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As the use of educational technology becomes more ubiquitous, an enormous amount of learning process 

data is being produced. Educational data mining seeks to analyze and model these data, with the ultimate 

goal of improving learning outcomes. The most firmly grounded and rigorous evaluation of an educational 

data mining discovery is whether it yields better student learning when applied. Such an evaluation has been 

referred to as “closing the loop,” as it completes the cycle of system design, deployment, data analysis, and 

discovery leading back to design. Here, we present an instance of closing the loop on an automated 

cognitive modeling improvement discovered by Learning Factors Analysis (Cen, Koedinger, & Junker, 

2006). We discuss our findings from a process in which we interpret the automated improvements yielded 

by the best-fitting cognitive model, validate the interpretation on novel data, use it to make changes to 

classroom-deployed educational technology, and show that the changes lead to significant learning gains 

relative to a control condition. 

 

1. INTRODUCTION 

The field of educational data mining (EDM) seeks to analyze and model the rich process data 

resulting from educational technology use, with the ultimate goal of improving learning 

outcomes. However, emphasis on the “educational” aspect of educational data mining has 

been scarce. While EDM research has produced a rich set of automated techniques and 

statistical models for educational data, progress remains largely theoretical with respect to 

their impact on learning efficiency and outcomes. One reason for this is the inclination of 

researchers to evaluate EDM research primarily for model fits and predictive accuracy rather 

than for plausibility, interpretability, and generalizable insights. Statistical models and 

knowledge component models (also known as skill models or Q-matrices) are often assessed 

based on the ability to correctly predict successes and failures in a set of student response 

outcomes. Less commonly, models may also be validated on their ability to predict post-test 

outcomes (e.g., Corbett & Anderson, 1995) or pre- to post-test gains (e.g., Liu & Koedinger, 

2015). 

Assessing modeling outcomes based on predictive accuracy has much to recommend it, and it 

is possible in some cases to apply “black box” predictive models to education without much 

interpretation (e.g., Baker et al., 2006). But, more often than not, interpreting modeling 

improvements and testing generalization to novel datasets are important steps to advancing 

practical outcomes, educational theory, or both. The most firmly grounded and rigorous 

evaluation of a data-driven discovery in EDM is whether it yields better student learning when 
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applied. Such an evaluation has been referred to as "closing the loop" (Koedinger et al., 2013), 

as it completes cycle of system design, deployment, data analysis, and discovery leading back 

to design. The loop is closed through an experimental comparison of a tutoring system 

redesign, based on the data-driven discovery, to the original tutoring system. 

Here, we present an instance of closing the loop on an automated discovery by a method of 

improving knowledge component models called Learning Factors Analysis (Cen, Koedinger, 

& Junker, 2006). We cycle through a process in which we interpret the model’s finding 

(Koedinger et al., 2012), test the interpretation on novel datasets (Liu et al., 2014), use the 

interpretation to make changes to classroom-deployed educational technology, and 

demonstrate that the changes result in significant learning gains. 

1.1. KNOWLEDGE COMPONENT (KC) MODELS 

Cognitive models map the actual tasks that students engage with during learning to the 

underlying knowledge that is required to complete those tasks. Cognitive models are an 

important basis for the instructional design of automated tutors and are important for accurate 

assessment of learning. Improvements to cognitive models result in better prediction of what a 

student knows, allowing adaptive learning to work more efficiently. 

The work described here uses a simplification of a cognitive model composed of hypothesized 

knowledge components. A knowledge component (KC) is a fact, skill, or principle required to 

succeed at a particular task or problem step. We refer to this specialized form of a cognitive 

model as a knowledge component model (KC model), and it is sometimes referred to 

alternatively in the literature as a Q-matrix (e.g., Barnes, 2005). 

KC models are typically evaluated in conjunction with a statistical model. The statistical 

model uses the KC model mapping to make inferences about student knowledge based on 

performance across a variety of observable tasks/items. In the modeling work discussed here, 

alternative KC models were evaluated in conjunction with a statistical model called the 

Additive Factors Model (AFM; Spada & Magaw, 1985; Draney, Wilson, & Pirolli, 1996; Cen, 

2009), a generalization of the Rasch IRT model that accommodates learning over time. 

1.2. DATA-DRIVEN KC MODEL IMPROVEMENT: PRECURSORS TO LEARNING 

FACTORS ANALYSIS 

Traditional ways of constructing cognitive models involve structured interviews, think-aloud 

protocols, rational analysis, and labeling by domain experts (Clark et al., 2008). These 

methods, however, require particularly time-consuming human input. They are also subjective, 

and prior research has shown that expert-engineered cognitive models often ignore content 

distinctions that are important for novice learners (Nathan, Koedinger, & Alibali, 2001; 

Koedinger & McLaughlin, 2010). Difficulty Factors Assessment (e.g., Koedinger & Nathan, 

2004) moves beyond experts’ intuitions by using a data-driven knowledge decomposition 

process to identify the problematic elements of a defined task.  In other words, when one task 

is much harder than a closely related task, the difference implies a knowledge demand (at least 

one KC) of the harder task that is not present in the easier one. 

Stamper & Koedinger (2011) illustrated a data-driven method based on the idea of Difficulty 

Factors Assessment that yields cognitive model improvements. It utilizes freely available 

educational data and built-in visualization tools on DataShop (Koedinger et al., 2010; 

http://learnlab.org/datashop), in conjunction with Difficulty Factors Assessment. The method 
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for human-mediated cognitive model refinement iterates through the following steps: 1) fit the 

statistical model with the given KC model, 2) inspect learning curve visualizations and best 

fitting parameter estimates, 3) identify problematic KCs and hypothesize changes to the KC 

model, and 4) re-fit the statistical model with the revised KC model and evaluate for 

improvements. 

Through manual inspection of the visualizations of a Geometry data set 

(pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=76), potential improvements to the best 

existing KC model at the time were identified (Stamper & Koedinger, 2011), using domain 

expertise to hypothesize about additional (or different) knowledge that might be required on 

certain items. A new KC model was generated, resulting in significantly better prediction of 

student performance than the original KC model. 

This human-mediated cognitive task analysis method circumvents some of the issues of expert 

bias by utilizing data to drive KC model refinement and has produced genuine close the loop 

results (Koedinger et al., 2013). However, it still demands the involvement of significant 

human effort. In the next section, we describe an advancement that is inspired by Difficulty 

Factors Assessment but automates the process of generating new KC models based on 

potential difficulty factors and evaluates them based on predictive accuracy. 

1.3. LEARNING FACTORS ANALYSIS (LFA) 

Learning Factors Analysis (LFA; Cen, Koedinger, & Junker, 2006) was developed to 

automate this type of data-driven method of cognitive model refinement. LFA performs a 

combinatorial search process across hypothesized knowledge components (KCs) drawn from 

existing cognitive models. It alleviates human effort and error by providing an automated way 

of improving and evaluating cognitive models. It also outputs the cognitive model with the 

best predictive accuracy in the form of a symbolic model. As such, LFA greatly eases the 

burden of interpretation even if it does not automatically accomplish it. 

Koedinger and colleagues applied the LFA search process across 11 datasets spanning 

different domains and different educational technologies, all publicly available from 

DataShop. This automated discovery process improved KC models’ fit to data, beyond the 

best existing human-generated KC models, across all of the datasets (Koedinger et al., 2012). 

Due to familiarity with the dataset as well as the domain of geometry, we focused on a 

geometry dataset (Dataset #76 in DataShop) to interpret why the best-fitting KC model 

discovered by LFA might be better than the previously best-fitting human-generated KC 

model. 

In the present research, we tested the generalizability of this interpretation to a completely 

novel dataset (new school and non-identical problem content), used the results of these 

findings to redesign the relevant unit in an intelligent geometry tutor, and assessed the learning 

improvements driven by the redesign when deployed in a classroom setting. 

2. INTERPRETING MODEL DISCOVERY AND TESTING 

GENERALIZATION TO NOVEL DATA 

A manual KC model comparison between the best-fitting LFA model and the best-fitting 

human-generated model revealed one critical difference. The LFA model split circle area 

items into two separate KCs, one involving forward (i.e., find area given radius) calculations 
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and the other involving backward (i.e., find radius given area) calculations. In contrast, the 

original human-generated model labeled both types of items as a single KC (i.e., circle area). 

The LFA-discovered model did not do this type of KC split for other shapes in the dataset, 

which included rectangles, triangles, and parallelograms. Data on student performance 

corroborated this finding. Applying domain expertise to interpret this KC split, we 

hypothesized that the automated model improvement might have captured a hidden difficulty 

factor: knowing when and how to apply a square root operation for backward circle area 

items. This is not a difficulty that is present in forward circle area items, or for backward 

items for other shapes’ areas.  

To assess the external validity of the interpretation beyond the dataset from which the 

discoveries were made, we tested it on a novel dataset. The goal was not to simply apply the 

improved model directly to new data (e.g., as in Feng et al., 2009) or to run an exact 

replication of the study. Rather, we aimed to test whether the interpretation itself held up 

within the context of novel data relevant to the interpretation but whose structure (i.e., 

problem types) and properties (i.e., school district, students) differed from those of the 

original dataset on which the LFA discovery was made.  

For example, the tutor unit for the Geometry Area 1996-1997 dataset had only three unique 

items associated with the circle area backward (i.e., find circle radius given area) 

computation. It had no items associated with a square area backward (i.e., find square side 

length given area) computation. We sought to test the generalizability of the interpretation of 

the LFA finding in a dataset with substantially more backward circle area and square area 

items, and with more students from a different school district.  

To this end, we investigated the shape-area unit of a much more recent dataset, Motivation for 

Learning HS Geometry 2012 (geo-pa) (Dataset #748 on DataShop). This dataset is an excerpt 

from regular classroom use of a Geometry Cognitive Tutor (Ritter et al., 2007) by 82 HS 

students (10th graders) with a total of 72,404 student problem steps. It contains similar shape 

area modules and questions as the original dataset but has many more (49) unique backward 

circle area items. It also contains many (57) unique backward square area items. This makes it 

possible to validate (i.e. by investigating performance on forward and backward circle area 

and other shape-area items) and generalize (i.e. by investigating performance on forward and 

backward square area items) our interpretation of the original LFA discovery.  

An exploratory analysis of the 2012 dataset reveals a substantially higher proportion of correct 

first attempts at forward circle (0.89) and square (0.86) area items than backward circle (0.72) 

and square area (0.59) items, respectively. To validate the specificity of the square root 

interpretation, we also investigated performance on backward vs. forward items that do not 

require a square root application. These included other shapes’ area calculations, circle 

circumference items, and square perimeter items. Results of this exploratory analysis are 

summarized in Figure 1. Except rectangle area items, the differences in forward and backward 

item performances were specific to cases where the backward calculations required the 

application of a square root (circle area and square area). 
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Figure 1: Exploratory analyses investigating the generalization of our hidden square root 

difficulty hypothesis. Average proportion correct on first attempts at geometry area items, 

grouped by shape/computation and color-coded based on whether the problem step requires a 

forward strategy (white), a backward strategy that requires a square root calculation (black), or 

a backward strategy that does not require a square root calculation (grey).. 

To further examine the robustness of our square root hypothesis, we made a KC model 

comparison. The hypothesis-driven KC model (SQRT SKILL CIR-SQ DISTINCT, 58 KCs) 

distinguishes forward and backward (F/B) circle and square area items but does not make this 

F/B distinction for other shapes. We compared this to a KC model that makes no F/B 

distinctions for any shapes (a single ‘area’ KC for each shape; ALL SHAPES F-B MERGED, 

56 KCs). This KC model is analogous to the original human-generated model for the 

Geometry Area 1996-1997 dataset in which LFA discovered the circle area KC split. To test 

the specificity of the square root hypothesis, we also made a comparison with a KC model 

that makes F/B distinctions for all shape-area items (ALL SHAPES F-B DISTINCT, 66 KCs).  

The models were evaluated using Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC), and 10-fold cross validation. Due to the random nature of the folding process, 

we repeated each type of 10-fold cross validation (item-stratified and student-stratified) 20 

times and calculated the RMSE on each run, as has been done in previous work to handle this 

run-to-run variability (Koedinger et al., 2012). In Table 1, we report the average root mean 

square error (RMSE) values across 20 runs each of 10-fold item-stratified and 10-fold student 

stratified CV. The SQRT SKILL: CIR-SQ DISTINCT model performs best by BIC, item-

stratified, and student-stratified CV measures. Consistent with our previous work comparing 

machine-discovered models to baseline models (Koedinger et al., 2012), we focus on 

itemstratified cross validation as the primary metric, because we are concerned with 

improving cognitive tutors. Item stratified cross validation corresponds most closely with a 

key tutor decision of selecting the next problem type. Furthermore, the BIC measure concurs 

with the item-stratified cross validation results in suggesting that the SQRT SKILL CIR-SQ 

DISTINCT model is the best-performing model. 
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Table 1: Comparison between prediction accuracies of the four hypothesis-driven KC models, 

evaluated using AIC, BIC, and both item-stratified and student-stratified 10-fold cross 

validation. Results are reported as the average root mean-squared error (RMSE) values across 

twenty runs of 10-fold cross validation.  The best-performing model, by each of the measures, 

is bolded. 

Model Name # KCs AIC BIC Item-Stratified Cross 
Validation RMSE 

Student-Stratified Cross 
Validation RMSE 

ALL SHAPES: F-B 
MERGED 

56 20992 22652 0.28208 0.28702 

ALL SHAPES: F-B 
DISTINCT 

66 20839 22670 0.28104 0.28588 

SQRT SKILL: CIR-SQ 
DISTINCT 

58 20857 22551 0.28087* 0.28584 

 

The superior performance of SQRT SKILL CIR-SQ DISTINCT over ALL SHAPES F-B 

MERGED (on all measures) supports and extends the original LFA finding that splitting F/B 

on circle and square area items is better than leaving the KCs merged. Notably, SQRT SKILL 

CIR-SQ DISTINCT even performs better, by cross validation and BIC measures, than the 

ALL SHAPES F-B DISTINCT, the KC model that contains the same F-B distinctions for 

circle and square but with more fine-grained distinctions for other shapes. This validates the 

specificity of the square root operation hypothesis. 

Thus, there is good evidence that treating forward and backward calculations as distinct KCs 

specifically for circle and square area items but not other shape-area items predicts student 

learning best. This demonstrates that our interpretation of the initial automated cognitive 

modeling discovery generalizes to both novel students and novel problem types. 

3. CLOSING THE LOOP: TUTOR REDESIGN AND DEPLOYMENT IN THE 

CLASSROOM 

By isolating improvement in an interpretable component of student learning, elements of 

instructional design can be modified to more efficiently address student learning. An improved 

cognitive model can be used in multiple possible ways to redesign a tutor (Koedinger et al., 

2013). These include adding or deleting KCs that are tracked in knowledge tracing, creating 

new tasks to scaffold difficulties, adding/changing feedback or hint messages, and 

resequencing (positioning problems requiring fewer KCs before ones needing more). 

We created an intelligent tutoring system covering the shape-area unit and resembling the 

geometry tutoring system that had produced the original “discovery” dataset. This was the 

control tutoring system. Based on the interpreted KC model improvements discovered by 

LFA, we created a redesigned tutoring system that included separate knowledge-traced KCs 

differentiating forward and backward circle and square area items. For other shapes, the 

forward and backward area items remained merged within single shape-area KCs for each 

shape. The KC differentiation for circle and square area items leads to changes in knowledge 

tracing which, in turn, lead to different amounts of practice on forward vs. backward items. 

Students using the revised tutor should receive increased practice on backward circle and 
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square area items relative to items tagged with other KCs. We also made small modifications 

to the interface and hints given on backward circle and square area items to better scaffold 

application of the square root. 

3.1. METHODS 

3.1.1. Design of Geometry Tutoring Systems 

In developing this study, a key initial decision was what the control condition should be. 

While a natural choice would have been the original tutor that generated the dataset on which 

LFA’s discovery was made, it was not possible because we did not have access to the tutoring 

technology used to generate the original dataset. Thus, we re-created a tutor that was as 

similar as possible to the original tutor using freeware called Cognitive Tutor Authoring Tools 

(Aleven et al., 2006). This tutor was deployed for the “control” condition of our study.  

The control tutoring system contained problem content extremely similar to the system that 

originally generated the original dataset. It included problems in which students had to apply 

shape-area formulas to triangles, rectangles, squares, circles, and parallelograms. The problem 

base for this tutoring system included fewer backward circle area items (9) than forward circle 

area items (24), just as in the original discovery dataset (3 backward circle area items; 19 

forward circle area items). There were an equal number of forward and backward square area 

items, none of which were present in the original discovery dataset. These were included to 

fairly test the redesign around the square root difficulty interpretation beyond only circle area 

problems. For all shapes, forward and backward area items were merged into a single KC. 

That is, there was one KC for each shape (e.g., triangle area, circle area).  

We then modified this tutor based on our interpreted LFA discovery to create the 

“redesigned” condition of the study. The redesigned tutoring system had forward and 

backward KCs split in knowledge tracing for only circles and squares.  

One of the necessary differences between the control and redesigned tutoring systems was the 

number of skills tracked (the redesigned system had two additional skills, backward circle 

area and backward square area). That is, students would likely have to complete more 

problems overall in the redesigned tutor to reach mastery on all skills. Ideally, we would have 

handled this issue by controlling for time on tutor. We proposed this to the teachers with the 

caveat that this meant some students would not have a chance to complete all skills to 

mastery. The teachers, however, wanted every student to have an opportunity to complete the 

tutor to mastery and were only willing to participate in the study under this condition.  

Thus, we adjusted initial parameters to try to equate for overall time-on-tutor with the control 

tutoring system. The learning rate parameters for the split forward/backward circle and square 

area KCs in the redesigned condition1 were slightly higher than those for the merged circle 

and square area KCs for the control condition. The parameters for the remainder of KCs were 

                                                 

 
1
 BKT parameters. Control condition (circle area, square area KCs): P(L0)=0, P(LT)=0.03, P(G)=0.2, P(S)=0.2. 

Redesigned condition (circle & square area forward & backward KCs): P(L0)=0, P(LT)=0.05, P(G)=0.2, 

P(S)=0.2.  
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the same between the conditions. Since knowledge tracing depends so strongly on the actual 

performance of students, though, there is no way to ensure that a static set of parameters can 

yield the same amount of total practice between conditions for every sequence of 

corrects/incorrects. Thus, we also conducted post-hoc analyses of the process data to quantify 

actual time-on-tutor and problems completed and ensure that there were no significant 

differences between conditions. 

Table 2. Summary of differences between the control and redesigned tutors. 

 GUI Hints Knowledge-Traced 

Skills 

BKT Parameters 

Control Tutoring 

System 

No scaffolding 

for square root. 

First-level hint for 

backward circle and 

square area items did 

not contain any mention 

of the square root. All 

other hints were the 

same between 

conditions. 

 

Parallelogram Area 

Triangle Area 

Rectangle Area 

Square Area 

Circle Area 

 

Same parameters 

[P(L0)=0, 

P(LT)=0.03, 

P(G)=0.2, 

P(S)=0.2] for all 

skills. 

Redesigned 

Tutoring System 

Scaffolding to 

draw attention 

to the need to 

apply a square 

root (see 

Appendix 1). 

First-level hint for 

backward circle and 

square area items did 

contained additional 

text to prompt 

application of the 

square root. All other 

hints were the same 

between conditions. 

 

Parallelogram Area 

Triangle Area 

Rectangle Area 

Forward Square Area 

Backward Square Area 

Forward Circle Area 

Backward Square Area 

 

Same parameters as 

control condition 

except for a higher 

P(LT)=0.05 for 

circle and square 

area skills (to try to 

control for overall 

time on tutor). 

 

The redesigned tutoring system also included a first-level hint that targeted the application of 

the square root on backward circle and square area items. For example, the redesigned tutor’s 

first-level hint for backward circle area items states: “The formula for the area of a circle is 

A=R^2*pi (radius squared times pi). You can find R by taking the SQUARE ROOT of R^2.” 

The control tutor’s corresponding first-level hint states only the first part: “The formula for 

the area of a circle is A=R^2*pi (radius squared times pi).” The remaining hint levels were the 

same for the two conditions. Finally, the redesigned tutoring system included additional 

interface scaffolding to draw attention to the square root function. Appendix 1 shows a 

comparison of the interface, between conditions, for the same backward circle area problem 

screen. 

Both versions of the tutoring system used four-parameter Bayesian Knowledge Tracing 

(Corbett & Anderson, 1995) to determine when students had mastered each KC. Students 

stopped receiving practice problems that only required a KC that they were estimated to have 

mastered already (95% probability) based on Bayesian Knowledge Tracing. 
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3.1.2. Classroom Experiment 

115 students across six geometry classes at a public high school in the greater Pittsburgh 

region were enrolled in the study. They were randomly assigned, at the individual student 

level, to either the control condition (57 students) or the redesigned condition (58 students). Of 

the total enrolled students, 91 completed both the pre-test and post-test and were present for at 

least one class period of tutor use (49 students in the control condition, 42 students in the 

experimental condition). We performed a chi-square test to ensure that there was no differential 

attrition based on condition. Based on this test there was no relationship between condition and the 

resulting number of students who completed the full study, X2
 (1, N = 91) = 0.54, p = 0.46. 

Because the results of interest were primarily pre-test-post-test gains as the result of condition 

differences in tutor experience, we restricted our analyses to these 91 students. 

The study took place across five consecutive school days. On the first day, students completed 

a pre-test consisting of 12 questions. Of these questions, three were backward area problems 

that required the application of a square root (two were “given area, find radius” circle 

problems, and one was a “given area, find side length” square problem). There were two pre-

test forms alternately given to adjacent students to deter cheating. The problems were 

identical across the two forms but problem order was reversed. On days 2, 3, and 4, students 

moved at their own pace through the shape-area geometry tutor to which they were randomly 

assigned. They completed problems for each knowledge-traced KC until the KC was 

estimated to be mastered based on Bayesian Knowledge Tracing. On the final day, students 

completed a post-test consisting of 12 questions. The problems were identical to those on the 

pre-test forms but with slightly different numbers.  

3.2. RESULTS 

To ensure that students did in fact learn from pre- to post-test across both conditions, we first 

ran a one-way repeated measures ANOVA with test (pre vs. post) as the factor and test score 

as the outcome. Results indicated that students’ test scores were significantly different at the 

two testing points [F(1,90)=61.06, p < 0.0001]. This was driven by post-test scores (mean = 

0.78) being significantly higher than pre-test scores (mean = 0.61). 

A one-way ANOVA showed pre-test scores were not significantly different depending on the 

condition students were in [F(1,89)=0.793, p=0.376]. Post-test scores were significantly 

different depending on the condition students were in [F(1,89)=5.04, p = 0.027, Cohen’s d = 

0.47]. Table 3 and Figure 2 summarize the pre-test and post-test results by condition. 

We ran a linear regression with pre-test total scores and condition as predictors of post-test 

total scores. Unsurprisingly, pre-test scores significantly predict post-test scores (β = 0.59, p < 

0.001). Controlling for pre-test scores, condition also significantly predicts post-test scores (β 

= 0.09, p = 0.027). The redesigned condition had significantly higher post-test scores (mean = 

0.85) than the control condition (mean = 0.73), even when controlling for their pre-test scores 

(redesigned condition mean = 0.63; control condition mean = 0.58). 
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Table 3. Mean and standard errors of the pre-test and post-test scores for each condition. 

 Pre-test Score Post-test Score 

Control Condition 0.58 (0.04) 0.73 (0.04) 

Redesigned Condition 0.64 (0.05) 0.85 (0.03) 

 

 

Figure 1: Summary of pre- to post-test learning gains by condition. The redesigned tutoring 

system yielded higher post-test outcomes than did the control tutoring system, after controlling 

for pre-test scores. 

The changes in the redesigned condition were created to help students overcome the hidden 

difficulty of knowing when and how to apply the square root operation on certain backward 

circle area items. Thus, we would predict that any advantages exhibited by the redesigned 

condition in their post-test outcomes should be primarily driven by better performance on 

problems requiring backward circle or square area calculations. We tested this prediction by 

examining condition differences on a post-test subscore composed of only the three problems 

requiring a square root application. The effect of condition on this subscore (β = 0.13, p = 

0.034) was significant in a regression that again controlled for pre-test scores. We then 

examined condition differences on the post-test subscore composed of all the problems that 

did not require a square root application, and condition was not a significant predictor of this 

subset of problems (β = 0.06, p = 0.085) when controlling for pre-test score. This suggests that 
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the relatively greater post-test improvements in the redesigned condition were predominantly 

driven by performance on the problems that required applying a square root. 

Total time-on-tutor. One of the anticipated effects of the redesigned tutoring system was 

increased practice on backward circle and square area items. Without any other adjustments, 

this would lead to the redesigned condition receiving overall more practice than the control 

condition. To control for this, we had adjusted the circle and square area parameters between 

conditions so that the redesigned condition would receive less practice on each of the split 

KCs (e.g., “find area given radius”; “find radius given area”) for circles and squares than the 

control condition would receive on a merged KC (e.g., “circle area”). Since Bayesian 

Knowledge Tracing depends so strongly on the actual performance of students, though, it is 

not possible for any set of fixed parameters to yield the same amount of total practice between 

conditions for every sequence of corrects/incorrects. Thus, we conducted some post-hoc 

analyses on actual practice time and problems completed across the two conditions. 

 

Figure 2: Violin plots showing the kernel density distributions and boxplots for total time-on-

tutor in the two experimental conditions. 

The distributions for total time-on-tutor for the two conditions were not normal based on 

Wilkes-Shapiro Tests (W=0.77, p<0.001 for the Control condition; W=0.93, p=0.01 for the 

Redesigned condition). Considering this, we conducted a Mann-Whitney U test, which is a 

nonparametric test of the null hypothesis that it is equally likely that a randomly selected value 

from one sample will be less than or greater than a randomly selected value from a second 

sample. Mean times-on-tutor in the Control and Redesigned groups, respectively, were 105.4 

and 111.6 minutes. The distributions in the two groups did not significantly differ (Mann–

Whitney U = 797, n1 = 42, n2 = 49, p = 0.07). 

Furthermore, to ensure that any marginal differences in time-on-tutor did not explain the pre- 

to post-test gains, we also conducted a linear regression using log-transformed total time-on-

tutor (to correct for normality), in addition to pre-test scores and condition, to predict post-test 

scores. Condition remained a significant predictor (β = 0.084, p = 0.035) of post-test scores, 

and total time-on-tutor was not a significant predictor of post-test scores (β = 0.015, p = 

0.824). 

Interaction between condition and practice. Based on the theory behind the redesign, we 

expected the redesigned condition to have gotten more practice on backward circle and square 
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area items than the control condition. We also expected the control group to have gotten 

relatively more practice on the corresponding forward circle and square area items. In an 

ANOVA using condition (control, redesigned) and item type (forward, backward) to predict 

total circle and square area problems completed, we did observe a significant interaction 

between condition and item type [F(1,1) = 29.91, p < 0.0001]. The redesigned condition 

completed more backward circle and square area items (mean = 13.4) than the control 

condition (mean = 5.75) did, whereas the control condition completed more forward items 

(mean = 12.3) than the redesigned condition (mean = 11.5) did. Although the differences in 

total circle and square area items completed were not perfectly controlled for by the initial 

parameter adjustments, the direction of interaction between condition and practice were 

aligned with the hypothesized changes expected from the tutor redesign. 

4. DISCUSSION 

In the present work, we interpreted and acted upon a particular automated discovery 

(Koedinger et al., 2012) produced by Learning Factors Analysis (LFA) in a geometry dataset 

covering shapes’ areas and perimeters. The automated discovery split circle area items into 

two separate KCs, one characterizing forward calculations (e.g., find area given radius) and 

the other for backward calculations (e.g., find radius given area). Since it made this split 

specifically for circle area items but not for other shape-area items, we interpreted the split as 

indicating a difficulty applying and/or knowing to apply the square root. To validate this 

interpretation on novel data, we conducted exploratory analyses on error rates in a novel 

dataset that additionally contained square area items (which are relevant to the interpretation 

but were not present in the original discovery dataset). The results of these analyses largely 

confirmed that application of the square root was a hidden difficulty factor. We also 

constructed an interpretation-aligned KC model (KCs split for shapes requiring a square root 

application in the backward computation). We showed that this KC model fit the novel dataset 

better than both a more conservative (a single KC representing each shape-area formula) and a 

more liberal (KCs split forward vs. backward for every shape-area formula). 

Generalizing the interpretation of the automated discovery to novel data provided a more 

robust validation of its plausibility and relevance to future pedagogy. With this in mind, we 

continued on to “close the loop” by redesigning and deploying a tutoring system based on the 

interpretation. For a controlled comparison, we designed a baseline “control condition” 

geometry tutoring system to mimic, as closely as possible, the system that generated the 

original dataset. We then redesigned several features of the control geometry tutoring system 

to improve scaffolding and practice on the items that required a square root application. This 

served as the “redesigned condition” tutor. Finally, we assessed the learning improvements for 

each condition and showed that the redesigned tutoring system led to higher post-test 

outcomes when controlling for pre-test scores. 

To our knowledge, this is the first-ever demonstration of experimentally closing the loop on an 

automated KC model improvement. It is also one of relatively few efforts to “close the loop” 

on educational data mining discoveries more generally. Our process underscores the 

importance of considering the interpretability and actionability of educational data mining 

results if the ultimate goal is to move beyond predictive accuracy to improve learning 

outcomes, learning theory, or both. The interpretation of the LFA discovery was critical to a 

number of the redesign changes we made that led to improved learning outcomes. Though it 

would have been possible to simply “copy” the newly-discovered KC model, resulting only in 
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the split of forward vs. backward circle area items for knowledge tracing, we made a number 

of additional changes that would not have been possible without the interpretation. 

Specifically, we would not have known to make the same forward vs. backward split for 

square area problems, and we wouldn’t have known how to modify the hints or introduce 

scaffolding to the interface to target the application of the square root skill. 

There are many interesting educational data mining discoveries that have resulted in 

advancements that are difficult or impossible to interpret. A key aspect of LFA that we believe 

led to interpretable results is the up front, human-in-the-loop aspect of its feature selection. 

LFA derives new variables from existing, expert-labeled variables using simple split, merge or 

add operators. It starts with independent variables that map to clearly defined constructs, since 

they are based on human-labeled KCs. Incorporating some human time and effort into 

defining and labeling these independent variable features up front can greatly improve the 

interpretability and actionability of subsequent data mining efforts. The fact that methods like 

LFA initially requires human input has been cited as a limitation (e.g., González-Brenes & 

Mostow, 2012) in in arguments favoring purely automated methods of discovering KC 

models. We argue, however, that it is precisely this “human-in-the-loop” feature that leads the 

results of such modeling efforts to be interpretable. There have been a number of recent efforts 

to fully automate the process of discovering KC models (González-Brenes & Mostow, 2012; 

Lindsey, Khajah, & Mozer, 2014). These methods have much to recommend, dramatically 

reducing demands on human time and producing competitive results in predictive accuracy. 

However, the resulting KC models of these efforts have not been interpreted or acted upon 

with respect to improving instruction. 

Other modeling efforts that have included a “human-in-the-loop” component, like Ordinal 

SPARFA-Tag (Lan et al., 2013), have yielded considerably more interpretable cognitive 

models than alternative methods. Although any final interpretations of modeling efforts are 

necessarily made by humans, methods like LFA and Ordinal SPARFA-Tag greatly improve 

the likelihood of generating sensible resulting models by incorporating the human effort up 

front. In fact, comparing the original SPARFA model (Lan et al., 2014), which only 

incorporates concept tags post-hoc, to Ordinal SPARFA-Tag, which incorporates domain 

expert concept tags in the model development process up front, shows that the latter model 

results in more interpretable cognitive models. 

A method such as LFA, however, does have limitations in degree to which it can produce KC 

model discoveries. It does require an initial KC model (which does not always exist for 

educational data) and hypothesized difficulty factors that can be used to attempt splits and 

merges. Because of these features, it cannot produce large structural changes to KC models. 

We encourage future work that builds upon the strengths of an algorithm such as LFA but 

allows for automated discoveries of larger structural changes to KC models that remain 

interpretable and actionable.     

We have highlighted many advantages of emphasizing interpretability in educational data 

mining. It must be acknowledged, however, that there are automated discoveries that can 

potentially be applied directly to improve learning without an interpretation. Developing 

automated detectors of student behaviors or affective states is a class of educational data 

mining within which models have led to successful interventions without interpreting what 

exactly the detectors have learned (see D’Mello et al., 2014 for a review). For example, Baker 

and colleagues (2006) used a machine-learned detector (Baker et al., 2004) of “gaming the 

system” behavior to determine when to intervene, via an animated agent, while students 
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engaged with an intelligent tutoring system. They showed that students who received detector-

based interventions exhibited less gaming and comparatively better learning outcomes than 

those who did not receive such interventions. 

However, even educational data mining results that could be experimentally applied without 

an interpretation are rarely brought back to the classroom. Recent progress in the field has 

remained largely theoretical with respect to impact on learning outcomes and efficiency. We 

encourage the field to devote more attention towards model interpretability and efforts to 

experimentally close-the-loop. 

Towards identifying the truly robust EDM findings that are more likely to yield genuine 

learning gains, we note that our confidence in the interpreted LFA discovery was greatly 

supported by its generalization to a novel dataset and to novel problem types. Thus, moving 

beyond predictive accuracy to assess models based on generalization to novel data (from 

entirely different populations and contexts), and on predicting external outcomes such as pre- 

to post-test gains, will help the field produce more interpretable, explanatory, and/or 

actionable outcomes. 
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7. APPENDIX 1 

Control condition example interface for a backward circle area problem step. 

 

 

Redesigned condition example interface for a backward circle area problem step. 
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