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1. INTRODUCTION 
The assessment cycle of evidence-centered design (ECD) [Mislevy et al. this 

issue; Mislevy et al. 2006] provides a framework for treating an educational 

video game or simulation as an  assessment. It is particularly suitable for the 

development of performance-based assessments, including educational video 

games and simulations, where it is difficult to determine the exact test 

specifications of the assessment [Rupp et al. 2010]. One of the main components 

of the assessment cycle of ECD is the identification, extraction, and 

accumulation of the key features of student performance that can be used as 

evidence to indicate different levels of proficiency.  

In educational video games and simulations, the key features of student 

performance must be extracted from log data consisting of individual actions 

taken by the student while playing the game. However, log files contain 

prohibitively large quantities of data [Romero et al. 2009], making interpretation 

of the complex data that result one of the most serious bottlenecks facing 

researchers interested in implementing ECD in educational video games and 

simulations [Mislevy et al. 2004].  

In this study we seek to determine the usability of cluster analysis as a method 

of identifying key features of student performance as captured in log data from 

an educational video game.  

1.1 The Assessment Cycle of ECD 

The ECD framework can be viewed as a two-tiered structure that has a 

conceptual tier and an implementation tier. The conceptual tier consists of 

specifications for assessment design, implementation, and delivery as represented 

through the processes of domain modeling, domain analysis, and the conceptual 

assessment framework (CAF), as w ell as the assembly model and presentation 

model. The second tier consists of the actual computational processes involved in 

putting these conceptual models into practice, which is known as the four-

process cycle [Mislevy et al. this issue].  

In this paper, we specifically focus on the evidence identification (i.e., 

evidence rules) and evidence accumulation (i.e., measurement model) processes 
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of the CAF and four-process cycle for ECD as described in Mislevy et al. [this 

issue]. We have abstractly represented the flow of activities through this cycle 

diagrammatically in Figure 1, which shows this cycle consisting of six principal 

steps. 

 

 
 

Fig. 1. The principal processes in the assessment cycle for ECD, with relevant steps labeled (adapted 

from Fig. 3 in Mislevy et al. [this issue]). 

 

Step 1 is activity selection where we select and specify the activities students 

will be engaged in during our game by generating a l ist of knowledge 

specifications related to the content we wish to address. Step 2 is presentation 

where we use the knowledge specifications generated during activity selection to 

drive the selection of relevant game mechanics, visuals, and/or storyline so that 

game behavior addresses the identified concepts or constructs [Chung et al. 

2010]. In Step 3, we generate a comprehensive logging system to capture the 

game mechanics and other relevant presentation components so that an accurate 

log of each student’s in-game actions can be stored in the composite library 

[Chung and Kerr 2012]. 

In Step 4, we calculate statistics for evidence that was identified a priori, such 

as last level reached or number of resets per level, from the data stored in the 

composite library to provide evidence accumulation that can be used to modify 

activity selection or game presentation to address unforeseen issues that arise 

from the data. 
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Step 5 is evidence identification for evidence not identified a priori. Evidence 

identification is critical in log data stemming from educational video games and 

simulations to make the problem computationally tractable [Masip et al. 2011]. If 

evidence identification is successful and key features of student performance can 

be extracted from log files created during game play, in Step 6 the results of the 

evidence identification process can be stored in the composite library and 

combined across multiple subjects and trials to modify the presentation of the 

game [Kerr and Chung 2012] and/or provide task-level feedback targeted to a 

particular student’s game play and knowledge state. 
 

1.2 Challenges in Identifying Key Features of Student Performance 

While the evidence identification process is relatively simple for tests in a 

multiple choice format, this process becomes incredibly complex in an 

educational video game or simulation due to the sheer number of observable 

variables and the variety of potential relationships each observable variable has 

on student performance [Frezzo et al. 2009]. Since the observable variables in 

this instance are specific actions (e.g., “[the student] toggled a fraction from 1/2 

to 2/4,” rather than complete student answers, the relationship between each 

observed variable and overall student performance is not immediately clear. The 

interpretation of “[the student] toggled a fraction from 1/2 to 2/4” often depends 

on what else the student does while attempting to solve the problem, whereas that 

is not the case with a standard test wherein student data consist of the answers 

given rather than the steps taken in determining the answer. 

In educational video games and simulations, the key features of student 

performance must be extracted from log files that are automatically generated by 

the game or simulation as students play. While these files store complete student 

answers to the problems given in the game, including strategies and mistakes 

[Merceron and Yacef 2004], thereby allowing the researcher to record the 

learning behavior of students as they play the game [Romero and Ventura 2007], 

there are a number of practical issues associated with analyzing such data. 
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Most notably, log files represent prohibitively large quantities of data 

[Romero at al. 2009], making their interpretation one of the most serious 

bottlenecks facing researchers interested in implementing ECD in educational 

video games and simulations [Mislevy et al. 2004]. For instance, approximately 

135 subjects playing a simple puzzle game for about half an hour can easily 

generate over 400,000 rows of log data [Chung et al. 2010]. 

On top of the amount of data provided, the specific information gained from 

these log files is not always easy to interpret [Romero and Ventura 2007] as the 

responses of individual students are highly context dependent in educational 

games and simulations [Rupp et al. 2010] and it can be very difficult to picture 

how student knowledge, learning, or misconceptions manifest themselves at the 

level of a specific action taken by the student in the course of the game. 

Additionally, it can be very difficult to determine which actions represent key 

features of student performance given that log files are generally designed to 

capture all student actions relevant to game play, and it is not until after analysis 

that one would know which of those actions were relevant to learning.  

1.3 Objectives of the Paper 

In this study we sought to determine the utility of using cluster analysis on log 

data stored in the composite library to identify key features of student 

performance in the evidence identification and evidence accumulation processes 

in Steps 4-6 of Figure 1. The utility of cluster analysis as a method of extracting 

key features of student performance from log data will be examined through four 

guiding questions: 

 

1. Can cluster analysis identify key features of student performance? 

2. Does cluster analysis identify similar key features of student performance in 

similar situations? 

3. Do the actions identified by cluster analysis as belonging to a given key 

feature actually belong to that feature? 

4. Do the key features identified by the cluster analysis explain a sufficient 

amount of the data? 
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In the remainder of this paper we first present an overview of the design of 

this study. We then discuss our methodology for activity selection, presentation 

design, composite library structure, evidence identification, and evidence 

accumulation. In the results section, we first discuss the identification of key 

features of student performance using fuzzy feature cluster analysis, including a 

level example and a comparison of results from fuzzy clustering and hard 

clustering. We t hen discuss the identification of similar strategies in similar 

situations, the accuracy of the identified actions, and the amount of explained 

data. We conclude with a discussion of the contributions of the combination of 

the ECD framework and cluster analysis to the evidence identification process as 

well as the limitations of these findings and potential of this pairing.  

2. STUDY DESIGN 

This study examines the log files generated by an educational video game called 

Save Patch [Chung et al. 2010] designed by the Center for Research on 

Evaluation, Standards, and Student Testing (CRESST) at the University of 

California, Los Angeles, and the Game Innovation Lab at the University of 

Southern California. In this game, students are required to apply concepts 

underlying rational number addition to help the game character Patch bounce 

over obstacles to reach his home.  

To correctly solve each level, students must place trampolines at various 

locations along a one- or two-dimensional grid as shown in Figure 2. Students 

then drag coils onto the trampoline to make it bouncy. The distance Patch will 

bounce is the sum of all coil values added to the trampoline. For instance, if a 

student placed two 1/3 coils on a trampoline, Patch would bounce 2/3 of a unit. 

In Save Patch, one whole unit is always the distance between two red lines, and 

green dots indicate the size of the fractional pieces that should be used. While 

any size coil can be placed on the trampoline initially, subsequent coils can only 

be added to the trampoline if they are the same size (i.e., have the same 

denominator).  
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Fig. 2. Screen shot of Save Patch. 

 

The sample of students who played Save Patch in this study included 155 

students (76 males and 79 females) from an urban school district in southern 

California. These students ranged from sixth to eighth grade and were in sixth 

grade math, Algebra Readiness, or Algebra 1 courses. The game was designed to 

address concepts in sixth grade math, but initial studies such as this one drew 

from a wider range of student populations. All students played the game for 

approximately 40 m inutes, and each action the students took in the game was 

logged automatically. 

3. METHODS 

In this section we will discuss our methodology for translating the specifications 

of the CAF for Save Patch into the core components of the four-process cycle, 

namely activity selection, presentation design, composite library structure, 

evidence identification, and evidence accumulation. First we show how the task 

design and subsequent activity selection for our games are driven by theory. 

Then we discuss how the activity selection process guides game presentation. 

Then we explain how activity selection and presentation guide both what is 
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logged in the composite library and how it is logged. Finally, we discuss how 

cluster analysis, as a particular data mining technique, is applied to the data 

stored in the composite library for the purposes of evidence identification and 

evidence accumulation. 

3.1 Activity Selection 

The task models that served as a basis for the development of game activities that 

we used during activity selection for Save Patch were guided by current theories 

regarding the central importance of Algebra in STEM (Science, Technology, 

Engineering, and Math) courses and careers [Malcom at al. 2004] and the 

findings by the National Mathematics Advisory Panel that fluency with fractions 

is one of the critical foundations of Algebra [NMAP 2008].  

Due to the central importance of fluency with fractions, we chose to design a 

game that addressed what we considered to be the most important concepts 

underlying the addition of fractions. The concepts identified by our content 

experts as being key to fluency with fractions were:  

 

1. that all fractions are defined in relation to a whole unit,  

2. fractions can be summed only if their denominators are identical,  

3. the denominator of a fraction represents the number of identical parts in one 

whole unit, and  

4. the numerator of a fraction represents the number of identical parts that have 

been combined.  

 

These concepts were expanded into a set of knowledge specifications that are 

shown in Table I. These concepts made up conceptual nodes of the student model 

within the CAF and were intended to guide game development. It is these 

concepts that we would like to make inferences about by identifying and 

accumulating evidence from key features of student performance via cluster 

analysis. 
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Table I. Knowledge Specifications for Save Patch 

1.0  Does the student understand the meaning and importance of the whole unit? 

1.1  The size of a rational number is relative to how the whole unit is defined. 

1.2  In mathematics, a whole unit is understood to be of some quantity. 

1.3  The whole unit can be represented as an interval on the number line. 

2.0  Does the student understand the meaning of addition as applied to fractions? 

2.1  To add quantities, the units or parts of units must be identical. 

2.2  Identical units can be added to create a single numerical sum. 

2.3  Dissimilar quantities cannot be represented as a single sum. 

3.0  Does the student understand the meaning of the denominator in a fraction? 

3.1  The denominator of a fraction represents the number of identical parts in one 

whole unit. 

3.2  As the denominator gets larger, the size of each fractional part gets smaller. 

3.3  As the size of each fractional part gets smaller, the number of pieces in the 

whole gets larger. 

4.0  Does the student understand the meaning of the numerator in a fraction? 

4.1  The numerator of a fraction represents the number of identical parts that have 

been combined. 

4.2  If the numerator is smaller than the denominator, the fraction represents a 

number less than one whole unit. 

4.3  If the numerator is equal to the denominator, the fraction represents one whole 

unit. 

4.4  If the numerator is smaller than the denominator, the fraction represents more 

than one whole unit. 

 

3.2 Presentation 

The knowledge specifications developed during the task model specification and 

activity selection were the driving force behind later game design decisions. For 

instance, we chose to represent the game area as a grid to reinforce the idea that a 

unit can be represented as one whole interval on a number line (knowledge 

specification 1.3) as exemplified by the red lines in Figure 2 or, perhaps more 

clearly, in Figure 7.  

We also constrained game play so that it was not possible to add two numbers 

with different denominators (knowledge specification 2.1), rather than allowing 



153            Journal of Educational Data Mining, Article 5, Volume 4, No 1, October 2012           

the students to make the addition and having the game calculate the resulting 

distance. This means that the game does not allow students to add 1/2 to 1/3, and 

instead forces them to scroll the 1/2 coil to 3/6 and the 1/3 coil to 2/6 if they are 

to be added together. For the same reason, the game does not allow the creation 

of mixed numbers (e.g., 1 1/2), but instead forces players to convert the whole 

number portion of the mixed number to the appropriate fractional representation 

(e.g., 2/2) before adding the fractional portion of the mixed number, resulting in a 

value of 3/2. 

Successful game play was intended to require students to determine the size of 

the whole unit for a given grid as well as the size of the fractional pieces making 

up the unit. The distance the character moved was a function of how many coils 

were added to each trampoline, where one whole coil represented one whole unit 

on the grid and each whole coil could be easily broken into fractional pieces of 

the desired size by clicking on the coil and scrolling with the mouse wheel. 

Therefore, a successful solution to a given level should indicate a solid 

understanding of the knowledge specifications underlying the game Presentation.  

 
Table II. Stage Design for Save Patch 

 

Stage Description Knowledge Specifications 

1 tutorial none: teaches basic game mechanics 

2 determine numerator 4.0 Does the student understand the meaning 
of the numerator in a fraction 

3 determine denominator 3.0 Does the student understand the meaning 
of the denominator in a fraction 

4 introduce 2D grid none: teaches advanced game mechanics 

5 create equivalent fractions 3.2 As the denominator gets larger, the size of 
each fractional part gets smaller 

6 add unlike denominators 2.0 Does the student understand the meaning 
of addition as applied to fractions 

In order to scaffold the knowledge specifications and provide a logical 

progression through the game, the game was broken into six stages (see Table II). 

The first stage was a tutorial and had only one level. In this level students were 

given only coils that were of the correct denominator and merely had to place one 
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coil on each trampoline. The second stage had two levels and required students to 

determine the numerator that was being represented. Students were given whole 

unit coils and coils of the correct denominator. The third stage had three levels 

and required students to determine the denominator that was being represented as 

well as the numerator. Students were given whole unit coils and coils with a 

variety of denominators. The fourth stage had five levels and required students to 

determine the denominator and numerator represented in a two-dimensional grid, 

rather than the number line representation used up to this point. The fifth stage 

had three levels and required students to convert larger fractions into smaller 

fractions (e.g., breaking 1/2 coils into 2/4 coils). The sixth stage had four levels 

and required the students to add unlike denominators.  

Additionally, a few of the levels in each stage were designed to represent 

more than one unit in order to enable diagnosis of students’ understanding of the 

unit. The game was also designed as a research testbed, with a level editor rather 

than hardcoded levels, so that findings from the evidence identification or 

evidence accumulation phases could be quickly and easily integrated into the 

presentation of the game. 

3.3 Composite Library and Evidence Identification 

In order to record student actions reflecting understanding of the knowledge 

specifications, the data generated by students while playing the game was stored 

in the composite library in the form of a structured log written to a tab delimited 

text file. While unstructured logging often captures every mouse click, we chose 

to capture only mouse clicks that represented deliberate student actions, such as 

clicking on a coil, dragging a trampoline to a position on the grid, or clicking on 

the “Reset” button, and to ignore mouse clicks or drags that did not result in an 

action in the game (e.g., mouse clicks on the game background).  

From an evidence identification perspective, our intent was to capture student 

actions believed to indicate underlying understanding of the knowledge 

specifications at the smallest usable grain size to eliminate noise that only 

contributes construct-irrelevant variance to proficiency characterizations of 

students. However, we posited that such actions might not be fully interpretable 
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without relevant game context information. For this reason, each click that 

resulted in an action was logged in a row in the log file that included valuable 

context information such as student ID number and time at which the action 

occurred, as well as specific information about the action itself. 

Additional structure was added by assigning codes to each of the different 

types of actions that could occur in the game, such as selecting a coil (code 2051) 

or adding a coil to a trampoline (code 3010). Codes 1000-1999 were used for 

general game information, such as game version or study condition; 2000-2999 

were used for basic manipulation of objects, such as toggling a fraction to a new 

denominator; 3000-3999 were used for in-game mathematical decisions, such as 

adding a fraction to a trampoline; 4000-4999 were used for success or failure 

states such as player deaths; 5000-5999 were used for in-game navigation such as 

returning to the main menu or advancing to the next level; and 6000-6999 were 

used for the help menu system. 

Using data codes allowed for the easy grouping of similar actions, which was 

important because we knew that analysis of the game data would be difficult 

without such categorization, since there was no e xisting theory to determine 

which actions indicated student understanding and which did not. Grouping 

specific actions such as the addition of a 1/2 coil to the first trampoline on the 

grid or the addition of a 1/8 coil on the third trampoline on the grid into a more 

general group (e.g., “adding fractions”), made both evidence identification and 

evidence accumulation easier. For instance, the number of times a player reset a 

level could be determined by simply adding up all code 4010’s appearing in the 

data log for that level, without having to determine post hoc which actions fell 

into this category. Additionally, if an entire category of actions (e.g., “scrolling 

coils to a different denominator”) proved to add little or nothing to the analysis, 

the whole category of actions could be easily ignored in later analyses.  

The uniqueness of events was preserved by including columns in the log data 

capturing the specific detail of each event, along with a description of how to 

interpret the data. Thus, each action was captured at both a general and specific 

level, as can be seen by the logging in Table III of a set of student actions 

resulting in the addition of 3/3 to a trampoline. 
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These log files had to be transformed to a more compact structure before they 

could be used in cluster analysis or other data mining techniques. First the data 

for each level had to be extracted to create a series of data sets that consisted of 

all students’ log files for each level. This was necessary because the same action 

might have different meanings in different levels.  

Then the data had to be transformed from its original form into a matrix 

wherein one dimension consisted of the actions to be clustered and the other 

consisted of the entities they would be clustered across (e.g., a row for each 

student and a column for each action) so that the results would indicate that a 

certain set of actions occurred for some entities and a d ifferent set of actions 

occurred for other entities.  
 

Table III. Hypothetical Log File of a Student Adding 3/3 

ID 
Game  
Time 

Data 
Code Description Data_01 Data_02 Data_03 

1115 3044.927 2120 placed trampoline: with 
[coil value] on [position] 
pointing [direction] 

0/1 1/0 Right 

1115 3048.552 2050 scrolled coil: from [initial 
value] to [resulting value] 

1/1 3/3  

1115 3051.117 2051 selected coil: of [coil value] 1/3   

1115 3054.667 3010 added fraction: at [position] 
added [value added] to yield 
[resulting value] 

1/0 1/3 1/3 

1115 3058.443 2051 selected coil: of [coil value] 1/3   

1115 3062.913 3010 added fraction: at [position] 
added [value added] to yield 
[resulting value] 

1/0 1/3 2/3 

1115 3067.224 2051 selected coil: of [coil value] 1/3   

1115 3071.697 3010 added fraction: at [position] 
added [value added] to yield 
[resulting value] 

1/0 1/3 3/3 

1115 3088.487 2130 clicked on jump    

1115 3088.886 2110 bounced: from [position] 
[direction] [distance] 

1/0 Right 3/3 
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Rather than use students as entities in our analysis, we chose to use attempts 

as entities since a given student could try a g iven level multiple times before 

reaching a solution. Attempts were defined as t he set of actions beginning 

immediately after either a new level load or a level reset and ending at either a 

level reset or a l evel completion. This decision was made because we were 

hoping to extract strategies from the cluster analysis and it seemed likely that a 

student would change their strategy in subsequent attempts if their first attempt 

was not successful. Therefore it was possible, and actually quite common, for a 

given student to be associated with multiple rows in a given level’s data set. 

The transformation of data from the composite library into a form usable for 

data mining consisted of two main steps. First, shortened versions of the actions 

needed to be calculated from the log files and all symbols needed to be replaced 

with letters so that each unique action could be used as the name of a co lumn                                            

(e.g. ACRT_POS1.0_COIL1.3_YIELD2.3 indicating an addition to the 

trampoline at position 1.0 of a 1/3 coil which resulted in a value of 2/3 on the 

trampoline) when the data are converted from one row per action to one row per 

attempt. To reduce noise, columns corresponding to actions occurring less often 

than a given threshold could be deleted from the resulting data set. In this study, 

we dropped any actions not made in at least five attempts at a given level (not 

necessarily across five different students) since initial examinations indicated that 

the cluster analysis algorithm being used was unable to group highly infrequent 

actions. While the algorithm had difficulty grouping actions made in only five to 

10 attempts, these were retained in the analysis due to the small sample size and 

the fear that removing those actions would result in the failure to identify 

groupings that would be easily identified with a larger sample. 

Second, each attempt at a given level had to be transformed into a single row 

in the data set, with 1’s indicating actions that occurred in that attempt and 0’s 

indicating actions that did not occur in that attempt but occurred in other attempts 

at the level. The resulting data set consisted of a “sparse” binary matrix where the 

0’s greatly outnumbered the 1’s. The greater the percentage of 0’s in the data, the 

sparser the matrix was considered to be. 
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For the level in Table IV, this would indicate that the first student (S1), the 

second student (S2), the third student (S3), and the sixth student (S6) each had 

one attempt at the level, the fifth student (S5) had two attempts at the level, and 

the fourth student (S4) had four attempts at the level. The fourth student’s first 

attempt at the level (S4_1) consisted of action 4 (A4), action 5 (A5), action 6 

(A6), and action 9 (A9), which they changed in their second attempt (S4_2) to 

action 3 (A3), action 6 (A6), and action 10 (A10). The third attempt (S4_3) was 

nearly identical to the first attempt, but in the last attempt (S4_4) the student 

changed actions completely to action 1 (A1) and action 11 (A11).  

 
Table IV. Hypothetical Example of a Sparse Binary Matrix used in Cluster Analysis 

 Actions 

Attempt A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

 S1_1 1 1 0 0 0 0 0 0 0 0 1 0 

S2_1 1 1 0 0 0 0 0 0 0 0 1 0 

S3_1 0 1 1 0 0 0 0 1 0 0 0 0 

S4_1 0 0 0 1 1 1 0 0 1 0 0 0 

S4_2 0 0 1 0 0 1 0 0 0 1 0 0 

S4_3 0 0 0 1 1 1 0 0 0 0 0 0 

S4_4 1 0 0 0 0 0 0 0 0 0 1 0 

S5_1 0 0 0 1 1 1 0 0 1 0 0 0 

S5_2 1 1 0 0 0 0 1 0 0 0 1 0 

S6_1 0 1 0 1 1 1 0 0 0 0 0 1 

 
Notes. In the Attempt column S1 through S6 indicate 6 hypothetical students and the 
numbers _1 through _4 indicate the attempt number for each hypothetical student. In the 
Actions columns A1 through A12 indicate 12 di fferent actions students could make on 
this level. The values in the Actions column indicate whether or not the action was made 
by that student in that attempt. 

 

In early levels of the game such as this one, very few unique actions were 

possible. These levels generally resulted in a matrix consisting of 10-20 columns 

with three or four 1’s in each row. However, the data from more complicated 

levels often became much sparser, consisting of 100-200 columns with only five 

to ten 1’s in each row. 
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3.4 Evidence Accumulation 

In this study, we tested the utility of fuzzy feature cluster analysis [Ruspini 1969] 

as a method of extracting key features of student performance from re-structured 

log data after initial evidence identification for the purpose of evidence 

accumulation. Cluster analysis is a density estimation technique for identifying 

patterns within user actions reflecting differences in underlying attitudes, thought 

processes, or behaviors [Berkhin 2006; Romero et al. 2009] through the analysis 

of either general correlations or sequential correlations [Bonchi et al. 2001].  

It is particularly appropriate for the analysis of log data, seeing as clustering is 

driven solely by the available data and is therefore ideal in instances in which 

little prior information is known [Jain et al. 1999]. Cluster analysis can be used to 

identify the latent dimensionality of a data set [Roussos et al. 1998] and compress 

the data set into a manageable number of variables that are nontrivial, implicit, 

previously unknown, and potentially useful [Frawley et al. 1992; Hand et al. 

2001; Vogt and Nagel 1992]. It has been used regularly in such fields as 

engineering, chemistry, physics, astronomy, law enforcement, and publishing to 

identify key data in large data sets [Frawley et al. 1992]. 

Cluster analysis partitions entities into groups on the basis of a matrix of inter-

object similarities [James and McCulloch 1990]. Approaches such as Ward’s 

method within a hierarchical clustering scheme, or K-means cluster analysis as a 

non-hierarchical method, accomplish this by minimizing within-group distances 

compared to between-group distances so that entities classified as being in the 

same group are more similar to each other than they are to actions in other groups 

[Huang 1998; Rupp in press; Steinley 2006].  

Standard clustering techniques identify clusters of entities (e.g., students, 

patients, users) that can then be compared across a variety of variables as a 

method of subgroup discovery. Subgroup discovery has led to the identification 

of, among other things, subtypes of personality disorders [Cragar et al. 2005], 

differences in students’ usage of Moodle [Romero et al. 2009], different profiles 

of African American college students [Rowley 2000], and different approaches to 

teaching and learning [Trigwell et al. 1999]. 
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While standard clustering techniques are generally used for subgroup 

discovery, feature clustering must be used when the entities that are being 

clustered are actions rather than people. Feature clustering differs from standard 

clustering techniques only in that it groups descriptive features of entities (e.g., 

actions made by students) rather than grouping similarities that produce these 

features (e.g., students). Standard clustering algorithms can be used for feature 

clustering by transposing the matrix being operated on, pr ovided that the 

similarity between features can be interpreted [Krier et al. 2007].  

In our analyses, two features/actions were considered to be similar by the 

cluster analysis if they were both performed by the same students (e.g., in the 

level in Table IV, A1 and A2 were similar because most rows with a 1 in A1 also 

had a 1 in A2). Features/actions were considered to be different from each other 

if some students performed one of the actions and different students performed 

the other action (e.g., in the level in Table IV, A3 and A11 were different from 

each other because every row with a 1 in A3 had a 0 in A11, and vice versa).  

3.5 Identifying Key Features of Student Performance 

We used the “fanny” algorithm in R to run our analysis for fuzzy clustering and 

the “agnes” algorithm to run our analyses for hard clustering [R Development 

Core Team 2010]. We used the Manhattan distance, rather than the Euclidean or 

Squared Euclidean distances as our distance metric, because our data were binary 

indicating whether or not a particular student had performed a particular action in 

a given attempt on a g iven level. The analyses were run individually for each 

level because the same action could have two different meanings in two different 

levels (e.g., adding a fourth in a level where the denominator is fourths is 

different than adding a fourth in a level where the denominator is thirds); see 

Appendix A for the R code used in the analysis. 

Clustering algorithms provide no single definitive method of determining the 

number of clusters present in the data. Rather, solutions with different numbers 

of clusters must be compared based on both statistical and substantive criteria. 

We determined the final number of clusters in the fuzzy cluster analysis by 

running each level with two clusters and then increasing the cluster number until 
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incorrect actions began to appear in the ‘standard solution’ cluster or the 

additional clusters provided no additional interpretive value (e.g., the additional 

clusters simply split an easily identifiable strategy into parts). 

The results of the feature cluster analyses are lists of the actions that make up 

each cluster in each level. However, these lists do not indicate which students 

made which actions. In order to determine which cluster each attempt by each 

student falls in, the clusters must be named and calculations must be performed 

to determine which students are making which actions.  

For instance, in a level that requires a student to add one whole to the first 

trampoline and 2/3 to the second trampoline to correctly solve the level, the three 

actions ACRT_POS1.0_COIL1.1_YIELD1.1, 

ACRT_POS1.3_COIL1.3_YIELD1.3, and ACRT_POS1.3_COIL1.3_YIELD2.3 

would be the standard solution for this level because these actions would result in 

Patch arriving safely at the end of the level. Consequently, we decided to code 

any attempt wherein a student made those three actions—and not subsequent 

actions such as ACRT_POS1.0_COIL1.1_YIELD2.1 or 

ACRT_POS1.3_COIL1.3_YIELD3.3—as being a “standard solution.” 

Clusters resulting in an error are more difficult to name than clusters resulting 

in a solution, as the name depends on the intent rather than the result. For 

instance, if ACRT_POS1.0_COIL1.2_YIELD1.2, 

ACRT_POS1.0_COIL1.2_YIELD2.2, and ACRT_POS1.0_COIL1.2_YIELD3.2 

were identified as forming a cl uster in a level which asked for 3/3 we would 

name that cluster a “partitioning error” as those actions are consistent with a 

partitioning error (explained further in the next section) resulting in the belief that 

the level represents halves, rather than thirds. Finally, we coded any attempts that 

did not match any of the identified action groups as “unexplained error.” 

As shown in Table V, this process resulted in a single nominal variable at the 

level of each attempt for each student that indicated which cluster it belonged to 

(i.e., which solution strategy was used).  

Given our activity selection, the game presentation, the structure of our 

composite library, and our knowledge of data mining techniques, we anticipated 

that the cluster analysis would be able to identify the standard solution strategy 
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for each level as w ell as errors involving the addition of fractions and 

identification of the unit. Our content experts anticipated, in particular, errors 

involving knowledge specifications 2.1 and 2.3 regarding the addition of unlike 

denominators as well as errors involving knowledge specification 1.0 regarding 

the meaning and importance of a whole unit. 

 
Table V. Cluster Assignment for Each Attempt by Each Student 

Student ID Attempt Strategy Used 

1110 1 Solution Strategy 

1111 1 Unitizing Error 

1111 2 Unitizing Error 

1111 3 Unknown Error 

1111 4 Unitizing Error 

1111 5 Solution Strategy 

1112 1 Partitioning Error 

1112 2 Unknown Error 

1112 3 Solution Strategy 

1113 1 Unknown Error 

1113 2 Solution Strategy 

 

4. RESULTS 

To address the utility of cluster analysis for evidence accumulation, we present 

the following four sets of results addressing our four research questions: (1) the 

kinds of strategies that were identified by the cluster analysis, including the 

results from Stage 4 – Level 2 as an example of the output for a given level as 

well as a co mparison of fuzzy clustering and hard clustering results, (2) the 

ability of cluster analysis to identify similar strategies in similar situations, (3) 

the accuracy of the identified actions, and (4) the amount of data explained by the 

strategies identified by the cluster analysis. 

4.1 Strategies Identified by Cluster Analysis 

As anticipated, the solution strategy was easily identified. In every level of the 

game, a two-cluster cluster analysis resulted in one cluster containing the actions 
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needed to solve the level under the standard solution and a second cluster 

containing all other ineffective or inefficient actions made by students while 

attempting to solve the level. Additional clusters generally split the “other 

actions” cluster into smaller groups of actions representing specific error 

patterns. Regardless of the number of clusters in the final cluster analysis for the 

level, one cluster always remained containing the actions not identifiable as 

belonging to a specific strategy. That cluster was deemed to be the “unexplained 

error” strategy and upon visual examination of the log files appeared to be made 

up largely of seemingly random guesses or students employing a sy stematic 

guess-and-check strategy.  

The cluster analysis also successfully identified errors involving knowledge 

specification 1.0 regarding the meaning and importance of a whole unit. Students 

who made a “unitizing error” were unable to correctly identify the size of the unit 

they were working with. Despite repeated instruction, those students did not 

recognize the red lines as denoting unit size. Instead, they assumed that the entire 

grid was one unit across, regardless of how many red lines they saw. As 

illustrated in Figure 3, this misconception led students to attempt to solve the 

level using an incorrect denominator. In Stage 5 – Level 1, t hat resulted in 

students placing 3/3 on the trampoline, rather than 3/2. This strategy accounted 

for 22% of all identified errors in the game. 

However, to our surprise, we did not identify errors involving the addition of 

unlike denominators outside of the one level where students were asked to 

bounce 3/2 and repeatedly tried to add 1/2 to 1/1 without first breaking 1/1 into 

2/2. Though they did not at first see 1/1 as a fraction, students were otherwise 

able to add fractions correctly almost all of the time, with this error accounting 

for only 5% of all identified errors in the game.  
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Fig. 3. Stage 5 – Level 1 of Save Patch, showing a screen shot of the level and an illustration of the 

fractional amounts placed on each trampoline for each of the clusters identified by fuzzy clustering. 

 

 

Instead, the cluster analysis identified an error indicating that students were 

not able to identify the fractional representation correctly. We had not anticipated 

this being a major error in our game as we believed students in sixth through 

eighth grade would have more trouble with knowledge specification 2.0 

regarding the addition of fractions than knowledge specification 3.0 regarding the 

meaning of the denominator in a fraction or knowledge specification 4.0 

regarding the meaning of the numerator in a fraction, which were largely 

included as necessary prerequisites to our targeted concepts. However, 

“partitioning errors” wherein students did not correctly identify the denominator 

represented in the level accounted for 47% of all errors made in the game. 

Students who made “partitioning errors” were unable to identify the number 

of pieces the unit was broken into. Those students did not count the spaces inside 

a unit to determine the denominator. Instead, they counted the dots that divided 

the unit into pieces to determine the denominator. As illustrated in Figure 4, this 

misconception led students to attempt to solve the level using an incorrect 

denominator. In Stage 5 – Level 2, that resulted in students placing 2/2 on the 

first trampoline, 2/2 on the second trampoline, and 1/2 on the third trampoline, 
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rather than placing 2/3 on the first trampoline, 2/3 on the second trampoline, and 

1/3 on the third trampoline. 

Additionally, cluster analysis indicated that students engaged in a number of 

strategies involving misconceptions or misapplications of game mechanics. We 

had anticipated that students with little or no g aming experience might make 

errors such as misusing resources, e.g., students placing 3/3 on the first 

trampoline in Stage 3 – Level 3 (see Figure 7) and then not having enough 1/3 

coils left to complete the level. However, the “misuse of resources” strategy 

accounted for only 6% of the identified errors in the game.  
 

  

Fig. 4. Stage 5 – Level 2 of Save Patch, showing a screen shot of the level and an illustration of the 

fractional amounts placed on each trampoline for each of the clusters identified by fuzzy clustering. 

 

While we had not anticipated that students would attempt to use gaming 

strategies to avoid using math to solve the levels, nearly a fifth of the errors made 

in the game (19%) occurred when students used the order in which the coils were 

presented in the “Positive Coil” resource bin to determine what to place on each 

trampoline. In Stage 4 – Level 3 (see Figure 2), where 32% of all attempts at this 

level involved this error, students who were using the “everything in order” 

strategy placed 2/1 on the first trampoline, 3/3 on the second trampoline, and 4/6 
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on the third trampoline. The fact that this strategy would have led to a successful 

solution in a few early levels probably reinforced this behavior. 

In summary, the cluster analysis identified three mathematical misconceptions 

that indicate lack of understanding of specific knowledge specifications and two 

game misconceptions that are unrelated to the mathematical concepts being 

addressed in the game (see Table VI). “Partitioning errors” indicate a l ack of 

understanding of the denominator of a fraction, “unitizing errors” indicate a lack 

of understanding of the meaning of a unit, and “adding errors” indicate a lack of 

understanding of the addition of fractions.  
 

Table VI. Common Incorrect Strategies 

Strategy Misconception Related Knowledge Specification 

partitioning 
error 

the denominator is determined 
by counting dividing marks 

3.1 The denominator in a fraction 
represents the number of identical 
parts in one whole unit. 

unitizing error the entire representation is 
always one unit across 

1.3 The whole unit can be 
represented as an interval on the 
number line. 

adding error a fraction can be added to a 
whole unit without having 
the same denominator 

2.1 To add quantities, the units 
or parts of units must be 
identical 

everything in 
order 

the order in which resources 
are given corresponds to the 
solution to the level 

none: provides no information 
about student level of 
mathematical understanding 

misusing 
resources 

enough resources have been 
provided to solve the level 
without conservation 

none: game error only, does not 
indicate a mathematical 
misunderstanding 

 

However, the use of the “everything in order” or “misuse of resources” 

strategy tells us very little about the student understanding of fractions and, 

instead, indicates that the student is either gaming the system (the “everything in 

order” strategy) or having difficulty with the strategic aspect of the problem 

rather than the conceptual aspect of the problem (the “misuse of resources” 

strategy). 

4.1.1 Sample Clustering Results for Stage 4 – Level 2. The results from Stage 

4 – Level 2 are presented in Figure 5 as an example of the cluster analysis results 
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for an individual level of the game. This level was chosen as an example because 

it contained a variety of strategies, including both mathematical and game errors. 

The level image on the top of the figure shows the location of the five 

trampolines in this level and labels them with their position (e.g., POS1.0) so the 

image can be matched to the action names. The output for this particular level is 

displayed under the level image. It indicates that seven different clusters (C1 

through C7) were identified in this level.  

The output also shows the specific actions identified as belonging to each 

cluster. For instance, cluster 3 (C3) is composed of 

ACRT_POS4.3_COIL1.3_YIELD2.3 and ACRT_POS4.3_COIL1.3_YIELD3.3. 

The individual actions in the last cluster (C7) are not listed because that cluster 

consists of all otherwise unidentified actions. The cluster numbers represent the 

order in which they were identified by the cluster analysis, and hold no specific 

meaning outside of that. 

 

 
Fig. 5. Results for Stage 4 – Level 2 of Save Patch. 
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Given the list of actions in each cluster and knowledge of the level in which 

the actions took place, names for each cluster were inferred (e.g., “standard 

solution,” “shortcut solution,” etc.) to indicate the specific strategy that group of 

actions appeared to represent. This allowed us to identify the same behavior (e.g., 

“partitioning errors”) across levels, even though the specific actions that made up 

that strategy differed in each level. 

4.1.2 Comparing Fuzzy Clustering and Hard Clustering Results. Most 

educational data mining studies using cluster analysis have used hard clustering. 

While this method has been used successfully on test items to detect 

multidimensionality [Roussos et al. 1998] and to find conceptual similarity 

among items [Madhyastha and Hunt 2009], log data from educational video 

games and simulations are far more likely to require the use of fuzzy clustering 

algorithms than test item data because these environments often result in 

precisely the problems fuzzy cluster analysis was designed to address.  

Fuzzy clustering was developed to address the issues of misclassification in 

hard clustering algorithms due to shape and size problems in the data, such as 

bridges between clusters, nonspherical clusters, linearly nonseparable clusters, or 

unequal cluster populations [Ruspini 1969]. In an environment where different 

solution strategies contain the same initial steps, different clusters will likely 

share some overlapping actions which will act as bridges between clusters and 

result in clusters that are not linearly separable. Additionally, some solution 

strategies will likely contain more actions than other solution strategies, resulting 

in unequal cluster populations. 

Rather than assigning each item completely to one cluster, as is done by 

standard hard clustering algorithms, fuzzy clustering uses probability theory to 

identify the degree of belongingness of each item in each cluster, which allows 

for superior clustering results for data with problematic data points lying between 

otherwise easily identifiable clusters [Ruspini 1969]. Fuzzy clustering and hard 

clustering will return similar results if the data are not very fuzzy, but the fuzzier 

the data are, the more the results will differ.  
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The degree of ambiguous cluster assignment in the data is reported in the 

normalized Dunn coefficient. The normalized Dunn coefficient ranges from 0 to 

1, with 0 indicating that the data is completely fuzzy (i.e., that actions cannot be 

clustered) and 1 indicating that the data is perfectly well-partitioned (i.e., that 

each action can be uniquely assigned to a single cluster). Like Levene’s test of 

equality of variance, the Dunn coefficient appears in the output of the analysis 

and indicates whether the correct analysis was run. If the Dunn coefficient shows 

that the data is poorly partitioned then the fuzzy cluster analysis was the correct 

analysis to run, whereas if the Dunn coefficient shows that the data is well 

partitioned a hard clustering algorithm should be run instead. 

In our analyses, the Dunn coefficients for each level ranged from .13 ( very 

fuzzy) to .66 (moderately fuzzy) over the 18 levels we examined, with an average 

of .35. These results indicate that unique assignment of actions to clusters is not 

easy in our data and, therefore, fuzzy cluster analysis is more appropriate than 

hard cluster analysis.  
 

Table VII. A Comparison of Fuzzy and Hard Clustering of Stage 3 – Level 3 

Cluster Results from Fuzzy Clustering Results from Hard Clustering 

1 ACRT_POS1.0_COIL1.1_YIELD1.1 

ACRT_POS4.0_COIL1.3_YIELD1.3 

ACRT_POS4.0_COIL1.3_YIELD2.3 

ACRT_POS1.0_COIL1.1_YIELD1.1 

2 ACRT_POS1.0_COIL1.3_YIELD1.3 

ACRT_POS1.0_COIL1.3_YIELD2.3 

ACRT_POS1.0_COIL1.3_YIELD3.3 

ACRT_POS4.0_COIL1.3_YIELD1.3 

ACRT_POS4.0_COIL1.3_YIELD2.3 

3 ACRT_POS4.0_COIL1.6_YIELD1.6 

ACRT_POS4.0_COIL1.6_YIELD2.6 

ACRT_POS1.0_COIL1.1_YIELD2.1 

ACRT_POS1.0_COIL1.3_YIELD1.3 

ACRT_POS1.0_COIL1.3_YIELD2.3 

ACRT_POS1.0_COIL1.3_YIELD3.3 

ACRT_POS4.0_COIL1.6_YIELD1.6 

ACRT_POS4.0_COIL1.6_YIELD2.6 

4 numerous other actions ACRT_POS1.0_COIL1.1_YIELD2.1 

numerous other actions 
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We chose Stage 3 – Level 3 to illustrate the differences between fuzzy and 

hard clustering because the differences in this level were clear and easy to 

explain. Additionally the level had a Dunn coefficient of .29, indicating that it 

was fairly representative of our data. The results from the fuzzy clustering and 

hard clustering algorithms are shown in Table VII. 

The actions identified as being in Cluster 1 by  the fuzzy clustering were 

ACRT_POS1.0_COIL1.1_YIELD1.1, ACRT_POS4.0_COIL1.3_YIELD1.3, and 

ACRT_POS4.0_COIL1.3_YIELD2.3. As can be seen from the screen shot of the 

level in Figure 7, these actions result in the placement of 1/1 on the first 

trampoline and 2/3 on the second trampoline, which corresponds to the standard 

solution for this level. 

The actions identified by the fuzzy clustering as being in Cluster 2 were 

ACRT_POS1.0_COIL1.3_YIELD1.3, ACRT_POS1.0_COIL1.3_YIELD2.3, and 

ACRT_POS1.0_COIL1.3_YIELD3.3, which result in the placement of 3/3 on the 

first trampoline. While this is not mathematically incorrect, it is a misuse of the 

resources available in the level, as the student is now out of the thirds coils that 

they need to complete the level. The actions identified as being in Cluster 3 were 

ACRT_POS4.0_COIL1.6_YIELD1.6, ACRT_POS4.0_COIL1.6_YIELD2.6, and 

ACRT_POS1.0_COIL1.1_YIELD2.1; they result in the placement of 2/1 on the 

first trampoline and 2/6 on the second trampoline. This appears to be a gaming 

strategy that can be used to try to solve the levels by relying largely on the order 

in which the resources were presented rather than using math to determine the 

answer. In this case the 1/1 coils, which are located on the top of the resource 

bin, were placed on t he first trampoline and the 1/6 coils, which are located 

beneath the 1/1 coils in the resource bin, were placed on the next trampoline. Had 

there been a third trampoline, students using this strategy would have placed the 

1/8 coils, which are located beneath the 1/6 coils, on the next trampoline. All 

other coil placements made by students in this level were identified as being in 

cluster 4, which appeared to be a catchall for all actions that did not cluster well 

with other actions.  

In summary, fuzzy clustering allowed us to identify the actions in cluster 1 as 

being representative of the “standard solution” for this level, the actions in cluster 
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2 as being representative of a “misuse of resources,” the actions in cluster 3 as 

being representative of an “everything in order” strategy, and the actions in 

cluster 4 as being “unexplained error.” The actions for the first three clusters are 

illustrated in Figure 6.  
 

 

 

Fig. 6. Stage 3 – Level 3 of Save Patch, showing a screen shot of the level and an illustration of the 

fractional amounts placed on each trampoline for each of the clusters identified by fuzzy clustering. 

 

The hard clustering did not allow the same conclusions to be drawn (see 

Figure 6). The hard clustering identified ACRT_POS1.0_COIL1.1_YIELD1.1 as 

the only action in cluster 1, which results in the placement of 1/1 on the first 

trampoline and does not indicate what was placed on the second trampoline. 

ACRT_POS4.0_COIL1.3_YIELD1.3 and ACRT_POS4.0_COIL1.3_YIELD2.3 

were identified as being in cluster 2, which result in the placement of 2/3 on the 

second trampoline and do not indicate what was placed on the first trampoline. 

The actions identified as b eing in cluster 3 were 

ACRT_POS1.0_COIL1.3_YIELD1.3, ACRT_POS1.0_COIL1.3_YIELD2.3, 

ACRT_POS1.0_COIL1.3_YIELD3.3, ACRT_POS4.0_COIL1.6_YIELD1.6, and 

ACRT_POS4.0_COIL1.6_YIELD2.6, which result in the placement of 3/3 on the 

first trampoline and 2/6 on the second trampoline. 
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ACRT_POS1.0_COIL1.1_YIELD2.1 was identified by the hard clustering as 

being in cluster 4 with the other unexplained errors. 

Hard clustering allowed us to identify the actions in cluster 1 as being 

representative of the “standard solution” for the first trampoline in this level and 

the actions in cluster 2 as being representative of the “standard solution” for the 

second trampoline in this level. However, cluster 3 did not result in an easily 

identifiable strategy, as we could come up with no reason why a student would 

place 3/3 on the first trampoline and 2/6 on the second trampoline. The hard 

clustering did not allow for the identification of the “misuse of resources” 

strategy or the “everything in order” strategy in this level. 

While the fuzzy clustering algorithm resulted in the identification of one 

solution strategy and two error patterns, the hard clustering algorithm only 

resulted in the identification of the solution strategy, and could only do t hat if 

cluster 1 and cluster 2 were combined. The difference in performance between 

the two algorithms occurred because the data for this level were very fuzzy. If the 

data had not been fuzzy, the results from the hard clustering and fuzzy clustering 

algorithms would have been nearly identical. While the difference between 

algorithms was not always this severe, the Dunn coefficients for each level 

indicated that the data were fuzzy. Therefore, fuzzy cluster analysis was deemed 

to be more appropriate than hard cluster analysis for our data and all results 

reported in this paper stem exclusively from fuzzy cluster analysis. 

4.2 Identifying Similar Strategies in Similar Situations 

To determine whether cluster analysis identified similar key features of student 

performance in similar situations, we calculated the number of levels in which 

individual strategies were identified as a percentage of the number of levels in 

which each strategy was possible. “Solution strategies” and “unexplained errors” 

were possible in all levels of the game, and were identified by cluster analysis as 

occurring in every level of the game. However, all other strategies were only 

possible under certain circumstances. For instance, a “unitizing error” is only 

possible in a level where the grid size is more than one unit; otherwise it is 

indistinguishable from the correct solution.  
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Cluster analysis identified each of these strategies in a majority of the levels 

in which they were possible (see “identified frequency” in Table VIII). 

“Unitizing errors” were identified in six out of eight levels in which they were 

possible, or 75% of the time they were expected to occur. “Partitioning errors” 

were identified in seven out of 10 levels in which they were possible, or 70% of 

the time they were expected to occur. Overall, mathematical errors were found in 

12 out of 13 levels in which they were possible, or 80% of the time they were 

expected to occur. Errors involving gaming mistakes were possible in all levels 

where the resources did not consist solely of one unit coils. These errors were 

identified in 10 out of 12 levels in which they were possible, or 83% of the time 

they were expected to occur.  
 

Table VII. Strategies Identified by Cluster Analysis 

Strategies identified Identified 
frequencya 

Percentage 
of attemptsb 

Number of 
inaccuraciesc 

Solutions 18 of 18 42.3% 2 

Errors involving math misconceptions 12 of 15 32.5% 5 

 Unitizing errors 6 of 8 24.7% 2 

 Partitioning errors 7 of 10 34.6% 3 

Errors involving gaming mistakes 10 of 12 20.3% 0 

Unexplained errors 18 of 18 24.7% na 

 
Notes. aIdentified frequency is the number of levels in which the cluster was identified 
out of the number of levels in which it was possible. bPercentage of attempts is calculated 
only for levels in which the cluster was identified. cNumber of inaccuracies is the number 
of identified clusters that identified at least one action as belonging to the cluster which 
did not belong to that solution strategy or error pattern. 
 

 

4.3 Accuracy of Identified Actions 

In order to examine the accuracy of the identified actions, we calculated the 

percentage of actions in each cluster that we believed to be extraneous to the 

strategy represented by that cluster. In total, 55 clusters were identified across 18 

levels. Of these clusters, 48 (87%) contained no actions extraneous to the 
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identified solution strategy or error pattern (see “number of inaccuracies” in 

Table VIII).  

In the seven cases where the cluster analysis identified extraneous actions, two 

were unitizing errors, three were partitioning errors, and two were solution 

strategies. The two clusters with unitizing errors extraneously identified one of 

seven actions in one cluster and one of five actions in the other cluster, leading to 

an overall rate of extraneous identification of 6% for unitizing clusters. The three 

clusters with partitioning errors extraneously identified one of nine actions, two 

of nine actions, and one of five actions, leading to an overall rate of extraneous 

identification of 5% for partitioning clusters. Overall, only 3% of actions were 

extraneously identified by the cluster analysis. 

4.4 Amount of Explained Data 

In order to examine the amount of data explained by the cluster analysis we first 

determined the percentage of levels in which cluster analysis was able to identify 

strategies. Of the 18 levels that were analyzed, cluster analysis identified key 

features of student performance in all but two levels, or 89% of the time. The two 

levels where cluster analysis could not identify key features of student 

performance were the first and third levels of the game (Stage 1 – Level 1 and 

Stage 2 – Level 2). These levels along with Stage 2 – Level 1 were designed to 

be extremely easy for students in order to draw them in to the experience and get 

them used to our representation of fractions.  

Since both of the levels where clusters were not identified were intended to be 

relatively easy, we calculated the percentage of attempts that were solutions 

(which we did not need the cluster analysis to identify, as the set of actions 

leading to a standard solution were already known). Solutions made up 87% of 

the attempts in Stage 1 – Level 1 and 82% of the attempts in Stage 2 – Level 2. 

This would indicate that cluster analysis only failed to identify key features of 

student performance in levels wherein a vast majority of the students used the 

same strategy (e.g., the “standard solution” strategy). In such situations almost all 

of the actions made by students would fall into a single cluster, and “fanny” will 

not generate a one cluster solution (the number of clusters is constrained to 2 to 
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(n-1)/2 where n is the number of actions). While “fanny” cannot identify key 

features of student performance in situations in which there is only one cluster, in 

all other levels it identified at least one cluster reflecting a l egitimate solution 

strategy, at least one cluster reflecting a specific type of error, and one cluster of 

unexplained error (see Table VIII).  

To determine the amount of data explained by the cluster analysis, we also 

calculated the percentage of attempts that were identified by the cluster analysis 

by calculating the percentage of attempts that did not fall in the “unexplained 

error” cluster, (see “percentage of attempts” in Table VIII). “Standard solution” 

strategies made up 42% of all attempts, “unitizing errors” made up 25% of the 

attempts in the six levels in which the error occurred, “partitioning errors” made 

up 35% of the attempts in the seven levels in which the error occurred, and a 

majority of the remaining attempts were errors involving gaming mistakes such 

as using “everything in order.” The percentage of student attempts to solve a 

level that fell in the “unexplained error” cluster averaged 26% across all levels 

and ranged from 11% to 39% in individual levels. Overall, the cluster analysis 

was able to identify an average of 74% of the log data as belonging to a specific 

solution strategy or error pattern. 

A summary of the cluster analysis results across all levels of the game is 

provided in Table IX. For each level, the overall number of attempts at that level 

is listed. The number of attempts indicates the relative difficulty of the levels, 

though only about half of the 155 students in the sample reached the end of the 

game. The “Cluster Type” (solution, math error, or game error) lists the number 

of clusters identified in that category for each level, as well as the percentage of 

attempts at that level in each category. The “Total” indicates the number of 

clusters identified in each level and the percentage of attempts that did not fall in 

the ‘unexplained error’ cluster. Note that clusters were not identified for Stage 1 

– Level 1 or Stage 2 – Level 2 and, therefore, only the percentage of attempts that 

were a solution was calculated. 
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Table IX. Clusters Identified in Each Level of Save Patch 

 

 Cluster Type  

Level Attempts Solution Math Error Game Error Total 

1-1 177 1 (87%) -- -- 1 (87%) 

2-1 264 1 (64%) 1 (3%) 1 (4%) 3 (71%) 
2-2 490 1 (82%) -- -- 1 (82%) 

3-1 319 1 (51%) -- 1 (37%) 2 (88%) 
3-2 351 1 (6%) 1 (68%) -- 2 (74%) 
3-3 446 1 (45%) -- 2 (26%) 3 (71%) 

4-1 397 1 (57%) 1 (29%) -- 2 (86%) 
4-2 373 2 (38%) 1 (20%) 1 (14%) 4 (72%) 
4-3 304 2 (48%) -- 2 (34%) 4 (82%) 
4-4 900 1 (15%) 1 (46%) 1 (7%) 3 (68%) 
4-5 400 2 (39%) 1 (50%) -- 3 (89%) 

5-1 644 2 (23%) 2 (31%) 1 (11%) 5 (65%) 
5-2 586 1 (18%) 2 (52%) -- 3 (70%) 
5-3 600 2 (35%) 2 (30%) -- 4 (65%) 

6-1 448 1 (13%) 1 (30%) 1 (18%) 3 (61%) 
6-2 143 3 (72%) -- 1 (11%) 4 (83%) 
6-3 158 3 (51%) 2 (23%) -- 5 (74%) 
6-4 254 2 (18%) 2 (30%) 1 (19%) 5 (67%) 

 

5. DISCUSSION 
This study indicates that cluster analysis may be a useful method of identifying 

key features of student performance in log data generated by educational video 

games or simulations, particularly in the context of evidence-centered design.  

ECD provides a framework for treating an educational video game or 

simulation as an assessment. Given a theory-driven activity selection process that 

guides game presentation such that a successful solution to a given level indicates 

a solid understanding of the concepts being assessed, the evidence identification 

processes become much easier. The knowledge specifications guiding activity 

selection then can serve as a reference point for the cluster analysis in that they 
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indicate the strategies (and the specific actions making up those strategies) that 

are expected in the game. 

Cluster analysis expands on the information provided by the ECD framework 

by identifying unexpected strategies. In this case, we did not expect students to 

have trouble identifying the denominator or to use gaming strategies to 

circumvent the math. However, these errors accounted for 66% of all errors made 

in the game. This indicates that the cluster analysis contributes significantly to 

the evidence identification process. 

In our study, cluster analysis was able to identify specific solution strategies 

and error patterns in all but two levels and 70% to 80% of the time they were 

possible. Of the actions identified by the analysis as belonging to each cluster, 

94% to 97% of them appeared to be accurately identified. Additionally, cluster 

analysis was able to explain 74% of the variation in the actions that made up the 

log files. 

However, these findings are only preliminary and more rigorous examinations 

of the reliability and validity of the cluster analysis are necessary. Since cluster 

analysis is designed to uncover the latent dimensionality of data sets that are so 

large that their underlying structure is obscured, the interpretation of the validity 

of the identified clusters is inevitably application-dependent and somewhat 

subjective [Hand et al. 2001]. Further studies interviewing students who make 

specific errors identified by the cluster analysis to determine whether the reason 

they give for their actions matches our assumptions (e.g., do students who make 

unitizing errors really think that the whole grid is one unit?, do students who 

make partitioning errors really count the dots to determine the denominator?) or 

comparing key features of student performance in the game to their answers on a 

more standard pretest (e.g., do students who make unitizing errors in the game 

make unitizing errors on num ber line questions on the pretest?) would help 

address concerns regarding our labeling of the clusters. 

Additional evidence of the usability of cluster analysis as a m ethod of 

identifying key features of student performance in educational video games and 

simulations should also be gathered. For instance, a study examining whether 

changes made to the game presentation based on cluster analysis results 
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improved student performance would help validate the results. Studies that use 

the strategies identified by the cluster analysis as variables to predict in-game 

performance, posttest scores, or the difference between pretest and posttest scores 

would also help move these results beyond their preliminary state, as would 

studies that examine cluster analysis results for other games or other types of 

games. 

Provided that additional evidence can be collected, cluster analysis may well 

become a valuable tool for identifying the key features of student performance in 

log data from educational video games and simulations. By making interpretation 

of the complex data from log files easier, cluster analysis has the potential to 

overcome one of the most serious issues facing researchers interested in 

implementing ECD, allowing for examination of the strategies students use while 

solving problems in educational video games and simulations. 
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APPENDIX 
 

Code for Running Cluster Analysis in R 
 

library(cluster) 

library(vegan) 

tlevel<- t(level) 

dlevel<- dist(tlevel,"manhattan") 

flevel<- fanny(dlevel,c) 

summary(flevel) 

ord<- cmdscale(dlevel) 

ordiplot(ord, dis = "si") 

ordihull(ord, f$clustering, col = "blue") 

hlevel<- agnes(dlevel) 

plot(hlevel) 
 

The “cluster” library was used to run the cluster analysis, and the “vegan” library 
was used to plot the cluster results when necessary, since “fanny” does not 
include a graphical output. The data were transposed (tlevel) so that features 
would be clustered rather than entities, and the Manhattan distance (dlevel) 
between each pair of actions was calculated. The “fanny” algorithm (flevel) was 
then run for each successive number of potential clusters, c (valid values for c 
range from two to (n/2)-1, where n is the number of actions in the data set), and 
the summary and plots were examined to determine the number of clusters 
present in the data as well as the distribution of actions in each cluster. The 
“agnes” algorithm (hlevel) was run to obtain hard clustering results. 
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