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Massive open online courses (MOOCs) provide educators with an abundance of data describing how
students interact with the platform, but this data is highly underutilized today. This is in part due to
the lack of sophisticated tools to provide interpretable and actionable summaries of huge amounts of
MOOC activity present in log data. To address this problem, we propose a student behavior representation
method alongside a method for automatically discovering those student behavior patterns by leveraging
the click log data that can be obtained from the MOOC platform itself. Specifically, we propose the use of
a two-layer hidden Markov model (2L-HMM) to extract our desired behavior representation, and show
that patterns extracted by such a 2L-HMM are interpretable and meaningful. We demonstrate that the
proposed 2L-HMM can also be used to extract latent features from student behavioral data that correlate
with educational outcomes.

1. INTRODUCTION

The proliferation of massive open online courses (MOOCs) has resulted in a profound impact on
education. As more and more students participate in these novel educational environments, it
is of utmost importance that we be able to understand the behavioral patterns students exhibit
in these environments. While we can easily observe the changes in behavior of students in real
classrooms, MOOC environments present some significant challenges in this regard: the structure
of the course itself is more hands-off in nature than that of the traditional classroom (in most
cases), and thus attracts more students that are full-time workers with irregular learning schedules.

At the same time, this influx of learners turning to MOOC platforms to educate themselves
directly leads to the collection of larger datasets of behavioral data through the platform’s logging.
This presents a unique opportunity: the data present in these logs has the power to aid us in
understanding the behavior of students who take our MOOCs. However, due to the vast scale of
these behavioral logs, student behavior patterns are mostly undetectable for MOOC instructors
and as a result, the rich data available through MOOC logs is highly underutilized today.

What stands in the way? Instructors require intelligent systems to create concise and digestible
summaries of the massive amount of interaction data collected. If we can understand how users
are interacting with our MOOCs, we are much more likely to be able to make changes to these
courses that positively impact learners. We view this paper as attempting to bridge this gap.
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(a) Behavior pattern 0 (b) Behavior pattern 1 (c) Transitions between the two
behavior patterns to the left.

Figure 1: An idealized example of what our behavior representation could capture.

How should we represent behavioral patterns, and what does it mean to understand changes
in student behavior with respect to these patterns? These are still very open questions and are
active areas of research (Kizilcec et al., 2013; Faucon et al., 2016; Davis et al., 2016; Shih
et al., 2010). In this paper, we advocate for a representation of student behavior patterns as
well as behavior transitions that we believe is simultaneously interpretable but also amenable
to unsupervised, automated discovery via statistical means. Specifically, we choose to visualize
behavior patterns as labeled directed graphs where a node represents a “behavior state” (such
as watching a lecture video or visiting a forum), a directed edge indicates a transition from one
behavior state to another, node sizes are proportional to steady-state probabilities, and edge
widths are proportional to the probability of leaving a node following that edge. We can use this
same representation for visualizing both the student behavior patterns as well as the transitioning
behavior between them. In Figure 1 we show a hypothetical example of the kind of output our
proposed representation could convey. Here we see two different behavioral patterns (1a and 1b)
as well as the transition behavior between these two behavior patterns (1c). Such a visualized
state-transition representation is very informative for describing student behavior. Indeed, we
could infer many things from even such a simple example: The first might be that, when students
are taking quizzes, they tend to either use the forum or the videos for support, but not both.
They also tend to take quizzes in a sort of “cycle” pattern, indicating perhaps that this course
allows quiz re-takes. Finally, in Figure 1c we could conclude that users tend to change their
quiz-taking behavior over time from one that is more video-focused (pattern 0) to one that is
more forum-focused (pattern 1).

Our goal in this paper is to design a model that can automatically capture student behavior in
this way via unsupervised learning methods applied to large collections of click logs associated
with MOOCs. We view our model as a component of a system that enables collaboration between
the machine and a human instructor to extract knowledge from large collections of MOOC data.
Automatically extracting interpretable patterns from the clickstream data associated with MOOCs
is a necessary step for instructors to identify the hidden knowledge in massive interaction datasets.
Without the availability of a suitable model for identifying behavioral patterns, instructors are not
empowered to use this available data to improve their courses without expending extraordinary
amounts of manual effort (even with which the raw data can still be very hard to interpret).
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Our proposed model (as well as the proposed behavior representation) is motivated by the
following observations:

1. Student behavior is complicated and cannot necessarily be captured sufficiently by rule-
based methods such as those explored by Kizilcec et al. (2013) and Davis et al. (2016). We
instead propose to treat student behavior patterns as being characterized (represented) via a
sequence of latent states. This allows us to automatically capture patterns that we might
not have been able to articulate clearly a priori via a series of rules, and allows us to model
the inherent uncertainty in assigning a student’s behavior to a pattern or group.

2. Student behavior can vary over time. Previous models that treat students as exhibiting
only one behavioral pattern over time (Faucon et al., 2016) miss out on the opportunity to
understand student behavior dynamics in a course. We propose a latent space model with
latent state transitions to flexibly model the dynamics.

3. Analysis of student behavior can and should be performed at varying levels of granularity.
This requires us to aggregate data over time with different levels of resolution; existing
models tend to come with an assumption about the resolution of time they consider (Faucon
et al., 2016; Kizilcec et al., 2013; Shih et al., 2010). We propose a model that is agnostic to
the time resolution considered, allowing it to be applied at different levels of resolution
more naturally.

Thus, what we propose is a latent variable approach for mining student behavior patterns
that is probabilistic for inference and does not force assumptions about time resolutions, making
it flexible to model state changes over different time resolutions more easily. More specifically,
we propose a novel two-layer hidden Markov model (2L-HMM) to discover latent student
behavior patterns via unsupervised learning on large collections of student behavior observation
sequences. Evaluation results on a MOOC data set on Coursera demonstrate that the 2L-HMM
can effectively discover a variety of interesting interpretable student behavior patterns at different
levels of resolution, many of which are beyond what existing approaches can discover. We
show that the patterns uncovered by the 2L-HMM capture meaningful behavior by quantitatively
showing that features extracted from a trained 2L-HMM correlate with learning outcomes. Since
our proposed methods are unsupervised, they can potentially be applied to any MOOC data
without requiring manual annotation effort at the level of sequences, thus empowering instructors
to use the latent patterns discovered by the 2L-HMM to further extract knowledge about the
behaviors his/her students exhibit in the MOOC.

2. RELATED WORK

Our model is based heavily on the prior art of Hidden Markov Models (HMMs) (Rabiner, 1990)
for sequence labeling tasks. As a member of the more general family of probabilistic graphical
models (Koller and Friedman, 2009), HMMs are widely applicable and have been used for tasks
such as speech recognition (Huang et al., 1990), part-of-speech tagging (Jurafsky and Martin,
2009), and econometrics (Hamilton, 1990). A major challenge in applying HMMs and other
graphical models successfully to solve a problem is to design an appropriate architecture of the
model, which always varies according to specific applications.

For example, in part-of-speech tagging (Jurafsky and Martin, 2009), the output distributions
are categorical (distributions over words from a fixed vocabulary) and the latent states represent
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the part-of-speech category for a word. In speech recognition (Huang et al., 1990), the output
distributions might be mixtures of Gaussians to predict real-valued vectors extracted from short
windows of a speech signal. In the domain of econometrics, Hamilton (1990) explores HMMs in
the context of “regime-switching.” In this framing, the goal is to understand how econometric
data changes by modeling discrete changes in “regime” as having an impact on the resulting
real-valued vector data observed. The “regimes” are thus represented with a model that can
produce real-valued vector data, such as a multivariate Gaussian or an auto-regressive model.
The analogy with HMMs is that a “regime” is a latent state, and the characterization of the
regime itself is the output distribution for that latent state. Our model can be seen as such a
“regime-switching” model where the output of the “regimes” that students are switching between
are discrete-valued sequences (as opposed to real numbers, vectors of real numbers, or categorical
symbols) and the model used to represent a specific “regime” is an (observable) Markov chain
over the observed student actions. We view the switching between “regimes” as the first “layer”
of our model, and the transitioning behavior within a “regime” between the actions a student
takes as the second “layer” of our model.

A multi-layered approach to HMM modeling of sequence data has been performed before
in other domains. Zhang et al. (2004), for example, explored a two-layer HMM framework
for modeling actions in meetings, but their definition of “two-layer” differs from ours. In their
formulation, the “lower-layer” level is used to label audio-video action sequences into basic
events, and the “upper-layer” is used to label the output of the lower-layer to discover higher-level
office behavior abstractions. Oliver et al. (2004) propose a similar layered HMM approach for
modeling office activity at multiple different levels of time granularity. In their approach, each
layer L is represented as a “bank” of K different HMMs that model sequences of some length
TL. At the bottom layer (L = 1), the bank of K HMMs corresponding to that layer is run on
some initial observation data, considering windows of observations of length T1. Then an output
is generated by using the inferential results of these K HMMs to make a prediction: which of the
K HMMs was most likely to produce that sequence of observations? This output is then fed to
the next layer of HMMs, which considers sequences of length T2 and outputs prediction results
as to which of the K HMMs at layer two were most likely to produce the sequence of outputs
produced by the previous layer, and so on.

Our formulation differs from both Zhang et al. (2004) and Oliver et al. (2004) in that we
do not feed the labeled sequence of the lower level into the input of the higher level. Instead,
our lower level is treated using a non-hidden Markov model, and the higher level is modeling
transitions between the K different non-hidden Markov models we consider. The problem to
be solved is similar in that we wish to predict a “label” for a sequence of actions a student
takes as well as understand the transition behavior between those labels. However, one of the
consequences of modeling the lower layer using a non-hidden Markov model instead of an HMM
directly is that the meaning of the K different latent states can be more clearly captured by
using our proposed behavior representation. If we were to use an HMM as our first layer, the
behavior patterns (like from Figure 1) would instead have nodes that represent another set of
latent states instead of being concrete actions themselves. Each of these latent states would
then be associated with some other output distribution over the possible concrete actions to be
considered. In order to understand a single behavior pattern uncovered, one would first have to
understand the different output distributions for the latent states in that pattern to understand the
meaning of that latent state. This further complicates the understanding of higher level patterns
because understanding the higher layer patterns requires understanding the lower layer patterns.
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By taking a more restrictive view of the first layer, we can produce a representation that can be
more readily interpreted due to the states in our first layer representation having an immediately
clear meaning (the concrete action they represent).

The 2L-HMM model we propose is more closely related to the Hierarchical Hidden Markov
Model (HHMM) detailed in Fine et al. (1998). Here, the “layers” are modeled by having the
hidden Markov model have two kinds of transitions. Horizontal transitions move between states
within a layer, where vertical transitions move between different layers. At the bottom layer
lie the “production” states, which output symbols according to some probability distribution.
Our specific model, in this case, can be modeled as an HHMM where the horizontal transitions
between nodes at the highest layer (including self-loops) must be immediately followed by a
vertical transition to the lower layer. The output probability distributions over symbols in the
lower layer “production” level are forced to emit only one kind of symbol, and vertical transitions
are only allowed into the original higher-layer state that transitioned down into the lower-layer.

Mixtures of hidden Markov models are also conceptually similar to our formulation. Song
et al. (2009) explored using a mixture of hidden Markov models in the context of anomaly
detection in the security domain. Ypma and Heskes (2002) use mixtures of HMMs to categorize
web pages and cluster users by investigating web log data, which is quite similar to the clickstream
log data we obtain from MOOCs. The major difference between our approach and a standard
mixture of HMMs is that we also model the transition behavior between the Markov models that
make up our model’s lowest layer, where a standard mixture of HMMs would ignore the potential
dependence of the previous sequence’s latent state on the next sequence’s latent state.

HMMs or similar ideas have been previously applied to model education data (Shih et al.,
2010; Kizilcec et al., 2013; Davis et al., 2016), but the previous models are not well tuned toward
the student behavior task and thus cannot adequately address all the aspects of the complexity
of student learning behavior. A main technical contribution of this paper is to propose a more
general HMM that can better adapt to the variations of student behavior via its variable resolution
and nested HMM structure, and thus enable discovery of more sophisticated behavior patterns
and provide a more detailed characterization of student behavior than the previous models.

For example, Kizilcec et al. (2013) assigned students to states following a rule-based approach
based upon when the student submitted the assignment for a particular week in the course. They
investigated how students transitioned between these states as the course progressed, and used
the sequence of states a student exhibited as a representation for performing k-means clustering
of students into related groups. This differs from our method substantially: we assign students
to states using a probabilistic framework to account for uncertainty in this state assignment and
jointly learn representations for these states, which are treated as being latent as opposed to
pre-defined using some rule (or set of rules). Furthermore, our model provides more flexibility
in how the time segments are defined, allowing for both finer (for example, day-by-day) or
coarser (for example, month-by-month) granularity. Shih et al. (2010) investigated the use of
HMM-based clustering techniques for automatic discovery of student learning strategies when
solving a problem. This is similar to our approach in that the description of behavior profiles is a
Markov model, but cannot further characterize each latent state with another informative HMM.
Thus, their work can be regarded to modeling “micro” behavior, whereas our model can model
both “micro” and “macro” behavior.

Davis et al. (2016) investigate frequent student behavior pattern chains with a set of actions
that are defined similarly to ours. However, their method for finding the common behavioral
patterns involves a manual clustering step to identify behavioral “motifs,” which is then followed
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by an automatic (rule-based) assignment of all sequences to these motifs. Our method, by contrast,
attempts to do this automatically: the latent state representations obtained by our model attempt
to capture similar meanings to their behavior motifs in a completely automated fashion. They
also automatically generate and investigate Markov models for different MOOCs, but do so by
considering all student action sequences as belonging to a single Markov model. In our approach,
we allow each student behavior sequence to belong to one of K different Markov models (and
further model the transition probabilities between these latent state Markov models between each
sequence a student generates). Thus, their Markov models presented are a special case of our
model when K = 1.

Faucon et al. (2016) proposed a semi-Markov model for simulating MOOC students. They
produce behavior profiles that characterize groups of students in the form of semi-Markov models
like our proposed model does, but they assume that a student can belong to only one behavior
profile across the entire course rather than allowing this profile to change over time. Because we
do not have this restriction, our model is also able to learn the transition probabilities between the
different behavior profiles we discover.

There are a few additional related studies worth mentioning. Bayesian Knowledge Trac-
ing (Corbett and Anderson, 1994) in its basic form uses a hidden Markov model to model the
probability that a learner knows a certain skill at a given time. Modifications to this algorithm
include contextual estimation of the “slip” and “guess” probabilities of the model (Baker et al.,
2008) and most recently a re-framing as a neural network problem (Piech et al., 2015).

3. A TWO-LAYER HMM FOR MOOC LOG ANALYSIS

3.1. BASIC IDEA AND RATIONALE

Our general idea is to use a probabilistic generative model to model the student activities as
recorded in a MOOC log, which means we will assume that all the observed student activities
are samples drawn (i.e., “generated”) from a parameterized probabilistic model. We can then
estimate the parameter values of the probabilistic model by fitting the model to a specific MOOC
log data set. The estimated parameter values could then be treated as the latent “knowledge”
discovered from the data. Because such a generative model attempts to fit all the data, it enables
us to discover interesting patterns that can explain the overall behavior of a student or the common
behavior patterns shared by many students.

An HMM is a specific probabilistic generative model with a “built-in” state transition system
that would control the data to be generated by the model, thus it is especially suitable for modeling
sequence data (Rabiner, 1990; Huang et al., 1990). At any moment, the HMM would be in one
of k states U = {u1, . . . , uk}, and at the next moment, the HMM would move to another state
stochastically according to a transition matrix that specifies the probability p(ui | uj) of going
to state ui when the HMM is currently in state uj . When the HMM is in state u, the HMM can
generate an observable data point x according to an output probabilistic model p(x | u). Thus,
if we “run” an HMM for N time points denoted by t = 1, . . . , N , the HMM could “generate”
a sequence of observations x1 . . . xN , where each xi is an output symbol by going through a
sequence of hidden states w1 . . . wN where each wi is a random variable taking a value from
the HMM’s state set U . The association of such a latent sequence of state transitions with the
observed symbols makes it possible to use the HMM to “decode” the latent behavior of students
behind the surface behavior we directly observe in the log data, allowing for understanding
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student behavior more deeply than a model with no latent state variables.
In many ways, the generation process behind an HMM is meant to simulate the actual

behavior of a student. We may say that students transition through different “task states” (or
“behavior states”) in the process of study. One such task state may be to learn about a topic by
mostly watching lecture videos, another task state may be to work on quizzes, and yet another
may be to participate in forum discussions. While in each of these different states, the student
would tend to exhibit different surface “micro” behaviors. For example, in the lecture study state,
the student would tend to have many video-watching related behaviors and occasionally forum
activities, while in the quiz-taking state (to pass each module), the student would tend to show
many quiz-related “micro” activities as well as asking questions or checking discussions on the
forum. Note that due to the complexity of the student behavior, it is very difficult to accurately
prescribe the specific surface “micro” behavior patterns for each state in advance, especially
without prior knowledge about the students. For example, forum activities are likely interleaved
with other activities in every task state and the interleaving pattern can be somewhat irregular
with potentially many variations. The major motivations for using an HMM are that (1) it uses
a probabilistic model (the output probability distribution p(x | u) conditioned on each state) to
directly capture the inevitable uncertainty in the association of surface “micro” activities with
their corresponding latent task/behavior state, which is often our main target to discover and
characterize, and (2) it does not make any assumption about which latent task/behavior state
must be associated with which observed activities or how a student would move from one state to
another, but instead allows our data to “tell” us what kind of associations are most likely, what
kind of transitions are most probable, and which states tend to be more long-lasting for any set of
students.

However, if we were to use an ordinary HMM to analyze our data, we would treat each
observed “micro” activity (such as video watching or forum post reading) as an output symbol,
and thus the output distribution p(x | u) for each discovered latent state would be a simple
distribution over all kinds of observable micro activities recorded in our log data (e.g., 50%
lecture watching, 8% quiz taking, 7% quiz submission, 2% course wiki reading, etc.). While such
a distribution is meaningful and can already help us interpret the corresponding latent state, it
only gives us a rather superficial characterization of student behavior.

Ideally, we want p(x | u) to characterize the directly observable “micro” behavior in more
detail to further capture the relations and dependencies of these “micro” activities. To this end,
we would treat an entire sequence of “micro” activities (e.g., one session of activities) as an
observed “symbol” from a latent state, and further model the generation of such a sequence with
another Markov model where we treat each micro activity as an observable state, and model the
transitions between these activity states in very much the same way as the state transitions in an
HMM.

Adding this second layer would allow us to characterize a latent task state in much more
detail, as it would reveal not only what activities are most common to a task state, but also the
transition patterns between these “micro” activities (e.g., it can reveal frequent back-and-forth
transitions between quiz-taking and quiz-submission, which would suggest a concentrated period
of taking quizzes). Combining this “surface” Markov model over the “micro” actions with the
“deep” hidden Markov model over the latent task states gives us a general and powerful two-layer
HMM (2L-HMM) that can simultaneously learn “deeply” the latent task/behavior states and their
transitions as well as the corresponding “micro” activity transition patterns associated with each
latent state to facilitate interpretation and analysis of the discovered latent state patterns.
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To estimate the parameters of our model, we will use the EM algorithm (Dempster et al.,
1977) which allows us to perform maximum likelihood estimation of the model in the presence
of latent (unobserved) variables. This algorithm, intuitively, works as follows: first, the model
parameters we wish to estimate are initialized to some random (but valid) starting point. Then,
we “guess” what the latent variable values might be given the current model parameters. We
can then use this guess to re-estimate the model parameters, which will improve their accuracy
slightly. We can then use these newly estimated parameters to again “guess” what the latent
variable values might be, and so on. We repeat this process until the parameter estimates no
longer shift by much (or, equivalently, the log likelihood of the data does not improve by much).
The computation for the “guessing” of latent variable values is somewhat involved in the case
of HMMs (see Section 3.3. for the full details), but the general intuition behind the iterative
hill-climbing remains valid.

Next, we present this model more formally and discuss how to estimate its parameters to
uncover these latent patterns in an unsupervised manner.

3.2. FORMAL DEFINITION OF THE 2L-HMM

Given a MOOC log, we can define a set A of actions that a student can take at any given time.
For example, an action a ∈ A might be “viewing lecture,” “taking quiz,” or “viewing forum.”
For each student in the course ` ∈ L, we then extract a list of action sequences O` that he or
she produced as observed in the log, where each sequence o ∈ O` is itself a list of actions
(a1, a2, . . . , aT ) with each ai ∈ A. Each sequence can be divided flexibly; in this paper, we chose
to denote the end of a sequence as occurring when no further actions occur within a 10-hour
window of time (and thus our sequences roughly correspond to one day’s worth of activity).
This decision reflects our desire to uncover latent state transition behavior at the granularity of
day-to-day behavior. A different segmentation strategy could be used to uncover hour-by-hour
behavior or week-by-week behavior, and this depends entirely on the desired time resolution
one wishes to be exhibited in the transitions between the latent states. Different segmentation
strategies will result in different underlying training data, and thus different meanings behind the
patterns that the 2L-HMM will extract. The flexibility of using different segmentation strategies
is intentional as it allows a user to adjust the segmentation as needed to obtain patterns at different
granularity levels.

Each sequence o ∈ O` is associated with a latent state u ∈ {1, . . . , K} (where K is a fixed
constant picked in advance). The actions within the sequence o = (a1, a2, . . . , aT ) are then
modeled as a first-order Markov process conditioned upon u where each action is drawn from
a distribution conditioned upon the previous action (except for the first which is sampled from
an initial starting distribution). We can write the parameters for the first-order Markov model
associated with latent state u as λ(u) = (π(u), A(u)) where π(u) indicates the initial probability
vector of length |A| andA(u) is an |A|×|A|matrix indicating the transition probabilities between
each pair of actions from A.

Thus, the probability of a sequence o of length T given a latent state u is

P (o | λ(u)) = P (a1 | π(u))
T∏

i=2

P (ai | ai−1, A(u)) (1)

where P (a | π(u)) = π
(u)
a is the probability of starting with action a and P (ai | ai−1, A(u)) =
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A
(u)
ai−1,ai is the transition probability of moving from action ai−1 to ai given that the model is

currently in latent state u.
We can compute the likelihood of a list of action sequences O` of length N for a student ` by

marginalizing over all possible latent state sequences (v1, . . . , vN) ∈ U as

P (O` | Λ) =
∑

(v1,...,vN )∈U

(
P (v1 | Λ)P (o1 | λ(v1))×

N∏

i=2

P (vi | vi−1,Λ)P (oi | λ(vi))
)

(2)

where Λ is the set of all model parameters. In our model, we let Λ = (π,A,B) where π and A
are the parameters of a first-order Markov model over the latent states and B = (λ(1), . . . , λ(K))
where each λ(i) consists of the parameters for the first-order Markov model over action sequences
for latent state i. Thus π (without superscripts) is an initial probability vector of length K and
A (without superscripts) is a K ×K transition probability matrix, analogous to the case with
the individual first-order Markov model parameters λ(i) for each latent state. We have in total
K +K2 +K(|A|+ |A|2) parameters to be estimated from our sequence data.

This can be seen as a modification of the traditional hidden Markov model with categorical
outputs (Rabiner, 1990) where instead of discrete observations (one for each latent state tran-
sition) we have observations that take the form of entire sequences oi = (a1, a2, . . . aT ) whose
probabilities are computed using another (non-hidden) Markov model conditioned upon the latent
state ui.

3.3. PARAMETER ESTIMATION

To learn the parameters of our model, we may use maximum likelihood estimation. Unfortunately,
a closed-form solution does not exist, so we must appeal to the EM algorithm (Dempster et al.,
1977). In particular, we propose a minor modification of the Baum-Welch algorithm (Rabiner,
1990) which is an efficient EM algorithm for learning the parameters of hidden Markov models
in an unsupervised setting where the Markovian assumption is exploited to significantly reduce
the computational complexity of the EM algorithm by avoiding explicit enumeration of all the
possible state transitions. In the following sections, we will provide a brief description of the
original Baum-Welch algorithm for unsupervised parameter estimation for categorical valued
hidden Markov models, and then describe our modification to allow for parameter estimation for
our 2L-HMM modification for sequence valued observations.

3.3.1. Baum-Welch for Traditional HMMs

In the traditional HMM formulation with categorical outputs, we have Λ = (π,A,B) where π
is the initial probability distribution over the latent states (of length K), A is a K ×K matrix
indicating the latent state transition probabilities, and B = (b1, . . . , bk) is a length K vector
where each entry bi is a probability distribution over the possible discrete output symbols from A.

The goal of the Baum-Welch algorithm (also called the forward-backward algorithm) is
to learn the values for the parameters Λ from a collection of observed sequences of values
from A. Concretely, our training data D = (o(1), . . . ,o(M)) is a collection of M sequences
o(k), each of which consists of Tk symbols (observations) from A. The Baum-Welch algorithm
defines two sets of variables α(o)

t (i) called the forward variables and β(o)
t (i) called the backward

variables (Rabiner, 1990) for each sequence o ∈ D.
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α
(o)
t (i) = P (o1, . . . , ot, vt = i | Λ) is the probability of generating the sequence of observa-

tions (o1, o2, . . . , ot) up to time t and arriving in state i at that time. They are typically defined
using the following recursion:

• α(o)
1 (i) = πibi(o1), the probability of starting in state i (πi) times the probability of

generating the first observation o1 from state i.

• α(o)
t+1(i) = bi(ot+1)

∑K
j=1 α

(o)
t (j)Aji, the probability of generating the observation ot+1

from state i times the probability that we arrive in state i from any other previous state after
generating all of the other observations.

Analogously, β(o)
t (i) = P (ot+1, . . . , oT | vt = i,Λ) is the probability of generating the rest of

the sequence given that we are in state i at time t. They are also defined using a recursion:

• β(o)
T (i) = 1

• β(o)
t (i) =

∑K
j=1 β

(o)
t+1(j)Aijbj(ot+1), the probability of transitioning to any state j and

generating the observation ot+1 times the probability of generating the rest of the sequence
given that we transitioned to state j.

Given the αs and the βs, we can compute γ(o)t (i), the posterior probability of being in a given
state i at time t, and ξ(o)t (i, j), the posterior probability of going through a transition from state i
to state j at time t as

γ
(o)
t (i) =

α
(o)
t (i)β

(o)
t (i)

∑K
j=1 α

(o)
t (j)β

(o)
t (j)

(3)

and

ξ
(o)
t (i, j) =

α
(o)
t (i)Aijbj(ot+1)β

(o)
t+1(j)∑K

j=1 α
(o)
t (j)β

(o)
t (j)

(4)

respectively (Rabiner, 1990). Computing these variables for each sequence o ∈ D is the E-step
of the EM algorithm.

Given γ(o)t (i) and ξ(o)t (i, j) for each sequence o ∈ D, we can update our model parameters Λ
as

πi =

∑
o∈D γ

(o)
1 (i)

|D| , (5)

Aij =

∑
o∈D

∑T
t=1 ξ

(o)
t (i, j)

∑
o∈D

∑N
j=1

∑T
t=1 ξ

(o)
t (i, j)

, and (6)

bi(a) =

∑
o∈D

∑T
t=1,ot=a γ

(o)
t (i)

∑
o∈D

∑T
t=1 γ

(o)
t (i)

(7)

respectively (Rabiner, 1990). This is the M-step of the EM algorithm.
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3.3.2. Baum-Welch for HMMs with Sequence Observations

The major deviation of our model from the traditional categorical-valued HMM is that our
observations are themselves sequences of actions from A rather than individual tokens. We
again denote our parameters as Λ = (π,A,B) where π is the initial probability distribution
over the latent states (of length K), A is a K ×K matrix indicating the latent state transition
probabilities, but B = (λ(1), . . . , λ(K)) is now a vector of length K where each element λ(i)

consists of the parameters for a first-order Markov model over the action space A. Recall that
each λ(i) = (π(i), A(i)) where π(i) is an initial action distribution over the |A| available actions,
and A(i) is the |A| × |A| transition matrix between those actions.

The goal of the Baum-Welch algorithm is still to learn the parameters Λ for our model. What
differs from the categorical-valued HMM case is that our data now consists of a collection of lists
of sequences, rather than just a collection of sequences. This means that our observation values
ot are now themselves sequences of values from A, rather than just being a single token from
A. Formally, our training data D = (O(1), . . . ,O(|L|)), where each O(`) = (o1, . . . ,oT`

) is itself
a list of sequences. Each sequence ok ∈ O(`) consists of a list of actions (a1, . . . , aTk

), each of
which is a member of A.

In order to run the forward-backward algorithm for an element O ∈ D to compute the α and
β recursions like before, we must define bi(ot) in this setting where ot = (a1, . . . , aTt) is now a
sequence instead of a single token. We define it as follows:

bi(ot) = P (ot | λ(i)) = P (a1 | π(i))
Tt∏

k=2

P (ak | ak−1, A(i)) = π(i)
a1

Tt∏

k=2

A(i)
ak−1,ak

. (8)

Fortunately, the recursions for α(O)
t (i) and β(O)

t (i) remain the same, as do the definitions of
γ
(O)
t (i) and ξ(O)

t (i, j), in the E-step. We can simply substitute the new definition for the output
distribution bi(ot) in those equations.

The substantial change is in the updating equations in the M-step, where we replace the
update for bi(a) (which used to be a categorical distribution) by a pair of updates for the Markov
chain for state i: one for π(i)

a one for A(i)
ab . The two updates can be written as

π(i)
a =

∑
O∈D

∑
ot∈O,ot,1=a γ

(O)
t (i)

∑
O∈D

∑
ot∈O γ

(O)
t (i)

, and (9)

A
(i)
ab =

∑
O∈D

∑
ot∈O

∑|ot|
m=2,ot,m−1=a∧ot,m=b γ

(O)
t (i)

∑
O∈D

∑
ot∈O

∑|ot|
m=2,ot,m−1=a γ

(O)
t (i)

. (10)

These updates can be understood as follows. π(i)
a is the probability that a sequence being generated

by state i begins with action a. γ(O)
t (i) gives the probability of generating the sequence ot from

state i, so we simply aggregate this for all sequences ot where the first action is a. We then
normalize this distribution to sum to 1 across all possible actions a ∈ A to obtain our new
estimate for π(i)

a . A(i)
ab is the probability that a sequence being generated by state i currently at

action a ∈ A transitions to action b ∈ A. Thus, we compute the expected number of times
we observe a transition from a to b in a sequence generated by state i, and we normalize this
distribution to sum to 1 across all possible actions b ∈ A. Our modified EM algorithm for
2L-HMMs is provided as part of the META toolkit (Massung et al., 2016).

11 Journal of Educational Data Mining, Volume 9, No 1, 2017



Table 1: Statistics about the sequences extracted from the two MOOCs.

MOOC Students Sequences Avg. |s|
textretrieval-001 18,941 85,240 7.31

sustain-001 85,240 231,881 15.4

4. EXPERIMENT RESULTS

As an analysis tool, the 2L-HMM model provides us with the following two patterns to character-
ize student behavior: (1) the latent state representations, and (2) the latent state transitions. Thus,
to evaluate the proposed model, we conduct experiments to qualitatively analyze both types of
patterns discovered from empirical MOOC log data.

Specifically, we look at the MOOC logs associated with two different Coursera MOOCs
offered by UIUC: textretrieval-001 and sustain-001. The textretrieval-001 MOOC represents a
highly technical computer science course, where the sustain-001 MOOC is more representative
of a humanities course. We picked these two MOOCs because of their vastly different content
domains. Table 1 summarizes the two datasets we extracted from the MOOCs.

4.1. LATENT STATE REPRESENTATIONS

The 2L-HMM is meant to be a tool for exploratory analysis of student behavior. As such, the
number of states should be empirically set based on the goal of analysis. A higher number of
states will lead to a finer-grained modeling of student behavior. In our experiments, we explored
using between 2–6 states. First, we fit a 6-state 2L-HMM to the textretrieval-001 sequence dataset
and show some of the latent state representations we find. We used the following ten actions
as our action set A: (1) quiz start, (2) quiz submit, (3) wiki (course material), (4) forum list
(view the list of all forums), (5) forum thread list (view the list of all threads in a specific forum),
(6) forum thread view (view the list of posts within a specific thread), (7) forum search (a search
query issued against the forum), (8) forum post thread (a new thread was posted), (9) forum post
reply (a new post was created within an existing thread), and (10) view lecture (defined as either
streaming or downloading a lecture video).

To visualize these Markov models that represent our latent states, we plot them as a directed
graph where we set the size of a node to be proportional to its personalized Pagerank score (Page
et al., 1999; Jeh and Widom, 2003) where the personalization vector is the initial state distribution
for the Markov model. We let the thickness of a directed edge (u, v) reflect the probability of
taking that edge given that a random walk is currently at note u (as indicated by the transition
matrix)1. In the interest of reproducibility, the source code for analyzing the MOOC logs we
use in this paper and for producing the figures themselves is publicly available as open-source
software2.

Figure 2 includes two such representations we learned. Under our interpretation, the first
corresponds to a “quiz taking” state (it has higher “quiz: start” and “quiz: submit” state probabili-

1We do not plot the transition probabilities directly within the figure to ease readability; we instead will mention
relevant transition probabilities in the text as we discuss the plots. The plots were created using python-igraph:
http://igraph.org/python/.

2https://github.com/skystrife/clickstream-hmm
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(a) An example “quiz taking” state. (b) An example “lecture viewing” state.

Figure 2: Two example states found by the 6-state 2L-HMM. (The naming of these states reflects
our own interpretation.)

ties than the other five states) whereas the second corresponds to a “lecture viewing” state. Our
unsupervised method can uncover states that do indeed correspond to student behavior modes
that we would expect to find a priori.

We also argue that it is important that the latent state representation is a Markov model
rather than just a discrete distribution over actions in A (as would be the case for a traditional
single-layer HMM). We can observe why if we take a closer look at each of the two latent state
representations in Figure 2 and look at their forum component (bottom right). We can see that
the relative probability of the forum activities is roughly the same between these states, but the
transitions are quite different. In Figure 2a we have a relatively low probability of walking from
the “forum thread view” action back to the “forum thread list” action (see the bottom rightmost
arc; transition probability p ≈ 0.17), but in Figure 2b we actually observe a much stronger link in
this direction (transition probability p ≈ 0.63). This difference highlights an important distinction
between these two latent states: in the first you are more likely to visit the forum looking for a
post, where in the second you are more likely to visit the forum to browse existing posts. Thus,
capturing the action transition matrix within a latent state is important for capturing detailed
insights involving bigrams of actions.

We can also use our model for cross-course behavior analysis. In Figure 3 we show two
latent state representations learned by a 6-state 2L-HMM, one from textretrieval-001 and one
from sustain-001. These two states were chosen as they are the most similar between the two
courses. However, if we look at the transitions we can see some important differences. First,
in the state from textretrieval-001, we can see that the probability of returning to the course
wiki after viewing a lecture (transition probability p ≈ 0.24) is considerably lower than that
probability in the state from sustain-001 (transition probability p ≈ 0.57). We also notice that
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(a) A state from textretrieval-001. (b) A state from sustain-001.

Figure 3: Two similar example states found by the 6-state 2L-HMM.

the self-loop for staying in a lecture activity in textretrieval-001 (transition probability p ≈ 0.70)
is significantly higher probability than it is in the state from sustain-001 (transition probability
p ≈ 0.34). This gives us some insight into the lecture viewing behavior of students in these two
MOOCs which might reflect the course’s structure (which, as demonstrated in Davis et al. (2016),
can differ substantially across different MOOCs). In textretrieval-001, students are likely to view
lecture videos in succession directly without first visiting the course wiki, whereas in sustain-001
students are much more likely to first return the course wiki before watching the next lecture
video. This observation would be lost if we did not consider the transitions between the actions
within the latent states.

4.2. VARYING THE NUMBER OF LATENT STATES

Our 2L-HMM model has a parameter K that sets the number of latent states to be learned. We
believe that this can allow our model to flexibly discover patterns of different granularity, and
we can show this by varying K for a course and observing how the latent state representations
evolve.

In Figure 4 we see3 the evolution of the latent state representations found for the textretrieval-
001 MOOC. With K = 2 we uncover a video watching pattern (state 1) and a course material
browsing pattern (state 0). However, we can see that when K = 3 we can uncover a new pattern
involving forum behavior in state 3 (notice the node sizes on the bottom right). As we increase K
to four, we can see that state 1 splits into state 1 and state 3. These states appear quite similar
at a glance, but there are still some key differences. First, we can see that state 1 now has a
non-negligible forum component, whereas state 3 has hardly any weight on the forum.

We observe similar behavior in Figure 5 as we increase K when fitting our 2L-HMM on the

3The graphs are quite small, but the states are in the same positions as they were in previous figures.
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(a) (b) (c)

Figure 6: The latent state transition diagrams for a 4-state 2L-HMM fit to textretrieval-001 for all
students (a) compared to only “perfect” students (b) and only “low” students (c).

sustain-001 MOOC. Again, in the transition between K = 2 and K = 3, we discover forum
behavior patterns as a latent state. However, in the transition between K = 3 to K = 4, we
instead see a refining of that discovered forum state, where state 3 captures asymmetric transition
probabilities between “forum thread view” and “forum thread list”. These states could be seen as
redundant, in which case a setting of K = 3 may be more appropriate for the sustain-001 dataset.

4.3. TRANSITIONS BETWEEN LATENT STATES

A unique property of our model is its ability to capture transitions between the behavior patterns
themselves that are captured by the latent states. In Figure 6a we show the latent state transition
diagram for a 4-state 2L-HMM fit on textretrieval-001. We can immediately observe two things:
(1) each latent state has a very high “staying” probability, and (2) the prevalence of each latent
state matches our intuition. In particular, we can see that the forum browsing state (state 2) has
relatively lower probability than the other states as we might expect. It also makes sense that
state 0 has a rather high probability as this state likely captures all sequences where a student
logged in to the platform and then did nothing else (likely checking for updates). If we look at
state 1 and state 3, their relative probabilities match our intuition as well. State 1 seems to capture
a more engaged browsing session, where there is non-negligible probability associated with
different activities such as quiz taking and forum browsing and, importantly, these activities have
high probability symmetric edges (so students are taking quizzes one after the other, or viewing
forum threads in succession). By contrast, state 3 seems to capture a more passive student, with
negligible probability mass associated with forum activity (with low symmetry in the edges). The
link between “quiz submit” and “quiz start” (indicating quiz repetition) is also significantly lower
than state 1.

Thus, we might expect to see students that perform well in the course preferring states 1 and
2 over states 0 and 3. To verify this, we took the model we learned on the full training data and
retrofit it to training data consisting only of sequences produced by students in textretrieval-001
that had perfect marks. To prevent the latent state meanings from drifting, we forced the model
parameters associated with their Markov model representations to be fixed, in effect only learning
initial and transition probabilities for the top layer of our 2L-HMM. We show the updated latent
state transition diagram in Figure 6b. We can clearly see that the probability of state 2 has
increased dramatically, consistent with previous observations of the positive correlation between
forum activity and grades (Huang et al., 2014), while the probability of states 0 and 3 has
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Table 2: Average rank for “perfect” and “low” student groups in the ranked lists associated with
the four latent states found by a 2L-HMM. † indicates statistically significant different mean
ranks at p < 0.01 according to an unpaired t-test.

Group State 0 State 1† State 2† State 3 State 2→ 2†
Perfect 975.3 1001.5 999.0 1056.5 939.6

Low 1024.9 816.4 1230.5 1161.2 1187.4

decreased. State 1 had its probability increase, but only very slightly.
In Figure 6c we plot the latent state transition diagram for a second group of “low” students.

These students were selected so that they attempted all required quizzes in the course, but such
that their average quiz score was ≤ 70%. Here, we see that state 1 has a large increase in
size, where we might have expected state 3 to grow instead. However, there is an alternative
explanation for this phenomenon. Since state 1 seems to indicate a highly engaged student, it is
a perfectly reasonable explanation for the “low” student group as they are going to be working
hard to try to fill in the gaps in their knowledge. By contrast, the “perfect” student group likely
has many members who can take the quiz more passively and get perfect marks, perhaps because
they already know much of the material being presented, or are just naturally strong and do not
require much background review to perform well. This also explains why state 1 did not increase
in size for the “perfect” group like we were anticipating. Kizilcec et al. (2017) observe similar
phenomena with the courses they studied where they find that certificate earning is negatively
correlated with help seeking behavior. Our model lends itself well to discovering this potentially
counter-intuitive insight directly from data.

To quantify this finding, we perform the following experiment. First, we select all students
from textretrieval-001 who completed all of the quizzes Lq ⊂ L. This gives us 1,985 students
along with their average quiz score. We then create a ranked list of the students in Lq by sorting
them by their “preference” for a specific latent state

p`(i) =

∑T
t=1 γ

(o`)
t (i)

∑K
j=1

∑T
t=1 γ

(o`)
t (j)

(11)

where o` is the list of action sequences for student ` and γ is defined as before and computed
using the Baum-Welch algorithm. We can now compare the average rank in this list for both
the “perfect” student group and the “low” student group: a useful state for distinguishing the
two groups should result in a ranked list with statistically significant differences in average rank
between the two groups. Our results are summarized in Table 2. Indeed, we discover that states 1
and 2 are correlated with the “perfect” or “low” groups: state 1 ranks students in the “low” group
significantly higher than those in the “perfect” group, and state 2 does the opposite and prefers
students in the “perfect” group to those in the “low” group.

Returning to Figure 6, we can also see a difference in the transitions between the latent states.
In particular, look at the transitions in Figure 6b and Figure 6c that leave state 2. In the “perfect”
group, nearly all this probability mass is allocated for the self-loop (p ≈ 0.93). In the “low”
group, this self-loop is less strong (p ≈ 0.80; most easily seen by noting that the edges leaving
state 2 are darker than for the “perfect” group). We can perform a similar experiment to above
by producing a ranked list of students ` ∈ Lq by their staying probability for state 2 (that is,
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given that a student ` is already in state 2, how likely are they to remain there in the next action
sequence?). This can be computed as

p`(2, 2) =

∑T−1
t=1 ξ

(o`)
t (2, 2)

∑K
i=1

∑T−1
t=1 ξ

(o`)
t (2, i)

(12)

where ξ is defined as before and computed using the Baum-Welch algorithm. The last column
of Table 2 indicates that this transition feature also correlates with the achievement group and
results in significant differences in mean rank.

5. LIMITATIONS AND POTENTIAL DRAWBACKS

There are a few limitations of our model that are important to highlight. First, there are specific
technical limitations due to the statistical nature of the model and the particular methodology we
propose for fitting our model parameters. Second, there are limitations in the kinds of patterns
our model is able to discover in its current formulation and the ease with which instructors are
able to extract knowledge from these patterns. We discuss both lines below.

5.1. TECHNICAL LIMITATIONS AND IMPLEMENTATION CHALLENGES

One potential limitation is that the model is complex and has many parameters in order to truly
uncover the relevant patterns in the data. To properly estimate these parameters at training time, a
large amount of data must be available to the training algorithm. The assumption that we have a
large amount of sequence data available for training on should hold for most MOOC courses,
but this assumption may be problematic if attempting to apply our model to smaller online (or
on-campus) courses.

Our model fits its parameters using maximum likelihood estimation using the EM algorithm.
The EM algorithm is a hill climbing algorithm that is optimizing in a highly non-convex parameter
space. Thus, it can only guarantee that we reach a local maximum in practice (Dempster et al.,
1977). This may mean that the parameters found for the model may not be the “best” parameters
in a global sense, which may lead to suboptimal latent state representations and transition patterns.
Empirically, however, we observed in our experiments that strong patterns tend to always show
up if algorithm reaches a reasonably good local maximum, and the differences of the results tend
to be related to weak “unstable” patterns which may not be reliable anyway. Since it is far more
important and useful to reveal the strong salient patterns than weak unreliable ones for instructors,
the problem might not necessarily affect the utility of the approach so significantly. A commonly
applied approach to address the problem of multiple local maxima is to run the model multiple
times with different starting points to allow the model to explore a larger portion of the parameter
space. One can then compare the log-likelihood of the data between the models that were started
from different initialization points and select the one that has the highest value. This still does
not guarantee that we find a global maximum, but it does help alleviate the potential for finding
a particularly bad local maximum. In practice, we have found that our model can be fit to the
data quickly on commodity hardware, so running it multiple times to address this concern is not
computationally unfeasible.

A further complication in blindly applying the EM algorithm to our model is the fact that
the observation probabilities will be incredibly small. The probability that a specific sequence
is generated by a specific Markov chain (one of our latent states) will decrease exponentially
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with its length. While there are general approaches to avoiding numerical underflow in hidden
Markov models, applying the “scaling” method proposed by Rabiner (1990) will still result in
numeric stability issues in our case due to the incredibly small sequence-generation probabilities.
We address this in our open-source implementation by computing the trellises in log-space and
using the log-sum-exp trick when we need to take summations, which exploits the identity

log
n∑

i=1

exi = a+ log
n∑

i=1

exi−a (13)

where a is typically set to maxi xi to improve stability. We did not encounter further stability
issues once we applied these two tricks.

As is the case with traditional hidden Markov models, it is often important to smooth the
underlying model’s distributions to ensure that there is a non-zero probability of generating the
observations. We employed a simple additive smoothing in our implementation with a small
additive constant (10−6) for all our transition matrices to avoid this problem.

5.2. LIMITATIONS OF DISCOVERED PATTERNS

The proposed behavior representation is most suitable for representing recurring behavior patterns,
which presumably are most interesting to extract from the data, but may not cover all the
interesting patterns in the data. It would be interesting to explore other complementary models
such as time series models, which may help capture non-recurring patterns.

Our proposed model is flexible in the patterns it can discover in two main ways. The first is
that the granularity of the patterns can be adjusted by changing the segmentation strategy one
uses to divide the user action stream into discrete “sessions.” The other is the number of latent
states K that are used to describe the segmented action sequences. One drawback of these two
lines of flexibility is that there is not necessarily a clear answer as to the “correct” approach
for both in any given scenario. Varying the segmentation strategy changes the granularity of
the patterns the latent states explain, which will change their meaning. Varying the number of
latent states increases the flexibility of the model, but also may result in latent states that are not
substantially different from the other latent states and/or latent states with very low probability.
This flexibility forces a user of our model to make some assumptions about the patterns they wish
to find (granularity, diversity), and the model itself does not necessarily provide clear guidance as
to what the best approach is.

Furthermore, we have made an implicit assumption that the segmentation strategy is applied as
a pre-processing step (and is most obviously a deterministic process). The proposed segmentation
strategies in this paper do not specifically allow for the transitioning between the different latent
behavior patterns to occur over different windows of time for different users: we have made a
strong assumption that transitions between latent states only occur at action sequence boundaries.
One can model how much time a user stays in each state in terms of the number of sessions they
remain there before transitioning, but it may be better to directly model the amount of time we
expect a user to stay in the given state. In other words, a more powerful model might be one in
which the segmentation and the latent behavior pattern discovery are jointly modeled in a single
probabilistic framework rather than being separate pieces as we investigate in this work.

While the model can discover patterns in the data in a fully automated way, there is still clearly
a burden on the user of our model to interpret the patterns it has discovered to create actionable
knowledge about the MOOC from which the data was extracted. Extracting the patterns is a

20 Journal of Educational Data Mining, Volume 9, No 1, 2017



necessary step towards the creation of knowledge, and we view our model as a component in
a collaborative system which leverages the machine to perform statistical modeling to extract
patterns which then enable a human actor to extract knowledge and take actions on the basis of
the data. The pattern discovery is an important and absolutely necessary component, without
which it would be very difficult, if not impossible, for humans to directly digest the student
behavior buried in the large amount of data. Of course, pattern discovery is only a means to help
humans obtain knowledge, not the end of the knowledge discovery process.

6. CONCLUSIONS AND FUTURE WORK

As a tool to help instructors and education researchers better understand the behavior of MOOC
students, we proposed a two-layer hidden Markov model to automatically extract student activity
patterns in the form of behavior state-transition graphs from large amounts of MOOC log data.
This model is different from existing methods in that it treats behavior patterns as a sequence of
latent states, rather than assigning these states in a rule-based manner. It captures the variable
behaviors of students over time and allows analysis at different levels of granularity.

We showed that such a model does, in fact, capture meaningful behavior patterns and
produces descriptions of these behavior patterns that are easy to interpret. We argued that it
is important to capture student behavior patterns with more sophisticated models than simple
discrete distributions over actions to capture information present in bigrams of actions (or larger
sequences). By varying the number of latent states inferred, we showed that the model is flexible
and can capture patterns of differing levels of specificity in this way. Finally, we investigated
whether we can detect differences in student behavior patterns as they correlate with course
performance. Specifically, we demonstrated that high-performing students produce substantially
different HMM transition diagrams that tend to show longer concentration span in quiz-taking
and more active forum participation as compared with the average students. These results show
the great potential of the proposed model for serving as a tool to help humans discover knowledge
about student behaviors.

There are a number of interesting directions to further extend our work in the future. First,
the proposed model is completely general and can thus be easily applied to analyze the log of
many other courses to enable deep understanding of student behaviors as well as the correlations
of such behaviors and other variables such as grades. To realize these benefits, it would be useful
to develop a MOOC log analysis system based on the proposed model to facilitate education
research and help instructors improve course design.

Second, our model can empower many new comparative analyses. For example, we could
now look at how behavior patterns change between different offerings of the same MOOC to
understand how changes in course structure or materials influence student behavior. Individual
students can now also be compared against each other or against groups. For example, by
decoding the latent state sequences for each student, we can measure how “surprising” their latent
state transition sequence is relative to the average we would expect according to the model, or
to the average “perfect” student, etc. We can now investigate how certain behavioral patterns
correlate with properties of a student (e.g., demographics, prior aptitude, etc.). After decoding
the students’ latent state sequences, we could also correlate course-wide drifts in these latent
states with events in a course. For example, we might be able to automatically discover difficult
or confusing parts of a course by noticing spikes in the distribution of students over latent states
over time.
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Third, there is more recent work on better learning algorithms for mixtures of Markov
models (Gupta et al., 2016). It would be worth exploring whether the advances proposed in this
and similar work can be applied to our model to address some of the concerns surrounding our
use of the EM algorithm for our parameter estimation.

Finally, the proposed model can be extended in several ways. For example, although our
model does not explicitly model drop-out like Kizilcec et al. (2013), doing so is an obvious
extension. Our model would be able to provide predictions of when a student is “at risk” for
dropping out under such an extension. Also, currently, the model learns a transition matrix
over the latent states that is shared across all students. It would be interesting to instead learn
a different latent state transition matrix for each individual student, but keep the second-level
Markov models shared. This would provide the model with more flexibility which may be
desirable itself, but would also naturally result in a description of a student (via his or her HMM
transitions) that could be incorporated into existing supervised learning techniques that try to
predict student outcomes for understanding which of the latent behavior patterns discovered by
2L-HMM are most predictive of the performance of student learning. One could also relax this
somewhat and posit that groups of students transition between the lower layer patterns identified
by our method in distinct ways; this way, we can do a soft clustering of students into K2 groups
based on the similarity of their transitioning behavior between the higher-level behaviors we can
identify.
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