker, 

D’Mello, Rodrigo, & Graesser, 2010]. On the other hand, recent findings have suggested 

that going off-task may alleviate negative affect, which could in turn benefit learning 

[Baker et al., 2011; Sabourin, Rowe, Mott, & Lester, 2011]. A plausible explanation is 

that some students use off-task behavior as a coping strategy for negative learning 

emotions. Along these lines, there is evidence that some students may be more effective 

at regulating their emotional states than other students [Meyer & Turner, 2006]. 
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Furthermore, some types of off-task behavior have been observed to be more harmful 

than others [Baker et al., 2004a].  

These observations highlight the importance of distinguishing between off-task 

behavior that is associated with positive affective and learning outcomes and off-task 

behavior that is unproductive. By employing models that distinguish between 

unproductive off-task behavior and productive off-task behavior, intelligent tutoring 

systems can utilize pedagogical strategies that appropriately respond to student 

disengagement and hypothetically yield both improved affective and learning outcomes.  

We investigate the affective role of off-task behavior by analyzing data from student 

interactions with CRYSTAL ISLAND, a narrative-centered learning environment for middle 

school microbiology. We find that off-task behavior has an overall detrimental effect on 

student learning, but observations of students’ affective transitions suggest that off-task 

behavior may serve a productive role for some students coping with negative affective 

states such as frustration. In some cases, we find preliminary evidence that students use 

off-task behavior as a strategy for self-regulating their emotional states during learning.  

Based on these findings, we present a supervised machine learning procedure for 

detecting whether students’ off-task behaviors are cases of emotion self-regulation. The 

method proceeds in three stages. During the first stage, a dynamic Bayesian network 

(DBN) is trained to predict the valence of students’ emotion self-reports during 

interactions with the learning environment. In the second stage, a novel simulation 

process uses the trained DBN to generate hypothetical affective trajectories from 

modified student interaction data. The generated affective trajectories are alternate 

futures that might have occurred had the student performed fewer off-task behaviors after 

each self-report. The alternate futures are modeled under an assumption that each student 

would perform fewer off-task behaviors under the influence of an “optimal” tutor. The 

hypothetical affective trajectories are compared to students’ actual affective trajectories 

in order to determine whether students’ off-task behaviors impacted their emotional 

states. These comparisons are used to generate binary labels for each interval of off-task 

behavior, indicating whether the off-task behavior was emotionally beneficial (i.e., self 

regulatory) or unproductive. In the final stage, off-the-shelf classification techniques are 

employed to predict the emotion self-regulation labels. This supervised learning analysis 

exclusively uses features that would be available in run-time settings, unlike the DBN 

which does not adhere to run-time constraints.  
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Findings indicate that this novel procedure shows promise for identifying cases of 

off-task behavior involving emotion self-regulation. An empirical analysis of the 

procedure’s first phase demonstrates that DBNs can accurately and reliably predict the 

valence of students’ emotion self-reports using data from the CRYSTAL ISLAND learning 

environment. Furthermore, we observe that the alternate future simulation process 

produces reliable labels denoting whether students’ off-task behaviors are cases of 

emotion self-regulation. A preliminary investigation of the procedure’s third stage 

suggests that support vector machines, bagged trees, and random forests have potential 

for improving the precision of emotion self-regulation detectors with modest tradeoffs in 

recall, but room for improvement remains. The results provide initial support for the 

proposed method of identifying off-task behaviors as cases of emotion self-regulation. 

The findings also highlight the potential of continued investigation into educational data 

mining methods that employ alternate futures. 

The paper is organized as follows. Section 2 describes related work investigating off-

task behavior in intelligent tutoring systems. Section 3 discusses background on 

narrative-centered learning environments, as well as issues related to off-task behavior in 

these environments. Section 4 describes CRYSTAL ISLAND, a narrative-centered learning 

environment for middle school microbiology. Sections 5 and 6 describe a study that was 

conducted with middle school students using CRYSTAL ISLAND, as well as initial findings 

investigating off-task behavior and student affect in the environment. Section 7 describes 

the modeling procedure that was used to generate labels denoting whether off-task 

behaviors were unproductive or cases of emotion self-regulation. Section 8 reports 

empirical findings about using the proposed method to identify cases of emotion self-

regulation. Section 9 discusses the findings, as well as limitations of the work. Section 10 

concludes the paper with a description of future directions. 

 

2. OFF-TASK BEHAVIOR IN INTELLIGENT TUTORING SYSTEMS 

Initial work examining off-task behavior in intelligent tutoring systems has distinguished 

between several ways that students can go off-task, including off-task solitary behavior, 

off-task conversation, inactivity, and gaming the system [Baker et al., 2004a]. Gaming 

the system occurs when a student exploits the features of educational software (e.g., hint 

requests) in order to make progress without learning the requisite concepts. Empirical 

analyses have indicated that off-task behavior generally leads to lower aggregate learning 
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outcomes. However, a series of studies found that only gaming the system correlated 

negatively with learning outcomes among the off-task behaviors listed above [Baker et 

al., 2004a; Cocea et al., 2009]. Additionally, analyses have suggested that type of off-task 

behavior is more useful for predicting learning than total time spent off task. Cocea et al. 

[2009] compared gaming the system behaviors against other off-task behaviors. They 

found that the two categories had different impacts on learning, including learning 

specific concepts as well as overall learning on a subject. Their findings were reproduced 

by Gong et al. [2010]. Further work has indicated that the harmful impacts of gaming the 

system may not be universal [Baker et al., 2008a]. There is evidence that some students 

are able to game the system without negatively impacting their learning gains. However, 

it remains unclear what factors distinguish these students from others.  

These observations have coincided with several efforts to devise models for 

detecting and responding to off-task behaviors in intelligent tutoring systems. For 

example, work by Beal et al. [2007] examined hidden Markov models (HMMs) for 

classifying student engagement levels. They distinguish between four categories of 

students: sustained-high engagement, sustained-medium engagement, increasing 

engagement, and sustained-low/decreasing engagement. These clusters imply that 

students experience different types of engagement patterns during their learning 

interactions. Additional analyses suggested that the sustained-low/decreasing engagement 

cluster was associated with low-achievement students, corroborating other findings 

regarding off-task behavior.  

Machine-learning techniques have been investigated for detecting and intervening in 

gaming behavior [Baker, Corbett, & Koedinger, 2004; Baker et al., 2006; Baker et al., 

2008a]. Detecting gaming the system involves discriminating between learning behaviors 

that are exploitive and learning behaviors that are standard use. Baker et al. [2008a] used 

a latent response model to represent relationships between gaming behavior, student 

actions, and learning outcomes. The model accurately distinguished between non-

gaming, harmful-gaming and non-harmful gaming students at a level significantly better 

than chance. The model was then used to inform an adaptive gaming intervention system.  

Non-adaptive approaches for reducing gaming behavior (e.g., adding a fixed delay 

during which students cannot ask for help [Murray & VanLehn, 2005]) have generally 

proved to be ineffective [Baker et al., 2006]. One proposed explanation is that fixed 

approaches harm non-gaming students and lead to the development of advanced gaming 
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behaviors in other students. Rather than modify the design of an entire tutoring system, 

individual cases of harmful gaming behavior can be addressed directly by employing 

accurate and reliable detection models. Scooter the Tutor detects harmful gaming the 

system behaviors and intervenes with supplementary learning activities and messages of 

displeasure [Baker et al., 2006]. Scooter the Tutor was compared to a baseline system 

without adaptive gaming interventions, and a marginal reduction in the frequency of 

gaming behaviors was observed among students who interacted with Scooter the Tutor. 

Despite this reduction in gaming, there was no significant impact on student learning 

gains.  

Recent work has examined emotional components of off-task behavior. Baker et al. 

[2010; 2011] and Rodrigo et al., [2007] have investigated affect and off-task behavior in 

several computer-based learning environments. Observers noted whether students were in 

one of seven emotional states: boredom, confusion, frustration, engaged concentration, 

surprise, delight and neutral. The study found that students were most likely to be bored, 

confused, or frustrated while performing gaming the system behaviors. Additionally, 

boredom and confusion were significant predictors of students’ future gaming behavior. 

This same line of research has begun to investigate whether off-task behavior is an 

effective strategy for regulating specific negative affective states in intelligent tutoring 

systems. Baker et al. [2011] found evidence that off-task behavior may reduce subsequent 

levels of boredom. These findings, combined with evidence that some types of off-task 

behavior are harmful for learning and some types are not harmful [2004a; 2008a], suggest 

that off-task behavior may not be as universally detrimental to learning as was previously 

believed. 

Recent work has examined emotional components of off-task behavior. Baker et al. 

[2010; 2011] and Rodrigo et al. [2007] investigated affect and off-task behavior in 

several computer-based learning environments. Observers noted whether students were in 

one of seven emotional states: boredom, confusion, frustration, engaged concentration, 

surprise, delight and neutral. The study found that students were most likely to be bored, 

confused, or frustrated while performing gaming the system behaviors. Additionally, 

boredom and confusion were significant predictors of students’ future gaming behavior. 

This same line of research has begun to investigate whether off-task behavior is an 

effective strategy for regulating specific negative affective states in intelligent tutoring 

systems. Baker et al. [2011] found evidence that off-task behavior may reduce subsequent 
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levels of boredom. These findings, combined with evidence that some types of off-task 

behavior are harmful for learning and some types are not harmful [Baker, 2004a; Baker et 

al., 2008a], suggest that off-task behavior may not be as universally detrimental to 

learning as was previously believed. 

 

3  NARRATIVE-CENTERED LEARNING 

Off-task behavior has been the subject of growing attention in traditional intelligent 

tutoring systems, but less is known about off-task behavior in narrative-centered learning 

environments. Narrative-centered learning environments are a class of game-based 

learning environments that embed subject matter and problem solving within interactive 

story scenarios [Aylett, Louchart, Dias, Paiva, & Vala, 2005; Marsella, Johnson, & 

Labore, 2000;  Rowe, Shores, Mott, & Lester, 2011]. This approach aims to foster student 

engagement and capitalize on individuals’ inherent abilities to interpret, recall, and 

reason about narrative structures [Bruner, 1990; Mandler & Johnson, 1988; O’Neill & 

Riedl, 2011]. Narrative-centered learning environments have been observed to yield 

positive learning, problem solving, and engagement outcomes [Hickey, Ingram-Goble, & 

Jameson, 2009; Ketelhut, 2007; Rowe et al., 2011]. 

While narrative-centered learning environments offer several attractive qualities, 

they must be carefully designed to avoid narrative elements that detract from learning. 

Narrative-centered learning environments often provide rich interactive environments, 

realistic physics, and engaging characters, but these same features can introduce 

seductive details [Rowe, McQuiggan, Robison, & Lester, 2009; Harp & Mayer, 1998]. 

Fig 1. CRYSTAL ISLAND narrative-centered learning environment. 
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For example, students may allocate extraneous attention to characters and objects in the 

world, limiting cognitive resources available for learning. Alternatively, students may 

spend excessive time manipulating objects to explore physics simulations that underlie 

gameplay. In the latter case, object manipulation may not contribute to the problem-

solving task, and thus the behaviors can be considered off task. In this manner, off-task 

behavior in narrative-centered learning environments differs from off-task behavior in 

traditional intelligent tutoring systems. Unlike off-task conversation and inactivity, off-

task behavior in narrative-centered learning environments appears superficially similar to 

engaged behavior; the student is interacting with the virtual environment, but not 

focusing on the primary learning task. For these reasons, off-task behavior in narrative-

centered learning environments is challenging for instructors to detect. This observation 

underscores the importance of software-based solutions for detection and intervention. 

 

4  CRYSTAL ISLAND 

For the past several years, the authors and their colleagues have been designing, 

implementing, and conducting empirical studies with CRYSTAL ISLAND [Rowe et al., 

2011; Rowe et al., 2009; Sabourin et al., 2011a; Sabourin, Mott, & Lester, 2011]. 

CRYSTAL ISLAND (see Figure 1) is a narrative-centered learning environment built on 

Valve Software’s Source™ engine, the 3D game platform for Half-Life 2. CRYSTAL 

ISLAND features a science mystery set on a recently discovered volcanic island. The 

curriculum underlying CRYSTAL ISLAND’s mystery is derived from the North Carolina 

state standard course of study for eighth-grade microbiology. CRYSTAL ISLAND’s premise 

is that a mysterious illness is afflicting a research team stationed on a remote island. The 

student plays the role of a visitor who recently arrived on the island in order to see her 

sick father. However, the student gets drawn into a mission to save the entire research 

team from the spreading outbreak. The student explores the research camp from a first-

person viewpoint and manipulates virtual objects, converses with characters, and uses lab 

equipment and other resources to solve the mystery. As the student investigates the 

mystery, she completes an in-game diagnosis worksheet in order to record findings, 

hypotheses, and a final diagnosis. This worksheet is designed to scaffold the student’s 

problem-solving process, as well as provide a space for the student to offload any 

findings gathered about the illness. The mystery is solved when the student submits a 

complete, correct diagnosis and treatment plan to the camp nurse. 



 

 

 

Journal of Educational Data Mining, Volume 5, Issue 1, April 2013 17

To illustrate the behavior of CRYSTAL ISLAND, consider the following situation. 

Suppose a student has been interacting with the virtual characters in the story world and 

learning about infectious diseases. In the course of having members of the research team 

become ill, she has learned that a pathogen is an agent that causes disease in its host and 

can be transmitted from one organism to another. As the student concludes her 

introduction to infectious diseases, she uncovers a clue while speaking with a sick patient 

that suggests the illness may be coming from food items the sick scientists recently ate. 

Some of the island’s characters are able to help identify food items and symptoms that 

are relevant to the scenario, while others are able to provide helpful microbiology 

information. The student discovers through a series of tests that a container of 

unpasteurized milk in the dining hall is contaminated with bacteria. By combining this 

information with her knowledge about the characters’ symptoms, the student deduces that 

the team is suffering from an E. coli outbreak. The student reports her findings back to 

the camp nurse, and they discuss a plan for treatment.  

 

5  CORPUS COLLECTION 

As part of an investigation of narrative-centered learning, a study was conducted with 

450 eighth grade students from two North Carolina middle schools. Students interacted 

with the CRYSTAL ISLAND narrative-centered learning environment. After removing 

instances of incomplete data, the final corpus included data from 400 students. Of these, 

there were 194 male and 206 female participants. The average age of the students was 

13.5 years (SD = 0.62).  At the time of the study, the students had not yet completed the 

microbiology curriculum in their classes.  

 

5.1  METHOD 

A week prior to the interaction, students completed a series of pre-study questionnaires 

including a test of prior knowledge, as well as several measures of personal attributes. 

Personality was measured using the Big Five Personality Questionnaire, which represents 

personality along five dimensions: openness, conscientiousness, extraversion, 

agreeableness and neuroticism [McCrae & Costa, 1993]. Goal orientation, which refers 

to the extent that a student values mastery of material and successful performance 

outcomes when engaged in learning activities, was also measured [Elliot & McGregor, 

2001]. Students’ emotion regulation strategies were measured with the Cognitive 
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Emotion Regulation Questionnaire [Gernefski & Kraati, 2006] which measures the extent 

to which each of nine common strategies are used by an individual. Students also 

completed a researcher-generated curriculum test to assess their domain content 

knowledge prior to interacting with CRYSTAL ISLAND. 

During the study, students interacted with CRYSTAL ISLAND for 55 minutes or until 

they completed the mystery. During their interaction they received an in-game prompt 

asking them to report on their emotional state at regular seven-minute intervals      

(Figure 2). This prompt was described to students as an “experimental social network” 

that was being pilot tested on CRYSTAL ISLAND. Students selected from one of seven 

emotional states: anxious, bored, confused, curious, excited, focused, and frustrated. 

They were also asked to type a short “status update.” There was no actual cross-student 

communication enabled by this interface. 

Immediately after completing their interaction with CRYSTAL ISLAND, students were 

given a post-interaction curriculum test with questions identical to the pre-test. They also 

completed several questionnaires related to their interest and understanding of the 

CRYSTAL ISLAND mystery. These additional measures were not used in the current 

investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Fig 2. Emotion self-report device. 
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5.2  IDENTIFYING OFF-TASK BEHAVIOR 

CRYSTAL ISLAND provides an open environment, believable characters, and a mystery 

narrative. Some of the elements that populate the narrative world are primarily aesthetic, 

and they are not essential for completing the science problem-solving task. For this work, 

off-task behavior is defined as any activity in the environment that does not contribute 

toward completing the science mystery. These behaviors are distinguished by identifying 

non-essential locations in the virtual world and unproductive interactions with objects.  

There are several locations that are tangential to the learning task, including a 

number of outdoor areas and a waterfall. Students are considered to be off-task if they 

spend an excessive amount of time (e.g., four minutes without entering a building) in any 

of these locations. We also consider the player character’s z-coordinate, or vertical 

position, in detecting off-task behavior. During the study researchers observed a common 

off-task behavior involving climbing trees and stacked crates in order to reach the roofs 

of buildings. Students are considered off-task if their z-coordinates exceed the maximum 

height that can be reached without climbing in the virtual environment. Non-critical 

objects in the virtual environment include cacti, crates, medicine bottles, buckets, and 

trash bins. No virtual characters refer to these objects at any point in the mystery. Any 

interaction with these objects is considered off-task. Additionally, if a student brings a 

task-related object (e.g., a contaminated egg) to an unassociated location (e.g., the living 

quarters) this is considered to be off-task as well.  

Each case and total duration of off-task behavior was tagged in the student trace data. 

Any sequence of off-task behaviors that occurred less than 30 seconds apart was 

considered to be a continuous duration of off-task behavior. This decision sought to 

account for possible “on-task” actions occurring during segments of off-task behavior. 

For example, a student might rest a cactus on a sick patient (off-task), return to the dining 

hall to pick up a sandwich (on-task), return to the infirmary (on-task), and rest the 

sandwich on top of the patient as well (off-task). After aggregating sequences of off-task 

behavior, periods of off-task behavior totaling less than two seconds were discarded. This 

decision sought to avoid penalizing accidental interactions with off-task objects. No 

behavior occurring in the first five minutes of interaction was considered off-task in order 

to allow students ample time to explore the environment. 
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6  EXPLORATORY ANALYSIS OF OFF-TASK BEHAVIOR AND EMOTION 

In order to assess student learning, paired t-tests were conducted. The tests compared 

student’s pretest (M = 6.6, SD = 2.3) and posttest (M = 8.6, SD = 3.4) scores, and they 

indicated that students’ learning gains from using CRYSTAL ISLAND were statistically 

significant, t(399) = 12.5, p < 0.0001. Based on the definition of off-task behavior 

described previously, the proportion of time that each student spent off-task was 

calculated. On average, students spent 5.1% (SD = 5.16) of their time engaged in off-task 

behavior, with a range of 0% to 63.2%.  

An initial examination of off-task behavior was conducted using students from only 

the first school (N = 260). Results resembled findings reported from other investigations 

of off-task behavior in alternate intelligent tutoring systems [Baker et al., 2010]. Off-task 

behavior was found to negatively correlate with students’ normalized learning gains, 

r(258) = -0.18, p = 0.004. There was no evidence that low prior-knowledge students 

engaged in more off-task behavior, as the correlation between time off-task and pre-test 

score was not statistically significant, r(258) = -0.08, p = 0.21. This result contrasted with 

a previous investigation of off-task behavior using an earlier version of the CRYSTAL 

ISLAND learning environment [Rowe et al., 2009]. 

The results also highlighted evidence that off-task behavior may have a significant 

affective component. In particular, total time off-task was negatively correlated with 

curiosity r(258) = -0.12, p = 0.04 and frustration, r(258) = -0.13, p = 0.04. This result 

was surprising given prior work that demonstrated frustration as a trigger for off-task 

behavior [Baker et al., 2010]. The finding prompted an examination of whether off-task 

behavior helps alleviate frustration in the CRYSTAL ISLAND environment.  

In order to investigate relationships between off-task behaviors and affect transitions 

we utilized a measure of transition likelihood, L (Equation 1), which calculates the 

likelihood of a transition between two states relative to chance [D’Mello, Taylor, & 

Graesser, 2007]. The L statistic has a maximum value of 1, and its minimum value is -∞. 

An L-value above zero indicates that a particular transition is more likely to occur than 

chance. A negative L-value indicates that a state transition is less likely than chance. This 

statistic is based on Cohen’s kappa, and it is frequently used to measure changes in 

student emotions that occur over time [Baker et al., 2010; D’Mello et al., 2007]. 

 



 

 

 

Journal of Educational Data Mining, Volume 5, Issue 1, April 2013 21

 

Equation 1. L-value calculation 

 

 

To examine whether off-task behavior alleviates frustration or other negative 

learning emotions, we defined student states as follows: the current state is comprised of 

the student’s emotion self-report at time tn and whether or not the student went off-task 

between time tn and tn+1. The next state is comprised of the student’s emotion self-report 

at time tn+1. The likelihood of transitioning between these two states was calculated using 

the L statistic described above. 

The analysis revealed that students who reported frustration at time tn and 

subsequently went off-task were most likely to report feeling focused seven minutes later 

at tn+1 (Figure 3a). These observations are consistent with a hypothesis that off-task 

behavior helps to alleviate frustration. The finding lends support to the premise that some 

students use off-task behavior as a way to productively cope with negative affect. A 

possible explanation for the finding is that students employ emotion self-regulation 

strategies by taking breaks from challenging tasks, exploring the virtual environment, and 

returning “refreshed” at later times to re-engage in problem-solving activities. Students 

who did not go off-task after reporting frustration did not appear to reap this same 

benefit. Frustrated students who stayed on-task were most likely to report boredom at the 

next self-report (Figure 3a). An emotion transition from frustration to boredom may 

indicate that a student has disengaged from problem solving altogether.  

Fig. 3. Graph of transition likelihoods from (a) frustration and (b) confusion based on off-task 

behavior. 

 b. a. 
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The hypothesis that students use off-task behavior as a productive strategy for 

regulating negative affect was not supported when examining affect transitions from the 

state of confusion (Figure 3b). Confused students who remained on-task were most likely 

to report focus at the next self-report, but confused students who went off-task were most 

likely to report boredom. An affect transition from confusion to boredom may signify a 

student reaching an impasse and giving up. These observations also suggest that students 

who persevered through confusion achieved positive affective benefits for doing so. A 

notable distinction between the frustration transitions and the confusion transitions is that 

frustration is generally considered harmful for learning, but confusion is considered 

productive for learning despite its negative valence [Baker et al., 2010].  

These findings indicate that off-task behavior is not universally effective for self-

regulating negative affect, but the findings also imply that some students may experience 

emotional benefits from off-task behavior under particular circumstances (e.g., when 

experiencing frustration). A promising direction for future investigation is exploring 

whether students’ individual differences impact the relationships between off-task 

behavior and emotion transitions. In a follow up investigation that compared students 

with above-median learning gains and below-median learning gains, the high-learning 

students tended to transition from frustration to focus after going off-task. On the other 

hand, students in the low-learning group were no more likely than chance to transition 

from frustration to focus whether they went off-task or remained on-task. While these 

findings were not statistically significant, the observations raise questions about whether 

students’ individual differences—in prior knowledge, problem-solving ability, 

personality, self-regulation ability—may affect whether an intelligent tutor should 

recommend that a student “take a break” from problem solving by going off-task in 

CRYSTAL ISLAND. 

 

7  MODELING OFF-TASK BEHAVIOR AS EMOTION SELF-REGULATION  

After exploring the relationships between off-task behavior and student affect transitions, 

we devised a procedure for automatically predicting student off-task behaviors that 

alleviate negative learning emotions. The method proceeds in three stages. During the 

first stage, the conditional probabilities of a theoretically grounded dynamic Bayesian 

network are learned to predict the valence of students’ emotion self reports using data 

about off-task behaviors. During the second stage, the dynamic Bayesian network is used 
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to generate hypothetical affective trajectories, or alternate futures, which play a central 

role in generating labels to annotate off-task behaviors. The labels identify whether each 

interval of off-task behavior is self-regulatory (i.e., increases emotional valence) or 

unproductive (i.e., decreases emotional valence or has no impact). During the third stage, 

supervised machine learning techniques are used to induce predictive models of emotion 

self-regulation using only features available in run-time settings. The resulting models 

can be used by an intelligent tutoring system to guide pedagogical decisions about 

intervening in students’ off-task behaviors. 

 

7.1  BAYESIAN MODELING OF OFF-TASK BEHAVIOR AND AFFECT 

Bayesian networks have been used to model several aspects of intelligent tutoring 

systems, including models of student learning [Baker, Corbett, & Aleven, 2008; Corbett 

& Anderson, 1994], affect [Sabourin et al., 2011b; Conati & Maclaren, 2009], and 

hinting [Gertner, Conati, & VanLehn, 1998]. Bayesian networks provide a concise 

graphical representation for reasoning under uncertainty as they explicitly encode 

relationships between random variables in terms of conditional probability distributions. 

Bayesian networks are comprised of two primary components: a network structure that 

encodes the variables and conditional independence relationships among them, and 

conditional probability distributions that concisely encode the joint probability 

distribution over all of the model’s variables. Network structures and conditional 

probability distributions can be machine learned using a variety of algorithms [Alpaydin, 

2004], or they can be authored by hand.  

This work follows a hybrid approach that combines a hand-crafted network structure 

with conditional probability values that have been machine learned using the 

Expectation-Maximization (EM) algorithm. A model is crafted to predict students’ 

emotion self-report values by considering their personal attributes, their narrative 

problem-solving progress, and their off-task behaviors. Once a Bayesian network has 

been obtained that accurately models how these factors are associated with affective 

experience, it can be used to examine whether students are using off-task behavior to 

reduce negative affect. 
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7.2 CONSIDERING ALTERNATE FUTURES 

Distinguishing between off-task behaviors that are unproductive and off-task behaviors 

that are self-regulatory poses notable challenges. In particular, a transition between two 

emotional states cannot be automatically attributed to the off-task behaviors that occur 

between emotion self-reports; a range of factors impact student emotions. However, if 

comparisons can be drawn between two sequences that differ only in their patterns of off-

task behavior, changes in emotion self-reports can be attributed to the off-task behavior. 

In order to perform such a comparison, we use the dynamic Bayesian network from the 

procedure’s first stage to simulate students’ affective trajectories as if they had performed 

fewer off-task behaviors than in reality. This approach involves simulating alternate 

futures after each emotion self-report in order to determine whether off-task behavior 

directly impacted the student’s affect transition. In effect, the dynamic Bayesian network 

is used to generate virtual emotion data to conduct a simulated experiment. 

Consider the following example: a student is midway through interacting with 

CRYSTAL ISLAND. She reports confusion at one self-report (SRi) and at the next 

opportunity (SRi+1) she reports feeling focused. In the interval between SRi and SRi+1 she 

engaged in off-task behavior. With just this information, one cannot determine whether 

the off-task behavior caused the positive transition into a focused state. However, suppose 

that the student’s trace data is altered by removing all instances of off-task behavior that 

occurred between time SRi and SRi+1.The altered data is next provided to the dynamic 

Bayesian network from the procedure’s first stage. The DBN provides a prediction about 

what the student’s affective state might have been at the next time step (POi+1) if she had 

not gone off-task (Figure 4). If the model predicts a positive state such as focused or 

curious, one could conclude that the off-task behavior did not cause the positive change 

SRi SRi+1 

POi+1 

actual behaviors 

(off-task) 

alternate behaviors 

(on-task) 

Fig. 4. Comparison of affective outcomes from an actual sequence of behaviors and simulated 

alternate behaviors. 



 

 

 

Journal of Educational Data Mining, Volume 5, Issue 1, April 2013 25

in emotion. On the other hand, if the model predicts that the student would feel frustrated 

if she had not gone off-task, then one has obtained evidence that the off-task behavior 

brought about the positive affect transition. This latter observation identifies a possible 

case of emotion self-regulation, and a case where intervention by an intelligent tutor may 

be undesirable. This comparison can be used to label the interval’s off-task behavior as 

self-regulatory or unproductive depending on the outcome.  

 

7.3  REAL-TIME PREDICTION 

While consideration of alternate futures provides evidence about self-regulation of 

negative emotion, it is not a technique that can be used at run-time. The technique cannot 

be directly used at run-time because it involves comparisons of students’ emotional states 

after they have already gone off-task. An intelligent tutoring system requires models that 

can determine whether an off-task behavior will likely be a case of emotion self-

regulation before the off-task behavior or self report occur. This type of predictive model 

provides the ability to decide whether to intervene or remain idle at the onset of off-task 

behavior. 

In order to obtain such a model, we employ supervised machine learning techniques 

to predict labels generated during the procedure’s second stage. The learned model is 

restricted to using predictor features that can be calculated during run-time (Figure 5). 

This approach is similar to work on contextual guess and slip, which uses information 

from future practice opportunities to generate class labels for training runtime models 

SRi 

SRi+1 

POi+1 

SRi 
Off-Task Behavior 

Removed Off-Task Behavior 

SRi 

Prediction Point 

Full Student Trace 

(used for training simulator 

and creating labels) 

 

Altered Student Trace 
(used as simulation for 

creating labels) 

 

Student Trace Subset 
(used as training run-time 

prediction model) 

 

Fig 5. Modifications and uses of student trace data 
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[Baker et al., 2008b]. A notable distinction with the current work is that contextual guess 

and slip models employ a Bayesian analysis procedure to generate data labels, whereas 

the current approach uses machine learned dynamic Bayesian networks and alternate 

future simulations to generate the data labels.  

 

8  FINDINGS 

The corpus described in Section 5 was used to examine the proposed procedure for 

modeling off-task behavior as emotion self-regulation. This section reports findings from 

empirical investigations of each of the three stages: (1) developing a dynamic Bayesian 

network to accurately predict students’ affective states, (2) generating possible alternate 

futures to distinguish cases of unproductive and self-regulatory off-task behavior, and   

(3) training models that predict whether off-task behaviors are self-regulatory or 

unproductive at run-time. We report significant findings for the first two stages, as well 

as preliminary results for the third stage. These findings underscore the potential of using 

alternate futures to investigate emotion self-regulation in intelligent tutoring systems. 

 

8.1  PREDICTING STUDENT AFFECT 

The CRYSTAL ISLAND corpus includes a total of 2,886 emotion self-reports from 400 

students. Student reports spanned the full range of available emotion choices. Focused 

(23.1%) was the most frequently reported emotion. Following were reports of curiosity 

(19.1%), confusion (16.2%), frustration (15.7%), excitement (13.1%), boredom (8.4%) 

and anxiety (4.5%). Overall, emotions with positive valence (focused, curious, and 

excited) accounted for 55.3% of emotion self-reports.  

The corpus was randomly split into two equal-sized data sets, DS1 and DS2. Equal 

numbers of students from each school were included in each data set.  The first data set, 

DS1, was designated for training models and generating labels during the procedure. The 

second data set, DS2, was designated for validation and assessing the reliability of the 

generated self-regulation labels.  

During the procedure’s first stage, a dynamic Bayesian network structure was 

handcrafted that included variables related to three main sources: student personal traits, 

in-game progress, and off-task behaviors.  

• Personal Attributes. These fixed attributes were obtained from students’ scores on 

questionnaires completed prior to using CRYSTAL ISLAND. The features included four 
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measures of goal orientation: mastery avoidance, mastery approach, performance 

avoidance, and performance approach. Goal orientation describes how students 

approach learning tasks, and it has been shown to significantly impact student 

emotions during learning [Dweck & Leggett, 1988; Elliot & Pekrun, 2007]. Three 

personality features expected to have close relations to affective dispositions were 

also included: openness, agreeableness, and conscientiousness. In particular these 

traits relate to how individuals approach novel situations (e.g., learning tasks) and 

react to feedback (e.g., a student is told they have given an incorrect answer). The 

questionnaires were scored according to their individual scoring instructions. The 

resulting ordinal values were used to create an even ternary split of students on each 

attribute (Low, Medium, High). The resulting discretized labels were used to train 

the model. 

• In-Game Progress. These attributes were calculated from students’ log data, and 

they summarized student actions in CRYSTAL ISLAND up until the time of particular 

emotion self-reports. The attributes characterized important actions taken, such as 

TestsRun, BooksViewed, and GoalsCompleted. They also included features 

quantifying student progress on problem-solving milestones, such as SuccessfulTest 

and WorksheetChecks. Most of these attributes were split into equal ternary groups 

(High, Medium, and Low) resulting in three discrete values for each variable. The 

TestsRun and WorksheetChecks attributes had four possible values: High, Medium, 

Low and Zero. The High, Medium, and Low values represented an even ternary split 

of students who performed the actions at least once, and the Zero value represented 

students who did not perform the action at all. The SuccessfulTest feature was binary, 

indicating whether a student performed a laboratory test that turned out positive. 

• Off-Task Behaviors. Two attributes related to students’ off-task behavior were 

calculated. The first feature was a binary attribute measuring whether or not the 

student went off-task since the previous self-report. The second attribute measured 

the proportion of time the student spent off-task since the most recent self-report. 

This attribute is discretized into five buckets, each representing different proportions 

of off-task behavior. 
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In addition to observable states, each time slice of the dynamic Bayesian network 

included four hidden states. Two of these states represented summaries of student 

progress in CRYSTAL ISLAND in terms of learning progress and goal completion. The 

other two hidden states characterized students’ achievement goals during learning. The 

network’s structure was based on prior work examining Bayesian prediction of student 

affect [Sabourin et al., 2011b]. A single time slice from the network is shown in Figure 6. 

Temporal relationships were also added between temporally adjacent emotion and 

valence nodes. A high-level illustration of the dynamic Bayesian network depicts the 

temporal connections in Figure 7.  

The dynamic Bayesian network was created using the GeNIe modeling environment 

developed by the Decision Systems Laboratory of the University of Pittsburgh 

(http://dsl.sis.pitt.edu). After hand-crafting the structure of the dynamic Bayesian 

network, the parameters were learned using the EM algorithm provided by GeNIe. The 

model was evaluated using 10-fold cross-validation. In this technique, a model’s 

parameters are trained using data from 90% of the student corpus. The predictive 

accuracy of the model is then evaluated on the remaining 10% of the corpus. This 

Fig. 6. Structure of one time slice from dynamic Bayesian network. 
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approach is designed to provide an accurate measure of how well a trained model will 

extend to future, unseen populations. The evaluation of the DBN showed that it was able 

to predict emotion labels with 34.7% accuracy and emotional valence with 80.6% 

accuracy. This performance offers statistically significant (p < 0.001) improvement over 

the most-frequent baseline measures, which for DS1 are 22.8% for emotion and 54.4% for 

valence.  

While the accuracy of emotion label prediction is significantly better than baseline, it 

is likely too low for practical use in guiding interventions. However, the 80.6% accuracy 

rate for valence prediction could be used in a tutorial setting. As a result, we decided to 

focus on emotion valence for the remainder of the investigation. 

 

8.2 CONSIDERING ALTERNATE FUTURES 

In order to distinguish between cases where students should be permitted to go off-task 

and cases where students should be discouraged from going off-task, we compared 

students’ actual affective outcomes (as indicated by self-report SRi) with predicted 

affective outcomes (POi). Predicted outcomes were based on alternate futures, which 

were hypothetical scenarios where students performed fewer off-task behaviors than they 

did in reality. The comparisons indicated whether off-task behaviors may have been 

Fig. 7. Structure of dynamic Bayesian network. 
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responsible for changes in student emotions. The comparison results were also proxies 

for modeling the consequences of intervening in unproductive off-task behavior.  

When creating alternate futures for a student, only off-task behaviors occurring 

between the affective state being predicted (SRi+1) and the previous self-report (SRi) are 

modified. The procedure assumes that an “optimal” tutorial intervention delivered during 

this interval would reduce or eliminate off-task behavior; the data is altered accordingly. 

Since reductions in off-task behavior can fall into several possible levels, we consider 

multiple possible futures for each student.  

The two features that represent off-task behavior are discrete. One binary feature 

measures whether or not the student went off task since the last self report. The other 

feature has five possible values representing the discretized proportion of time spent off 

task. When reducing or eliminating the amount of off-task behavior in a student’s data, 

we consider every possible reduction in off-task behavior level. For example, if a student 

spends a large amount of time off-task and has a value in the fourth bucket for proportion 

off-task, we simulate scenarios where her off-task behavior is reduced to the third, 

second, and first buckets. The binary feature is correspondingly adjusted to account for 

possible elimination of off-task behavior.  

The modified data is input to the dynamic Bayesian network to generate a predicted 

affective valence for the student’s next emotion self report. The predicted emotional 

valence is then compared with the actual emotional valence. If the predicted valence is 

lower than the actual valence, the transition (and associated off-task behavior) reflects 

evidence of self-regulation. This represents a case where intervening in off-task behavior 

may actually do more harm than good. If the predicted valence is higher or equal to the 

actual valence, the off-task behavior is considered unproductive from an affective 

standpoint.  

In total there were 498 cases of off-task behavior in DS1. With the possibility of 

different levels of reduction in off-task behavior, 656 alternate futures were generated. 

Using the procedure described above, 19.7% of the alternate futures were labeled as self-

regulatory. In order to test the reliability of the labels assigned to the off-task behavior 

intervals, a second set of comparison labels was generated using the data in DS2. A 

second dynamic Bayesian network was trained on DS2 using the same approach 

described above. The alternate futures from DS1 were then input to this second model to 

generate new labels signifying self-regulation.  
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If the second model’s labels, which were generated using a separate corpus than the 

first model, were highly similar to those produced by the first model, then we consider 

the emotion self-regulation labels to be reliable. This validation process seeks to avoid 

biased labels that are closely related to the particular corpus and model used to generate 

them. When the two sets of labels were compared, the models agreed 88.2% of the time, 

with a kappa value of .64. This represents a reasonable level of reliability, suggesting that 

the labels appear to reflect a real phenomenon: off-task behavior as emotion self-

regulation.  

 

8.3  PREDICTING SELF-REGULATION LABELS 

In order to train models for predicting the labels at run-time, off-the-shelf supervised 

machine learning techniques were employed. Supervised learning techniques require a 

single set of “gold standard” labels that classify each observation. In order to generate 

one set of labels, the predictions from the two models were consolidated. In nearly all 

cases there was agreement between the two models and possible futures. In cases where 

the two models or possible futures did not agree, the most frequent label was selected. In 

the very small minority (<1%) of cases where neither label occurred more frequently, we 

labeled the off-task behavior interval as unproductive. This choice was a conservative 

approach motivated by the observation that off-task behavior is generally associated with 

decreased learning. On this basis, it is likely preferable to err on the side of intervention 

in cases of uncertainty. After consolidating the labels, 19.5% of off-task behavior cases 

were labeled as self-regulatory. 

As part of a preliminary investigation of the third stage, we trained models for 

predicting emotion self-regulation by leveraging the same features that were used to train 

the dynamic Bayesian network in the procedure’s first stage. The features were altered to 

leverage information that would be available in run-time settings by including 

information only up until the time that a prediction was made. Off-the-shelf classification 

algorithms for predicting these labels were compared, including random forests, support 

vector machines, and bagged decision trees. All of the models were trained using the 

WEKA machine learning toolkit [Hall et al., 2009]. In particular, we sought to obtain a 

model that could identify as many cases of emotion self-regulation as possible while 

avoiding misclassifications of instances that may be unproductive for learning. This 

objective prioritizes improving precision and recall of the self-regulation class while 
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maintaining a high recall of the unproductive class. The accuracy, precision and recall of 

each trained model are shown in Table 1. The models were compared to a baseline model 

that predicted the most frequent label: unproductive off-task behavior. 

While several models offered improvements in precision for recognizing self-

regulation, none of the models achieved greater overall accuracy than the baseline model. 

Among the trained models, support vector machines achieved the greatest accuracy, and 

all three techniques observed improvements in precision at detecting self-regulation. 

While these findings do demonstrate that supervised learning techniques can achieve 

modest improvements in precision with small reductions in recall, considerable room for 

improvement remains. Several directions exist for improving the performance of these 

predictive models to a level that could be used in an intelligent tutoring system. A natural 

next step includes considering a broader pool of predictor features when training the 

classifiers. In particular, students’ log data is amenable to producing a diverse range of 

metrics that characterize students’ problem solving behaviors in the CRYSTAL ISLAND 

environment. While the current set of features have proven effective for predicting 

emotional valence in dynamic Bayesian networks, alternate features may need to be 

considered to obtain accurate predictive models for the procedure’s third stage. The 

current investigation also did not explore automated techniques for feature selection, 

which offer potential to narrow down the most promising predictors from a pool of 

candidates. Ensemble learning techniques are another promising approach, as they 

combine the predictive strengths of multiple models. 

 

9  DISCUSSION 

Results from investigating the first two stages of the procedure for modeling off-task 

behavior as emotion self-regulation are especially encouraging. Theoretically grounded 

Table 1. Trained classifiers and performance metrics, ordered by recall on no-evidence 

class

Model Precision Recall Precision Recall Accuracy

Baseline (most frequent) 0.000 0.000 0.805 1.000 80.5%

Support Vector Machine 0.222 0.042 0.806 0.964 78.5%

Random Forest 0.259 0.074 0.809 0.949 77.9%

Bagged Tree 0.286 0.105 0.812 0.936 77.5%

UnproductiveSelf-Regulation Evidence
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dynamic Bayesian networks predicted students’ emotional valence in CRYSTAL ISLAND 

with high levels of accuracy. Furthermore, the proposed method for obtaining emotion 

self-regulation labels based on alternate futures produced reliable results. These findings 

support the promise of empirical approaches for identifying off-task behaviors that are 

cases of emotion self-regulation. A preliminary analysis of the procedure’s third stage 

yielded modest results, but several directions for continued investigation remain. The 

analysis did reveal that improvements in identifying self-regulatory off-task behavior can 

be obtained with small reductions in recall of unproductive off-task behavior. In addition 

to explorations of additional classification techniques and predictor features, other 

evaluation metrics may be considered to identify models with acceptable trade-offs. 

Potential directions for future work include selecting models based on different 

evaluation metrics, as well as incorporating the models into run-time systems in order to 

assess resulting student outcomes in the learning environment. As these models improve, 

it will become increasingly important to identify what level of predictive accuracy and 

recall is necessary to satisfy the pedagogical requirements of runtime systems; the current 

predictive accuracies are too low for operational tutoring systems, as they underperform a 

majority class baseline. Furthermore, it remains to be seen which predictive performance 

metrics should be optimized in order to yield affect-sensitive intelligent tutors with the 

strongest positive impact on student learning.  

In this work, we have operated under the assumption that off-task behavior is 

generally unproductive for learning, and it should be discouraged unless strong evidence 

exists to the contrary. However, it is possible that tutorial interventions may be harmful in 

settings like narrative-centered learning environments because they interrupt typical 

gameplay sequences and student flow. Consideration of alternate off-task behavior 

intervention strategies may help to guide further development in this area.  

A limitation of this work is that it only sought to identify cases of successful 

regulation of negative emotion. There may have been cases where a student should have 

gone off task but did not have the emotion self-regulation skills to make this decision.  

There may be circumstances when students should be encouraged to go off task in order 

to regulate affect. These cases were not reflected the current investigation and represent 

an important area for future study.  
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10  CONCLUSION 

This work examined the relationships between student affect and off-task behavior in 

narrative-centered learning environments. We reported empirical results that suggest off-

task behavior is associated with positive affect transitions from the emotional state of 

frustration, but the opposite is true for off-task behavior occurring after self-reported 

confusion. The findings suggested that off-task behavior may be an effective emotion 

self-regulation strategy under some circumstances. However, an aggregate association 

between off-task behavior and decreased learning implied that principled approaches for 

distinguishing between unproductive off-task behavior and self-regulatory off-task 

behavior are needed.  

We proposed a novel supervised machine learning procedure for classifying off-task 

behaviors that are cases of emotion self-regulation.  During the first stage, dynamic 

Bayesian networks are trained to predict student emotion self-reports from trace data. We 

found that a theoretically grounded DBN was capable of predicting emotional valence 

with high accuracy, and it predicted emotional states at levels significantly better than a 

baseline approach.  

The DBN was used to generate alternate futures that simulated students’ affective 

trajectories as if they had performed fewer off-task behaviors than in reality. The 

alternate futures were compared to students’ actual affective trajectories in order to 

generate labels indicating whether off-task behaviors were cases of emotion self-

regulation. In a validation process involving a second DBN trained from a distinct data 

set, the labels were found to be highly reliable. The two DBN models produced labels 

with high levels of agreement between one another. During the procedure’s third stage, 

off-the-shelf classification models were trained to predict the labels using features that 

would be available in run-time settings. Support vector machines, bagged trees, and 

random forests achieved a promising balance between precision in detecting self-

regulatory off-task behavior and recall in detecting unproductive off-task behavior, but 

considerable room for improvement remained. The overall findings underscore the 

methodological potential of using empirically generated alternate futures for analyzing 

students’ emotion self-regulation processes. 

In future work, we will investigate additional predictor features for training the DBN 

and label classification models. Additionally, we will investigate alternate evaluation 

metrics and classification techniques to more effectively predict generated emotion self-
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regulation labels. If significant improvements in predictive accuracy can be obtained, we 

intend to incorporate the models into the CRYSTAL ISLAND learning environment in order 

to assess their ability to guide interventions for off-task behavior, shape students’ 

affective states, and yield improved student learning outcomes. 
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