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Computerized classification of student answers offers the possibility of instant feedback and 

improved learning.  Open response (OR) questions provide greater insight into student 

thinking and understanding than more constrained multiple choice (MC) questions, but 

development of automated classifiers is more difficult, often requiring training a machine 

learning system with many human-classified answers.  Here we explore a novel intermediate 

constraint question format called WordBytes (WB) where students assemble one-sentence 

answers to two different college evolutionary biology questions by choosing, then ordering, 

fixed tiles containing words and phrases.  We found WB allowed students to construct 

hundreds to thousands of different answers (≤20 tiles), with multiple ways to express correct 

and incorrect answers with different misconceptions.  We found humans could specify rules 

for an automated WB grader that could accurately classify answers as correct/incorrect with 

Cohen’s kappa ≥ 0.88, near the measured intra-rater reliability of two human graders and the 

performance of machine classification of OR answers (Nehm et al., 2012).  Finer-grained 

classification to identify the specific misconception had lower accuracy (Cohen’s kappa < 

0.75), which could be improved either by using a machine learner or revising the rules, but 

both would require considerably more development effort.  Our results indicate that WB may 

allow rapid development of automated correct/incorrect answer classification without 

collecting and hand-grading hundreds of student answers. 
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1. INTRODUCTION 

1.1. TRADEOFFS BETWEEN HIGH- AND LOW-CONSTRAINT ASSESSMENTS 

Highly-constrained questions such as multiple choice (MC) are widely used in education for 

both formative and summative assessments, and can be reliable indicators of student 

knowledge and misconceptions (Smith et al., 2008).  As formative assessments, they enable a 

student to receive instant feedback, which is known to aid learning (Shute, 2008; Black and 

William, 1998). However, MC questions provide poor measures of higher-level thinking and 

some learning outcomes in science courses (Nehm et al., 2012; AAAS, 2011).  Additionally, 

MC provide only coarse-grained measures of student understanding that poorly capture how 

many students learn science (National Research Council, 2001; Vosniadou, 2008). 

Low-constraint questions, like written open response (OR), provide much more detailed 

insight into student thinking (Beggrow et al., 2014).  Student thinking about higher-level tasks 

such as problem solving and scientific explanation/application are better measured with short 

open response questions than MC (Batistta et al., 2010; Nehm et al., 2012).  These questions 

better represent real-world tasks where students are forced to construct an answer rather than 

picking from a handful of predefined choices.  

Open response questions require far more instructor time to grade compared to MC and are 

difficult to scale to large classes or student populations.  Automated classification of OR 

answers is possible using various machine learning algorithms.  Development of such 

classifiers is time-consuming, usually requiring humans to classify hundreds or thousands of 

answers as a training set for a machine learner. Automated classification often bins answers 

into just a few categories (e.g. Nehm et al., 2012), resulting in less specific feedback for each 

student than would be found with instructor grading.  Classification around many key concepts 

is possible (Moharreri et al., 2014), but requires large training sets.  Because of these issues, 

OR questions are particularly difficult to use for formative assessment. Instructor grading 

results in a long delay between the student doing the work and receiving feedback and fewer 

opportunities to use such questions because of the effort involved.  

Here we ask whether there is a middle ground between those two extremes that can capture 

some of the benefits of each – rapid development of automated classifiers from highly 

constrained formats such as MC, and the insight into student understanding from low-

constraint formats such as OR. In this paper we address the technical feasibility of using a new 

intermediate constraint (Scalise and Gifford, 2006) format to capture those benefits.  A future 

paper (Wendel et al., in prep) will explore how students interact with and learn from 

intermediate constraint formats. 

1.2. WORDBYTES:  INTERMEDIATE-CONSTRAINT ASSESSMENT 

To explore intermediate constraint questions, we developed a novel question format. The 

question format was modeled on fridge poetry magnets (suggested in Klopfer, 2008), and we 

have called it WordBytes (WB).  WordBytes questions prompt students to construct an answer 

to a fairly directed question by choosing from tiles consisting of a limited set of words and 

phrases, as shown in Figure 1.  This constraint greatly reduces the answer space compared to 

OR questions, while still allowing the student to construct a response and allowing far greater 

student freedom and answer variety than MC. This format represents a level of constraint 

characterized by: 
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• Freedom to construct an answer 

• Thousands of possible answer choices 

• Limited choice of vocabulary from which to construct an answer 

• Multiple ways to form correct and incorrect answers 

• Possibility to construct an answer containing correct, incorrect or a mixture of concepts 

• Possibility to construct answers that were not anticipated by the question author 

 

Certainly, other question formats could be developed that are in-between the WB constraint 

level and MC on one side, or OR on the other, but the level of constraint represented by WB is 

both novel (to our knowledge) and an interesting level of constraint in that it still allows a 

tremendous flexibility to the student. As we discuss in the conclusion, the details of our WB 

format surely influenced our findings, but some of the results reported here may apply to other 

question formats with a similar level of constraint. 

However, compared to OR/MC, WB may have some disadvantages.  Care must be taken to 

select tiles for composing the answer to allow students to answer with a variety of correct and 

incorrect statements, and thus WB questions take longer to author compared to OR or MC 

questions that cover the same concepts.  Additionally, answers requiring a large and varied 

vocabulary or questions requiring long (multi-sentence) answers are likely a poor match for 

WB, as students may have difficulty parsing and effectively composing answers when 

choosing from many tiles or attempting to compose long answers. 

We hypothesized that the constraint level in WB would reduce the answer space (range of 

possible answers) compared to OR but preserve a wide variety of student answers.  A small 

answer space might allow us to quickly construct a classifier by bypassing or greatly reducing 

the number of training examples needed by machine learners, and in part because of this, 

allow us to classify answers into finer-grained categories to provide more specific feedback 

for each student.  To test this, we made two WB questions in the domain of college 

evolutionary biology and tested different approaches to making an automated classifier.  We 

tested classifiers using both machine-learning and human-specified rules.  In this paper, we 

focus on these research questions: 

 

1. Can we quantify how much WB constrains student answers?  How many unique 

answers are there? 

2. What is the performance of a human-specified prospective classifier generated 

without seeing student answers? 

3. How many answers are needed for training a machine classifier for WB? 

4. What are differences between machine and human graders?  (Performance, 

systematic error differences) 

2. BACKGROUND 

2.1. MACHINE CLASSIFICATION OF LOW-CONSTRAINT ASSESSMENTS 

Automated computer classification of short OR questions offers several advantages over 

human classification.  Human grading is time-consuming and subject to grading fatigue 

(Nehm and Haertig, 2012).  Automated classifiers do not suffer from fatigue, and once trained, 

can provide consistent performance that efficiently scales to large data sets.  Multiple human 

instructors using the same rubric will not always agree when categorizing short OR because of  
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Figure 1: WordBytes questions on heritability of shell thickness (A) and pure-breeding of a 

heterozygous phenotype (B).  Students construct an answer by dragging tiles from the bottom 

area to the upper answer area(yellow).  Tiles can be used once, multiple times, or not at all in 

answers.  In the Heritability question, there are pre-placed tiles which cannot be removed and 

bracket the start and end of the student’s answer.  

 

A.  Heritability 

 
B.  Pure-Breeding 
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human error but automated classification is always consistent and can be as accurate as that 

achieved between different human graders using the same rubric (Klein, 2008; Yang et al., 

2002; Ha el al., 2011).  Computer-based assessments offer the possibility of providing instant 

feedback to student answers, which has been shown to improve student learning (Shute, 2008; 

Black and William, 1998).   

Several programs have increased the accessibility of automated scoring to educators 

(Moharreri et al., 2014; Nehm et al., 2012; Nehm and Haertig, 2012; Ritthoff et al., 2001).  

These systems allow both efficient training of a variety of machine learning/classification 

algorithms and performance analysis of the classifier.  As one example, Nehm et al. (2012) 

have used well-researched evolutionary biology questions targeted closely to specific 

misconceptions to develop classifiers that can identify answers with numerous different 

misconceptions or errors.  Machine learners need numerous training examples for each 

category to generalize, however, so as the number of answer categories grows, the number of 

training examples usually increases as well.   

There are numerous machine learning and classification systems (Romero et al., 2010).  For 

questions such as ours that have a well-defined rubric, decision trees and support vector 

machines (SVM) have been used successfully (Nehm et al., 2012; Ha et al., 2012).  Such 

algorithms require a training set of already-classified answers.  Compared to humans, such 

systems do not ‘understand’ the student answer or parse logic, but rather search for sets of 

features that are general to answers of a given category.  These classification algorithms are 

affected by the distribution of training answers but have been shown to successfully generalize 

across different schools at the college level (Ha et al., 2012).  

3. METHODS 

3.1. STUDENTS AND PROCEDURES 

We recruited instructors in United States colleges or universities to use SimBiotic Software’s 

“Mendelian Pigs” (Herron et al., 2014) or “Darwinian Snails” (Herron and Meir, 2014) labs in 

undergraduate introductory-level general or evolutionary biology courses over the course of 

two semesters. The labs were used as part of the regular coursework in each course.  Each lab 

contained one WB question, which we label Heritability (Darwinian Snails – Fig 1A) and 

Pure-Breeding (Mendelian Pigs – Fig 1B). We collected student answers to these questions 

through a back-end called the SimUText System, built by SimBiotic Software to support those 

and other labs. We included students in the study only if they gave consent (via an ‘opt-in’ 

question at the start of the lab), and dropped any classes with fewer than five consenting 

students with non-empty answers.  The data was collected in accordance with the MIT 

Committee on the Use of Human Subjects (COUHES #1206005102). 

WordBytes (WB) questions prompt students to construct an answer by choosing and 

ordering tiles consisting of a limited set of words and phrases, as shown in Figure 1. Students 

are allowed to use tiles multiple times in their answer and are also free to omit any tiles.  Tiles 

can be removed or rearranged after being placed in the answer area.  The Heritability WB 

(Fig. 1A) has some pre-placed tiles (“If” and “then this is good evidence that shell thickness is 

heritable”) that could not be removed, and constituted the first and last tile in the student 

answers.  The Pure-Breeding WB does not have any pre-placed tiles. Once students placed 

their tiles, they press the ‘check answer’ button to record their answer and receive feedback. 

Students are constrained to one sentence answers by the lack of a period tile that could be 

used to indicate separate sentences, and by a warning message that appears when the student 
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answer exceeds the visible answer area and that tells students their answer is too long (thus 

discouraging run-on sentences).  While in principle WB could be used for multi-sentence 

answers, and we have experimented with this in other questions, the two WB questions here 

were designed to be answered with a single sentence, as dragging many tiles becomes tedious 

for students.  Additionally, very long answers usually require more tiles and searching through 

a long list of tiles becomes burdensome.  

Each of these WB questions went through a validation process with students. The 

Heritability question was based on an OR question that was previously part of the Darwinian 

Snails lab, however we did not have student answers to use in constructing the WB.  We 

interviewed 31 students who each answered the question first as an OR, and then immediately 

afterward in the WB format. After every couple of students, the WB tiles were revised to add 

or remove tiles that might have helped each student give a similar answer in WB format to 

their answer in open response format. The tiles were held constant for the last 10 students to 

give a larger sample with the final wording. 

The Pure-Breeding WB was built by examining answers to a previous open response 

question with a very similar stem. In part because of this prior data, the validation process was 

reduced. After internal review by several team members, the question was tested by three 

students in individual interviews where they went through the whole Mendelian Pigs lab. In 

each case, when the student reached the Pure-Breeding question, we had them first answer 

verbally, without looking at the available tiles. Then we compared their verbal answer to the 

answer they composed with the tiles. When the composed answer was conceptually different 

than the verbal answer, we asked the student to help us come up with changes to the tiles that 

would have allowed them to express their verbal answer better.  

The Mendelian Pigs lab with the Pure-Breeding WB question was then released to classes 

for a year, and we used answers collected from approximately 80 students to further refine the 

question. One realization we had was that our initial number of tiles (35) was too large for 

most students to scan through easily. Consistent with this, we also observed frequent blank 

answers. We removed rarely-used tiles or tiles which were generally used only in nonsensical 

answers or in a single unique sentence that could be expressed differently. This reduced the 

number of tiles to 22. Student data from that version of the question is what is used here. 

Across both semesters, we collected 404 unique first answers from 1131 students for the 

Heritability WB and 366 unique first answers from 495 students for Pure-Breeding.  The 

number of unique answers is less than the number of students because multiple students would 

sometimes submit the same answer. Such a result is not surprising from the limited tile choice 

and length restriction.  For clarity, when referring to student answers, we refer to answers 

(first answers including repeats) to distinguish from unique answers, which has the repeats 

removed (union of the set of first answers). 

The WB questions gave students automated feedback (through algorithms described 

below), and students could submit multiple answers to the question as they tried to develop a 

correct answer. These classifiers did not always correctly classify answers (resulting in 

feedback that did not address the student’s answer), and we changed the wording and details 

of the feedback between semesters. In this paper, we focus on quantifying the performance of 

various classifiers of student WB answers, and not how students responded to/learned from 

feedback. Thus, we analyzed only the first answer to remove the effect of feedback on 

subsequent answers.   

For the Pure-Breeding WB, we used answers from 237 students in 6 courses (range 12-91 

students) from Fall 2014 and 258 students in 12 courses (range 8-45 students) from Spring 

2015.  For the Heritability WB, we used answers from 637 students in 5 courses (range 22-372 
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students) from Spring 2014 and 494 students in 14 courses (range 8-125 students) from Fall 

2014.  The breakdown of students among courses, the level of each course (lower or upper), 

and school Carnegie Classification of Institutions of Higher Education™ (n.d.) is shown in 

Appendix Table A1. 

 

3.2. HUMAN GRADING & CLASSIFICATION  

Two of us specified a rubric for categorizing answers for the WB (EM for Pure-Breeding and 

DW for Heritability).  Both were experienced in the teaching of and on misconceptions in 

evolutionary biology--though they were not instructors for any of the classes in our data.   

 
Table 1A:  Categories used for classification of student answers for Pure-Breeding WB.  

Categories were further grouped by those sharing a common misconception (reduced category 

column) and correctness (correct column).   

% Answers  Pure-Breeding Category Description Reduced 

Category 

Correct 

21% Correct answer.  Crossing 2 heterozygous pigs will have 

offspring of 3 genotypes so can’t be pure-breeding 

Correct Yes 

4% Error in genotype of a genetic cross NOT 

ANTICIPATED 

Genetics error; 

incorrect or 

incomplete list of 

genotypes from 

cross 

No 

5% Crossing heterozygotes for a long time produces pure-

breeding but heterozygous offspring  

5% Crossing heterozygotes for a long time will produce only 

heterozygous offspring but not be pure-breeding  

11% Dominance/recessive affects pure-breeding  Dominance 

affects pure-

breeding 

0% Correctly predicts genotypes of cross will not be pure-

breeding, but this will be pure-breeding  

Correct genetics 

but incorrect 

conclusion 

5% Answer too short to interpret; a single tile or shorter 

answer 

Incomplete, 

nonsensical, or 

unanticipated 

answers 
0.2% Long run-on answer with >18 tokens. 

1% Only states genotype of the offspring, not the parents  

14% Nonsensical answers that are incomplete statements or 

unanticipated answers that don’t match other rules 

8% Incorrect interpretation of pure-breeding:  that having 

identical offspring from a single cross is sufficient for 

pure-breeding 

Confusion about 

definition of 

pure-breeding 

0.6% Incorrect interpretation of pure-breeding:  that having 

identical offspring from a single cross prohibits pure-

breeding 

4% Crossing heterozygotes will have heterozygous offspring 

and thus are pure-breeding  

0.4% Crossing heterozygotes will have heterozygous offspring 

and thus are not pure-breeding  

4% Back mutations make this pure-breeding Somatic 

mutations affect 

pure-breeding 
15% Back mutations forbid pure-breeding 

Note: Numbers may not add up to 100% due to rounding.   
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Each rubric assigns each student answer to exactly one category based on domain and 

integrative knowledge concepts.  Tables 1A and 1B show the answer categories for the two 

questions. Both questions were used for formative assessment to aid student learning, so 

answer categories are fine-grained to provide specific feedback to the student about what is 

wrong with their answer. Such fine-grained feedback is a benefit we hypothesized might be 

aided by the constraints in the WB format, as opposed to broader categories generally used for 

scoring OR questions (e.g. as in Nehm et al., 2012 and others).  Our categories are 

distinguished by the specific misconception or error with the student answer. Finally, the 

rubric indicated which answer category constituted a correct answer. Each answer category 

encompasses many possible student answer phrasings. 

 
Table 1B:  Categories used for classification of student answers for Heritability WB.  

Categories were further grouped by those sharing a common misconception (reduced category 

column) and correctness (correct column).   

% Answers  Heritability Category Description Reduced 

Category 

Correct 

21% Correct answer stating that thin snails have thin 

offspring and thick snails have thick offspring 

Correct Yes 

0.3% Stating that heritable if thick snails have thick offspring 

or thin snails have thin offspring 

 

Incomplete, 

nonsensical, or 

unanticipated 

answers 

 

No 

17% Incomplete answer stating either thick snails have thick 

offspring or thin snails have thin offspring but not both 

0% Long run-on answer with >12 tokens 

8% Nonsensical answers that are incomplete statements or 

unanticipated answers that don’t match other rules 

3% Vague answers ambiguous which snails produce what 

offspring 

 

Natural selection 

1% Both thin and thick shelled snails have offspring with 

same shell thickness 

7% Confuses natural selection with heritability saying that 

predation favors thicker shells 

6% Shell thickness is random Confusion about 

definition of 

heritable 
7% Answer about presence or absence of crabs 

14% Answer stating shell thickness changes over time 

without mentioning crabs 

Acclimation 

7% No mention of crabs and thin shelled snails produce 

thicker shelled offspring NOT ANTICIPATED 

10% Answer stating shell thickness changes over time when  

crabs present 

4% Snails have thick offspring when crabs are present 

and/or thin when crabs are absent 

Directed 

inheritance 

Note: Numbers may not add up to 100% due to rounding.   

Following this, the authors of each rubric wrote out sets of rules for categorizing student 

answers to the categories in the rubric.  Both researchers are proficient computer 

programmers, so may perform better at specifying rules than instructors without this 

background.  Rules varied in complexity, from simple rules such as “any answer containing 

‘Yes it is possible because’ and ‘back mutations can occur’ tiles gets assigned to category X” 

to more complicated rules matching answers accounting for synonyms, tile order 

permutations, combinatory logic (if X and Y and not Z, then assign to category A) and 
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optional tiles.  Both researchers realized they could not anticipate every single phrasing of 

different answers, so both rule sets contained a default category that captured answers that 

failed to match any rule.  This category is assigned to both unanticipated answers and 

nonsense/vague answers since researchers could not conceive of rules to distinguish between 

these.  Additional information on the rules is in appendix section 9.3. 

The Heritability rubric and prospective rules (described below) were made without looking 

at any student answers, while the Pure-Breeding rubric and rules were made after the 

researcher briefly viewed a few dozen student WB answers.  This may have inflated the 

performance of the Pure-Breeding classifier compared to that for Heritability.  For clarity, we 

refer to these rules (made before collecting and grading many WB answers) as ‘prospective 

rules’ to distinguish them from machine classifiers, and from rules revised after researchers 

read and classified a semester’s worth of WB answers (as described later in results). 

Human grading of student answers was performed as follows.  We randomly picked 50 

(Heritability) or 55 (Pure-Breeding) unique answers from the first semester. Two researchers 

graded these answers:  one of whom wrote the prospective rules and the other was not 

involved in creation of the rules.  To reduce researcher burden, researchers graded unique 

answers (skipping the need to repeat grading of the already seen answers).  After discussing 

the rubric, the graders independently graded these initial 50-55 answers and then met to 

resolve any discrepancies. They then classified all the remaining unique answers from the first 

semester. Both researchers read the prospective rules, but classified according to what would 

best address the student’s answer (i.e. emulating a classroom instructor following a rubric; not 

trying to emulate a computer implementation of the prospective rules).   

3.3. AUTOMATED GRADING & CLASSIFICATION 

We used Rapidminer version 5.3 (http:/rapidminer.com; Hoffman and Klinkenberg, 2013; 

Ritthoff et al. 2001) for machine classification, validation, and parameter optimization.  Word 

vector creation used each tile as a token (tiles were not split apart by word for tokenization).  

The comma tile was removed since human graders ignored its presence and it did not change 

the meaning of the answer.  The LibSVM learner (Chang and Lin, 2011) received the 

following for input:  word vectors composed of unpruned term occurrences for token bi-

grams, total token count (number of tokens in answer), and human graded category (label). 

We used the first semester of student answers as the training set, and explored the 

performance of J48 decision trees and support vector machines (SVM) using both the radial 

basis function (RBF) and polynomial (poly n=2) kernels.  Since performance depends on 

kernel parameters (Chang and Lin, 2011; Hsu et al., 2003), and WB answers may have 

important statistical differences compared to free-form text, we performed a grid optimization 

that varied the following parameters over 5 log values from 0.01 to 100:  C, epsilon, gamma, 

and coef0 (only for the polynomial kernel).  Parameters were optimized by batch validating 

the training semester answers by course.  We found the SVM using polynomial (n=2) kernel 

performed slightly better than the RBF kernel or J48 decision trees, though the difference was 

usually a few percent or less.  Following parameter optimization on the first semester answers, 

we measured the performance of the SVM on the second semester of student answers.   

We also explored using trigrams (or higher), including the comma tile, higher degree poly 

kernels, finer-grained parameter searches over a wider range, parameter optimization using 

stratified cross validation (instead of batch validation by course), alternate word vector metrics 

(binary term occurrences/TF-IDF), word vector pruning, and J48 decision trees (Quinlan, 

1993) alone or in various combinations.  Though we did not perform an exhaustive search or 
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optimization across all possible combinations, we did not find any of these to significantly 

increase performance or alter our conclusions and most changes resulted in decreased 

performance or increased training time without performance increase. 

Further analysis, statistics, and visualization were performed in Mathematica (Wolfram 

Research) version 10.4.   

4. RESULTS 

4.1. HOW MANY UNIQUE ANSWERS ARE SUBMITTED TO WORDBYTES 

QUESTIONS? 

Compared to OR questions, WB limit student choice of words and phrases to those available 

in the tiles.  This eliminates some sources of variation in open responses:  misspellings, verb 

conjugation, specific noun choice, synonyms, etc.  There is still, however, a very large 

potential answer space. In practice, how large is the student answer space? 

There is a discrepancy between the two WB in how often answers were repeated.  We 

collected almost as many unique (distinct) answers from the Pure-Breeding question as from 

Heritability, despite having over double the number of students.  To estimate the amount of 

answer variation in the two WB independent of sample size, we used a bootstrap method to 

estimate the average number of unique answers from a given subsample of students as shown 

in Figure 2A and B.  Had the Heritability sample size equaled Pure-Breeding (494 students), 

we would have about 185 unique answers, far fewer than the 366 unique answers observed.  

We fit saturating exponential functions to the two distributions (red lines), and the number of 

unique answers for Pure-Breeding WB grows more quickly and likely has a higher asymptote 

than for the Heritability WB.   

The greater answer variation to the Pure-Breeding question may be partially due to tiles for 

both the genotype (WS, SS, WW) and phenotype (the corresponding pigmentation pattern).  In 

some contexts, the two were effectively synonymous, but we included them because in some 

contexts they have subtle but important differences (i.e., a student says “brown pigs are 

WW”).  Additionally, the pre-placed tiles in the Heritability WB constrained the student’s 

sentence structure, which may have contributed to the decreased variability.   

A trivial approach to WB classification is a look-up table (LUT) to classify the most 

common answers.  What size LUT is required for WB?  To measure this, we plot the 

probability that a randomly-chosen student answer has been seen before if we have already 

seen X unique answers.  Bootstrap estimates are shown in Figure 2C and D.   For Heritability, 

we estimate a LUT with 300 unique answers will capture 80% of answers. However, 

collecting 300 unique answers requires 1000+ student answers, because some answers are 

repeated many times. The Pure-Breeding question would require thousands of answers to 

build a similarly accurate LUT. Thus, WB do not constrain student answers sufficiently for a 

LUT alone to be a practical classifier.   

4.2. HOW MUCH TIME DOES SCORING WB ANSWERS TAKE? 

Each human grader spent ~2 hours grading the first semester’s worth of answers (for each of 

the two WBs), with a grading speed of about 100 unique answers scored per hour.  This time 

included updating the rubric with the unanticipated categories and the graders meeting to 

discuss discrepancies.  Grading of the next semester was slightly faster, with ~1.5 hours apiece 
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since no additional changes to the rubric or categories were needed, and because graders did 

not re-grade answers that were already seen in the first semester.   

 

 

Figure 2: Bootstrap analysis of repeated answers visualized two ways for Heritability WB (left 

column: A, C) and Pure-Breeding WB (right column: B and D).  A and B show the average of 

100 samplings (blue).  The red line is best fit double (Heritability) or single (Pure-Breeding) 

saturating exponential.  Blue markers C and D show the bootstrap estimate of the probability 

that an answer has been seen before if we collect a new student answer after seeing a given 

number of unique answers.  

4.3. HOW ACCURATE ARE PROSPECTIVE RULES?  

We had two researchers classify all answers according to the rubric as described in Methods.  

Inter-rater reliability between the human-assigned categories was calculated based on all but 

the initial 50-55 and is shown in the “Human IRR” column of Table 2.  Values indicate inter-

rater agreement using Cohen’s kappa statistic (Cohen, 1960; Bejar, 1991).  Kappa represents 

average agreement rescaled so that chance agreement is 0, and complete agreement is 1.  

Kappa was calculated across all answers (including repeats), so the most common (repeated) 

answers are effectively weighted heavier.  

Our categories also neatly divide answers into correct or incorrect answers, with one 

category corresponding to correct answers (Table 1).  If we use this to simplify our 

classification into purely correct/incorrect, kappa increases substantially to 0.88 or higher as 
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shown in Table 2 (middle rows, ‘Correctness’).  Comparing this to agreement on the exact 

classification, researchers almost always agreed on whether an answer was correct.   

 
Table 2: Comparison of Categorizer Performance.  Classification used categories from Table 

1A and Table 1B. 

  Human 

IRR 

Prospective 

rules 

Revised 

rules with 

LUT 

Support 

vector 

machine 

with LUT 

All classes Heritability: 0.88 0.68 0.96 0.87 
Pure-Breeding: 0.84 0.67 0.89 0.81 

Correctness Heritability: 0.98 0.98 1.00 0.83 
Pure-Breeding: 0.97 0.88 0.93 0.83 

Reduced 

classes 

Heritability: 0.86 0.73 0.97 0.89 
Pure-Breeding: 0.87 0.65 0.89 0.80 

Note: Human IRR column indicates Cohen’s Kappa measure of agreement between two 

human graders using the same rubric.  Other columns indicate Cohen’s kappa between the 

specified classifier and the agreed class assigned by the two human graders. 

The accuracy of the prospective rules is shown in Table 2.  These researcher-generated 

rules were made prior to classifying the student answers.  Kappa was calculated between the 

prospective rules classifier and the agreed category from the two researchers across all 

answers.  Additional performance metrics are shown in Appendix Table A2.  Performance of 

prospective rules for the full or reduced classes is substantially below that of the Human IRR 

for both WB.  However, prospective rules performed well for assessing correctness, 

particularly for Heritability, with both WB having a kappa >0.8.  Thus, researchers could 

make rules that could accurately identify correct answers before collecting and grading student 

answers, but the prospective rules were not as successful at categorizing answers into fine-

grained categories.  

The Human IRR and prospective rules kappa calculations differ slightly.  In estimating the 

human IRR, we randomly drew from student answers to populate a list of ~50 unique answers 

for the first round of grading described previously.  Answers that were more common had a 

higher probability of appearing in this list.  The Human IRR removes these ~50 from the 

calculation (since this was the learning period for the researcher graders), so is depleted of the 

most common and slightly easier to grade answers.  Removing these same answers from the 

calculation of the prospective rules results in a decrease in kappa by about 5% for full and 

reduced categories.  Both sets of researchers reported that less common answers (those with 

fewer or no repeats between students) were more often difficult to interpret/classify.  Thus, 

when comparing the performance of various grading strategies to the human IRR, the human 

IRR would be slightly better performing after accounting for the ease of grading the more 

common answers. 

A limitation of the prospective rules is that researchers were unable to anticipate all 

categories of answers in advance.  Thus, in the prospective rules, some answers did not fit well 

into any category.  Heritability required one new category comprising 7% of answers while 

Pure-Breeding required a new category comprising 4% of answers, as shown in bold rows of 

Table 1.  Since the prospective rules were specified before these new categories were 

introduced, we consider these answers misclassified.   
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In addition, researchers were unable to anticipate all types of student answers for existing 

categories.  For Pure-Breeding, most (>80%) misclassifications were due to unanticipated 

answers failing to match anticipated phrasings, resulting in assignment to the default category.  

For Heritability, most (>50%) misclassifications were due to unanticipated answers from the 

bottom two categories in Table 1B being misclassified due to other classes having overly 

general rules.  Both resulted in student answers not being assigned to a category that would 

provide useful feedback to the student.   

Development of the Heritability rubric and rules took about 5 hours, while Pure-Breeding 

took about 3 hours.  We do not include implementation time, as we imagine that additional 

development of WB would result in the creation of an efficient notation for implementing 

rules.  It is likely that if more time was spent carefully generating rules, the performance 

would improve.  Since our goal was to examine whether an instructor could quickly specify 

grading without collecting hundreds of student answers, we deliberately kept this time short. 

4.4. WOULD REDUCING THE NUMBER OF CATEGORIES IMPROVE CLASSIFICATION 

ACCURACY? 

One goal of the WB format is to provide fine-grained feedback to students. Thus, the number 

of categories in our rubrics (16 for Pure-Breeding; 14 for Heritability) were more than typical 

open response question graders which focus on fewer general misconceptions or confusions. 

For instance, Nehm et al. (2012) have open response questions in the same domain of biology 

and use three categories representing understanding of variation, heredity and survival, and 

were able to train an SVM with high accuracy (kappa > 0.8).  Perhaps performance would 

have improved had we had fewer, more general categories as in open response question 

graders, rather than the large number of categories listed in the second columns of Tables 1A 

and 1B.  To investigate this, we merged existing categories by grouping them together by their 

shared common mistake or misconception as shown in Tables 1A and 1B (labeled as ‘reduced 

category’).  This was performed after all student answers were graded by researchers, so this 

reduction was informed by looking at student answers.  We then calculated kappa using the 

reduced classes.  An increase in kappa for the reduced categories compared to the full set of 

categories would indicate that researchers tended to agree on the more general classification of 

the answer, but disagreed about the detailed classification.  However, kappa changed little, 

indicating that disagreement was about the general concept, not in distinguishing between 

conceptually similar categories. 

Taken together, our graders had almost complete agreement on the correctness of an 

answer, and lower agreement for more granular categories.  It does not appear that having a 

highly granular classification hurt kappa, since our reduced categories did not improve 

agreement.  

4.5. HOW WELL CAN RESEARCHER-DEVELOPED RULES CLASSIFY ANSWERS 

AFTER SEEING SOME STUDENT ANSWERS?  

After researchers graded one semester of student answers, the same researchers spent 2-3 

hours revising the prospective rules to account for the new categories and incorporate 

observed student answers. The performance of the revised rules grader is shown in Table 2.  

This performance incorporates an LUT from all first semester answers.  Answers not 

appearing in the LUT were then scored with the revised rules.  We calculated kappa between 

the revised rules + LUT and the category assigned by the two researchers for second semester 
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answers.  The revised rules perform much better, with the LUT adding about 0.10 to kappa for 

the full- and reduced classes graders, and the remaining improvement from the rules 

themselves.   

4.6. HOW WELL DOES A MACHINE-LEARNING CLASSIFIER WORK ON WB? 

We used one semester of student answers for machine classifier training, then measured 

performance on the other semester.  Due to the repetition of some student answers, many (but 

not all) answers appeared in both the training and testing semesters.   

The performance of machine classifiers depends on parameters controlling mismatch 

penalty and strength of fitting.  We performed a grid parameter search to optimize 

performance when categorizing the batch validated training semester answers as described in 

Methods.  We tested J48 decision trees, and support vector machines with radial basis vector 

and polynomial (degree 2) kernels.  Of these, an SVM with polynomial kernel consistently had 

the highest accuracy and kappa for categorizing the testing semester answers.  

Table 2 shows the performance of an LUT and SVM with polynomial kernel trained and 

optimized on answers from the first semester that was used to classify answers from the 

second semester. Kappa was again calculated between the machine classifier and the agreed 

category from the two researchers across all answers.  We used this partitioning of training 

and test sets for a better comparison to the performance of the revised rules where the first 

semester answers were used to ‘train’ the human grader for revising.  

To explore the effect of training size on performance, we trained the SVM on a randomly 

chosen subset of training semester answers. We also include an LUT (using the same subset of 

answers as in each random training example) since our goal is to maximize performance and 

because an LUT is both trivial to implement and can only improve classification.  

 

 
 

Figure 3: Support vector machines were trained on a subset of student answers from one 

semester and used to classify the other.  The x-axis shows the number of training examples; y-

axis is Cohen’s kappa showing agreement between SVM + LUT and the human-assigned 

class.  Plots are an average of 100 random samplings for each sample size.  Thick red line = all 

categories, dotted green = reduced categories, thin blue = correct/incorrect classification 

(correctness). 

A  Heritability    B  Pure-Breeding 
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Figure 3 shows the performance of the LUT + SVM for different training sizes.  Each data 

point is an average of 100 random samplings.   The different traces indicate the different 

granularities of classification:  red trained on the full set of categories, green was trained on 

answers labeled by the reduced set, and blue trained on answers labeled correct/incorrect.  For 

both WB, having fewer categories (green line) improved kappa when the training set was 

small, but as training sets grow larger the performance with the full set of categories (red) 

quickly catches up.  

Ideally, machine classifiers generalize from the training data so they can classify novel 

answers not seen before.  The SVM performed very well on the answers that were present in 

the training set, with almost all (>90%) of the category mis-matches on answers not in the 

training set.  The LUT only about 1% improvement for the SVM classifier kappa for >100 

training examples, indicating possible overfitting.  Perhaps our training conditions overfit the 

training data and we can alter training conditions to generate a classifier to generalize better.  

Such a grader could be combined with an LUT for possibly better performance.  To test this, 

we removed repeated answers from the training semester to include only the unique answers in 

the training set.  We then optimized parameters using 10-fold stratified crossvalidation, and 

measured the combined performance of the SVM and LUT.  For both WB, this decreased 

kappa, so training on unique answers to reduce overfitting does not improve performance.   

5. DISCUSSION 

5.1. WB CONSTRAINTS STILL ALLOWS STUDENTS TO CONSTRUCT ANSWERS AND 

EXPRESS MANY IDEAS 

Compared to OR, the WB question format reduces the number of distinct student answers, 

while still allowing thousands of potential answers.  Students could frame correct ideas in 

different ways, as we observed more than 20 unique correct answers for both questions.  

Similarly, most categories and all reduced categories had many unique answers.   However, 

there were a sufficient number of answers that an LUT alone would be impractical for 

categorizing student answers. 

Both WB questions constrained students to answer with single-sentence answers.  We 

cannot measure what effect this constraint had on student answers, though the questions were 

designed to be easily answerable with one sentence.  We anticipated that one sign that this 

constraint was troublesome would be if students started submitting long answers with many 

tiles in run-on answers.  Such answers were not observed in the Heritability WB, and very 

rarely seen in the Pure-Breeding WB.  While this does not prove that one sentence was not 

onerous to the student, those that answered the question submitted answers without using an 

excessively long sentence. 

The immutable nature of the tiles constrains answers so that misspellings and some 

grammar errors (verb conjugation, pluralization, etc.) are not possible. Misspellings can 

increase classification errors from automated scorers (Ha and Nehm, 2016), and our 

classification success hints that removing these did help increase classification accuracy, 

particularly for researcher-developed rules.  Certain spelling/grammar errors may correlate 

with misconceptions (Ha and Nehm, 2016), and we do not know whether that aspect of the 

WB format limited student expression of some misconceptions; however, it is clear that 

students were still able to express a wide variety of common misconceptions. 
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5.2. PROSPECTIVE GRADERS CAN BE QUITE ACCURATE AT CATEGORIZING 

CORRECT / INCORRECT ANSWERS BUT LESS SO AT MORE FINE-GRAINED 

CLASSIFICATION 

One hoped-for advantage of intermediate constraint question formats is that they reduce the 

time between developing a new question and being able to provide students with feedback. To 

automatically score an open response question, one must first collect hundreds of student 

answers for training a machine classifier (Nehm et al., 2012). Our data indicate that classifying 

WB answers as correct/incorrect can be done with reasonable accuracy without collecting 

student answers, as our prospective rules performed as well as human graders for the Pure-

Breeding WB, and the kappa of 89% for the Heritability WB corresponds to an accuracy of 

over 98%.  These kappa values are in the top quintile (80-100%) considered ‘almost perfect’ 

(Krippendorff, 1980; Landis and Koch, 1977), and are in a similar range reported by open 

response machine classifiers (Nehm et al., 2012).  These kappa values compare favorably to 

other reports of human inter-rater reliability and automated classification (Nehm et al., 2012; 

Ha et al., 2012). These results indicate that students using WB could be provided with some 

feedback right from the start, meaning that the first group of students to use a new question 

would still receive some benefit.  

Prospective rules for finer-grained classification produced much lower accuracy, but in 

some circumstances, they may be useful if a kappa of ~60-70% is acceptable (i.e., if students 

know that feedback is experimental and they will not be penalized for classification errors, or 

for an instructor trying to identify common problems/misconceptions in a large class).  We did 

not test how the addition of each additional category to the rules would affect accuracy, but 

given the promising result with a binary correct/incorrect classification, we speculate that it 

might be possible to make accurate prospective rules to classify an answer amongst 3 (or 

maybe 4) categories, corresponding to correct, misconception 1, other incorrect. 

Complicating the performance of the prospective grader is the effect of the number and 

makeup of the available tiles.  If we reduce the number of tiles sufficiently, the number of 

possible answers will shrink to the point that a researcher could fairly easily make prospective 

rules with high (or perfect) accuracy for all likely misconceptions or errors.  Conversely, if we 

greatly expanded the number of tiles, it would not be surprising to eventually reach a point 

where we were unable to make prospective rules that would distinguish between 

correct/incorrect with high accuracy.  The number of tiles used in our two WB questions may 

be close to the maximum size of a tile set, as we observed during interviews that additional 

tiles rapidly resulted in a tile set that was cumbersome to use for answer construction.   

Our estimates for the performance of prospective rules may overestimate the performance 

of a typical instructor for specifying rules.  Both researchers were experienced computer 

programmers and teachers, and for the Pure-Breeding WB, the researcher did glance at some 

student answers before specifying rules, albeit several months prior to constructing the rules 

(thus, the prospective rules were not completely uninformed of student answers). Thus, for our 

WB questions, prospective rules may allow only correct/incorrect determination with 

reasonable accuracy. 

 

5.3. WRITING WORDBYTES IS TIME-CONSUMING 

The prospective rules took only 3-5 hours of researcher time to generate.  We consider it likely 

that accuracy for the reduced or full set of categories could have been improved with 
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additional time, but it is unclear how much improvement would be gained by, say, increasing 

the amount of time generating prospective rules to 8 hours.  Since the revised rules (after 

seeing some student answers) performed better than the SVM in all cases and took less than 5 

additional hours to revise and grade, perhaps the best use of researcher time would be to spend 

some time collecting a few dozen (or more) student answers (or soliciting TAs to generate 

student-like surrogate answers) after making the prospective rules and use these to revise the 

rules.   

In addition to this, substantial time and effort were required to write the WB question and 

select the tiles.  Each question took at least 1-3 days of researcher time to write the question, 

validate with students, and revise the tiles. Too few tiles may constrain the student to be 

unable to express certain misconceptions, while too many make the process of answer 

construction laborious.  The time spent making the question and deciding on tiles was not 

included in our time budget for making the prospective rules, though this does represent 

additional researcher time invested in making WB questions.  While researchers making OR 

questions certainly are anticipating and thinking about different possible student answers, WB 

requires additional time/effort in selecting tiles for the student’s answer as well as verifying 

the student can successfully use the tiles to construct a range of meaningful answers.  We did 

not measure how much additional time WB question development would take compared to an 

identical/ similar question as OR, but a majority of the WB development time was spent on 

tile selection.  It is possible that as we become more experienced writing WB questions, we 

may speed this process somewhat, but authoring WB will still likely require substantially more 

time than OR. 

OR graders usually require the collection and human scoring of several hundred to 

thousands of answers for automated scoring by machine learning systems (Nehm et al., 2012; 

Romero et al., 2010).  The collection and human-scoring of the answers is probably the most 

time-consuming part of this approach, as environments such as LightSide (Mayfield et. al., 

2014) and Rapidminer (Hoffman and Klinkenberg, 2013) allow the rapid training of machine 

learners.  Additionally, significant student time is required to generate these answers.  We did 

not have data to compare whether human grading of WB questions was faster or slower than 

similar OR questions, but based on our experience grading similar OR questions, we do not 

consider WB questions to be hugely different in the time requirements to grade.  Grading 

hundreds to thousands of answers to train a machine learner for OR questions takes at least 1-2 

days of instructor time, comparable to the additional time required for selecting WB tiles.  

Thus, WB do not offer faster development of SVM classifiers because many hundreds of 

human-scored unique answers are still required for training. 

WB offers the possibility of being able to rapidly create an instructor-generated prospective 

grader for correctness after the question is authored.  Our prospective rules for correctness had 

high kappa (in the ‘nearly perfect’ range > 0.8 compared to human graders) for both WB, and 

did not require collection and scoring of answers.  Our time estimates of 3-5 hours for 

generating prospective rules and rubrics was for the fine-grained categories.  We did not 

separately track the time spent developing just the correctness rules, but since these are a small 

subset of the prospective grader, making prospective rules for correctness alone likely would 

require far less time.    

Did the faster development of such a grader for WB questions offset the increased time to 

develop the question compared to OR?  We estimate authoring a WB question takes 1-2 days 

longer than OR.  Writing prospective rules for WB correctness consumes 3-5 hours compared 

to ≥ 1 days grading answers.  Additionally, collecting and organizing answers from many 

students may take nontrivial amounts of time, as well as the time cost to students in generating 
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the answers.  Thus, WB may offer slight time savings for developing a correctness classifier 

compared to OR, but not for finer-grained classification that required scoring large numbers of 

student answers for accurate classification (LUT + revised rules or SVM).  

Might a prospective rules approach work for classifying OR answers?  Nehm and Haertig 

(2012) used SPSS text analysis (SPSSTA, SPSS Inc. 2006) to generate prospective rules 

(without seeing student answers) for questions on natural selection. The grader in SPSSTA 

required specifying term libraries for evolutionary biology and many iterations to implement 

rules, requiring hundreds of hours of researcher time, so this approach for scoring OR is 

slower than training a SVM (Nehm and Haertig, 2012).  However, their grader also 

generalizes fairly well to similar questions using different systems, and assesses several key 

concepts.  Had they focused on a single OR question with fewer key concepts, which is similar 

to WB questions, generation of the grader would likely have been faster, but we consider it 

unlikely that this approach would be as fast as the 3-5 hours we spent on our prospective WB 

graders. 

   

5.4. SUPPORT VECTOR MACHINE PERFORMANCE ON WORDBYTES IS SIMILAR TO 

THAT ON OPEN RESPONSE QUESTIONS 

For building a machine-learning automated classifier, the WB constraints do not produce an 

answer set that requires dramatically fewer training examples compared to OR.  In all cases, 

hundreds of training examples are needed to approach a kappa of 80%, and sometimes 

hundreds more to approach the performance of the inter-human classification or the revised 

human classifiers.  Our conclusions are unchanged if we reverse the training and testing 

semesters so this does not appear to be an artifact of differences in student population or usage 

environment between semesters (differences in classifier size, changes in student skill level 

between schools, etc).  Thus, our hypothesis that WB would allow training of a machine 

classifier with dramatically fewer examples or less effort is not supported by our data. 

While the WB succeeded in reducing the number of possible answers, it also had the effect 

of reducing the efficiency in collecting unique student answers for training.  For machine 

classifiers to successfully generalize training answers to correctly classify novel answers 

usually requires several hundred examples (Nehm et al., 2012; Romero et al., 2010). 

Unfortunately, collecting answers from several hundred students yielded far fewer unique 

answers, so WB may effectively increase the number of students (or collected answers) that 

are required to train the classifier due to the duplication. 

Comparing the performance of the SVM+LUT classifier with the revised rules indicates 

that researcher time would be better spent revising the prospective rules rather than grading 

additional answers for training the SVM.  The time burden of grading an additional semester’s 

worth of answers and revising the rules is similar, but revised rules have a larger increase in 

accuracy.  Thus, the WB constraints appear to allow a human, but not a machine learner (SVM 

or decision tree), to more efficiently specify rules for grading. 

 

6. CONCLUSION 

We found that the constraints of the WB format might allow instructors and question 

developers the possibility of specifying rules-based graders to identify correct answers without 

the laborious step of collecting and scoring many student answers.  More generally, we find 
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WB questions offer a promising compromise between constraint and student freedom where 

students have the freedom to construct a wide variety of correct and incorrect answers, 

producing answers that the question authors did not anticipate.  However, WB questions 

require much more time to author than similar MC or OR questions. 

It is unlikely that every WB question would have similar success in grading with 

prospective rules.  Both of our questions had fairly directed question stems with single 

sentence answers.  More open-ended questions (i.e., “Suggest a perturbation to a system and 

its effects”, “Specify a hypothesis and how you might test it”) or those requiring many 

sentence answers may be more difficult to grade.  Our use of fixed pre-placed tiles further 

constrained answers and likely simplified the prospective rules.  For writing prospective 

graders, we realized some tiles were particularly problematic:  tiles that were logical-NOT 

tiles (i.e. “never”, “not”) would likely increase the complexity of rules.  Our questions were 

answerable without these tiles, and such logical-NOT tiles were not present in our questions 

analyzed here. 

Often student answers contain a mixture of correct and incorrect ideas (Nehm et al., 2012) 

or multiple incorrect ideas, and while the WB questions allow for answers that do have this 

mix, building a classifier to give useful feedback would require the time-consuming step of 

collecting student answers.   Additionally, WB questions require substantial effort and 

iteration to choose tiles to allow a variety of answers without becoming cumbersome.  

Questions that require a diverse vocabulary would not mix well with WB questions (i.e. 

“Name a species and explain how it does X”).  Finally, we focused on questions that were 

modified from OR questions, developing novel WB questions may pose additional challenges. 

WB additionally have the limitation that vocabulary is given to the student in the tiles.  

Struggling students who are unfamiliar with the tile words may have difficulty using these 

words to compose an answer, while other students might be prompted by the tile words to give 

a different answer than on a pure OR question.  We have not attempted to measure or quantify 

these effects, but are investigating how students interact with WB questions in a future study.  

How do WB compare with and possibly generalize to other similar intermediate constraint 

questions?  While we did not do a direct comparison between WB and other intermediate 

constraint (or MC) questions, there are a wide variety of such questions (Scalise and Gifford, 

2006), so here we focus on those that are similar to WB.  Specifically, we focus on formats 

that require the student to attempt to construct a short plain-language answer, or involve the 

assembly of an answer by arranging fixed tiles.   

A number of question types allow the student to construct a sentence in a format that is 

more constrained (smaller answer space) than WB.  In assembling proof questions (Scalise 

and Gifford, 2006; Bennett, 1993), students choose from a list of (usually already ordered) 

phrases to construct a statement about a chain of reasoning.  Similarly, intralinear questions 

(Scalise and Gifford, 2006) are composed of a sentence with multiple drop-downs for 

selecting words or phrases for completing a sentence.  These question types allow for multiple 

correct answers.  A LUT or prospective rules should be sufficient to accurately score these 

question types, as an intralinear with 3 drop downs or an assembling proof with 8 phrases 

would allow up to a few hundred answers.  However, the constraints of these questions 

dramatically limit flexibility in answer construction compared to WB, and in a future paper, 

we will explore how well WB allow students to express reasoning and mixed idea responses 

(Wendel et al., in prep) compared to those more constrained formats.   

More interesting results have been seen from concept maps that involve arranging various 

concepts and linking relations that are either fixed or student-editable.  This is somewhat 

similar to the tile arrangement in WB, though less constrained and with a different syntax. 
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This format is perhaps closest to WB in terms of answer space.  Some applications allow 

students to generate concept maps (Luckie et al., 2008) with automated classifiers that grade 

by generalizing from a list of correct answers using synonyms and network structure.  This 

approach allowed successful grading of only a fraction (< 1/3) of student answers, and we 

imagine that our success with prospective rules would have a much lower success rate, since 

instructors cannot anticipate all student-typed phrases or concepts.   

A more complex approach is used in Betty’s Brain (Leelawong and Biswas, 2008) where 

students both construct concept maps and interact with a computer teacher that provides 

feedback to the student’s natural language responses in an ongoing dialogue.  Feedback for 

this involves using the concept map as a model and the dialogue involves working through the 

predictions of this model.  For some types of WB questions, it may be possible to similarly 

treat the student’s answer as a model for generating predictions that could be used for 

feedback to the student.  This approach is one we did not explore, as it would require different 

question stems, but is distinct from machine learning or human-based rules and an intriguing 

different approach.   

Our long-term goal with the WB questions is to allow students to iterate their answers with 

useful feedback in order to increase student learning.  We did not explore this here, but will in 

an upcoming paper (Wendell et al., in prep).  Useful feedback will require fine-grained 

classification of student answers beyond correct/incorrect, and this combined with the effort in 

developing WB questions does make them an expensive question type to develop.  Overall, we 

find that the WB format offers some novel trade-offs between constraint and grading. 
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9. APPENDIX 1 

9.1. STUDENT POPULATION 

Table A1: Breakdown of students among courses in this study.  

Semester/WB  Carnegie Classification™ Course Level # students 

Fall 2014  

Pure-Breeding 

R1 Lower 91 

R1 Lower 53 

M1 Lower 21 

Baccalaureate college: diverse fields Upper 12 

Associate’s Colleges:  High Transfer-

Mixed Traditional/nontraditional 

Lower 25 

R1 Upper 35 

Spring 2015  

Pure-Breeding 

R1 Lower 13 

M2 Lower 17 

M1 Lower 17 

R2 Lower 8 

R2 Upper 26 

Associate’s Colleges:  High Transfer-

Mixed Traditional/nontraditional 

Lower 26 

R1 Upper 45 

M1 Lower 15 

Baccalaureate college: diverse fields Upper 11 

R1 Upper 12 

M1 Lower 34 

R1 Lower 34 

Spring 2014  

Heritability 

M1 Lower 121 

M1 Lower 64 

R1 Lower 58 

R1 Lower 372 

R1 Lower 22 

Fall 2014  

Heritability 

R1 Lower 25 

M2 Lower 24 

R3 Lower 31 

M1 Lower 26 

M1 Lower 8 

Associate’s Colleges:  High Transfer-

Mixed Traditional/nontraditional 

Lower 10 

R2 Lower 12 

M1 Lower 42 

R1 Lower 23 

R1 Lower 125 

67 Journal of Educational Data Mining, Volume 9, No 2, 2017



R1 Lower 106 

R1 Upper 18 

R1 Lower 35 

R2 Lower 9 
Note: Course level is lower for 100-200 level courses and upper for 300-400 level courses. 

9.2. DETAILS OF PERFORMANCE OF DIFFERENT CLASSIFIERS 

We primarily used kappa as a metric for grader performance, as it is has been used in several 

other studies, but here present additional metrics of the performance of the rule-based and 

SVM classifiers in Table A2.  Mean precision and recall were averaged across all categories 

using equal weights.  The classifiers and data sets were the same as Table 2 with the 

prospective rules averaged across both semesters.  The revised rules with LUT and SVM with 

LUT were trained (training the SVM or used by human instructors to revise the prospective 

rules) on the first semester answers and tested against the second semester for a direct 

comparison between SVM and revised rules performance. 

 

Table A2: Comparison of performance of classifiers from Table 2 

  Prospective 

rules 

Revised rules 

with LUT 

SVM with 

LUT 

All classes Heritability: 

 

Accuracy: 

Kappa: 

Mean recall: 

Mean precision 

72% 

0.68 

57%   

46%   

96% 

0.96 

93% 

95% 

89% 

0.87 

83% 

90% 

Pure-Breeding: Accuracy: 

Kappa: 

Mean recall: 

Mean precision 

71% 

0.67 

70%   

68% 

90% 

0.89 

81%  

92% 

83% 

0.81 

64%   

66% 

Correctness Heritability: Accuracy: 

Kappa: 

Mean recall: 

Mean precision 

99% 

0.98 

99%  

100% 

100% 

1.0 

100%  

100% 

98% 

0.83 

97%  

87% 

Pure-Breeding: Accuracy: 

Kappa: 

Mean recall: 

Mean precision 

96% 

0.88 

92%   

 98% 

98% 

0.93 

97%   

97% 

94% 

0.83 

92%  

91% 

Reduced 

classes 

Heritability: Accuracy: 

Kappa: 

Mean recall: 

Mean precision 

80% 

0.73 

53%  

45% 

98% 

0.97 

96%  

96% 

92% 

0.89 

90%  

89% 

Pure-Breeding: Accuracy: 

Kappa: 

Mean recall: 

Mean precision 

71% 

0.65 

65%    

82% 

91% 

0.89 

90%  

92% 

83% 

0.80 

82% 

83% 
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9.3. IMPLEMENTATION OF PROSPECTIVE AND REVISED RULES: 

Here we give some examples of the researcher-generated rules used for revised rules (the 

prospective rules used the same approach).  The two researchers worked independently to 

write the rules, though the researcher for the heritability WB had seen the rule sets for the 

pure-breeding WB. The two researchers used slightly different notations for the rules.  For 

both WB rule sets, the vertical slash | character denotes the tile border/delimiter.   

For both WB, the rule sets assigned each answer to only 1 class according to the first rule 

match.  Since the order of rule application could influence classification, instructors had to 

also consider the order of rule application in addition to the rules themselves when 

constructing the grader.  A single class could have one or more rules to allow for different 

phrasings and word order choices, as it was not always possible or practical to account for all 

answers in a single rule.  In the examples below, we present a few illustrative rules as 

example, but we do not provide the entire rule set that consisted of several dozen rules or the 

order they are applied. 

9.3.1. Pure-Breeding WB examples 

For all answers, the comma tile was removed prior to rule application.  Some rules simply 

tested for the presence of one or several tokens in the answer.  For example, the rule 

corresponding to last category in Table 1A matched any answer containing the tiles “Yes it is 

possible because” and “back mutations can occur”.   

More complicated rules had to account for tile synonyms and the presence of optional tiles.  

Here is an example rule for the 4th category in Table 1A: 

 
ans.match('No it is not possible, because|[if you 

breed]|(lightly spotted brown pigs|WS)|for many 

generations|[all]|offspring will be|(lightly spotted 

brown pigs|WS)') 

 

The ans.match function returns true if the contained set of tiles was present in order in 

the student’s answer.  Square bracketed tiles were optional and would match if omitted or 

present once at the indicated location. Tiles enclosed in parenthesis were considered 

synonymous, so any tile enclosed in parentheses would match at that location.  Thus, (lightly 

spotted brown pigs|WS) would match the “lightly spotted brown pigs” and “WS” tiles, but not 

other tiles.  The answer “'No it is not possible, because|if you breed|WS)|for many 

generations|all|offspring will be|WS” would match this rule since because the square bracketed 

optional tiles were all present, and WS matched the (lightly spotted brown pigs|WS) part of 

the rule.  Other matching answers include “'No it is not possible, because|if you breed|WS|for 

many generations||offspring will be|WS” (the optional “all” tile not present) and “'No it is not 

possible, because|if you breed|WS|for many generations|offspring will be|lightly spotted brown 

pigs” (the “WS” tile was replaced with the synonymous “lightly spotted brown pigs”).  

Examples of answers that would not match this rule are “'No it is not possible, because|if you 

breed|WW|for many generations|offspring will be|WS” (because the first “WS” has been 

replaced with a non-synonymous “WW”) and “if you breed|WS|for many 

generations|offspring will be|WS” (because initial “'No it is not possible, because” tile is 

absent).   
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Many rules required accounting for alternate word orderings, treating “WS|and|SS” 

synonymously with “SS|and|WS”.   An example rule used for correct answers (first category 

of Table 1A): 

 
ans.match('No it is not possible, because|offspring will 

be|{(lightly spotted brown pigs|WS)|[and]|(brown 

pigs|WW)|[and]|(heavy spotted red pigs|SS)}|[if you 

breed]|[lightly spotted brown pigs|WS]|[and]|[lightly 

spotted brown pigs|WS]|[for many generations]') 

 

Curly bracketed items require all enclosed items to be present, but in any order.  The curly 

brackets can contain optional (square bracketed) tiles and synonymous (parenthesis bracketed) 

tiles.  Thus, the {(lightly spotted brown pigs|WS)|[and]|(brown 

pigs|WW)|[and]|(heavy spotted red pigs|SS)} in the above rule would 

match “WW|WS|and|SS” as well as “lightly spotted brown pigs|and|WW|and|SS”.  

 

9.3.2. Heritability WB examples 

For all answers, the comma, “usually” and “always” tiles were removed from the student 

answer.   

Nonsense answers (corresponding to category in Table 1B) were answers that lacked 

subjects or verbs.  Any answer that did not contain any of the tiles from the set of (all snails, 

some snails, the snail population, thin-shelled snails, thick-shelled snails) matched this rule, as 

did any answer that did not contain any tiles from the set of (grow thicker shells, increase(s) in 

average shell thickness, have thin-shelled offspring, have thick-shelled offspring, have 

offspring of random shell thickness).  Thus, an answer such as “thin-shelled snails|and|thick-

shelled snails|have thick-shelled offspring” would not be matched by this rule, while an 

answer such as “and|grow thicker shells” would be flagged as a nonsense answer. 

Correct answers needed to contain both of the phrases “thin-shelled snails|have thin-shelled 

offspring” and “thick-shelled snails|have thick-shelled offspring”, separated by “and” or “but”.   

Thus, correct answers included “thin-shelled snails|have thin-shelled offspring|and|thick-

shelled snails|have thick-shelled offspring.” and “thick-shelled snails|have thick-shelled 

offspring|but|thin-shelled snails|have thin-shelled offspring”.  Examples of answers not 

matched by this rule include: “thin-shelled snails|have thin-shelled offspring|and|thin-shelled 

snails|have thin-shelled offspring” (same phrase repeated twice) and “thin-shelled snails|have 

thin-shelled offspring|and|thin-shelled snails|have thick-shelled offspring” (replacing thin with 

thick in just 1 place in answer). 

Answers in for the 8th category in Table 1B were matched by a complex rule that allowed 

for many word-order pemutations and optionally included tiles, similar to the Heritability WB.  

In our notation, the rule was:     

 
ans.contains(|in the presence of crabs|) AND 

ans.contains(|the snail population|[in the presence of 

crabs]|increase(s) in average shell thickness|) AND NOT 

ans.contains(|have thick-shelled offspring|)  
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The ans.contains function returned a true if the contained set of tokens was present in 

order anywhere in the student’s answer.  Square bracketed tiles were optional and would 

match if omitted or present in the answer at the indicated location one time.  The AND and 

NOT in the rule indicates boolean logical-and and logical-not, respectively (logical-or was also 

used in other rules).  For this rule, matching answers are “in the presence of crabs|the snail 

population|increase(s) in average shell thickness” and “the snail population|in the presence of 

crabs|increase(s) in average shell thickness”.  Examples of answers that do not match this rule 

include “in the presence of crabs|the snail population|have thick-shelled offspring” (because 

the “have thick-shelled offspring” tile is included) and “thick-shelled snails|in the presence of 

crabs|increase(s) in average shell thickness” (because “the snail population” tile is missing). 
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