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Research on non-cognitive factors has shown that persistence in the face of challenges plays an important role 

in learning. However, recent work on wheel-spinning, a type of unproductive persistence where students 

spend too much time struggling without achieving mastery of skills, show that not all persistence is uniformly 

beneficial for learning. For this reason, it becomes increasingly pertinent to identify the key differences 

between unproductive and productive persistence toward informing interventions in computer-based learning 

environments. In this study, we use a classification model to distinguish between productive persistence and 

wheel-spinning in ASSISTments, an online math learning platform. Our results indicate that there are two 

types of students who wheel-spin: first, students who do not request any hints in at least one problem but 

request more than one bottom-out hint across any 8 problems in the problem set; second, students who never 

request two or more bottom out hints across any 8 problems, do not request any hints in at least one problem, 

but who engage in relatively short delays between solving problems of the same skill. These findings suggest 

that encouraging students to both engage in spaced practice and use bottom-out hints sparingly is likely helpful 

for reducing their wheel-spinning and improving learning. These findings also provide insight on when 

students are struggling and how to make students’ persistence more productive. 

Keywords: predictive modeling, wheel-spinning, productive persistence, decision tree, intelligent tutoring 

system 
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1. INTRODUCTION 

Studies outside of the educational domain have long documented the links between non- 

cognitive factors or skills and their effect on success in work and personal health (e.g., Barrick 

& Mount, 1991; Bowles, Gintis & Osborne, 2001; Nyhus & Pons, 2005; Chiteji, 2010). While 

there are various theoretical definitions and terms that describe non-cognitive skills within 

personality and social psychology, these can generally be viewed as personality and behavioral 

traits or “patterns of thoughts, feelings and behavior” (Borghans, Duckworth, Heckman & ter 

Weel, 2008, p.3) that individuals develop through the course of their lives (Garcia, 2014). A 

broadly accepted model of personality traits is the Five-Factor model (FF), which consists of the 

overarching traits of agreeableness, conscientiousness, emotional stability, extraversion and 

autonomy (McCrae & Costa, 1987; Digman, 1990). 

Some common examples of non-cognitive skills include traits like conscientiousness, 

persistence, grit, and self-control (Laursen, 2015; Heckman, Hsee & Rubinstein, 2001; Brunello 

& Schlotter, 2011). Non-cognitive factors have long been considered important among educators 

(Montessori, 1912), with increasing support for this belief based on evidence for the importance 

of these factors for students’ achievement in school (Bowles & Gintis, 1976; Klein, Spady & 

Weiss, 1991; Heckman et al., 2001). With academic interest in measuring the role of such non-

cognitive factors in academic achievement, researchers are increasingly exploring the 

development of alternative methods and instruments that measure them both quantitatively and 

qualitatively. 

One factor that is increasingly thought to be important is whether a student is able to persist 

or persevere during learning. Persistence is defined as the ability to maintain an action or 

complete a task regardless of the person’s inclination towards the task (Cloninger, Svrakic, & 

Przybeck, 1993; Duckworth et al., 2007) and is one of the main facets of conscientiousness. As 

one of the overarching personality traits in the FF model, conscientiousness has been found to 

predict success more strongly than the other traits in the FF model (Barrick & Mount, 1991; 

Goldberg, 1990; John & Srivastava, 1999; McCrae & Costa, 1987). While there has been 

research on persistence and the larger trait of conscientiousness in the context of the workplace 

for quite some time (Barrick & Mount, 1991; Tett, Jackson & Rothstein, 1991; Bowles, Gintis 

& Osborne, 2001; Nyhus & Pons, 2005; Carneiro, Crawford and Goodman, 2007), recent studies 

have shown that persistence and conscientiousness in educational or academic settings is 

associated with academic achievement (Borghans, Meijers & ter Weel, 2006; Paunonen & 

Ashton, 2001; Poropat, 2009), creativity (Prabhu, Sutton & Sauser, 2008) and long-term 

academic outcomes such as later schooling and future earnings (Heckman et al., 2001; Deke & 

Haimson, 2006; Poropat, 2009). 

However, recent research has suggested that not all persistence is positive. Beck & Gong 

(2013) suggest that some persistence may be “wheel-spinning,” defined as when a student spends 

too much time struggling to learn a topic without achieving mastery. A student who persists 

unsuccessfully may eventually face reduced motivation (Sedek & Kofta, 1990). Ultimately, 

wheel-spinning may be associated with the failure to seek help when it is needed, often called 

“help avoidance” (Dillon, 1988), a behavior generally thought to be associated with poorer 

learning outcomes (Nelson-Le Gall, 1981), though in some situations it is actually associated 

with more robust learning (Baker, Gowda, & Corbett, 2011), likely due to incomplete 

understanding of when help is actually needed. 

As such, we have two related phenomena -- productive persistence and unproductive 

persistence (also called wheel-spinning). We want to encourage students to persist productively 
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but may want to prevent them from persisting when the eventual outcome is negative. We may 

instead wish to encourage these students to stop and seek help or take other corrective actions. 

The problem is that, in current models, these two situations are indistinguishable. We do not 

know if a student is persisting productively or unproductively until they have reached a point of 

failing or succeeding -- and in many cases, the indicator of eventual success may be far in the 

future. 

In this paper, we attempt to use educational data mining to distinguish productive and 

unproductive persistence from each other, early enough in the learning process that intervention 

is still feasible. We do so by identifying which persistence is productive or unproductive and 

then attempting to differentiate these students by their behavior (or the context of their learning) 

midway through the learning process. We develop this model in the context of the online 

mathematics learning platform ASSISTments and discuss the possible implications of our 

models for future classroom interventions in mathematics learning. 

2. LITERATURE REVIEW 

2.1. MATHEMATICS LEARNING IN COMPUTER-BASED ENVIRONMENTS 

Computer-based and online learning platforms are increasingly being used to create 

customizable and personalized learning environments for students' individual needs and abilities, 

particularly in mathematics learning. Despite variations in the types and formats of these 

computer-based environments, the use of educational technology in mathematics learning has 

generally been found to have small but significant effects on improving students' academic 

achievement, particularly with intelligent tutoring systems (see reviews by Steenbergen-Hu & 

Cooper, 2013; Cheung & Slavin, 2011; Ma, Adesope, Nesbit & Liu, 2014). For example, studies 

conducted around specific intelligent tutoring systems in mathematics have found significant 

effects on student achievement in math, such as the SimCalc program (Roschelle, Tatar, 

Schectman, Hegedus, Hopkins, Knudson & Stroter, 2007), the ASSISTments platform (Feng, 

Roschelle, Heffernan, Fairman & Murphy, 2014; Roschelle, Feng, Murphy & Mason, 2016) and 

the Cognitive Tutors in Mathematics (Aleven & Koedinger, 2002; Ritter, Anderson & 

Koedinger, 2007; Pane, Griffin, McCaffrey & Karam, 2013). Other intelligent tutoring systems 

that have been found to improve student achievement in mathematics include Wayang Outpost 

(Arroyo, Woolf, Royer, Tai, & English, 2010) and the ALEKS system, which has also been found 

to be effective in reducing knowledge gaps in mathematics learning (Huang, Craig, Xie, Graesser 

& Hu, 2015). Meta-analyses (e.g., Steenbergen-Hu & Cooper, 2013; Cheung & Slavin, 2013; 

Ma, Adesope, Nesbit & Liu, 2014; Kulik & Fletcher, 2016) have found evidence that despite 

differences in platforms and formats, intelligent tutoring systems, in general, have been shown 

to produce positive effects on student achievement in mathematics. These effects have also been 

found across different populations and length of use of these intelligent tutoring systems 

2.2. ASSESSING STUDENT PERSISTENCE AND WHEEL-SPINNING IN COMPUTER-
BASED ENVIRONMENTS 

With a recent resurgence of interest in the role of personality traits in academic achievement and 

success, more work has been done to create validated measures of non-cognitive skills such as 

persistence and self-control.  Most notably, Duckworth et al. (2007) coined a personality 

construct named grit, which overlaps with the traditionally measured facet of conscientiousness 

but was posited to be distinct in other aspects (Duckworth et al., 2007; Duckworth & Quinn, 

2009). Duckworth et al. (2007) developed a self-report measure of grit, which has been found to 
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have positive relationships with overall achievement and long-term success (Duckworth et al., 

2007; Strayhorn, 2014). Other personality researchers, however, have conceptualized 

conscientiousness as an over-arching personality trait that encompasses other traits like grit, 

persistence, and industriousness (MacCann & Roberts, 2010; Crede, Tynan & Harms, 2017). 

Within personality psychology, persistence is considered a personality trait and one of four 

dimensions of temperament (Cloninger, Svrakic, & Przybeck, 1993; De Fruyt, Van De Wiele & 

Van Heeringen, 2000). Persistence is defined as the act of persevering in a task despite fatigue 

or frustration and in the face of obstacles (Cloninger et al., 1993; Rank, Pace & Frese, 2004). 

Like grit, it has been found to be strongly correlated with conscientiousness (Crede et al., 2017; 

De Fruyt et al., 2000; Roberts, Chernyshenko, Stark & Goldberg, 2005), with scales/sub-scales 

assessing persistence included within self-report and survey measures of conscientiousness in 

personality and social psychology (De Fruyt et al., 2000; Roberts et al., 2005). Complementing 

these self-report measures, alternate types of instruments have been employed to assess student 

persistence and perseverance during learning tasks. For example, Eisenberger and Leonard 

(1980) created a performance-based measure of persistence, using a perceptual comparison task, 

which involves the individual detecting as many differences as possible between two pictures. 

The amount of time spent on each difference was used to measure persistence (Eisenberger & 

Leonard, 1980). 

With the evolution and development of computer-based and online learning environments, 

recent educational research has delved into the assessment of non-cognitive skills on these 

platforms as well. One notable contribution to the research in this area is the creation of 

performance-based assessments of student persistence within the context of video games 

(Ventura & Shute, 2013). Ventura and colleagues created a measure of persistence within an 

educational game known as Physics Playground, an open-ended game that encourages the 

applications of qualitative Physics concepts to achieve game objectives. In their study, 154 

students were recruited to play the Physics Playground game over 4 hours, split into five 45- 

minute sessions, and a game-based assessment (GBA) of player persistence was measured with 

data logs of these gameplay sessions, using an evidence-centered design (ECD) process (Kim, 

Almond & Shute, 2016). The measure of persistence was based on the amount of time spent on 

unsolved trials among all the playgrounds attempted within a player’s log file, across all five 

sessions of gameplay. To validate this game-based measure of persistence, a performance-based 

measure was adapted from Eisenberger and Leonard’s (1980) measure, an anagram riddle task 

(ART; Ventura & Shute, 2013), in conjunction with a student self-report survey of persistence 

using a 5-point Likert scale.  

The results of this study showed that the amount of time on unsolved trials within Physics 

Playground was significantly correlated with the performance-based measure of persistence in 

the form of an ART task, and this relationship was more pronounced among players who 

struggled in Physics Playground. In addition, both the game-based assessment and ART task 

measure of persistence predicted student learning within Physics Playground, even after 

controlling for other factors such as gender, video game experience, enjoyment of the game and 

prior knowledge of related Physics concepts. This was in contrast to student self-reports of 

persistence, which were not found to significantly predict learning within Physics Playground, 

suggesting that behavioral measures of persistence within the game may be more useful than 

self-report measures. 

Persistence despite failure may be beneficial or detrimental to learning, however, as there may 

be instances of both productive and non-productive persistence. While productive persistence 

that leads to mastery is a desirable trait during learning, non-productive persistence could instead 

lead to poorer learning (Beck & Rodrigo, 2014). Beck & Gong (2013) termed such instances of 
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non-productive persistence as “wheel-spinning,” defined as when a student spends too much 

time struggling to learn a topic without achieving mastery. Specifically, Beck & Gong (2013) 

identified wheel-spinning as occurring among students who had 10 or more skill opportunities 

without mastering a given mathematics concept and found that approximately 38% of students 

did not master a given skill after 10 practice opportunities and were thus potentially wheel- 

spinning. With this definition, the researchers developed a wheel-spinning detector for the 

ASSISTments online learning platform, which identified specific student actions and features 

occurring during learning that indicate wheel-spinning. One limitation of this wheel-spinning 

detector was that it was built based on students’ mastery of a given skill after more than 10 skill 

opportunities. However, this definition does not account for students who may have achieved 

mastery by eliciting external help or who obtained the correct answers from a teacher or fellow 

student. It also does not consider the possibility that some difficult skills may legitimately need 

more than 10 practice opportunities for students to master. To ensure that student mastery of a 

given concept or skill is identified accurately, we base our definition of wheel-spinning not just 

on initial performance but also on retention of the skill learned over time using a delayed test. 

Wheel-spinning detectors have also been developed recently in two other studies within other 

online learning environments.  A detector of wheel-spinning was developed on data from 122 

students who used Cognitive Tutor Geometry (Matsuda et al., 2016).  In this study, Matsuda and 

colleagues only retained student-skill response sequences that had five or more practice 

opportunities, with the rationale that there was not enough data to identify wheel-spinning with 

five or fewer practice opportunities; this left a total of approximately 3000 student-skill 

sequences. The researchers first asked human coders to identify students who were wheel-

spinning based on students’ response data. Using this human coding, they developed a neural 

network-based model to compute the likelihood of wheel-spinning, attempting to differentiate 

wheel-spinning students from non-wheel-spinning students, among the students who did not 

master the skill. While this detector had high recall values, its precision values were relatively 

low, at around 25%. As such, this detector tended to identify most unsuccessful students as 

wheel-spinning, even when the human coders did not agree. Additionally, this work by Matsuda 

and colleagues (2016) differs from the work presented in the current paper in that it did not 

attempt to distinguish wheel-spinning students from successfully persistent students but instead 

distinguished wheel-spinning students from non-wheel-spinning students who failed to master 

the skill (presumably for other reasons). 

In addition to intelligent tutoring systems, work has been conducted to identify wheel-

spinning within Physics Playground. In this context, mastery was defined as having achieved the 

game level objectives, which manifested in the form of a silver badge (for completing a level) or 

a gold badge (for completing a level with an elegant solution). Given the open-ended nature of 

the Physics Playground environment, wheel-spinning was operationalized in various ways. For 

example, a student was defined to be wheel-spinning if he/she made attempts within a 

playground level that took more than 15 minutes or attempts after achieving a silver badge that 

did not lead to a gold badge. Based on these operationalizations, researchers made use of machine 

learning models to create detectors of student wheel-spinning within the game environment, with 

a predictive accuracy of 82.9% (Palaoag et al., 2016), which was higher than the baseline of 

73.4%. The baseline of 73.4% was taken from predicting that every data point was the majority 

class, as 73.4% of data points were originally labeled as not wheel-spinning. However, as with 

previous efforts, this work did not specifically distinguish wheel-spinning students from 

successfully persistent students. 

In our current study, we focus on the problem of distinguishing wheel-spinning from 

productive persistence. Differentiating between whether a persistent student will eventually learn 
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the skill or not is valuable for selecting interventions; a wheel-spinning student should probably 

be encouraged to seek help, whether from the system or their teacher, whereas a productively 

persistent student should probably be left alone. We do this in the context of the ASSISTments 

system which is discussed below. ASSISTments has several advantages for studying this 

problem. One of the foremost is a capability to test whether the student can retain their 

knowledge over time, known as the ARRS system. This enables us to distinguish between 

students who appear to have achieved mastery but have simply obtained shallow knowledge (or 

perhaps answers from a classmate) and students whose hard-won mastery is genuine. In the 

following sections we discuss the ASSISTments platform, ARRS, and the detector developed to 

make this differentiation. 

3. ASSISTMENTS 

The ASSISTments platform is a free online formative assessment and tutoring system for middle 

school students. While ASSISTments can be used in a range of domains, it is primarily used for 

mathematics. Teachers use ASSISTments to assess students’ knowledge of mathematical 

concepts and skills while facilitating their learning of these concepts. The system provides 

teachers with formative assessments of the students’ learning progress in their acquisition of 

specific knowledge components within a mathematics topic. Currently, the ASSISTments 

platform has been adopted by 650 teachers across the United States, with an average of over 

5,000 student users a day and over 50,000 student users a year 

In this study, we make use of data obtained from students learning within Skill Builders 

(Heffernan & Heffernan, 2014), a type of math problem set where students complete several 

problems related to the same skill. The problems in a problem set may be based on more than 

one problem template. Problem templates are a problem design for multiple problems where the 

same problem cover story or design is used, but the values change within each problem. In our 

current sample, a given student encounters between 1 and 340 problems within the same problem 

set throughout the course of a year. Within this range, however, half the students encounter 

between 6 and 22 problems in a problem set, and the median number of problems that students 

encounter in a problem set is 11. Additionally, for each problem (i.e., original problem), students 

have the opportunity to access hints or scaffolding questions. Hints provide a sequence of clues 

to help students solve an original problem. The last hint in each hint sequence (called the bottom-

out hint) provides students with the answer to the original problem. ASSISTments also contains 

scaffolding questions, which break down the original problem into individual steps. These 

scaffolds are answered in a strict progression, where students must correctly answer the first 

scaffolding question in order to proceed to the next one. Once all scaffolding questions are 

completed, students may be prompted to answer the original question again. 

Each Skill Builder is based on a single skill mapped to the U.S. Mathematics Common Core 

standards. Students need to answer three questions correctly in a row within a Skill Builder in 

order to be considered as having ‘mastered’ the specific skill that the Skill Builder covers. When 

the student has completed a Skill Builder, a single-item test is administered after a pre-defined 

period of time, with a gradually increasing space in between reassessments. This test, consisting 

of one randomly selected item from a problem template included in the problem set, is delivered 

through the Automatic Reassessment and Relearning System (ARRS) (Heffernan Heffernan, 

Dietz, Soffer, Pellegrino, Goldman & Dailey, 2012), and aims to assess the student’s retention 

of the particular skill over time. If the student does not answer this test correctly, he or she will 

be assigned the corresponding Skill Builder to re-learn the forgotten material. 
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4. METHODOLOGY 

In these analyses, we make use of student data from ASSISTments Skill Builders in the school 

year of 2014-2015. Data from a total of 23,896 students from 298 different middle schools were 

used in this set of analyses. These 23,896 students attempted 619 Skill Builder problem sets. 

The objective of the analyses was to build machine learning models that differentiate between 

students who were persisting productively from those who were wheel-spinning during their 

work on the Skill Builder problem sets. Both of these groups are considered to be persistent, but 

one group’s persistence appears to produce positive results, while the other group’s persistence 

does not. 

First, we operationally defined students who are persistent to be those who worked on 10 or 

more problems within a single problem set, regardless of mastery. This cut-off was selected in 

part based on the design of the system, where students are stopped from working on the problem 

set after they have attempted 10 problems in a problem set within a day. For a student to continue 

to the 11th problem in the problem set, he/she must return to the same problem set on a 

subsequent day.  

From the set of persistent student-problem set pairs, we then identified instances of productive 

persistence and wheel-spinning. Given that our data were collected over the span of a whole 

year, there have been instances where students were able to attempt the same problem set more 

than once throughout the year. Students were thus able to achieve the mastery criteria of 

answering three problems correctly in a row - and then attempt the corresponding ARRS test - 

more than once throughout the year within a single problem set. For tractability, we therefore 

limit our measure of whether a student is productive or wheel-spinning to the student’s first 

ARRS test outcome and its corresponding set of three problems answered correctly in a row. 

As shown in Table 1, our operational definitions of productive persistence and wheel-spinning 

were based on two measures of learning, mastery (three correct problems in a row) and retention 

of knowledge (ARRS test). Specifically, students are classified as productively persistent if they 

answered three problems correctly in a row on or after the 10th problem in a problem set and 

passed the ARRS test. Conversely, students are classified as unproductively persistent if they 

answered three problems correctly in a row on or after the 10th problem but did not pass the 

ARRS test. These students demonstrated correct performance immediately on a problem set but 

not in the longer-term. Similarly, students who completed 10 problems but did not answer three 

problems correctly in a row on or after the 10th problem and, as a result, never received an ARRS 

test administered to them, were also considered to be unproductively persistent.  

Since the administration of the ARRS test could be customized by teachers, data from students 

who successfully answered three problems right in a row but were not given an ARRS test due 

to teacher customizations were considered to be missing data. It is worth noting that success on 

the ARRS test can be noisy – it is possible to get an incorrect answer by slipping or a correct 

answer by guessing (Baker, Corbett, & Aleven, 2008). As with all operational measures, this 

measure is therefore imperfect, but can still provide a basis for attempting to predict whether a 

student’s persistence will be productive.  

In sum, the original dataset consisted of 287,093 student-problem set pairs in total. Of this 

initial dataset, however, 211,612 student-problem set pairs were removed because they achieved 

three correct problems in a row at any point in time but did not attempt a corresponding ARRS 

test. Of the remaining 75,481 student-problem set pairs, only 8,948 student problem set pairs 

were considered persistent, i.e., having attempted 10 or more problems in a problem set, 

regardless of mastery. In other words, 66,533 students were excluded from the dataset because 

they either achieved mastery before attempting 10 or more problems, or they quit the problem 
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set before attempting 10 problems and without achieving mastery. The majority of these non-

persistent students (56.2%) mastered the problem set before reaching their tenth problem. The 

remaining 43.8% of the non-persistent student-problem set pairs quit the problem set without 

achieving mastery, before attempting their tenth problem.  

The final dataset used in our analyses thus consisted of 8,948 student-problem set pairs that 

were defined as persistent student-problem set pairs and used to build the final models. Within 

this final dataset, 2,093 student-problem set pairs were instances defined as productive 

persistence, while 6,855 student-problem set pairs were defined as wheel-spinning based on our 

criteria.  

According to our definition, then, 9.1% of the total 75,481 student-problem set pairs that had 

ARRS information involved wheel-spinning, a much lower proportion of wheel-spinning than 

reported in earlier papers defining wheel-spinning as whether the student took a large number of 

problems to learn a skill (Beck & Gong, 2013). According to Beck and Gong’s (2013) definition, 

where any student who completes more than 10 problems without getting 3 correct in a row and 

achieving mastery is wheel-spinning, 46.9% of the total 75,481 student problem set pairs that 

had ARRS information would have been considered wheel-spinning. When considering the 

original dataset containing all student-problem set pairs, 12.3% of the original 287,093 student-

problem set pairs would have been considered wheel-spinning based on Beck and Gong’s 

definition.  Since many of these students do indeed eventually get three correct in a row and are 

then able to pass a retention test, we would argue that Beck and Gong’s definition contains a 

great deal of productive persistence. Not all students who struggle are spinning their wheels.  

 

Table 1: Criteria of productive persistence and wheel-spinning, using performance metrics in 

the Skill Builder system. 

 

Ten or more 

Problems 

Three Correct in  

a Row (Mastery) 

on or after the 

10th Problem 

First ARRS Test Definition 

Yes Yes Passed 
Productive persistence 

(this paper) 

Yes No N/A  

Wheel-spinning  

(this paper) Yes Yes Failed 

Yes Any Any 
Wheel-spinning  

(Beck & Gong) 

No Any Any 
Neither Wheel-Spinning 

nor Productive 

Persistence  
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5. DATA ANALYSES 

5.1. FEATURE ENGINEERING AND FEATURE OPTIMIZATION 

In this study, we leveraged a feature set previously created for another analysis (Baker, 

Goldstein, & Heffernan, 2011). Appendix A provides a list of 25 initially generated core features, 

which are related to student use of hints in a problem set, the number of student attempts, the 

number of skill opportunities, and features involving the time between these student actions. 

These features were identified from within the ASSISTments Skill Builder platform and provide 

evidence regarding student persistence and learning. Some of these core features which will end 

up playing important roles in the final model included: 

 

1. Total number of unique problems student has attempted relative to each skill 

(totalSkillOpportunities) 

2. Number of wrong attempts made in the last 5 problems (past5WrongCount)  

3. Number of attempts made to solve each problem within a problem set (attemptCount) 

4. Amount of time since the current problem set was last seen by the student 

(timeBetweenProblems) 

5. Total number of hints requested within a problem set (hintTotal) 

6. Number of bottom-out hints requested in the last 8 problems (past8BottomOut) 

 

Table 2 shows some descriptive statistics for these core features, while similar statistics for the 

rest of the core features used can be found in Appendix B.  

 

Table 2: Descriptive statistics for selected core features used during feature engineering  

Selected Core Features Minimum Maximum Average 
Standard 

Deviation 

totalSkillOpportunities 1 10 4.993 2.736 

past5WrongCount 0 5 1.490 1.032 

attemptCount 

(including only hint, 

scaffolding and answers) 

0 151 2.318 2.195 

timeBetweenProblems (in 

seconds) 
0 3,538,408,440 878,281.196 2,393,403.523 

hintTotal 0 19 1.529 0.984 

past8BottomOut 0 8 0.343 0.408 

 

A total of 125 problem-set-level features were then generated from these core features based on 

their minimum, maximum, average, sum and standard deviations across the problem set prior to 

the student having reached the 10-problem threshold for being persistent. 
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Given that the dataset included student data for a whole year, where students could attempt 

each problem set multiple times throughout the year, the range of values for some of these core 

features varied quite widely. For instance, the amount of time since the current problem set was 

last seen by the student (timeBetweenProblems) ranged from a few minutes to several weeks. 

For most of the core features, however, the range of values obtained were more constrained. 

Core features such as the number of bottom-out hints requested in the last 8 problems 

(past8BottomOut), or the number of wrong attempts made in the last 5 problems 

(past5WrongCount) could only range from 0 to 8 and 0 to 5 respectively. 

5.2. MACHINE LEARNING 

After developing the feature set, we built a set of models predicting a binary variable: whether 

the student persisted productively or unproductively (i.e., wheel-spinning). We built the model 

using RapidMiner 5.3 data-mining software (Mierswa et al., 2006), using the Weka J48 decision 

tree algorithm, an algorithm that has been previously used in building detectors of engagement, 

affect, and meta-cognitive constructs. Feature selection was conducted using an outer-loop 

forward selection process, attempting to determine the cross-validated goodness of specific sets 

of features. It is worth noting that conducting outer-loop forward selection tends to have an 

upward bias relative to true training- test splits. 

The multi-feature models were validated using 10-fold student-skill-level batch cross-

validation, using AUC ROC as the primary measure of model goodness. 10-fold student-level 

cross-validation was also computed to check for over-fitting. The AUC ROC metric was 

computed using the A' implementation (Baker, 2008), rather than computing the integral of the 

area under the curve, to avoid having artificially high AUC ROC estimates due to having multiple 

data points with the same goodness, a feature of the integration-based estimates currently 

available in most packages (Baker, 2015). A model with AUC ROC of 0.5 performs at chance, 

and a model with AUC ROC of 1.0 performs perfectly. It is worth noting that AUC ROC takes 

model confidence into consideration. 

We also created a precision-recall curve to identify the tradeoffs between precision and recall 

at different confidence thresholds of the model of unproductive persistence. Using a precision-

recall curve facilitates understanding how well the model functions across its predictive range, 

rather than at just one point, and can also be used to choose an optimal threshold for interventions 

with different costs or benefits (Davis & Goadrich, 2016). Precision represents the proportion of 

instances identified as wheel-spinning that are true instances of wheel-spinning, while recall 

represents the proportion of instances of true wheel-spinning, which were identified as wheel-

spinning. To put it another way, precision indicates how good the model is at avoiding false 

positives, while recall indicates how good the model is at avoiding false negatives. Together, 

precision and recall provide an indication of the model’s balance between these two types of 

errors (Davis & Goadrich, 2006). 

After creating the J48 decision tree with the initial set of features, we conducted further 

analysis of its structure. We specifically focused on the features selected in the top nodes in the 

J48 decision tree, as these play a particularly important role in the tree’s process of evaluating 

specific data points. Presenting a complete analysis of the decision tree structure is outside the 

scope of a journal paper, as the tree structure was very large (see Appendix C). 

The J48 decision tree was built using the WEKA implementation of the C4.5 algorithm, 

referred to as J48, in the RapidMiner software (Quinlan, 1993). We used the default parameters 

in RapidMiner: the confidence threshold for pruning: 0.25, and the minimum number of 

instances per leaf: 2. The pruning approach of the C4.5 algorithm is based on an estimated error 

rate of misclassifications at every node of the decision tree. If estimates indicate the tree will be 
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more accurate if subtrees are removed, the children of a particular node can be replaced with a 

single node, simplifying the classification structure and improving error rate. 

6. RESULTS 

6.1. MULTI-FEATURE MODEL 

The J48 model achieved an AUC ROC value of 0.684 under student-skill-level cross-validation. 

Under student-level cross-validation, AUC ROC decreased to 0.636. Upon visual inspection, J48 

also produced good precision-recall curves. The standard error for the AUC ROC metric for J48 

was computed to be 0.003 for both cross-validation approaches (using the approach in Hanley 

& McNeil, 1982). This J48-based model used a combination of 15 features (see Appendix D for 

a description of each of these features). The final decision tree generated using this algorithm 

had 95 leaf nodes and 189 decision nodes. The precision-recall curve generated for the J48 model 

of wheel-spinning is shown in Figure 1. 

 

Figure 1: A precision-recall curve for the J48 model’s predictions of wheel-spinning 
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From the precision-recall curve shown in Figure 1, there appears to be a clear tradeoff between 

precision and recall across thresholds, though the relationship is non-monotonic. The highest 

precision (nearly 0.90) is seen for relatively low values of recall (between 0.20 and 0.40). These 

high precision values remain stable as recall increases to 0.7, and only drop slightly afterwards.  

Overall, it can be seen that the precision of the J48 model (the proportion of true positive 

predictions out of all positive predictions) remains high (above 0.75) even at high recall values 

– up to 100% recall. 

When analyzing the features in the tree individually, only one feature from the J48 multi-

feature model performed at a goodness substantially above chance, the standard deviation of the 

amount of time since the current problem set was last encountered by the student (std-

timeBetweenProblems: AUC ROC = 0.554). As the 15-feature model achieved considerably 

better predictive performance than the performance of each single feature, this suggests that it is 

in the interaction of our features that wheel-spinning and productive persistence can be 

differentiated. 

6.2. TOP 3 FEATURES IN J48 DECISION TREE 

We can better understand the pattern of relationships that distinguish wheel-spinning from 

productive persistence by examining the top nodes of the J48 decision tree. This tree has only 

leaves on one side of the first- and second-level nodes. As such, we can focus on the features in 

the three top nodes of the tree, which form a single branch. The tree spreads out below these 

levels. These features are as follows: 

 

● Minimum number of hints requested in any problem in the problem set (min- hintTotal) 

● Maximum number of bottom-out hints requested in the last 8 problems, as a rolling 

average across sets of 8 problems (max-past8BottomOut) 

● Standard deviation of the amount of time since the current problem set was last seen 

by the student (std-timeBetweenProblems) 

 

The second and third of these features deserves a bit of further examination. Both of these 

features only include actions in the current problem set – neither feature cuts across problems 

sets. The feature max-past8Bottomout refers to the maximum number of bottom-out hints 

requested in the most recent 8 problems within the sequence of 10 problems in this problem set. 

The possible values for this variable may hence range from 0 to 8 in any given problem set. A 

value of 0 is obtained when no bottom out hints were requested at all within the most recent 8 

problems, whereas a value of 8 is obtained when a bottom-out hint is requested within each of 

the most recent 8 problems. It is worth noting that because this variable only takes into account 

the most recent 8 problems within a sequence of 10 problems in the problem set, it is possible to 

request more than 1 bottom-out hint in the whole 10-problem sequence and still produce a max-

past8BottomOut value of 1; specifically, when the student requests 1 bottom-out hint right at the 

beginning of the 10-problem sequence, and 1 more at the end of the sequence. Figure 2 illustrates 

some of these scenarios, where ‘1’ refers to a problem in which a student requested a bottom-

out while ‘0’ refers to when he/she does not. 

The std-timeBetweenProblems variable gives the amount of variation in how much time the 

student takes between each problem encountered in this problem set. Figure 3 shows examples 

of student-skill pairs that represent low and high values of this feature in the Distributive Property 

problem set. Specifically, a low value for std-timeBetweenProblems indicates that the amount 

of times spent between problems in this problem set are relatively similar. The first and second 

students in Figure 3 show patterns, in the first 10 problems attempted, of student-skill pairs that 
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are defined as wheel-spinning. The first student, for example, illustrates a sequence where a few 

problems were attempted in a row in the Distributive Property problem set, followed by a break 

of around 12 days before several more problems were attempted in the same problem set. This 

pattern would result in a relatively low std-timeBetweenProblems value (compared to other 

students in our data set). Similarly, the student-skill pair in the second example encounters short 

periods between problem-solving within the problem set, alternating between a 12-day delay and 

2-day delay across the first 10 problems. While both the second and third students have the same 

values for mean-timeBetweenProblems, their differing patterns in how the first 10 problems 

were attempted over time led to contrasting values of std-timeBetweenProblems. In the third 

example, the student attempted several problems within the first 10 problems on the same day, 

followed by a break of nearly two weeks, before attempting a few more problems in the problem 

set. This is then followed by a long delay of over a month before more problems in this set were 

attempted – resulting in a higher std-timeBetweenProblems value relative to the other two 

student-skill pairs.  

 

 

1 Bottom-out hint 

requested 

 2 Bottom-out hints 

requested 

 

0 0 

0 1 

0 0 

0 0 

1 0 

0 0 

0 0 

0 0 

0 0 

0 1 

Total max-

past8BottomOut = 1 

Total max-

past8BottomOut = 1 

Figure 2: Two scenarios where the value max-past8Bottomout is equal to 1. 

As shown in Figure 3, the second and third examples have the same mean-

timeBetweenProblems value but differing std-timeBetweenProblems values, suggesting that the 

same average length of time between solving problems can be associated with different 

variations of time since a problem set is last seen by a student. When comparing the individual 

effects between these two features on wheel-spinning, the performance of the J48 model with 

only std-timeBetweenProblems (cross-validated AUC ROC = 0.544) was very similar to the 

performance of a similar model with only mean-timeBetweenProblems (cross-validated AUC 

ROC= 0.538). These findings thus suggest that std-timeBetweenProblems is about equally as 

predictive of wheel-spinning as mean-timeBetweenProblems. As such, a multi-feature model 

with mean-timeBetweenProblems will likely yield a similar AUC performance to our current 

model. We focus on std-timeBetweenProblems in our analysis solely because it was the feature 

found in the top levels of the automatically-discovered decision tree.  

 

Tally of last 

8 problems  

Tally of last 

8 problems  
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Figure 3: Example of low and high values of std-timeBetweenProblems. 

Based on analyses of the top three nodes described above, we found that a considerable 

proportion of the data is explained by two feature combinations of these three features. Both of 

feature combinations were associated with high probabilities of wheel-spinning, indicating that 

there are two distinct types of students who are likely to unproductively persist in the tutoring 

system. 

Based on the two feature combinations, students are more likely to be wheel-spinning in a 

problem set if they don’t request hints for one problem and if, on other problems, they request at 

least one bottom out hint. Additionally, students who request less bottom-out hints are also likely 

to be wheel-spinning if the students spend consistently short amounts of time between the 

problems they encounter in a problem set. 

The first feature combination indicates that students are likely to be wheel-spinning when 

they do not request any hints in at least one problem within the problem set but request more 

bottom-out hints in the last 8 problems within the sequence of 10. 
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Table 3: Relationships between the first combination of features at the top of the tree and wheel-

spinning within the J48 model. 

 

While the first feature combination indicates that more bottom-out hint requests are associated 

with more wheel-spinning, wheel-spinning can still occur with fewer bottom-out hint requests. 

The second feature combination indicates that, even when the maximum number of bottom-out 

hint requests is 1 or 0, students can still wheel-spin if they do not request any hints in at least one 

problem and the standard deviation value of the amount of time since the current problem set 

was last seen is less than or equal to 2.53 days. The probability of wheel-spinning for the second 

feature combination is lower than the first feature combination.  

 

Table 4: Relationships between the second combination of features at the top of the tree and 

wheel-spinning within the J48 model 

 

Selected Features Feature Descriptions 

Likely to 

be Wheel- 

Spinning 

When 

Number of Instances 

Labelled as Wheel-

Spinning 

min-hintTotal 
Minimum number of hints 

requested in any problem in the 

problem set 
= 0 

5027 out of 6457 

student-problem set 

pairs (77.85%) 
max-past8BottomOut 

Maximum number of bottom-out 

hints requested in the last 8 

problems within the current 

problem set 

<= 1 

std- 

timeBetweenProblems 

Standard deviation of the amount 

of time since the current problem 

set was last seen by the student 

< = 2.53 

days 

 

We discuss these three selected features (min-hintTotal, max-past8BottomOut, and std- 

timeBetweenProblems) and their relationships with student wheel-spinning in the Skill Builders 

in greater detail in the next section. We will also discuss the goodness of our full 15-feature 

model in comparison to a smaller model made up of a combination of these three features alone. 

Selected Features Feature Descriptions 

Likely to be 

Wheel-

Spinning 

When 

Number of 

Instances Labeled 

as Wheel-

Spinning 

 

min-hintTotal 
Minimum number of hints requested in 

any problem in the problem set = 0 

 

2544 out of 2856 

student-problem 

set pairs (89.07%)  
max-past8BottomOut 

Maximum number of bottom-out hints 

requested in the last 8 problems within 

the current problem set 

> 1 

50 Journal of Educational Data Mining, Volume 10, No 1, 2018



  

 

6.3. EXPLORING MODEL FEATURES 

To gain a better understanding of the range of values for the features at the top nodes of our 

prediction model, we present graphs showing the frequencies of student-problem set pairs at 

their respective values for the 3 features of min-hintTotal, max-past8BottomOut, and std-

timeBetweenProblems. Included in these graphs are also the corresponding proportions of 

wheel-spinning students across the value ranges for these features (Figures 4, 5 and 6 

respectively). 

In the case of min-hintTotal, Figure 4 shows a unimodal distribution. In general, most 

students do not request any hints in at least one problem. The corresponding proportion of 

student-problem set pairs that were wheel-spinning based on our operational definition, for 

each range of values in min-hintTotal, is represented by the line graph in Figure 4. Here we 

can see that the proportion of student wheel-spinning is much lower if the minimum 

number of hints requested in any problem increases beyond 1.  

 
 

 

Figure 4: Figure showing a) a histogram of the minimum number of hints requested in any 

problem across student-problem set pairs (min-hintTotal), and b) the proportion of student- 

problem set pairs identified as wheel-spinning for each min-hintTotal range of values. 

 

As shown in the histogram for max-past8BottomOut in Figure 5, the distribution for this 

feature is relatively skewed to the right. Most students do not make any bottom-out hint requests 

in the last 8 problems within the sequence of 10 problems. The second most frequent number of 

bottom-out hint requests is 1, with 2 as the third most frequent. The proportion of students who 

were wheel-spinning across the values of bottom-out hints requested is represented with a line 

graph and shows a steady decrease in the proportion of student wheel-spinning as the maximum 

number of bottom-out hints requested in the past 8 problems increases. 
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Figure 5: Figure showing a) a histogram of the maximum number of bottom-out hints 

requested in the last 8 problems across student-problem set pairs, and b) the proportion of 

student-problem set pairs identified as wheel-spinning for each max-past8BottomOut range of 

values. 

From Figure 6, the most frequent range of standard deviation values for the amount of time 

between problems of the same skill is 0 – this means that the student started the next problem 

immediately after completing the previous problem in the system, for every case within the 

problem set. However, many student-problem set pairs have standard deviation values of 100,000 

minutes or more (approximately 69 days or more). The line graph in Figure 6 thus shows the 

proportion of students defined as wheel-spinning to be highest at very low standard deviation 

values of the length of time spent between encountering problems in a problem set. This implies 

that students who have consistent short delays between problems in a problem set are more likely 

to be wheel-spinning. 
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Figure 6: Graph showing a) a histogram of the standard deviation for the amount of time since 

the current set was last seen (std-timeBetweenProblems) across student problem set pairs, and b) 

the proportion of student-problem sets pairs identified as wheel-spinning for each std-

timeBetweenProblems range of values. 

To further explore the performance of these three features selected in the J48 decision tree 

model, we computed the performance of a prediction model using the J48 algorithm but using 

only the top three selected features: min-hintTotal, max- past8BottomOut, and std-

timeBetweenProblems. The J48 decision tree generated with this pared-down model contains 11 

decision nodes (see Appendix E). Wheel-spinning is likely to occur when students do not request 

any hints in at least one problem, never request two or more bottom out hints across any 

problems, and there is less variation in the delay between solving problems within the same 

problem set. 76.49% of instances (5958 out of 7789 student-problem set pairs) with this feature 

combination were labeled as wheel-spinning. 

However, the highest probability of wheel-spinning was associated with a branch that included 

a singleton node, max-past8BottomOut. Students with more bottom-out hints requested in the 

last 8 problems are more likely to wheel-spin. About 89.74% of instances (2781 out of 3099 

student- problem set pairs) were included in this branch. These results match the findings from 

the 15-feature model, which indicate a nuanced relationship between wheel-spinning and the use 

of bottom-out hints. 

A comparison of the performances between the 3-feature model (Cross-validated AUC ROC 

= 0.628) and the original 15-feature model (Cross-validated AUC ROC = 0.684) shows that the 

pared-down model performed somewhat worse than the original one.  This difference in 

goodness suggests that there are interactions present between variables in the 15-feature model 

that contribute to the model goodness and suggests that wheel-spinning and productive 

persistence are better differentiated with a combination of the 15 selected features, compared to 

a combination of the top three selected features. 
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7. DISCUSSION 

Persistence plays a significant role in learning, and it is important for teachers and students to 

understand when sustained effort is productive or unproductive. This is an increasingly pertinent 

issue to investigate in the context of online learning systems such as intelligent tutoring systems, 

where it has been argued that a large percentage of students engage in wheel-spinning or 

unproductive persistence (Beck & Gong, 2013). In this paper, we attempt to address this issue 

by creating models to differentiate between wheel-spinning and productive persistence in the 

ASSISTments tutoring platform, using educational data mining techniques. 

In general, our findings indicate (unsurprisingly) that no single-feature model performed as 

well as our 15-feature model. This multi-feature model was reasonably effective in predicting 

whether or not a student will engage in wheel-spinning, achieving AUC ROC of 0.684 under 

student-skill-level cross-validation (0.636 under student-level cross-validation). By comparison, 

the AUC performance of gaming detectors has been found to be around 0.80 (Baker, Corbett, 

Koedinger & Roll, 2006; Pardos et al., 2014), moderately better than the current performance. 

Sensor-free affect detectors of student affective states in ASSISTments, found to be effective in 

several-year longitudinal prediction (San Pedro et al., 2013), have had AUC values ranging 

between from 0.63-0.74 (Pardos et al., 2014), in the same range as our multi-feature model. AUC 

values in the 0.74-0.81 range are used in medical decision-making with real-world impact, such 

as the choice of which anti-retroviral therapy to use for HIV patients (Revell et al., 2013). As 

such, while there is considerable room for improvement in the models presented here, they are 

at a level of goodness where they can be used for basic research and intervention, given 

appropriate caution. 

The findings presented here suggest that there is more predictive power in the combination of 

features, rather than each of the features alone. Upon further analysis of the J48 decision tree, 

two specific combinations of features were found to be associated with wheel-spinning, 

indicating two primary types of wheel-spinning students. First, students are likely to wheel-spin 

when they do not request any hints in at least one problem but request more bottom-out hints. 

However, a second group of wheel-spinning students request fewer bottom-out hints. These 

students are likely to wheel-spin when they have less variation in the amount of time spent 

between problems of the same skill. 

Despite the slightly worse performance of the 3-feature model compared to our original 15 

feature model, our analysis of the J48 decision tree suggests that each of the selected three 

features are particularly important for providing implications that can help guide intervention. 

First, we found that less variation in the number of days since the current problem set was last 

seen was associated with greater wheel-spinning. Specifically, students are more likely to wheel-

spin if they have consistently shorter periods of time between each problem attempt. For 

instance, students are more likely to wheel-spin when they encounter less than 2-week delays 

across the first 10 problems. In contrast, wheel-spinning is less likely to occur if, for example, a 

student has already attempted several problems but does not return to attempt more problems 

until after a month. Such differences in student behavior may have implications on the discussion 

of whether massed practice is beneficial for students who are at risk of being unable to achieve 

mastery in a problem set. Previous research has shown the benefits of spacing in the domains of 

math problem solving (Rohrer & Taylor, 2006; Rohrer, Dedrick, & Burgess, 2014), and second 

language acquisition (see review by Cepeda et al., 2006). Additionally, our finding about the time 

between encountering problems also relates to empirical evidence showing that interleaved 

practice, where the opportunities to learn a different skill is spaced (abcbcacab), is more 

advantageous than blocked practice, where the opportunities to learn a given skill are massed 
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(aaabbbccc). Specifically, Rohrer, Dedrick, and Burgess (2014) showed that students in the 

interleaved group significantly outperformed the students in the blocked group on a final test 

about volume, with math test performance of 63% for the interleaved group compared to 20% 

for the blocked group.  As a whole, our findings along with prior literature suggest that practicing 

math problems in a spaced fashion can potentially help learners improve learning and reduce 

their wheel-spinning. By spacing work to a greater degree within ASSISTments (and related 

platforms), we may be able to reduce wheel-spinning. 

Our findings also indicate that not requesting any hints in at least one problem was related to 

greater wheel-spinning. This result aligns with what previous literature has shown about the 

relationship between students’ help avoidance and their learning. In particular, Aleven et al. 

(2006) found that avoiding the use of help was negatively correlated with post-test scores when 

controlling for pre-test scores. As such, students who wheel-spin and avoid hints could 

potentially be struggling to realize they need support to learn the math content. This information 

may be useful in helping teachers identify students who may need additional support towards 

achieving content mastery and retention. 

Finally, our results show that the relationship between the number of bottom-out hints 

requested and wheel-spinning is more nuanced than the other two features. On the one hand, 

when at least one problem has no hint requests, heavy use of bottom-out hints in the last 8 

problems leads to more wheel-spinning. Previous studies indicate that the incautious use of 

bottom-out hints is associated with gaming (Baker, Walonski, Heffernan, Roll, Corbett & 

Koedinger, 2008). As such, the type of student represented by this feature combination may be 

gaming the system. It is possible that students who game the system are less likely to read the 

intermediate hints (i.e., clues about how to solve the problem) because requesting bottom-out 

hints could provide them with the answer (Aleven & Koedinger, 2000). On the other hand, fewer 

bottom-out hint requests in the last 8 problems is associated with more wheel-spinning, when 

there are no hint requests in at least one problem and there is less variation in the length of time 

spent between attempting problems in the same problem set. It is possible that the type of student 

represented by this feature combination may not be checking the correct answers from the 

bottom-out hints to learn the math content effectively. It is hence worthy of teachers’ time to pay 

attention to students’ use of the bottom-out hints in Skill Builders problem sets and to try and 

identify possible patterns in students' use of this type of hint, as this type of behavior may be 

indicative of a student who is at-risk of wheel-spinning later on. Future work is also needed to 

further investigate how bottom-out hint requests relate to student wheel-spinning in various 

circumstances and conditions. 

From our results, it is also worth noting that among the top three features found to predict 

student wheel-spinning, min-hintTotal and max-past8BottomOut are features specific to the 

student, while std-timeBetweenProblems may also be contingent on the teacher’s choices around 

when to assign specific skill builders to students. As such, further analyses and randomized 

controlled trials (RCTs) may be conducted to investigate the specific conditions in which student 

wheel-spinning occurs. In general, it is important to note that each of the findings obtained here 

is correlational. Conducting small-scale randomized controlled trials (RCTs) based on our 

findings will have the benefit of helping to establish which of these findings is causal at the same 

time as possibly enhancing student learning outcomes. 

8. CONCLUSIONS AND FUTURE WORK 

In this paper, we developed automated models that can differentiate between productive and 

unproductive persistence, in order to understand the differences between these two modes of 
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engagement. As shown in our results, we found that a combination of features – the minimum 

number of hints requested in any problem, the maximum number of bottom-out hints requested 

in the last 8 problems, and the standard deviation of the amount of time since the current problem 

set was last seen by the student – distinguishes students who productively persist from those who 

wheel-spin. 

These findings make a potentially important contribution in unbundling the concept of 

persistence, by encouraging students to exercise sustained effort when it's beneficial and 

supporting them when it is not. For instance, productively persistent students are likely to benefit 

from learning environments that promote tenacity. Determining which students are productively 

persisting could help indicate when research findings of how to enhance grit are most appropriate 

and helpful. Previous research suggests that developing students’ growth mindset can be an 

effective strategy to promote grit (Laursen, 2015). As such, students who are already being 

productive when they are persistent -- but are not being persistent frequently enough -- may 

likely stick with challenging problems, if teachers emphasize and praise their efforts over ability. 

While most studies have investigated the benefits of grit, less work has examined how to 

identify and prevent unproductive persistence. Our findings contribute to this gap in the 

literature, in helping identify students who unproductively persist, and distinguishing this 

behavior from productive persistence that should be encouraged. As indicated in our results, 

when students avoid hints in at least one problem but request more bottom-out hints in the last 

8 problems, they are more likely to engage in unproductive persistence. 

Our results also indicate that wheel-spinning is likely to occur with fewer bottom-out hint 

requests, when students avoid hints in at least one problem and study according to a massed 

schedule, with less than a 2-week delay between problem-solving. These findings imply that 

studying math content in a more spaced fashion may likely reduce students’ likelihood of wheel-

spinning and scaffold them towards a productive path to learning. Additionally, the findings on 

the minimum number of hint requests in any problem and the number of bottom-out hint requests 

in the last 8 problems can provide actionable information on discriminating between 

unproductive and productive persistence, enabling teachers to identify which students are in 

most need of additional support. In this way, modeling wheel-spinning can help fine-tune 

interventions based on each student’s needs, supporting learners who persist within and beyond 

tutoring systems. 

While the findings in this study provide valuable insight into the student and program factors 

that are associated with unproductive persistence, several improvements may be made to our 

model in future work. For example, the thresholds used in our definition of wheel-spinning, 

despite extending beyond the amount of work completed to include indicators of eventual success 

at the skill, remain somewhat arbitrary. Although the cut-off of 10 problems maps to current 

practice within the ASSISTments system, other thresholds may better capture student persistence. 

As such, we plan to examine the threshold of wheel-spinning further, by creating a range of 

possible cut-offs for persistence (e.g., 8 through 14 problems) and determining whether the 

predictors of wheel-spinning differ significantly across these thresholds. Given that our 

operationalization of persistence was largely based on the context of the ASSISTments platform, 

where 10 problems is a meaningful transition point (since the system asks the learner to take a 

break if 10 problems are completed without mastery), further research should investigate whether 

other cut-offs for persistence are relevant when distinguishing wheel-spinning from productive 

persistence in other platforms. In addition, there are other indicators of student success in the 

long-term that may be relevant (cf. Pardos et al., 2014). It may also be worth using probabilistic 

labels of some sort, instead of treating students who complete only 9 problems as non-persistent. 
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Relatedly, it is an open question whether the behavioral predictors of wheel-spinning and 

productive persistence differ across platforms. We may expect spaced practice to increase the 

effectiveness of persistence in other systems as well, based on the extensive literature on the 

benefits of spaced practice for retention. The heavy use of bottom-out hints has similarly been 

found to be detrimental to robust learning in other platforms. However, other factors may be 

expected to emerge as important as well. Future work in this area is critically important to better 

understand how persistence, wheel-spinning, and productive persistence should be defined and 

understood across learning platforms. 

Further work is also needed to understand the differences and similarities of the constructs 

studied here to broader understanding of related constructs. To this end, we plan to correlate our 

predictions of productive persistence to other well-known measures of tenacity, such as grit. We 

also plan to correlate the incidence of students’ wheel-spinning to their affective states (cf. Beck 

& Rodrigo, 2014). Further work in this area can help us determine the potential role of affect in 

encouraging persistence through adversity. 

In investigating how these constructs relate to one another, we can better understand the 

different trajectories of student persistence and identify potential protective factors to support 

successful learning. Our findings represent the first step in this direction by differentiating 

between unproductive and productive persistence towards developing research-based practice 

that enhances productive struggle and minimizes wheel-spinning. 
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APPENDIX A: LIST OF CORE FEATURES BEFORE FEATURE ENGINEERING 

Core Features Description 

attemptCount 
The number of attempts a student made within problem 

(including only answer, hint and scaffold actions). 

endsWithAutoScaffolding Problem ends with automatic scaffolding 

endsWithScaffolding Problem ends with scaffolding 

IsHelpRequest First response is a help request 

isHelpRequestScaffolding 
Whether or not the first response to a scaffolding problem is 

a help request 

past5HelpRequest Number of last 5 first responses that included a help request 

past5WrongCount Number of last 5 first responses that were wrong 

past8HelpRequest Number of last 8 first responses that included a help request 

past8WrongCount 
Cumulative count of the number of first responses to a 

problem that were wrong answers in the past 8 problems 

timeTakenOnScaffolding First response time taken on scaffolding problems 

totalSkillOpportunitiesScaffolding 

The total number of scaffolding problems divided by the 

unique problems the user has encountered relevant to the 

current problem set 

workingInSchool 
Whether or not the first response was made during school 

hours (between 7:00 am and 3:00 pm) 

hintTotal 
Total number of hints requested in any problem in the problem 

set 

past8BottomOut 
Number of bottom-out hints requested within the last 8 

problems in a given problem set 

responseIsChosen 
Whether or not a problem requires the correct answer to be 

chosen from a list of answers (e.g., multiple choice) 

responseIsFillIn Response is filled in (No list of answers available) 

stlHintUsed 
Second to last hint is used – indicates a hint that gives 

considerable detail but is not quite bottom-out 
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timeBetweenProblems 
Length of time since a problem involving this skill type was 

last seen 

timeTaken Time spent on the current step 

totalAttempted The total number of problems attempted in the tutor so far 

totalPastWrongCount Total first responses wrong attempts in the tutor so far. 

totalPercentPastWrong 
The percentage of all past problems that were incorrect on a 

given problem set 

totalSkillOpportunities 
The total number of unique problems the user has encountered 

relevant to the current problem set 

totalSkillOpportunitiesByScaffolding Total scaffolding opportunities for this problem set so far 

totalTimeOnSkill Total time spent on this problem set across all problems 
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APPENDIX B: DESCRIPTIVE STATISTICS OF CORE FEATURES 

 

Core feature Min Max Average 
Standard 

deviation 

attemptCount 0 151 2.3178 2.1952 

endsWithAutoScaffolding 0 1 0.0471 0.0778 

endsWithScaffolding 0 1 0.0078 0.0223 

IsHelpRequest 0 1 0.0192 0.0752 

isHelpRequestScaffolding 0 1 0.0125 0.0226 

past5HelpRequest 0 5 0.2414 0.2187 

past5WrongCount 0 5 1.4902 1.0316 

past8HelpRequest 0 8 0.2908 0.2351 

past8WrongCount 0 8 1.7783 1.2986 

timeTakenOnScaffolding  

(in seconds) 
0 10000 4.7448 16.7044 

totalSkillOpportunitiesScaffolding 0 9 0.2602 0.2896 

workingInSchool 0 1 0.5610 0.1127 

hintTotal 0 19 1.5291 0.9838 

past8BottomOut 0 8 0.3433 0.4084 

responseIsChosen 0 1 0.1623 0.0771 

responseIsFillIn 0 1 0.2715 0.0719 

stlHintUsed 0 1 0.0024 0.0067 

timeBetweenProblems (in seconds) 0 3538408440 878281.1959 2393403.5228 

timeTaken (in seconds) 0 10000 279.4849 1044.1036 

totalAttempted 0 929 83.2187 2.7345 

totalPastWrongCount 0 23 2.6548 1.5706 

totalPercentPastWrong (in percent) 0 100 0.0728 0.1742 

totalSkillOpportunities 1 10 4.9928 2.7359 

totalSkillOpportunitiesByScaffolding 0 10 0.1867 0.2470 

totalTimeOnSkill (in seconds) 0 102746 3301.1382 18410.8700 
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APPENDIX C: J48 DECISION TREE OF THE 15-FEATURE MODEL 

amin-hintTotal <= 0 
|  amax-past8BottomOut <= 1 
|   |  std-timeBetweenProblems <= 218115.7837 
|   |  |  sum-responseIsChosen <= 26 
|   |  |  |  amax-totalAttempted <= 18: 1 (898.0/172.0) 
|   |  |  |  amax-totalAttempted > 18 
|   |  |  |   |  amax-totalAttempted <= 491 
|   |  |  |   |  |  sum-IsHelpRequestScaffolding <= 2 
|   |  |  |   |  |  |  amax-totalSkillOpportunities <= 6 
|   |  |  |   |  |  |  |  amax-totalSkillOpportunities <= 1 
|   |  |  |   |  |  |  |   |  amax-responseIsChosen <= 0 
|   |  |  |   |  |  |  |   |  |  sum-totalAttempted <= 126: 0 (7.0/2.0) 
|   |  |  |   |  |  |  |   |  |  sum-totalAttempted > 126: 1 (5.0) 
|   |  |  |   |  |  |  |   |  amax-responseIsChosen > 0 
|   |  |  |   |  |  |  |   |  |  sum-responseIsChosen <= 4: 0 (20.0/6.0) 
|   |  |  |   |  |  |  |   |  |  sum-responseIsChosen > 4: 1 (2.0) 
|   |  |  |   |  |  |  |  amax-totalSkillOpportunities > 1 
|   |  |  |   |  |  |  |   |  sum-Past8WrongCount <= 34 
|   |  |  |   |  |  |  |   |  |  std-timeBetweenProblems <= 6.988398 
|   |  |  |   |  |  |  |   |  |  |  amax-totalPercentPastWrong <= 0.9 
|   |  |  |   |  |  |  |   |  |  |  |  sum-totalAttempted <= 422 
|   |  |  |   |  |  |  |   |  |  |  |   |  sum-totalAttempted <= 209: 1 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  sum-totalAttempted > 209: 0 (5.0) 
|   |  |  |   |  |  |  |   |  |  |  |  sum-totalAttempted > 422: 1 (20.0) 
|   |  |  |   |  |  |  |   |  |   |  amax-totalPercentPastWrong > 0.9: 0 (4.0) 
|   |  |  |   |  |  |  |   |  |  std-timeBetweenProblems > 6.988398: 1 (161.0/12.0) 
|   |  |  |   |  |  |  |   |  sum-Past8WrongCount > 34 
|   |  |  |   |  |  |  |   |  |  std-totalSkillOpportunitiesByScaffolding <= 0 
|   |  |  |   |  |  |  |   |  |  |  amax-totalPercentPastWrong <= 0.363636: 1 (5.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  amax-totalPercentPastWrong > 0.363636 
|   |  |  |   |  |  |  |   |  |  |   |  std-WorkingInSchool <= 0.278325: 1 (3.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |  std-WorkingInSchool > 0.278325: 0 (4.0) 
|   |  |  |   |  |  |  |   |  |  std-totalSkillOpportunitiesByScaffolding > 0: 0 (3.0) 
|   |  |  |   |   |  |  amax-totalSkillOpportunities > 6 
|   |  |  |   |  |  |  |  amax-past8BottomOut <= 0 
|   |  |  |   |  |  |  |   |  std-totalSkillOpportunitiesByScaffolding <= 2.18526 
|   |  |  |   |  |  |  |   |  |  amax-responseIsChosen <= 0 
|   |  |  |   |  |  |  |   |  |  |  std-totalSkillOpportunitiesByScaffolding <= 0.964126: 1 (992.0/344.0) 
|   |  |  |   |  |  |  |   |  |  |  std-totalSkillOpportunitiesByScaffolding > 0.964126 
|   |  |  |   |  |  |  |   |  |   |  |  std-timeBetweenProblems <= 23.786277: 0 (86.0/31.0) 
|   |  |  |   |  |  |  |   |  |  |  |  std-timeBetweenProblems > 23.786277 
|   |  |  |   |  |  |  |   |  |  |  |   |  std-timeBetweenProblems <= 13108.93518: 1 (15.0/1.0) 
|   |  |  |   |  |   |  |   |  |  |  |   |  std-timeBetweenProblems > 13108.93518 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  sum-Past8WrongCount <= 30: 1 (3.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  sum-Past8WrongCount > 30: 0 (5.0/1.0) 
|   |  |  |   |  |  |  |   |  |  amax-responseIsChosen > 0 
|   |  |  |   |  |  |  |   |  |  |  amax-totalSkillOpportunities <= 9 
|   |  |  |   |  |  |  |   |  |  |  |  amax-totalPercentPastWrong <= 0.9: 1 (26.0/3.0) 
|   |  |  |   |  |  |  |   |  |  |  |  amax-totalPercentPastWrong > 0.9 
|   |  |  |   |  |  |  |   |  |  |  |   |  std-totalSkillOpportunitiesByScaffolding <= 1.022268 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  mean-totalAttempted <= 105.538462 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   mean-totalAttempted <= 67.8: 0 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   mean-totalAttempted > 67.8: 1 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  mean-totalAttempted > 105.538462: 0 (5.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  std-totalSkillOpportunitiesByScaffolding > 1.022268 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  sum-totalAttempted <= 756: 0 (4.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  sum-totalAttempted > 756: 1 (8.0) 
|   |  |  |   |  |  |  |   |  |  |  amax-totalSkillOpportunities > 9: 1 (603.0/196.0) 
|   |  |  |   |  |  |  |   |  std-totalSkillOpportunitiesByScaffolding > 2.18526 
|   |  |  |   |  |  |  |   |  |  amax-totalPercentPastWrong <= 0.363636 
|   |  |  |   |  |  |  |   |  |  |  sum-responseIsChosen <= 3: 1 (9.0/2.0) 
|   |  |  |   |  |  |  |   |  |  |  sum-responseIsChosen > 3: 0 (2.0) 
|   |  |  |   |  |  |  |   |  |  amax-totalPercentPastWrong > 0.363636: 0 (22.0/1.0) 
|   |  |  |   |  |  |  |  amax-past8BottomOut > 0 
|   |  |  |   |  |  |  |   |  amax-totalAttempted <= 121: 1 (1060.0/281.0) 
|   |  |  |   |  |  |  |   |  amax-totalAttempted > 121 
|   |  |  |   |  |  |  |   |  |  amax-totalAttempted <= 302 
|   |  |  |   |  |  |  |   |  |  |  amax-responseIsChosen <= 0: 1 (207.0/86.0) 
|   |  |  |   |  |  |  |   |  |  |  amax-responseIsChosen > 0 
|   |  |  |   |  |  |  |   |  |  |  |  sum-Past8WrongCount <= 92 
|   |  |  |   |  |  |  |   |  |  |  |   |  sum-responseIsChosen <= 10 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  std-WorkingInSchool <= 0.438019 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   sum-IsHelpRequestScaffolding <= 1 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  std-timeBetweenProblems <= 37505.97416 
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|   |  |  |   |  |  |  |   |  |  |  |   |  |   |   |  |  sum-Past8WrongCount <= 35 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |  sum-Past8WrongCount <= 28 

|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |   |  std-totaSkillOpportunitiesByScaffolding <= 0.943037: 0 (3.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |   |  std-totalSkillOpportunitiesByScaffolding > 0.943037: 1 (3.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |  sum-Past8WrongCount > 28: 1 (6.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  sum-Past8WrongCount > 35 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |  sum-Past8WrongCount <= 56: 0 (9.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |  sum-Past8WrongCount > 56 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |   |  std-WorkingInSchool <= 0.158114: 1 (4.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |   |  |   |  std-WorkingInSchool > 0.158114: 0 (3.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  std-timeBetweenProblems > 37505.97416: 1 (4.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   sum-IsHelpRequestScaffolding > 1 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  mean-totalAttempted <= 187.12766: 1 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  mean-totalAttempted > 187.12766: 0 (3.0/1.0) 
|   |  |  |   |  |  |  |   |  |   |  |   |  |  std-WorkingInSchool > 0.438019: 1 (6.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  sum-responseIsChosen > 10: 1 (20.0/2.0) 
|   |  |  |   |  |  |  |   |  |  |  |  sum-Past8WrongCount > 92 
|   |  |  |   |  |  |  |   |  |  |  |   |  std-timeBetweenProblems <= 28605.3143 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  amax-totalPercentPastWrong <= 0.96: 0 (6.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  amax-totalPercentPastWrong > 0.96 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   sum-responseIsChosen <= 13: 0 (6.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   sum-responseIsChosen > 13: 1 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  std-timeBetweenProblems > 28605.3143: 1 (2.0) 
|   |  |  |   |  |  |  |   |  |  amax-totalAttempted > 302 
|   |  |  |   |  |  |  |   |  |  |  std-WorkingInSchool <= 0.390205: 1 (30.0/2.0) 
|   |  |  |   |  |  |  |   |  |  |  std-WorkingInSchool > 0.390205 
|   |  |  |   |  |  |  |   |  |  |  |  sum-Past8WrongCount <= 37: 0 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |  sum-Past8WrongCount > 37: 1 (3.0/1.0) 
|   |  |  |   |  |  sum-IsHelpRequestScaffolding > 2 
|   |  |  |   |  |   |  amax-totalAttempted <= 307 
|   |  |  |   |  |  |  |  amax-responseIsChosen <= 0 
|   |  |  |   |  |  |  |   |  std-WorkingInSchool <= 0.162221: 1 (70.0/1.0) 
|   |  |  |   |  |  |  |   |  std-WorkingInSchool > 0.162221 
|   |  |  |   |  |  |  |   |  |  sum-IsHelpRequestScaffolding <= 7: 1 (15.0/1.0) 
|   |  |  |   |  |  |  |   |  |  sum-IsHelpRequestScaffolding > 7 
|   |  |  |   |  |  |  |   |  |  |  std-timeBetweenProblems <= 92.603468: 1 (4.0) 
|   |  |  |   |  |  |  |   |  |  |  std-timeBetweenProblems > 92.603468 
|   |  |  |   |  |  |  |   |  |  |  |  sum-IsHelpRequestScaffolding <= 21: 0 (6.0) 
|   |  |  |   |  |  |  |   |  |  |  |  sum-IsHelpRequestScaffolding > 21: 1 (2.0) 
|   |  |  |   |  |  |  |  amax-responseIsChosen > 0: 1 (86.0/18.0) 
|   |  |  |   |  |  |  amax-totalAttempted > 307 
|   |  |  |   |  |  |  |  sum-IsHelpRequestScaffolding <= 5: 1 (3.0) 
|   |  |  |   |  |  |  |  sum-IsHelpRequestScaffolding > 5 
|   |  |  |   |  |  |  |   |  std-totalSkillOpportunitiesByScaffolding <= 1.542118: 0 (10.0/1.0) 
|   |  |  |   |  |  |  |   |  std-totalSkillOpportunitiesByScaffolding > 1.542118: 1 (3.0/1.0) 
|   |  |  |   |  amax-totalAttempted > 491: 1 (32.0) 
|   |  |  sum-responseIsChosen > 26: 1 (675.0/90.0) 
|   |  std-timeBetweenProblems > 218115.7837 
|   |  |  std-timeBetweenProblems <= 12799929.2 
|   |  |  |  amax-totalSkillOpportunities <= 5 
|   |  |  |   |  std-timeBetweenProblems <= 1820838.272 
|   |  |  |   |  |  std-totalSkillOpportunitiesByScaffolding <= 0 
|   |  |  |   |  |  |  sum-frPast8WrongCount <= 48: 1 (76.0/9.0) 
|   |  |  |   |  |  |  sum-frPast8WrongCount > 48: 0 (4.0/1.0) 
|   |  |  |   |  |  std-totalSkillOpportunitiesByScaffolding > 0 
|   |  |  |   |  |  |  std-timeBetweenProblems <= 684764.2974: 0 (3.0) 
|   |  |  |   |  |  |  std-timeBetweenProblems > 684764.2974: 1 (3.0) 
|   |  |  |   |  std-timeBetweenProblems > 1820838.272 
|   |  |  |   |  |  sum-Past8WrongCount <= 19 
|   |  |  |   |  |  |  std-WorkingInSchool <= 0.357935 
|   |  |  |   |  |  |  |  std-timeBetweenProblems <= 3294065.607: 0 (2.0) 
|   |  |  |   |  |  |  |  std-timeBetweenProblems > 3294065.607: 1 (3.0) 
|   |  |  |   |  |   |  std-WorkingInSchool > 0.357935: 0 (7.0) 
|   |  |  |   |  |  sum-Past8WrongCount > 19: 1 (4.0) 
|   |  |  |  amax-totalSkillOpportunities > 5 
|   |  |  |   |  amax-past8BottomOut <= 0 
|   |  |  |   |  |  std-timeBetweenProblems <= 2773779.763 
|   |  |  |   |  |  |  amax-responseIsChosen <= 0: 0 (228.0/107.0) 
|   |  |  |   |  |  |  amax-responseIsChosen > 0 
|   |  |  |   |  |  |  |  amax-totalPercentPastWrong <= 0.363636 
|   |  |  |   |  |  |  |   |  sum-responseIsChosen <= 23 
|   |  |  |   |  |  |  |   |  |  std-WorkingInSchool <= 0.347839 
|   |  |  |   |  |  |  |   |  |  |  mean-totalAttempted <= 47.181818: 0 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  mean-totalAttempted > 47.181818: 1 (5.0) 
|   |  |  |   |  |  |  |   |  |  std-WorkingInSchool > 0.347839: 0 (2.0) 
|   |  |  |   |  |  |  |   |  sum-responseIsChosen > 23: 1 (10.0) 
|   |  |  |   |  |  |  |  amax-totalPercentPastWrong > 0.363636: 0 (85.0/41.0) 

67 Journal of Educational Data Mining, Volume 10, No 1, 2018



  

 

|   |  |   |   |  |  std-timeBetweenProblems > 2773779.763 
|   |  |  |   |  |  |  amax-totalAttempted <= 502 
|   |  |  |   |  |  |  |  std-timeBetweenProblems <= 8717502.941: 0 (65.0/11.0) 
|   |  |  |   |  |  |  |  std-timeBetweenProblems > 8717502.941: 1 (3.0) 

|   |  |  |   |  |  |  amax-totalAttempted > 502: 1 (6.0/1.0) 
|   |  |  |   |  amax-past8BottomOut > 0 
|   |  |  |   |  |  amax-totalSkillOpportunities <= 8: 1 (20.0/4.0) 
|   |  |  |   |  |  amax-totalSkillOpportunities > 8 
|   |  |  |   |  |  |  sum-IsHelpRequestScaffolding <= 0 
|   |  |  |   |  |  |  |  amax-responseIsChosen <= 0 
|   |  |  |   |  |  |  |   |  amax-totalSkillOpportunities <= 9 
|   |  |  |   |  |  |  |   |  |  std-WorkingInSchool <= 0.142857: 0 (5.0/1.0) 
|   |  |  |   |  |  |  |   |  |  std-WorkingInSchool > 0.142857: 1 (8.0/1.0) 
|   |  |  |   |  |  |  |   |  amax-totalSkillOpportunities > 9: 1 (191.0/85.0) 
|   |  |  |   |  |  |  |  amax-responseIsChosen > 0 
|   |  |  |   |  |  |  |   |  std-timeBetweenProblems <= 1505822.527 
|   |  |  |   |  |  |  |   |  |  amax-totalPercentPastWrong <= 0.888889: 1 (8.0) 
|   |  |  |   |  |  |  |   |  |  amax-totalPercentPastWrong > 0.888889 
|   |  |  |   |  |   |  |   |  |  |  amax-totalPercentPastWrong <= 0.96: 0 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  amax-totalPercentPastWrong > 0.96 
|   |  |  |   |  |  |  |   |  |  |  |  amax-totalSkillOpportunities <= 9: 0 (3.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |  amax-totalSkillOpportunities > 9 
|   |  |  |   |  |  |  |   |  |  |  |   |  sum-totalAttempted <= 2845 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  std-totalSkillOpportunitiesByScaffolding <= 0.57735 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   std-WorkingInSchool <= 0.156174: 0 (5.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   std-WorkingInSchool > 0.156174: 1 (5.0) 
|   |  |  |   |  |  |  |   |  |   |  |   |  |  std-totalSkillOpportunitiesByScaffolding > 0.57735: 0 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  sum-totalAttempted > 2845: 1 (10.0) 
|   |  |  |   |  |  |  |   |  std-timeBetweenProblems > 1505822.527 
|   |  |  |   |   |  |  |   |  |  amax-totalAttempted <= 17: 1 (2.0) 
|   |  |  |   |  |  |  |   |  |  amax-totalAttempted > 17: 0 (25.0/4.0) 
|   |  |  |   |  |  |  sum-IsHelpRequestScaffolding > 0 
|   |  |  |   |  |  |  |  sum-Past8WrongCount <= 28: 0 (5.0/1.0) 
|   |  |  |   |  |  |  |  sum-Past8WrongCount > 28: 1 (10.0) 
|   |  |  std-timeBetweenProblems > 12799929.2: 1 (30.0/1.0) 
|  amax-past8BottomOut > 1: 1 (2544.0/312.0) 
amin-hintTotal > 0: 1 (355.0/12.0) 

Number of Leaves:  95 Size of the tree: 189 
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APPENDIX D: FEATURES SELECTED WITH J48 DECISION TREE ALGORITHM 

 

Features Description 

 
amin-hintTotal 

(Minimum) Number of hints requested in any problem 

in the problem set 

 
amax-past8BottomOut 

(Maximum) Number of bottom-out hints requested 

within the last 8 problems in a given problem set 

 
amax-responseIsChosen 

(Maximum) Whether or not a problem requires the 

correct answer to be chosen from a list of answers (e.g., 

multiple choice) 

amax-totalAttempted 
(Maximum) The total number of problems attempted in 

the tutor so far 

amax- totalPercentPastWrong (Maximum) The percentage of all past problems that 

were incorrect on a given problem set 

amax- totalSkillOpportunities 
(Maximum) The total number of unique problems the 

user has encountered relevant to the current problem set 

mean-totalAttempted 
(Mean) The total number of problems attempted in the 

tutor so far 

std- IsHelpRequestScaffolding (Standard deviation) Whether or not the first response to 

a scaffolding problem is a help request 

 
std-workingInSchool 

(Standard deviation) Whether or not the first response 

was made during or after school hours (between 7:00 

a.m. and 3:00 p.m.) 

std-timeBetweenProblems 
(Standard Deviation) Length of time since a problem 

involving this skill type was last seen 

std- totalSkillOpportunitiesBySc 

affolding 

(Standard Deviation) The total number of scaffolding 

problems divided by the unique problems the user has 

encountered relevant to the current problem set 

sum- isHelpRequestScaffolding (Sum) Whether or not the first response to a scaffolding 

problem is a help request 

 
sum-past8WrongCount 

(Sum) Cumulative count of the number of first 

responses to a problem that were wrong answers in the 

past 8 problems 
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sum-responseIsChosen 

(Sum) Whether or not a problem requires the correct 

answer to be chosen from a list of answers (e.g., 

multiple choice) 

sum-totalAttempted 
(Standard Deviation) The total number of problems 

attempted in the tutor so far 

70 Journal of Educational Data Mining, Volume 10, No 1, 2018



  

 

APPENDIX E: J48 DECISION TREE OF THE 3-FEATURE MODEL 

 

amax-past8BottomOut = 1 
|  amin-hintTotal = 1 
|   |  std-timeBetweenProblems = 218115.7837: 1 (5224.0/1393.0) 
|   |  std-timeBetweenProblems > 218115.7837 
|   |  |  std-timeBetweenProblems = 12799929.2 
|   |  |   |  std-timeBetweenProblems = 1820838.272: 1 (645.0/269.0) 
|   |  |  |  std-timeBetweenProblems > 1820838.272: 0 (168.0/59.0) 
|   |  |  std-timeBetweenProblems > 12799929.2: 1 (30.0/1.0) 
|  amin-hintTotal > 1: 1 (100.0/3.0) 
amax-past8BottomOut > 1: 1 (2781.0/318.0) 

Number of Leaves  : 6 Size of the tree :   11 
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