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Various forms of Peer-Learning Environments are increasingly being used in post-secondary education,
often to help build repositories of student generated learning objects. However, large classes can result
in an extensive repository, which can make it more challenging for students to search for suitable objects
that both reflect their interests and address their knowledge gaps. Recommender Systems for Technology
Enhanced Learning (RecSysTEL) offer a potential solution to this problem by providing sophisticated
filtering techniques to help students to find the resources that they need in a timely manner. Here, a new
RecSysTEL for Recommendation in Peer-Learning Environments (RiPLE) is presented. The approach
uses a collaborative filtering algorithm based upon matrix factorization to create personalized recommen-
dations for individual students that address their interests and their current knowledge gaps. The approach
is validated using both synthetic and real data sets. The results are promising, indicating RiPLE is able
to provide sensible personalized recommendations for both regular and cold-start users under reasonable
assumptions about parameters and user behavior.

1. INTRODUCTION

The importance of peer-learning in post-secondary education is being increasingly recognized
(Boud et al., 2014). This has led to the creation of a number of Peer-Learning Environments
that are claimed to perform many different roles. They are often designed to: engage and satisfy
students by instilling ownership; help build communities and recognize participation; and can
provide rich, timely peer-generated feedback (Betts, 2013; Coetzee et al., 2015; Wright et al.,
2015).

For example, PeerWise (Denny et al., 2008) is a free web-based system in which students
can create multiple-choice questions as well as answer, rate, and discuss questions created by
their peers. Empowering students with environments like these offers significant benefits, as
they enhance student involvement in cognitively demanding tasks rather than the more passive
answering of questions. Thus, students using PeerWise are required to identify missing knowl-
edge, diagnose misconceptions, and provide feedback to their peers in their own words. Such
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tasks all ultimately enhance student learning (Chin and Brown, 2002; Rosenshine et al., 1996;
Hardy et al., 2014). However, as the class size of a PeerWise instance grows, so does the num-
ber of available questions on the platform. This makes it more challenging for students to select
questions that best suit their current learning needs. Will students select questions that fill their
current knowledge gap? Or will they just select those easy questions that make them feel like
they have mastered the material that they should be learning? To thrive in learning environments
of this form, students need to be able to identify the characteristics of questions that will be both
interesting and the most beneficial for their current knowledge needs. However, students often
lack the requisite skills for making good decisions about what and how to study (Beswick et al.,
1988; Biggs, 1999), which can leave them undirected and time wasted.

Recommender systems (RecSys; Ricci et al. 2011) offer a potential solution to problems
of overwhelming choice by providing sophisticated filtering techniques to help people find the
resources that they need. Specifically, as the field of recommender systems for technology en-
hanced learning (RecSysTEL; Manouselis et al. 2011) evolves it becomes possible to analyze the
digital traces left by learners in these environments and use them to provide recommendations
about resources that will most meet their learning needs and interests.

Here, a novel RecSysTEL solution is presented that helps students to navigate in complex
Peer-Learning Environments, specifically those that deal with question answering in the form
provided by PeerWise. An examination in Section 2. of related work in profiling student knowl-
edge and RecSysTEL demonstrates that there is reason to believe that progress can be made by
combining more sophisticated learner profiles with RecSysTEL solutions. In Section 3. the tech-
niques and technologies used in the solution, RiPLE, are introduced in addition to the problem
statement. The solution itself is presented in Section 4., and a simple example demonstrating
how RiPLE works is in Section 5. Experimental validation and results are reported in Sections 6.
and 7., followed by conclusions and a discussion of future work in Section 8.

2. RELATED WORK

2.1. RECOMMENDATION SYSTEMS FOR TECHNOLOGY ENHANCED LEARNING

RecSysTEL is an active and rapidly evolving research field. For example, Drachsler et al. (2015)
perform an extensive classification of 82 different RecSysTEL environments, and Erdt et al.
(2015) review the various evaluation strategies that have been applied in the field. Together
these articles provide recent comprehensive surveys that consider more than 200 articles span-
ning over 15 years. Here, the focus is on collaborative filtering (CF), which identifies similar
users and provides recommendations based upon their usage patterns. CF has been extensively
employed in RecSysTEL, and an early LAK paper, Verbert et al. (2011) evaluated and compared
the performance of different CF techniques on educational data sets, showing that the best choice
of algorithm is data dependent. In a more recent study, Kopeinik et al. (2017) also concluded
that the performance of the algorithms strongly depends on the properties and characteristics of
the particular dataset. In combining educational data sets with social networks, Cechinel et al.
(2013) used CF to predict the utility of items for users based on their interest and the interest
of the network of the users around them. Similarly, Fazeli et al. (2014) proposed a graph-based
approach that uses graph-walking for improving performance on educational data sets.

One important way in which RecSysTEL has been used in an educational setting is to recom-
mend personalized learning objects. Thus, Lemire et al. (2005) used inference rules to provide
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context aware recommendation on learning objects, and Mangina and Kilbride (2008) recom-
mend documents and resources within e-learning environments to expand or reinforce knowl-
edge. Interestingly, Gomez-Albarran and Jimenez-Diaz (2009) combined content based filtering
with collaborative filtering to make recommendations in a student authored repository. When
recommending learning objects (e.g. questions) related to student knowledge gaps, Cazella
et al. (2010) provided a semi-automated, hybrid solution based on CF (nearest neighbor) and
rule based filtering, while Thai-Nghe et al. (2011) used students’ performance predictions to
recommend more appropriate exercises. CF techniques (basic, biased, and tensor matrix factor-
ization) were used to address a number of different student behaviors and to model the temporal
effect of students improving over time. Recently, Imran et al. (2016) provided an automated so-
lution to personalize a learning management systems (LMS) using advanced learners’ profiles to
encapsulate their expertise level, prior knowledge, and performance in the course. The approach
used association rule mining to create the learning object recommendations.

Matrix factorization (MF) is one of the most established techniques used in CF; however,
despite its success in RecSys, MF has rarely been used in RecSysTEL. Out of the 124 papers
referenced by Drachsler et al. (2015), only two papers directly use it (Salehi, 2013; Thai-Nghe
et al., 2011). In Section 2.2. the discussion reveals that this is somewhat surprising; MF has
been put to good use in EDM for generating latent profiles of student expertise and so ought to
combine with RecSysTEL in a straightforward manner. Indeed, the intelligent tutoring systems
that appear to be utilized in that body of work could be seen as closely related to RecSysTEL,
although they tend to give students less autonomy to accept or reject the pathways chosen for
them (Chen, 2008).

MF is particularly powerful in modeling students’ performance and knowledge, because it
implicitly incorporates guess and slip factors as latent factors (Thai-Nghe et al., 2011). In a
question answering scenario slipping refers to the situation where a student has the required
skill for answering a question but mistakenly provides the wrong answer; guessing refers to
the situation where a student provides the right answer despite not having the required skill for
solving the problem. This is a complex task that has received significant attention in the EDM
community (Beck and Chang, 2007; Baker et al., 2008; Pardos and Heffernan, 2010).

2.2. LEARNER PROFILING USING THE Q-MATRIX

In contrast to the RecSysTEL literature an ongoing program of research, spanning more than 30
years, has sought to build models of student competencies and underlying knowledge, mapping
them to educational tasks. An early EDM paper by Barnes (2005) discusses the Q-matrix ap-
proach, which maps test item results to latent or underlying knowledge structures. This mapping
was originally performed using binary values, although these values can be straightforwardly
mapped to probabilities if the binary values are replaced by a number ranging from zero to one.
Thus, this approach constructs concept–question matrices that can be related to the performance
of students using a variety of MF methods. Recent work by Desmarais and collaborators has
made use of non-negative matrix factorization (NMF) to extract Q-matrices from different data
sets (Desmarais et al., 2012; Desmarais, 2012; Desmarais and Naceur, 2013), claiming NMF is
far more interpretable than many MF techniques due to its insistence upon non-negative values
in the two new matrices, which enables a probabilistic interpretation of the resulting matrices.

The model of MF that is adopted very much affects the results that are obtained. In particular,
the move from compensatory operations (which each added skill adds to the success of a topic)
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to more conjunctive operators (where missing skills will lead to a student failing a test item) has
been recognized (Barnes, 2010; Desmarais et al., 2012; Desmarais, 2012), but there is no clear
consensus as to which factorization method should be used. Indeed, it is possible to factorize
matrices describing student performance in other ways, and in Section 3.1. one such alternative
is presented.

While originally constructed by experts who defined the question to concept mappings, Q-
matrices can be automatically constructed using simple hill-climbing algorithms which vary
the number of concepts and the values in randomly seeded matrices, attempting to find a Q-
matrix that best describes all student responses. In contrast to results obtained by traditional
clustering methods, Q-matrices are more interpretable, which makes them interesting tools for
communicating with both faculty and students about capabilities and weaknesses. The paper by
Barnes (2005) demonstrated that, in at least some cases, students who were given a self-guided
option in an experiment could choose questions that were highly correlated with a Q-matrix
“least understood concept” constructed from a simple lesson based tutorial. Furthermore, Barnes
was able to demonstrate that a small sample of self-guided students who chose differently from
the Q-matrix prediction “could have benefited from reviewing a Q-matrix selected concept”
before their final exam, stating correctly that a “student may not realize when he should review
a particular topic.” Sometimes the items in which a student is most interested are not those from
which they could best benefit. This suggests that RecSysTEL can perhaps be used to improve
outcomes based upon profiles of student knowledge, particularly in more complex scenarios
where student confusion is likely to increase.

Q-matrices have been shown to compare favorably with Bayesian Knowledge Tracing (BKT)
when it comes to predicting student success (Thai-Nghe et al., 2010), but remain very difficult
to use in scenarios based more around modeling student knowledge of topics. They tend to
perform better when concepts and topics are distinct from one another, as happens with e.g.
French and mathematics, but less well on trivia (or questions for which there is more overlap)
(Winters, 2006; Desmarais, 2012).

2.3. USING KNOWLEDGE GAP PROFILES IN RECSYSTEL

While many recommendation systems have been developed in TEL, they tend not to make use
of MF for their profiling of students. Similarly, there appear to be few attempts to couple student
profiles regarding knowledge with a scalable RecSys solution. Here, a full system is presented
that: (i) Takes note of student performance in a real world and open ended question answering
scenario, (ii) constructs a learner profile based upon performance using MF that maps out their
current knowledge gaps with respect to the environment in which they are participating, and
(iii) recommends questions that will help them to remove this knowledge gap, while preferen-
tially selecting questions that are similar to those that they have previously rated as interesting.

3. RIPLE TECHNIQUES, TECHNOLOGIES, AND PROBLEM DEFINITION

In this section, more explicit details are provided on the MF algorithm and the Peer-Learning
Environment that are used in this study. These details enable the definition of a tighter set of
design requirements and the further refinement of the research problem in Section 3.3.
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3.1. MATRIX FACTORIZATION

Assuming HN×K represents the latent factors underlying user behavior giving hu, a vector of
latent factors representing user u. Similarly, QM×K is assumed to represent the latent factors
of a question set, where qi is a vector of latent factors representing question i. After the map-
ping of users and questions to the latent factors, the rating of a user u for a question i can be
approximated as:

r̂ui = qTj hu =
K∑

k=1

qikhuk (1)

Matrix R̂ = {r̂ui} is then used to capture all predicted ratings that users give a set of questions,
with elements given by Equation 1. The goal of MF is to learn the matrices H and Q, which are
used to compute values for R̂, which approximate the unseen ratings that are actually given by
users represented byR. To learn these factors, a MF system minimizes the following regularized
squared error term on the set of known ratings:

∑

(u,i)∈Rtrain

(rui − qTi hu)2 + λ(‖qi‖2 +‖hu‖2), (2)

where (u, i) ∈ Rtrain represents (u, i) pairs such that the rating of user u for question i is present
in the training data set and λ is a parameter controlling the extent of the regularization.

The initial values of latent variables in H and Q are sampled from a standard normal distri-
bution with zero mean and standard deviation of one. By performing stochastic gradient descent,
in each iteration looping through the ratings in R, latent variables in H and Q are updated using
Formulas (3) and (4) and tuned in order to locally minimize (2). The constant value γ represents
the learning rate, which is often determined using a validation set.

hu = pu + γ.((rui − qTi hu).qi − λ.hu) (3)

qi = qi + γ.((rui − qTi hu).hu − λ.qi) (4)

Extended research has aimed to improve this method generally. Koren (2008) illustrated that
addition of mean normalization and a bias parameter for each user and item (in this case a ques-
tion) can capture the effects associated with each, allowing only the true interaction portion of
the ratings to be modeled inH andQ. This method, referred to as Biased Matrix Factorization
(BMF), is employed in RiPLE.

3.2. THE PEERWISE LEARNING ENVIRONMENT

PeerWise (Denny et al., 2008) is a free web-based system in which students can both (i) create
multiple-choice questions for sharing, and (ii) answer, rate, and discuss questions created by
their peers. More than 1500 universities, schools and technical institutes from around the world
have adopted Peerwise1, and many papers have been published that discuss research completed
using the platform (Hardy et al., 2014; Lumezanu et al., 2007; Bates et al., 2012; Purchase et al.,
2010).

In PeerWise students are expected to direct their questions towards the learning goals of the
course. Students receive immediate feedback on any answers that they record in the system.

1https://peerwise.cs.auckland.ac.nz/
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They are also shown a sample solution and data about how other students have answered the
same question. This helps them to assess how well they are performing compared to their peers.
Questions can also be evaluated using peer-review, which encourages students to evaluate the
quality and difficulty of any questions they answer, providing constructive open-ended com-
ments in the process if appropriate. This feature enables asynchronous discussions over a period
of time, where students can rate the quality of questions, providing feedback for one another as
to how they might be improved.

The crowdsourcing process facilitated by this Peer-Learning Environment can lead to a
repository of rich and high-quality multiple-choice questions that can be reused in future of-
ferings of a course, as well as studied in their own right.

PeerWise also includes several “game-like” elements (such as badges, points and leader-
boards) to inspire students to become more engaged with the platform. All activities remain
anonymous to students; however, instructors can view the identity of question and comment
authors, and to delete inappropriate questions. When students create a question, they can tag it
with relevant topics, which can be student generated depending upon the settings chosen by an
instructor. Instructors can also choose to predefine all tags to be used in the course if they feel
that student generated tags will not work for their scenario.

PeerWise currently does not provide personalized recommendations to students. However,
the main PeerWise page where the questions are presented supports basic sorting functionality.
Questions can be sorted based on different characteristics such as popularity, difficulty, and date
of creation. A student can then manually search through the displayed questions to find suitable
candidate questions for answering. Additional information about the reputation of the author
and the number of times the question has previously been answered is also provided.

3.3. THE RESEARCH PROBLEM

The open-ended structure of PeerWise leads to the specific research problem that this study
aims to address: as a large and unstructured store of multiple choice questions, PeerWise can
rapidly become un-navigable for students. This can lead to students focusing upon questions
that reinforce existing knowledge, or satisfy their general interests, instead of those that are
most likely to help them to satisfy study requirements. A RecSys could be used to discourage
this behavior, but such a system must be able to both identify knowledge gaps in an individual
learner’s profile, and find questions that are most likely to satisfy that knowledge gap. Ideally
such a RecSys would be able to perform this function while prioritizing questions in which a
user is likely to have an interest, as this will help to maintain their engagement with the system.

The aim of this work is to enhance a RecSys using BMF with the concept of a learning
profile, producing a RecSySTEL designed for the PeerWise learning environment. As a set
of further requirements this tool should: enable a proof of concept scenario where users can
choose different foci for the recommendations that they receive, support cold start users, scale
appropriately while exhibiting robust behavior, and allow users to understand the reason for the
recommendations presented.
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4. INTRODUCING RIPLE

At a high level, RiPLE2 applies a suite of established approaches to harness data available in
Peer-Learning Environments and provide personalized recommendations tailored towards each
users’ interests and knowledge gaps. RiPLE is organized into five main modules: Input Data,
Data Integration, Learning Profile, Recommendation Engine, and Modes of Operation. Figure 1
provides an overview of the system. Boxes in the Input Data module represent data gathered
from PeerWise. The top part of the double boxes in the Data Integration, Learning Profile,
and Recommendation Engine modules represent computations; the bottom part of the double
boxes represent the results. The boxes in the Modes of Operation module represent the final
selection and presentation of tailored recommendations to the users based on the operational
mode selected. A summary of the notation used in describing RiPLE is presented in Table 1.

In what follows, Section 4.1. provides more information about the input data, and Sec-
tion 4.2. discusses how the data are used to infer knowledge gaps. Section 4.3. introduces
the learning profile, Section 4.4. describes how learning profile enhanced recommendations are
made, and Section 4.5. summarizes the different operational modes of the system.

Recommendation	in	Peer-Learning	Environments	(RiPLE)

Data	 Integration

Learning	ProfileInfer	Knowledge	Gaps

Modes		of	Operation
New	Questions Review	Questions Specific	Topics

Recommendation	Engine

GNXM

Input	Data
Difficulties	DNXMInterests	PNXM Answers	ANXM Tags TLXM

Combine

RNXM

Create	Learning	Profile

LPNXT

Recommender	System

RNXM Enhance	Recommendations

ONXM

Update	Knowledge	Gaps

GNXM
^ ^

Figure 1: RiPLE: a framework for Recommendation in Peer-Learning Environments.

4.1. INPUT DATA

As discussed in Section 3.2., the input data consists of multiple-choice questions that are tagged
with distinct topics and user ratings for quality and difficulty. Table 1 summarizes all input data,
characterizing it with N to denote the number of users that are registered on the Peer-Learning
Environment, M for the number of multiple-choice questions that have been contributed to the

2Source code for RiPLE is available at https://github.com/hkhosrav/RiPLE
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Input Data
N Number of users
M Number of questions
L Number of topics
AN×M Matrix, where aui is 1 if user u answers question i correctly and 0 if answered incorrectly
PN×M Matrix, where pui is the interest level user u has expressed for question i
DN×M Matrix, where dui is the difficulty level user u has expressed for question i
TM×L Matrix, where tij is 1

g if i is tagged with g topics, including j and 0 otherwise
Data Integration

GN×M Matrix, where gui is the knowledge gap of user u based on question i
d̄M Vector, where d̄i is the average difficulty expressed for question i across all of the users
kgw Constant to weight the relative impact of knowledge gaps and interests
RN×M Matrix, where rui is the benefit that user u would receive from doing question i

Learning Profile
SN×M Matrix, where sui is 1 if user u has attempted question i and 0 otherwise
CN×L Matrix, where cuj is the weighted sum of questions tagged with topic j attempted by user u
LPN×L Matrix, where lpuj is the approximated knowledge gap of user u on topic j
l̄pL Vector, where l̄pj is the average knowledge gap for topic j across all of the users
β constant parameter controlling the impact of the learning profile

Recommendation Engine
ON×M Matrix, where oui is the predicted personalized score of question i for user u
R̂N×M Matrix, where r̂ui is the predicted benefit that user u would receive from doing question i
r̄M Vector, where r̄i is the average benefit of question i across all of the users
ĜN×M Matrix, where ĝui is the inferred knowledge gap of user u on question i based on lpu

Table 1: A summary of the notation used in describing RiPLE

environment, and L as the number of distinct topics that have been used to tag the questions.
The expressed user ratings and correctness values in a PeerWise data set are used to populate
the matrices. The interests (P ) are originally stored in PeerWise as integers in the range of [0,
5] and the difficulties (D) as integers in the range of [0, 2]. Data input to RiPLE from PeerWise
are organized in four matrices:
Interests, P : Each user can rate the quality of the questions that they have answered. This

information is represented in a matrix PN×M , where pui captures the interest level user u
has expressed for question i. These ratings are stored as a value between between 0 and 1
when expressed and as Null otherwise.

Difficulties, D: Each user can rate the difficulty of the questions that they have answered. This
information is represented in a matrix DN×M , in which dui captures the difficulty level
user u has expressed for question i. These ratings are stored as a value between 0 and 1
when expressed and as Null otherwise.

Tags, T : Each question can have 0 to L topics assigned (i.e. tagged) to it. The information
on topics assigned to each question is represented in a matrix TM×L, in which tij = 0
indicates that question i is not tagged with topic j and tij = 1

g
indicates that question i is

tagged with 1 ≤ g ≤ L associated topics, including j.
Answers, A: The correctness of the answers provided by the users is represented in a matrix

AN×M . If a user u answers a question i correctly then the matrix entry is set at aui = 1,
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aui = 0 indicates an incorrect answer, and aui = Null indicates that question i has not
been attempted by user u.

4.2. DATA INTEGRATION

This module uses the input data A, D, and P to produce an overall rating matrix RN×M , where
rui captures the extent to which a user u would benefit from answering a question i. This matrix
represents how much the knowledge gaps of individual users can be reduced while keeping
engagement at a maximum. RN×M is constructed in two steps.

INFERRING KNOWLEDGE GAPS First, information from D and A is combined to create a
scoring function that maps user performance to knowledge gaps. The function determines user
u’s lack of knowledge about question i, independent of their performance on other questions.
Matrix D is used for computing a vector d̄, where d̄i =

∑N
u=1 dui
N

represents the average rating
for question i across all users. The scoring function produces a matrix GN×M , where gui infers
user u’s lack of knowledge about question i.

gui = (1− aui)(
0.5− aui

1+
−
di

) + aui(
0.5− aui

2−
−
di

) (5)

A higher value for (5) indicates a larger knowledge gap. This function captures two intuitions
about user responses:

1. An incorrect answer indicates a knowledge gap for topics related to that question. The
significance of the gap may be approximated by the difficulty level of the question; an-
swering an easy question incorrectly suggests a large gap and answering a hard question
incorrectly suggests a smaller one.

2. Answering questions correctly provides evidence that no knowledge gap exists, suggest-
ing user competency on the related topics. The significance of the competency may be
approximated by the difficulty level of the question; answering an easy question correctly
illustrates low level of competency and answering a hard question correctly illustrates a
higher level of competency.

Equation (5) uses summation to combine these intuitions. The first part of the equation is pos-
itive, indicating a knowledge gap for an incorrectly answered question i weighted by d̂i. The
second part contributes to the score with a negative value, indicating competencies, when the
question is answered correctly. For example, answering an easy question i with d̄i = 0.1 in-
correctly results in the scoring function returning 0.45, and answering a hard question i′ with
d̄i′ = 0.7 correctly results in the scoring function returning -0.38. Given that the difficulties are
stored as values between 0 and 1, values in G remain in the range of [-0.5, 0.5].

COMBINING KNOWLEDGE GAPS AND USER INTERESTS The knowledge gaps inferred
from the previous calculation are then combined with students’ interests to produce a matrix R,
which captures the extent to which users would benefit from answering different questions:

R = kgwG+ (1− kgw)P. (6)
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Here, a weight term (0 ≤ kgw ≤ 1) is used to represent the impact of the knowledge gaps
upon users. This may be be set as default for an entire cohort, or for individual students. Both
students and instructors could set kgw at the individual level, or additional machine learning
techniques could also be used in future work. The value of kgw allows the weight of the knowl-
edge gaps and the interests of the students to be adjusted along a spectrum between what the
users of RiPLE need (to master course content) and what they prefer (to improve engagement).

4.3. LEARNING PROFILE

This module uses the input data T and the knowledge gap matrixG provided by Data Integration
module to produce a student-topic learning profile LPN×L, in which each vector (lpu) approxi-
mates a user’s knowledge gaps across all topics associated with the course. A negative value in
the vector, i.e. lpuj < 0 indicates that the user u has demonstrated some knowledge on topic j,
a positive value indicates a knowledge gap on that topic, and 0 represents a neutral state, where
the positive and negative scores have balanced each other out for that topic. The learning profile
is computed in two steps:

1. Matrix GN×M stores information about the lack of knowledge exhibited by all users for
each question, and matrix TM×L stores information about the tags associated with each
question. Multiplying the two (GT ) allows for an understanding to be gained about topic-
level knowledge gaps in the system per se. The value stored in cell [u, j] of the resulting
matrix depends on the number and weight of questions tagged with topic j that have been
attempted by each user u. This means that the values in this matrix require normalization.

2. Normalization is achieved using a user-topic count matrix CN×L, in which cuj represents
the weighted sum of questions attempted by user u that have been tagged with topic j.
This matrix can be computed using C = ST , in which sui is 1 if question i is attempted
by user u and 0 otherwise.

Putting the two steps together, the learning profile is computed using the following formula:

LP =
GT

C
(7)

This learning profile may be shared with students to inform them of their knowledge gaps and
competencies at a topic-level, enabling them to understand the reason for RiPLE’s recommenda-
tions. As mentioned in Section 3.3., this is one of the core requirements of the system. It would
also allow them to compare their performance with the cohort. Such learner centered learning
analytics could help to stimulate self-reflection among students, as well as providing an early
alert for those that are performing below their targeted performance goal. Future work will seek
to explore this intriguing possibility.

COLD-START USERS A user that has answered zero or very few questions is referred to as
a cold-start user. The knowledge gaps of a cold-start user c that has answered zero questions
are represented with a vector of zeros. In this scenario, the system is unable to reliably infer
user c’s knowledge gaps, and therefore, cannot make meaningful recommendations. To address
this issue, the knowledge gaps for cold-start users are estimated using the average knowledge
gaps for the cohort, a vector l̄p, where l̄pj =

∑N
u=1 lpuj
N

represents the average knowledge gap
for topic j across all of the users in LP . This solution to the cold start problem assumes that
most new users will have similar knowledge gaps to the average user, an assumption that could
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be questioned, but which should result in better initial recommendations for most users in the
system (by definition).

4.4. RECOMMENDATION ENGINE

This module uses the benefit matrix R (produced by the Data Integration module) and learning
profile matrix LP (produced by the Learning Profile module) to produce a matrix O which
contains vectors ou predicting the extent to which user uwould benefit from each of the questions
in the PeerWise system. The process of making these recommendations is accomplished in three
steps. Again, cold start users require unique processing for this module (see below).

EXEMPLARY RECOMMENDATION First, matrix factorization as described in Section 3.1. is
employed to characterize users and questions using vectors of latent factors that form R̂N×M .
This predicts the extent to which users might benefit from completing unseen questions.

UPDATING THE STUDENT-QUESTION KNOWLEDGE GAP This step uses the matrices LP
(produced by the Learning Profile module) and the input tag matrix T to produce an updated
student-question matrix ĜN×M , in which ĝui approximates user u’s knowledge gap of question i
based on lpu and the tags associated with i. This is accomplished using the following equation:

Ĝ = LPTT (8)

Multiplying LPN×L and TT
L×M propagates the lack of knowledge from course topics over to

the associated questions.

ENHANCING RECOMMENDATIONS The updated benefit matrix R̂ and the updated student-
question matrix Ĝ that were extracted in the previous two steps are used to create the recom-
mendation output matrix O, in which oui represents the personalized rating of question i for
user u tailored towards their knowledge gaps and interests. Values in O are computed using the
following formula:

O = R̂ + βĜ (9)

where β is a parameter controlling the impact of the learning profile, which may be determined
using a validation set.

COLD-START USERS The regularized squared error used in matrix factorization sets the la-
tent factors of a user u based on two terms: minimizing the first term tunes the latent factors of
u for predicting the ratings in the training set and minimizing the second term helps keep the la-
tent factors small to avoid over-fitting (see Equation (2)). Since cold-start users do not have any
ratings in the training set, the first term does not affect the outcome, so the learning algorithm
is encouraged to reduce the error rate of the cost function by setting the latent factors all to zero
without paying a penalty on the first term. Since multiplying a vector of zeros by the latent fac-
tors of any question returns zero, the system is unable to make any meaningful recommendation
for cold-start users.

One possible solution for overcoming this problem is to use mean normalization. Let r̄ be
a vector storing the average rating for each question, so r̄i represents the average rating for
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question i across all users in R. During the learning phase, values in R are normalized with r̄
using the following formula:

rui = rui − r̄i. (10)

With this update, after the learning phase, values in R have the following interpretation: rui > 0
indicates that u would rate i higher than average, rui < 0 indicates that u would rate i lower than
average, and rui ' 0 indicates that uwould rate i close to the average. Using mean normalization
has the benefit that the system’s ratings for a cold-start user c, which is rc = {0}, has now the
interpretation that c’s rating of each of the questions is the global average for that question.

After the learning phase, values are de-normalized and stored back in R̂ using the following
formula, in which r̄i is added back to the ratings for question i

r̂ui = rui + r̄i. (11)

4.5. MODES OF OPERATION

The system operates in three different modes, each having its own advantages and use case.
The modes select questions to present to the user u from their vector in the output matrix Ou

(produced by the Recommendation Engine).
Exploring new questions: In this mode, the system is designed to present users with questions

that they have not seen before, preferentially choosing the unseen questions with the high-
est recommendation values for the user u, in the vector Ou. This mode is ideal for general
practice, allowing users to explore new questions that are tailored towards their interests
and reducing their knowledge gaps.

Reviewing answered questions: In this mode, the system is designed to present users with
questions that they have seen before, preferentially choosing the seen (answered) ques-
tions with the highest recommendation values for the user u, in the vector Ou. This mode
is ideal for preparation for exams; the system prioritizes questions that cover topics where
the user lacks knowledge and topics in which they are interested.

Focusing on specific topics: In this mode, the system is designed to present the user with ques-
tions from selected topic(s), regardless of whether they were previously attempted or not,
choosing those which have the highest recommendation values for the user u, in the vec-
tor Ou. This mode is ideal for practice on specific topics, in which the system prioritizes
questions that the user finds most interesting and helpful in reducing their knowledge gaps.

5. SIMPLE EXAMPLE

To ground the above discussion of RiPLE, a simplified example with four students, five ques-
tions and three topics is presented. Figure 2 shows an overview of the example based on the
framework provided in Figure 1. In this example, Alice (A), Bob (B), and Catherine (C) are all
defined as existing active users and Dean (D) is a new cold-start user of RiPLE. For this simple
example the two parameters are set to β = 1 and kgw = 0.8.

In the current scenario, Alice has correctly answered the first three questions, and she has
not found them to be very challenging. Because of her correct answers on topics T1 and T2,
her learning profile vector [-0.18, -0.19, 0] indicates a significant lack of knowledge gap on
those topics, and a neutral state on T3 since she has not attempted any questions on that topic.
Forming Ĝ by propagating the information from the knowledge gaps over to questions based on
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Recommendation	in	Peer-Learning	Environments	(RiPLE)
Input	Data

Data	 Integration

Combine
Infer	Knowledge	Gaps

Learning	Profile

Create	Learning	Profile

Recommendation	EngineRecommender	System
Enhance	Recommendations

Modes		of	Operation

T
T1 T2 T3

Q1 1 0 0
Q2 0 1 0
Q3 0.5 0.5 0
Q4 0 0 1
Q5 0.33 0.33 0.33

D
Q1 Q2 Q3 Q4 Q5

A 0.2 0.4 0.4 ? ?
B ? 0.4 ? 0.6 0.6
C 0.4 ? 0.6 0.6 0.8
D ? ? ? ? ?

A
Q1 Q2 Q3 Q4 Q5

A 1 1 1 ? ?
B ? 0 ? 0 1
C 1 ? 0 0 0
D ? ? ? ? ?

P
Q1 Q2 Q3 Q4 Q5

A 0.6 0.6 0.8 ? ?
B ? 0.4 ? 0.4 0.8
C 0.8 ? 0.2 0.4 0.2
D ? ? ? ? ?

G
Q1 Q2 Q3 Q4 Q5

A -0.29 -0.31 -0.33 ?	 ?
B ? 0.35 ? 0.31 -0.38
C -0.29 ? 0.33 0.31 0.29
D ? ? ? ? ?

LP
T1 T2 T3

A -0.184 -0.1916 0
B -0.096 0.097 0.078
C -0.01 0.144 0.175
D -0.097 0.016 0.08

R
Q1 Q2 Q3 Q4 Q5

A 0.57 0.2 0.8 0.9	 0.7
B 0.59 0.8 0.55 0.75 0.2
C 0.2 0.1 0.76 0.8 0.72
D 0.38 0.5 0.78 0.77 0.46

^

O
Q1 Q2 Q3 Q4 Q5

A 0.34 0.02 0.61 0.9 0.58
B 0.5 0.87 0.55 0.82 0.22
C 0.22 0.24 0.81 0.95 0.80
D 0.28 0.51 0.73 0.85 0.46

G
Q1 Q2 Q3 Q4 Q5

A -0.184 -0.191 -0.187 0 -
0.125

B -0.096 0.097 0.001 0.078 0.02
C -0.01 0.144 0.066 0.175 0.103
D -0.097 0.016 -0.04 0.084 0.001

Update	Knowledge	Gaps

^

Focus	on	T2
A Q3 Q5 Q2
B Q2 Q3 Q5
C Q3 Q5 Q2
D Q3 Q2 Q5

Review	questions
A Q3 Q1 Q2 -
B Q2 Q4 Q5 -
C Q4 Q3 Q5 Q1
D - - - -

New	Questions
A Q4 Q5 - - -
B Q3 Q1 - - -
C Q2
D Q4 Q3 Q2 Q5 Q1

R
Q1 Q2 Q3 Q4 Q5

A 0.57 0.2 0.8 ?	 ?
B ? 0.8 ? 0.75 0.2
C 0.2 ? 0.76 0.8 0.72
D ? ? ? ? ?

Figure 2: An example of RiPLE with four students, five questions, and three topics that shows
how the system operates.

the associated tags leads to the indication that answering Q4 followed by Q5, which both focus
on T3 benefits her the most in terms of reducing her knowledge gaps. Considering the output
vector from matrixO for Alice, in the explore mode RiPLE recommends answering Q4 overQ5
since it would help her the most in overcoming the existing knowledge gap on T3. In the review
mode, the system recommends answering Q3 over the other questions since they all contribute
roughly the same in overcoming her knowledge gaps, but she has expressed a higher interest
towards Q3. In the focus mode assuming T2 is selected, the system recommends Q3, with a
slight edge, over Q5 because of her high interest on that question. Assigning a larger value to β
(e.g. 1.5 instead of 1) would have resulted in Q5 being recommended over Q2.

Bob has answered three questions altogether, two of which are answered incorrectly. Matrix
D also shows that he has rated the questions as more challenging than Alice. Because of his in-
correct answers on topics T2 and T3, his learning profile vector [-0.096, 0.097, 0.078] indicates
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a knowledge gap on those topics. The predicted gap for topic T2 is greater since the question
answered incorrectly on T2 had a lower level average difficulty compared to the question that
was answered on T3. Bob answered an easy question correctly on T1, so the vector shows a
slight competency on that topic. Forming Ĝ leads to the prediction that answering Q2, focused
on T2, followed by Q4, focused on T3, would benefit Bob the most in terms of reducing his
knowledge gaps. Considering the output vector from matrix O for Bob, in the explore mode the
system redirects recommendations from R̂ to recommend answering Q3 over Q1, allowing him
to receive further practice on T2. In both the review mode and the focus mode, assuming T2
is selected, the system recommends answering Q2 since this would help overcome knowledge
gaps on T2 and Bob has expressed relatively high interest in that question.

Catherine (C) has answered four questions, but only one of them correctly. Based on her two
incorrect answers on T3, one incorrect answer on T2, and one correct and one incorrect answer
on T1 her learning profile vector is computed as [-0.01, 0.144, 0.175]. The slight competency
on T1 arises because the T1 weight of the question she answered correctly (Q1) was greater
than the one she answered incorrectly (Q5). Consistent with these findings, Ĝ indicates that she
would benefit the most from answering Q4, which solely focuses on T3. Considering the output
vector from matrix O for Catherine, in the explore mode the system recommends answering Q2
since it is the only unanswered question. In the review mode, the system recommends answering
Q4, helping her overcome knowledge gaps on T3. Despite her high interest for Q1, it receives
a very low overall rating as it does not help her overcome her major knowledge gaps. Assigning
a smaller value to kgw (0.1 instead of 0.8) would have resulted in Q1 being recommended over
Q4. In the focus mode, assuming T2 is selected, the system recommends Q3 with a slight edge
over Q5 because of the higher rating in R̂.

Dean has not answered any questions, so he is a cold-start user. Since mean normalization
is used, Dean’s latent factors in R̂ are filled with average ratings from the training data set (e.g.,
r̂DQ1 is equal to 0.38, which is the average of rAQ1 and rCQ1). By using mean normalization,
the system approximates Dean’s knowledge gaps based on the knowledge gaps of the cohort, l̄p;
therefore, he is expected to benefit the most from questions on T3 and the least from questions
on T1. Considering the output vector from matrix O for Dean, in the explore mode the system
recommends answering Q4, which is also recommended to many regular users. In the review
mode, the system cannot make any recommendations since he hasn’t answered any questions
before. In the focus mode, the questions from each topic that the cohort would mostly benefit
from would also be recommended to Dean.

6. VALIDATION: USING SYNTHETIC DATA SETS

The goal of RiPLE is to provide accurate recommendations that help users to overcome knowl-
edge gaps while keeping their engagement to a maximum by prioritizing questions that are of
interest to them. In this section, the behavior of the system is validated and examined under
different circumstances using synthetic data sets, in which the underlying knowledge gaps of
the students are pre-defined. Each experiment is repeated five times. Reported values are the
average results across the five runs. In these experiments, users that have answered less than
three questions are considered cold-start users.

The following metrics are used for evaluating the output.
Metric for Question-level recommendations As used commonly in recommender systems eval-

uations, Root Mean Squared Error (RMSE) is used for measuring the error in the recom-
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mendation:

RMSE =

√∑
(u,i)∈ds(rui − r̂rui)2

|ds| (12)

where ds is the set of all pairs of (u, i) in the data set for which RMSE is being reported.
Metric for topic-level recommendations Accuracy of the model in terms of recommending

questions that match students’ most significant knowledge gap:

Accuracy =
match

|ds| (13)

where match is the number of instances ∈ ds where the topic of the recommendation
matches student’s most significant knowledge gap.

6.1. TEMPLATE FOR GENERATING SYNTHETIC DATA SETS

The experiments discussed in this section make use of synthetic data sets generated using the
following sequence of steps. First, a set of users with pre-defined knowledge gaps over a set
of topics are created. Second, a set of questions with a pre-defined topic, level of difficulty
and discrimination is generated. Knowledge gaps must sum to one, and are constructed by
sampling from a Dirichlet distribution, where α defines the sparsity of the distribution; a smaller
value of α creates a sparser distribution over knowledge gaps, producing synthetic users with
a large gap over one topic. The topics associated with a question are sampled from a discrete
uniform distribution; their level of difficulty and discrimination are both sampled from a normal
distribution. The probability of a user u answering a question i correctly is computed using
a 2-parameter logistic Latent Trait Model from classical Item Response Theory (Drasgow and
Hulin, 1990), as recommended by (Desmarais and Pelczer, 2010):

1

1 + e−ai(θs−bi)
(14)

where θs represents user’s average lack of knowledge gaps (competencies) in the topic(s) associ-
ated with question i , bi is the difficulty level and ai is the discrimination level of question i. The
difficulty level user u has expressed towards question i is sampled from a normal distribution
based on the difficulty level of i. The interest level that user u has expressed towards question i
is sampled from a uniform distribution.

In all generated data sets 400 users, 1100 questions, and 22000 answers are sampled, which
roughly matches the numbers from the historical data set that is used for exploration in Section 7.
If not otherwise stated, the hyper-parameters are set using the following default values: α = 0.1,
L = 10, β = 0.1, kgw = 0.8, γ = 0.1, k = 5. Results are evaluated using 5-fold cross-
validation.

6.2. IMPACT OF VARYING PARAMETERS IN SYNTHETIC DATA SET GENERATION

IMPACT OF THE SPARSITY OF THE PRE-DEFINED KNOWLEDGE GAPS (α): Figure 3 il-
lustrates the effect of α, which defines the sparsity of user knowledge gaps among the topics,
upon the accuracy and RMSE of RiPLE. For regular users, RiPLE can provide recommenda-
tions that target users most significant knowledge gaps when α is small. Increasing α, leads
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(a) Accuracy as α is increased (b) RMSE as α is increased

Figure 3: Changes in accuracy and RMSE as the sparsity of the pre-defined knowledge gaps is
decreased.

to the simulation of users with less extreme pre-defined knowledge gaps, making it more chal-
lenging for the system to accurately identify their most significant gap. For cold-start users, the
system’s accuracy is lower, as expected. We note that RiPLE is still able to provide reasonable
recommendations, considering the limited data available on those users, if α does not grow too
large. Since users’ knowledge gaps are defined as a vector that sums to one, changes in α do not
have a significant impact on the overall probability of a user answering questions correctly, but
only moves the knowledge gaps among topics, therefore the RMSE remains quite stable as α is
increased.

IMPACT OF NUMBER OF TOPICS (L): Figure 4 illustrates the impact of increasing L, which
shows the distinct number of topics that have been used for tagging the questions.

(a) Accuracy as L is increased (b) RMSE as L is increased

Figure 4: Changes in accuracy and RMSE as the number of topics is increased.

For regular users with L < 10, RiPLE can provide recommendations targeting their most
significant knowledge gap over 90% of the time. For 10 ≤ L ≤ 20, which would be the
case for most of the commonly taught courses, the system remains relatively reliable being

57 Journal of Educational Data Mining, Volume 9, No 1, 2017



able to identify the most significant gap over 80% of the time. For more extreme cases where
20 ≤ L ≤ 100, the system does computationally scale; however, the task becomes much more
challenging, and the accuracy drops significantly. For cold-start users, the system finds it more
challenging to determine the most significant knowledge gap of a user (as expected) since they
are unlikely to have encountered a question on that topic.

As described in (14), the probability of a user answering a question correctly relies signif-
icantly on the pre-defined knowledge gaps of the user. When dealing with users with sparse
knowledge gaps, the sampled values determining whether a user correctly answers a question
with an unknown topic has the highest standard deviation, unpredictability, in the case of L = 2
since there is approximately a 50-50 split between the question being answered correctly and
incorrectly; therefore, the highest RMSE is observed when L = 2. For L > 2, the standard devi-
ation of sampled values is reduced since most of the questions would have a higher probability
of being answered correctly.

SUMMARY The results presented in this section have demonstrated that both α and L have a
significant impact on the performance of RiPLE. For small values of α and L, which contribute
to the creation of a simple environment with strong correlations among values in the data set,
RiPLE can provide recommendations that strongly match users’ knowledge gaps, validating the
theoretical foundations of the system. Larger values of α and L can be used to create more
realistic data sets, in which RiPLE is still able to perform relatively well. Extreme values of α
and L (that lead to the creation of data sets more complicated than expected in real data sets on
Peer-Learning Environments) demonstrate the scalability of the system, showing that it exhibits
robust behavior under more extreme circumstances.

6.3. IMPACT OF VARYING RIPLE MODEL PARAMETERS

IMPACT OF THE LEARNING PROFILE (β): Figure 5 demonstrates how the output of the sys-
tem changes as we increase β, which controls the impact of the learning profile.

(a) Accuracy as β is increased (b) RMSE as β is increased

Figure 5: Changes in accuracy and RMSE as the impact of the learning profile is increased.

In this figure, β = 0 shows the output of RiPLE where recommendations are made without
considering the learning profile (i.e., the system has no knowledge of what topics a question
can be classified with). In this setting, the probability of students receiving questions that target
their most significant knowledge gap is close to 10%, which with ten topics is the expected
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result. As β is increased to 0.05, the probability of students receiving questions that target their
knowledge gaps is increased without any significant changes in the RMSE. For regular users,
the accuracy is 96% and for cold-start users, the accuracy is close to 57%. For both sets of users
when β > 0.05, the RMSE starts to increase without significant changes to the accuracy. This
suggests that keeping the other parameter settings constant, β = 0.05 produces the best results.
This general trend also occurs for other values of α and L; however, the accuracy drops as α and
L are increased, and the best value for β varies in different experiments.

The results of this experiment demonstrate that the value of β has a significant impact on the
performance of the system. The goal is to set β, such that users will be exposed to questions tar-
geting their knowledge gaps without making significant sacrifices on the RMSE, which partially
represents users’ interests.

IMPACT OF KNOWLEDGE GAPS IN DEFINING USER BENEFITS (kgw): Figure 6 shows
how the output of RiPLE changes as we increase kgw, which determines how much the system
should emphasize knowledge gaps compared to the interests of users.

(a) Accuracy as kgw is increased (b) RMSE as kgw is increased

Figure 6: Changes in accuracy and RMSE as the impact of knowledge gaps in defining user
benefits is increased.

Increasing kgw improves RiPLE’s accuracy in providing users with recommendations that
target their most significant gap while reducing the overall RMSE. This is expected since the
increase in kgw adds more synergy between users’ defined benefits and their knowledge gaps.
The sacrifice, which is not captured by either the accuracy or the RMSE, is that increasing
kgw tailors recommendations away from users’ interests. With small values of kgw, where the
emphasis is mostly on the interests, RiPLE is unable to provide recommendations that target
user’s most significant knowledge gaps. When kgw is set to 0.8, the system has almost 100%
chance of providing regular users with recommendations that target their most significant gap.
A similar trend, but with a lower overall accuracy, is observed for cold-start users. Though the
system provides the flexibility for the user or a meta-user (e.g., instructors) to set the value of
kgw, it appears that increasing it beyond a point, which in this experiment is 0.8, may only
disregard users’ interests without providing any additional benefits in determining gaps.
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SUMMARY The results presented in this section demonstrate that both kgw and β can affect the
impact of knowledge gaps in the final recommendations made by RiPLE. The main difference
is that kgw sets the impact at a question-level in defining how student benefits are determined,
which in turn impacts how values in R are stored. In contrast, β establishes the impact at a
topic-level using the learning profile, ensuring that the system’s recommendations are aligned
with the user’s interests (based on kgw).

7. EXPLORATION: USING A HISTORICAL DATA SET

The behavior of RiPLE is explored in this section using a historical data set from a first-year
programming course at The University of British Columbia. The data set is captured in the
course by using PeerWise. Two main questions are considered here:

Question 1. How does the accuracy of RiPLE respond as one of its core components, the
RecSys, is varied across a collection of standard techniques? The conjecture is that the RecSys is
an independent component: the accuracy of RiPLE reflects the accuracy of the RecSys technique
used. In other words, RiPLE does not have unintended interactions with the RecSys used, which
would allow its replacement in the future as new techniques, with improved accuracy, become
available.

Question 2. How well do the recommendations made by RiPLE reflect a student’s knowl-
edge gaps and interests? The quality of the recommendations is considered using the following
refinement: How do the identified knowledge gaps for users relate to their final examination
achievements on topics? The conjecture is that the identified knowledge gaps in RiPLE reflect
the actual knowledge gaps of the users as indicated in their final examination achievements. In
other words the knowledge gaps identified for users by RiPLE are accurate.

How do the recommended questions for users relate to their identified knowledge gaps? The
conjecture is that the recommended questions in RiPLE would match the identified knowledge
gaps of the users. In other words, how accurate is RiPLE when recommending questions?

Are the recommended questions for users personalized? The conjecture is that if the rec-
ommended questions in RiPLE match the identified knowledge gaps of the users and there are
a large number of users, then a large number of distinct questions that span the topics would
be recommended by RiPLE. This leads to a personalization of the questions recommended by
RiPLE are personalized for individual students.

Following a description of the historical data set in subsection 7.1., Question 1 is explored
in subsection 7.2., and Question 2 is considered in 7.3.

7.1. DATA SET DESCRIPTION

A historical PeerWise data set has been used in this analysis that was created in a required,
introductory course in C programming for engineering students offered at The University of
British Columbia in 2014. To encourage participation, students received grades for their use of
the PeerWise environment: (i) They were required to author at least 3 questions and to correctly
answer at least 45 questions (worth 1.5% of final mark) and (ii) a grade was calculated from
the “Answer Score” (AS) and “Reputation Score” (RS), which were computed by the PeerWise
system, using the following formula: min(AS,RS)×1.5

500
, (worth 1.5% of final mark). In total 377

students authored 1111 questions, assigned 1700 tags that cover 10 topics, and answered 21432
questions.
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Recalling the discussion of Section 4.1. it is necessary to scale some of the data stored in
the matrices P and D to real values between [0, 1] for this study. The answers from matrix A
are binary and do not require scaling. The results reported here are generated using 60% of data
for training the model with different hyper-parameter settings, 20% of data used for setting the
hyper-parameters, and 20% for assessing the accuracy of the model.

7.2. EXPLORING THE BEHAVIOR OF RIPLE USING ALTERNATIVE RECSYS TECH-
NIQUES

As Figure 1 summarizes, RiPLE uses a RecSys for predicting the benefits users might receive
from answering unseen questions. In this study the behavior of RiPLE is explored as the RecSys
is varied across a collection of standard techniques. MyMediaLite (Gantner et al., 2011), an
open source RecSys library that provides implementations of a collection of standard RecSys
algorithms, is used to compare the accuracy of RiPLE the following standard RecSys techniques:
User-based Average (U-AVG) which computes the average ratings across all users to approxi-

mate how u might rate unseen items.
Item-based Average (I-AVG) which computes the average ratings across all items to approxi-

mate how i might be rated by users.
User-based KNN (U-KNN) computes similarities between users using the Pearson correlation

coefficient to find theK most similar users to a user u. The past ratings from theK nearest
neighbors are then used to approximate how u might rate unseen items.

Item-based KNN (I-KNN) computes similarities between items using the Pearson correlation
coefficient to find theK most similar items to an item i. The past ratings that theK nearest
neighbors have received are then used to approximate how i might be rated by users.

Matrix Factorization (MF) in its simplest form as described in Section 3.1.
Biased Matrix Factorization(BMF) extends conventional matrix factorization with the addi-

tion of a bias parameter for each user and item as described by (Koren, 2008).
Many additional, alternative algorithms are available, which could also have been employed

by RiPLE. In this work the discussion is limited to solutions available in established, open-
source libraries to ensure that developing a prototype system is feasible.

Figure 7 visualizes the RMSE results for the cases where the six techniques are used in
RiPLE; error bars are calculated using standard deviation. MF and BMF , which are both
based on matrix factorization, outperform the standard user-based or item-based approaches and
are within standard error from one another in this data set. Their superior performance can be
explained by their ability to implicitly incorporate latent features that may tie to characteristics
such as the “slip” and “guess” factors (Thai-Nghe et al., 2011).

In response to Question 1, the results indicate the RecSys behaves much like an independent
component: the accuracy of RiPLE consistently reflects the accuracy of the RecSys technique
used. The RecSys could reasonably be replaced in future studies, for example, as further im-
provements become available in the community.

7.3. EXPLORING THE RECOMMENDATION QUALITY BY RIPLE

In this study, the behavior of RiPLE is explored with respect to the quality of the recommenda-
tions produced. The analysis is performed in a single run on the data set, which would corre-
spond to providing recommendations to users in time to prepare for their final examination near
the end of the term. Given that the analysis is performed at the end of the term and users receive
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Figure 7: Comparison of the predictive accuracy of RiPLE with standard RecSys techniques
implemented in MyMediaLite using RMSE

grades for participation, the data set has only a few cold-start users. Consequently, the study
considers the entire cohort without splitting them into regular and cold-start users.

The study uses RiPLE with the most accurate RecSys technique identified (Section 7.2.):
BMF . The following hyper-parameter settings are identified: γ = 0.002, K = 2, itrr = 300,
kgw = 0.8, and β = 0.51. In all cases other than kgw, the hyper-parameter values are derived
using the validation set; under this setting, the RMSE is computed as 0.2947.

A summary of the data characteristics, recommendations, and the final examination score
achieved is illustrated in Table 2 (topic name, number of questions, class-level gap, total number
of users that received recommendations on each topic, and the class-level exam grade). The
topics are listed in the order in which they are covered in class, which may explain why some of
the earlier topics receive more questions than others.

In response to Question 2, the results indicate the quality of the recommendations by RiPLE
is promising. With respect to the quality of the identified knowledge gaps by RiPLE, the topic of
the three most significant class-level gaps (average gap on topics over the cohort) are program-
ming comprehension, File IO, and functions. These match the topics that receive the lowest
average grade on the final exam, indicating the knowledge gaps identified by RiPLE reflect the
actual knowledge gaps of the students.

With respect to the relationship of the recommended questions for users to their identified
knowledge gaps, 89% of the users receive recommendations that match their primary (most
significant) gap identified from their learning profile vector. In other cases, the users receive
recommendations on alternative questions that match knowledge gaps in their learning profile
vector. This can occur, for example, when the interests of a user are determined to be a superior
match for questions that address a secondary or tertiary ranked knowledge gap.

With respect to the quality of personalized recommendations by RiPLE, the questions recom-
mended at a topic-level broadly span all available topics. In addition, a relatively large number,
99, of distinct questions are presented as the first recommendation to individual students. These
results suggest that RiPLE differentiates users and provides personalized recommendations.
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Topic # Questions Class-level
Gap (l̄p)

# Topic-level
Recommended

Class-level
Exam Grade

Introduction 175 -0.202 23 80%
Fundamentals 554 0.012 49 91%
Conditionals 81 -0.023 30 93%
Loops 246 -0.033 34 68%
File I/O 34 0.160 31 66%
Functions 218 0.084 41 55%
Arrays 276 -0.020 38 65%
DAQ Systems 75 -0.090 6 80%
Comprehension 15 0.210 30 30%
Syntax 41 0.070 9 77%

Table 2: Information on the name, number of questions, class-level gap, total number of users
that received a recommendation on each topic, and the class-level exam grade.

8. CONCLUSIONS AND FUTURE WORK

Explicitly addressing knowledge gaps in RecSysTEL is a challenging, open research topic. A
novel RecSysTEL, RiPLE, was introduced as a way of providing accurate, personalized rec-
ommendations to students who are using Peer-Learning Environments. The system consists of
five modules defining the Input Data, Data Integration, Learning Profile, Recommendation En-
gine, and Modes of Operation. The Recommendation Engine uses an established collaborative
filtering algorithm (matrix factorization), which is enhanced with a learning profile. This en-
ables the recommendation of specific multiple-choice questions to users that reflect both (i) user
interests (the kinds of questions they rank highly) and (ii) their knowledge gaps (the questions
they need work on to accomplish learning objectives related to a course). Multiple operational
modes allow students to explore new questions, review previously answered questions, or focus
on questions from specific topics according to their current learning requirements.

Experimental validation of RiPLE used both synthetic data sets and a historical data set. The
synthetic data sets were used to assess the behavior of RiPLE under diverse circumstances, by
varying parameters in both the data generation template and the RiPLE model. This demon-
strated that the behavior of RiPLE is consistent with expectations over a range of parameter
settings, and therefore that there is reason to believe the solution will be robust in a real-world
setting. The historical data set was used to explore the accuracy of alternative RecSys tech-
niques, and to demonstrate that RiPLE is likely to both provide recommendations that are both
useful and personalized. As RiPLE was able to extract class level knowledge gaps (l̂p) which
correlated with the final class level exam grade, we have reason to believe that RiPLE is per-
forming appropriately in its profiling of students. Indeed, the result that 89% of students would
have received a recommendation that matches with their most significant knowledge gap sug-
gests that the current parameter settings for RiPLE are appropriate and that it has the potential
to improve learning outcomes for students. Furthermore, the wide range in recommended top-
ics (with 99 distinct questions provided as a recommendation in this test) suggests that RiPLE
is not fixating upon a class wide weakness, but providing well personalized advice as to what
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questions might help a student best. These results are promising, suggesting that students may
significantly benefit from exposure to a tool such as RiPLE.

There are several limitations in the current work which restrict the generalizability of the
results. The most significant limitation is that the validation is not a controlled experiment
that provides compelling evidence of RiPLE’s capacity to make recommendations that lead to
better learning. To address this limitation an A/B experiment is planned, in which the con-
trol group would receive random recommendations and the experimental group would receive
recommendations from RiPLE, to determine whether RiPLE’s recommendations lead to mea-
surable learning gains. The design of the controlled experiment is envisioned to include the use
of a PeerWise environment extended with RiPLE. Discussions are underway with the founder of
PeerWise for integrating RiPLE into their platform. Furthermore, the historical data set is from
one class of students (first-year undergraduate engineering course, C programming, Computer
Science Department, and so on), which means that current parameter settings are unlikely to
generalize across all educational settings. Further investigation is needed to explore the behav-
ior and application of RiPLE in alternative educational domains (e.g., Medicine, Humanities)
and settings (e.g., MOOCS). These may, for example, drive the need for very high levels of
scalability regarding the number of users, questions, and course topics.

There are several interesting directions to pursue in future work. The formulation of the up-
dated student-question knowledge gap matrix ĜN×M could be explored as a similarity function
potentially describing a network among the questions. It would be interesting to compare the
results of the different formulations (i.e., learning profile approach vs. a network approach). It
would also be important to refine RiPLE to consider the learning effect using alternative factor-
ization techniques, as students improve their understanding of topics over time. The PeerWise
data set provides timestamp information, which may be included in the recommendation model
to create more sophisticated models of individual users which evolve in time. Also, the inter-
pretability of the recommendations made by RiPLE is a worthy topic of further investigation.
Matrix factorization can result in models that are easier to understand, which suggests that a
study could be designed to explore how students make sense of the recommendations, and how
this impacts upon their metacognition, and ability to reflect upon and improve their participation
in Peer-Learning environments.

In conclusion, the results are promising and demonstrate that it is possible to combine MF
based learning profiles with a RecSys designed to help students identify knowledge gaps and
then work to remove them. The presented system, while designed for the PeerWise environment,
is general enough that it could be applied to other environments which store similar information.
This means that the system presented here can be used to explore many issues related to student
profiling and personalization in a wide variety of question answering scenarios.
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