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________________________________________________________________________ 
 
Estimating the difficulty level of math word problems is an important task for many educational applications. 
Identification of relevant and irrelevant sentences in math word problems is an important step for calculating the 
difficulty levels of such problems. This paper addresses a novel application of text categorization to identify 
two types of sentences in mathematical word problems, namely relevant and irrelevant sentences. A novel joint 
probabilistic classification model is proposed to estimate the joint probability of classification decisions for all 
sentences of a math word problem by utilizing the correlation among all sentences along with the correlation 
between the question sentence and other sentences, and sentence text. The proposed model is compared with i) 
a SVM classifier which makes independent classification decisions for individual sentences by only using the 
sentence text and ii) a novel SVM classifier that considers the correlation between the question sentence and 
other sentences along with the sentence text. An extensive set of experiments demonstrates the effectiveness of 
the joint probabilistic classification model for identifying relevant and irrelevant sentences as well as the novel 
SVM classifier that utilizes the correlation between the question sentence and other sentences. Furthermore, 
empirical results and analysis show that i) it is highly beneficial not to remove stopwords and ii) utilizing part of 
speech tagging does not make a significant improvement although it has been shown to be effective for the 
related task of math word problem type classification. 
 
Keywords and Phrases:  text categorization, math word problems, relevant and irrelevant sentences, 
probabilistic graphical model, support vector machine, stopword removal, part of speech tagging, correlation 
between sentences 

________________________________________________________________________ 
 
 

1. INTRODUCTION 

Math performance on high-stakes tests has become increasingly important in recent years 

and there has been some improvement in academic achievement following the passage of 

the No Child Left Behind Act in 2002 [US. Dept. of Education, 2006]. Yet, the overall 

performance of American students in math has been of particular concern [Gollup et al. 

2002]. Increasing trends in computers’ utilization for math teaching have led to the 
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development of various intelligent tutoring systems (ITS) in the math domain [Beal, 

2007; Koedinger et al., 1997; Shiah et al., 1995].  

Intelligent Tutoring Systems (ITS) provide their effective, individualized instruction 

by adjusting the characteristics (e.g., type, difficulty level, context) of their educational 

materials dynamically for each student. For instance, if a student is found to benefit from 

a specific difficulty level, then such a problem should be available. Similarly, if a student 

seems bored of a particular problem, the problem type or context can be adjusted 

according to the student's interests. If a system runs out of educational materials of a 

particular kind, the benefits of ITS become limited. Therefore, providing sufficient 

content is very essential for ITS [Arroyo et al., 2001; Arroyo and Woolf, 2003; Birch and 

Beal, 2008; Hirashima et al., 2007; Ritter et al., 1998]. However, providing sufficient 

educational content is a time consuming, labor intensive process that requires expert 

knowledge of the domain, and has long been seen as a major bottleneck for the 

development of tutoring systems [Arroyo et al., 2001; Arroyo and Woolf, 2003; Birch 

and Beal, 2008; Hirashima et al., 2007; Ritter et al., 1998]. There have been some 

attempts to reduce the development costs by bringing teachers and students into the 

process of content creation (specifically, math word problem creation) [Arroyo et al., 

2001; Arroyo and Woolf, 2003; Birch and Beal, 2008; Hirashima et al., 2007]. However, 

teachers are extremely busy people, and authoring process makes their work even harder 

instead of easing their load [Arroyo and Woolf, 2003]. Having students create math word 

problems (i.e., content) from available information is known as problem posing, and have 

been noted to reduce the development time significantly (as much as creating 60+ math 

word problems from 2 days to 2 hours [Birch and Beal, 2008]). Yet, created content 

needs reviewing in terms of language, accuracy, quality, difficulty level, etc. [Arroyo and 

Woolf, 2003; Birch and Beal, 2008]. 

Problem posing not only helps intelligent tutoring system developers accelerate 

content authoring, but is well-recognized as an important way to learn mathematics 

[Brown and Walter, 1990; Hirashima et al., 2007]. However, it has explicitly been noted 

that analysis of student created problems puts a very high burden on teachers, meaning 

that problem posing could become less popular as a learning method in reality despite its 

importance [Hirashima et al., 2007]. According to these authors, to evaluate student 

posed problems, the type of the created problems should be detected, important 

information (i.e., relevant information for the solution of the problem) in the sentences 

should be found, and relations between those should be identified. They proposed a 

problem posing environment with sentence integration (i.e., individual sentences of the 
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problems were provided to students to arrange) that could analyze the student created 

problems automatically with its sentence integration framework. However it does not 

allow students to create problems directly, therefore does not help to analyze the fully-

student-generated problems automatically. Cetintas et al.[2009], recently attempted to 

solve the first task for the analysis of user-generated problems, namely the identification 

of math word problem types. However, the identification of relevant and irrelevant 

information, as the second step, still remains to be solved. An early work that is relevant 

to this task was done in [Bobrow, 1964]. He developed the STUDENT system that 

accepts high school algebra word problems from its users, analyzes the user-asked 

problems automatically, and answers the questions based on the information contained in 

the inputted problems. The STUDENT system, which has been manually designed by 

exploiting the structure of the high school algebra problems, tries to interpret the 

sentences of problems with format matching. Although the STUDENT system has been 

shown to be effective for most of the algebra word problems in the first year high school 

text books, it is noted that it would not handle problems with excessive verbiage or 

implied information [Bobrow, 1964].  Therefore the need to identify relevant and 

irrelevant information still remains to be resolved. Another related work that focuses on 

relevant and irrelevant information was recently done by Cetintas et al., who proposed to 

automatically identify students’ relevant and irrelevant questions asked in a micro-

blogging supported classroom by utilizing the correlation between questions and 

available lecture materials [Cetintas et al., 2010; Cetintas et al., To Appear]. Yet, their 

work focused on classifying the questions asked in a lecture, which is a different task 

from identifying the relevant and irrelevant sentences in a math word problem, and they 

did not use a joint classification technique that considers the correlation among all 

questions. 

In mathematics education, word problem or story problem is the term that is often 

used to refer to any mathematical exercise on which significant background information 

is presented as text rather than in mathematical notation [Verschaffel, 2000]. The focus of 

this paper is a novel application of text categorization to identify two sentence types in an 

arithmetic word problem, namely relevant and irrelevant sentences (examples given in 

Table I). A relevant sentence in a math word problem is a sentence that contains useful 

information for the solution of the problem, whereas an irrelevant sentence is non-

informative. Students with math learning disabilities have difficulties in solving all types 

of word problems but especially the word problems with irrelevant information 

[Marzocchi et al., 2002; Mastropieri and Scruggs, 2006; Passolunghi and Siegel, 2001].  
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Therefore, the level of noisy data (i.e., the number of irrelevant sentences and non-

informative numbers in those sentences) is one of the factors in determining the difficulty 

level of the math word problem, along with other factors such as the readability level. 

This paper studies the classification problem of relevant and irrelevant sentences in 

mathematical word problems and aims to be a component of math tutoring systems i) that 

need to automatically construct libraries of word problems, and ii) that aim to make 

problem posing an easy-to-use technique by automating the analysis of student-generated 

problems. Unlike traditional text categorization that only considers the text in the 

documents to be classified, relevant and irrelevant sentences in math word problems are 

short and correlated with each other as they together form the math word problem. The 

correlation between those sentences can be utilized to improve the effectiveness of the 

categorization. 

This paper proposes a novel joint probabilistic classification model to estimate the 

joint probability of the classification decisions of all sentences in a math word problem. 

The proposed approach that utilizes the correlation between all sentences in a math word 

problem along with the correlation between the question sentence and other sentences 

and the sentence text, is compared to i) a traditional text categorization approach that 

only considers sentence text and ii) a novel text categorization approach that utilizes the 

correlations between the question sentence and other sentence in a math problem along 

with the sentence text. We show that i) the approach of utilizing the correlation between 

the question sentence and other sentences along with the sentence text significantly 

outperforms the traditional text categorization approach of only using the text in 

sentences, ii) the approach that additionally considers the correlation between all 

sentences outperforms both of the aforementioned approaches.  Furthermore, the paper 

explores the effect of using stopword elimination and part of speech tagging in all the 

models. Experiment results show that including stopwords i) into the feature space of 

SVM classifiers and ii) into the feature space to be used for estimating the correlation 

between sentences, significantly improve the effectiveness of the classifiers. Moreover, 

Table I.  A Math Word Problem Example with Relevant and Irrelevant Sentences. The irrelevant 

sentences that are shown in italics are not informative for the solution of the problem. Note that 

the stopwords are in bold. 

The Island Tours Theater opens except for Sunday. The theater opens 
only in the morning. There are 210 people on a tour. The tourists are 

divided into equal groups. If each group has 7 people, how many groups 
will there be? 
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utilization of part of speech tagging has not been found to result in consistent and 

significant improvements in this work, although it has been shown to be beneficial in 

prior work for the related task of categorizing math word problems with respect to their 

types [Cetintas et al., 2009].  

 

2. METHODS AND MODELING APPROACHES 

This section describes several modeling approaches for the categorization of relevant and 

irrelevant sentences in mathematical word problems. 

 

2.1 Independent Classification Model (SVM_TermsOnly) 

A standard text categorization (TC) model, which will be referred as the independent 

classification model, makes the classification decisions of documents independently by 

only considering the individual features of the documents (i.e. bag of words 

representation of the sentences in math word problems). In this work a SVM classifier is 

chosen as the independent classification model1 since it is one of the most accurate and 

widely used text categorization techniques. Particularly the simplest linear version of 

SVM is chosen since it is fast to learn and fast to classify new instances [Joachims, 1998; 

Yang and Liu, 1999]. The SVM model in this work can be formulated as a solution to an 

optimization problem as follows:  

where ݀పሬሬሬԦ is the ݅௧ document represented as a bag of words in the TC task; ݕ߳ሼെ1,1ሽ 

is the binary classification of ݀పሬሬሬԦ, ୵՜ is the parameters of the SVM model and b is the bias 

parameter. ܥ has the control over the tradeoff between classification accuracy and 

margin, which is tuned empirically. The categorization threshold of each SVM classifier 

is learned by 2-fold cross validation in the training phase (i.e., sentences from half of the 

training problems are used for the first-fold while sentences from the problems in the 

other half are used for the second-fold).  

This independent model is a standard TC method, as mentioned, and will be referred 

to as SVM_TermsOnly. 

 

                                                                      
1 The SVMlight toolkit [Joachims, 1999] is utilized. 

݉݅݊
௪,
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2.2 Improved Classification Model (SVM_TermsQSSim) 

The independent classification model neglects the valuable information that is hidden in 

the correlations among sentences, especially the correlation between a question sentence 

and other sentences in a math word problem. As the question sentence depends on the 

information given in the relevant sentences, it is important to investigate the correlation 

between individual sentences and the question sentence. This sets the grounds for the 

motivation of this improved classification model. 

We propose an improved version of the SVM_TermsOnly classifier by incorporating 

the correlations between all sentences in a problem with respect to the question sentence. 

The correlation between the question sentence and other sentences are calculated via the 

common cosine measure [Baeza-Yates and Ribeiro-Neto, 1999] as follows: 

 

ܵ݅݉൫ ܵ , ܵ൯ ൌ ൫ݏܿ పܵሬሬሬԦ , ఫܵሬሬሬԦ ൯ ൌ
పܵሬሬሬԦ כ ఫܵሬሬሬԦ

ฮ పܵሬሬሬԦฮฮ ఫܵሬሬሬԦฮ

(2) 

where ܵ is the ith sentence and ܵ is the question sentence in a problem, పܵሬሬሬԦ and ఫܵሬሬሬԦ are 

sentences represented as the bag of words vectors, and “כ” denotes the dot product of 

these vectors. We use the common tf-idf weighting scheme along with the cosine measure 

to calculate the sentence to question sentence similarities [Baeza-Yates & Ribeiro-Neto, 

1999]. Tf-idf weighting scheme uses term frequency (i.e., frequencies of terms in a 

sentence) and inverse document frequency (that favors discriminative terms that only 

reside in a small number of sentences). Adding these similarity scores into the baseline 

SVM classifier as a new dimension of the feature space enables us to use the correlation 

between the question sentence and other sentences in this improved model, which will be 

referred to as SVM_TermsQSSim. The categorization threshold of this classifier is also 

learned by 2-fold cross validation in the training phase. 

 

2.3 Joint Probabilistic Classification Model (JointProbClass_Model) 

Utilizing the correlation between the question sentence and other sentences in a problem 

is an effective way of improving the classification performance over a standard TC 

method with an independent classification model. However, there is still more room to 

improve. In a math word problem, there is often some correlation between a relevant 

sentence with another relevant sentence as well as an irrelevant sentence with another 

irrelevant sentence. This is intuitive as all relevant sentences are giving information for 

the final question that the problem is asking while most irrelevant sentences tend to talk 

about the same irrelevant concept. 
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The proposed joint probabilistic classification model considers the classification score 

from the SVM_TermsQSSim classifier on every sentence as well as the correlations 

among all sentences to estimate the joint probability of the classification decisions of all 

sentences via a probabilistic graphical model. 

Applications of graphical models have been used to solve problems in many different 

domains. As undirected graphs can be used to represent correlations between variables 

[Cowell et al., 1999], an undirected probabilistic graphical model is used in this work for 

the joint classification model. A Boltzmann machine [Hinton and Sejnowski, 1986] is a 

special type of undirected graphical models that has been applied to tasks such as 

question answering [Ko et al., 2007]. The proposed joint probabilistic classification 

model is a version of a Boltzmann machine adapted for text classification and can be seen 

in detail in Figure 1. 

ሺܯܸܵ  ܵሻ is the classification score from the SVM_TermsQSSim classifier for the ith 

sentence in a problem and is used to produce a sentence relevance score for an individual 

sentence; ܵ݅݉ሺ ܵ, ܵሻ is the similarity score between a sentence ܵ and another sentence 

ܵ in a problem and represents the correlation among sentences; ߜሺ ܵ ൌൌ 1ሻ is an indicator 

function and is 1 if the sentence ܵ is relevant, 0 otherwise; ߜሺ ܵ ൌൌ 0ሻ is again an 

indicator function and is 1 if the sentence ܵ is irrelevant, 0 otherwise; ߙ, ߙଵ, ߚଵଵ, ߚ are 

model parameters and are estimated from the training data by maximizing the log 

likelihood using the Quasi-Newton algorithm [Minka, 2003]. As can be seen in Figure 1, 

the joint probabilistic classification model not only utilizes the correlation between the 

question sentence and other sentences along with the sentence text (i.e., by including 

ሺܯܸܵ ܵሻ scores), but also considers the correlation among all sentences (i.e., by 

incorporating ܵ݅݉ሺ ܵ, ܵሻ scores). The joint model helps to make a more accurate 

decision for the sentences whose SVM_TermsQSSim scores are not accurate (i.e., 

leading to wrong categorization) but have high similarity with sentences of the same 

ܲሺ ଵܵ, … , ܵேሻ ൌ  
1
ܼ
ݔ݁ 

ە
ۖ
ۖ
۔

ۖ
ۖ
൫ܯൣܸܵߙۓ ܵ൯ߜ൫ ܵ ൌൌ 0൯൧ 

ே

ୀଵ

൫ܯଵൣܸܵߙ ܵ൯ߜ൫ ܵ ൌൌ 1൯൧

ே

ୀଵ
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Fig. 1. Joint Probabilistic Classification Model 
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class, as high similarity scores will compensate for the total sum in the exponential in 

Figure 1. 

For a test problem of N sentences, all possible configurations that consider sentences 

as relevant or irrelevant are calculated (i.e. each sentence can be relevant or irrelevant, 

making a total of 2ே configurations to consider for N sentences) with the joint 

probabilistic model using the estimated parameters. The configuration with the highest 

probability gives the joint probabilistic classification decision for all sentences of that 

problem. Note that calculation of all configurations is a burden if the number of nodes in 

the graph (i.e., number of sentences to jointly classify) is large. In a math word problem, 

there are less than 10 sentences which is a key point that makes it possible to model a 

joint probabilistic classifier, unlike traditional classification tasks where there are too 

many documents to consider and joint classification is intractable. 

The joint probabilistic classification model will be referred to as 

JointProbClass_Model. 

 

2.4 Avoiding Stopwords’ Elimination 

As a common text preprocessing technique, stopword removal, suggests that many of the 

most frequent terms in English such as why, where, he, she, there, is, etc. are not content 

words as they appear almost in every document, do not carry important information about 

the context of the documents and should be removed [Frakes and Baeza-Yates, 1992; 

Scott and Matwin, 1999; Sebastiani, 2002]. However, prior research has also shown that 

stopwords can be useful for text categorization of mathematical word problems (i.e. with 

respect to their types) [Cetintas et al., 2009]. In this paper, the effect of avoiding 

stopwords' removal over classifier performance is explored in two ways: i) when they are 

not removed for the bag of words representation of the input space for the SVM 

classifiers, and ii) when the correlations among sentences are calculated with the cosine 

similarity measure. We used the Lemur information retrieval toolkit2 for stopwords' 

removal and stemming. Stemming is applied to the data for all the models in this work. In 

particular the INQUERY stopwords list and Porter stemmer were utilized respectively 

[Porter, 1980]. 

 

2.5 Utilizing Part of Speech (POS) Tagging  

Part of speech (POS) tagging is the process of identifying the corresponding linguistic 

category (e.g. noun, verb, adjective, adverb, etc.) of words in a text. In recent prior 

                                                                      
2 http://www.lemurproject.org/ 
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research, part of speech tagging has been shown to be useful for the classification of 

mathematical word problem with respect to their types [Cetintas et al. 2009]. The main 

intuition for utilizing the part of speech tagging is the fact that different parts of speech 

can be discriminative for different classes in classification tasks. In this work, the effect 

of utilizing part of speech tagging3 is explored for all proposed classification models. In 

particular, part of speech frequencies of each sentence are included in the input space of 

the SVM classifiers by including each of the frequencies as an additional input 

feature/dimension (i.e. 1 new feature for each part of speech, making a total of 36 new 

features). 

 

3. EXPERIMENTAL METHODOLOGY 

3.1 Dataset 

To the best of our knowledge, there is no work done using mathematical word problems 

so far and therefore we built our own corpora for our experiments. Hence we manually 

collected 120 mathematical word problems that totally include 518 sentences (out of 

which 308 are relevant, and 210 are irrelevant) from Grade 3-5 mathematics textbooks 

[Maletsky et al., 2004] under the guidance and with the help of our collaborators who are 

experts in educational studies. The problems are grouped with respect to the number of 

irrelevant sentences within each problem: there are 56 problems having exactly 1, 40 

problems having exactly 2, and 24 problems having at least 3 irrelevant sentences. One 

fourth of the problems in each group are used to train the models and the other three 

fourths of the problems are used for testing. Details about the relevant/irrelevant 

sentences are given in Table II. 

 

 

                                                                      
3 http://nlp.stanford.edu/software/tagger.shtml is used. 

Table II. Statistics About Each Sentence Type. The number of average terms for each sentence 

type after stemming and stopwords' removal under the default column; after stemming and 

avoiding stopwords' removal under the with stopwords column. 

 

Sentence 
Type 

Number of Total 
Sentences

Average Length (Words) 
default with stopwords 

Relevant 308 5.42 10.39 
Irrelevant 210 6.03 10.34 
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3.2 Evaluation Metric 

To evaluate the effectiveness of the categorization of relevant and irrelevant sentences, 

we use the common  ܨଵ measure, which is the harmonic mean of precision and recall 

[Baeza-Yates et al., 1999; Rijsbergen, 1979]. Precision (p) is the ratio of the correct 

categorizations by a model divided by all the categorizations of that model. Recall (r) is 

the ratio of correct categorizations by a model divided by the total number of correct 

categorizations. A higher  ܨଵ value indicates a high recall as well as a high precision. 

 

ଵܨ ൌ
ݎ2
  ݎ


(3) 

 

4. EXPERIMENT RESULTS 

This section presents the experimental results of the methods that are proposed in the 

Methods and Modeling Approaches section. All the methods were evaluated on the 

datasets as described in Section 3.1. 

An extensive set of experiments was conducted to address the following questions: 

1. How effective is the TC method that utilizes the correlation between the 

question sentence and other sentences along with sentence text 

(SVM_TermsQSSim) in comparison to the approach that only uses sentence text 

(SVM_TermsOnly)? 

2. What is the effect of stopwords’ removal over the performances of all 

classifiers? 

3. What is the effect of utilizing part of speech (POS) tagging over the 

performances of all classifiers? 

4. How effective is the joint probabilistic classification model that additionally 

utilizes the correlation between all sentences (JointProbClass_Model)? 

   

4.1 The Performance of SVM_TermsQSSim 

The first set of experiments was conducted to measure the effect of utilizing the 

correlation between the questions sentence and other sentences in the classification 

model. The details about this approach can be found in Section 2.2. 

More specifically, SVM_TermsQSSim classifier is compared with SVM_TermsOnly 

classifier on the categorization of relevant and irrelevant sentences in math word 

problems. Their performance can be found in Table III and Table IV. It can be seen that 
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the SVM_TermsQSSim classifier almost always outperforms (for 5 out of 6 comparisons; 

i.e., for 4 comparisons in Table III and 2 additional comparisons in Table IV) the 

SVM_TermsOnly classifier. The only exception occurs due to the fact that 

SVM_TermsQSSim classifier loses it advantage of utilizing the correlation between the 

question sentence and other sentences when stopwords are removed during the 

correlation estimation in which case estimated correlations are not accurate enough.  

 

 

Paired t-tests have been applied for this set of experiments and statistical significance 

with p-value of less than 0.001 has been achieved in 4 out of 6 comparisons in favor of 

using the correlation between the question sentence and other sentences along with terms 

Table III. Results of the SVM_TermsQSSim and SVM_TermsOnly classifiers in comparison to 

each other for two stopword configurations: when stopwords are i) removed or not for the bag of 

words representation of the input space for the SVM classifiers and ii) when stopwords are 

removed or not while correlations between the question sentence and other sentences are 

calculated for each problem. The performance is evaluated with the ܨଵ measure. 

 

 
Methods  

Stopword Configuration for 
Terms 

 

default with stopwords  

SVM_TermsOnly 0.592 0.668  

SVM_TermsQSSim 0.651 0.660 default 
 0.663 0.675 with stopwords 
 Stopword Configuration for Similarity Estimation 

 

Table IV. Results of the SVM_TermsQSSim and SVM_TermsOnly classifiers in comparison to 

each other for two main configurations for the bag of words representation of the input space for 

the SVM classifiers: i) when stopwords are removed or not and ii) when part of speech tagging 

is utilized or not. The performance is evaluated with the ܨଵ measure. 

 
 
Methods  

Stopword Configuration for 
Terms 

 

default with stopwords  
SVM_TermsOnly 0.592 0.668 default (without POS) 
 0.644 0.644 with POS 
SVM_TermsQSSim 0.663 0.675 default (without POS) 
 0.673 0.689 with POS 
 Part-of-Speech Configuration 
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over the standard text categorization approach of only using the sentence text. To the best 

of our knowledge, this is the first work to categorize relevant and irrelevant sentences in 

math word problems. Results discussed above show that utilizing the correlation between 

the question sentence and other sentences significantly improves the categorization of 

relevant and irrelevant sentences in math word problems and the correlation should not 

be neglected.  

 

4.2 The Effect of Stopwords’ Removal 

The second set of experiments was conducted to evaluate the effectiveness of including 

stopwords along with other words i) as terms that constitute the feature space of the SVM 

models, and ii) as terms that constitute the feature space to be used by the Cosine 

similarity to measure the similarity between sentences (or term vectors) in a word 

problem. The details about this approach are given in Section 2.4. 

This section specifically compares all classifiers with themselves with respect to their 

performances when stopwords are included or not as additional dimensions to their 

feature spaces. It can be seen from the results in Table III that SVM_TermsOnly 

classifier has a statistically significant performance improvement (with p-value less than 

0.001) when stopwords are included in the feature space of the SVM_TermsOnly 

classifier. For the SVM_TermsQSSim classifier, inclusion of stopwords are two-fold, as 

discussed above, i) they can be incorporated into the feature space of their SVM models 

(note that 2 comparisons in Table III and 1 more comparison in Table IV can be made), 

ii) they can be incorporated into the feature space of Cosine similarity (note that 2 

comparisons can be made in Table III). For the second configuration (i.e., when 

stopwords are incorporated into the feature space of Cosine similarity or not), statistically 

significant results have been achieved (with p-value less than 0.01) in favor of including 

the stopwords into the feature space of Cosine similarity for both comparisons. For the 

first configuration, statistically significant results (with p-value less than 0.05) have again 

been achieved in favor of including the stopwords into the feature space of SVM models 

for 2 out of 3 comparisons and these results are consistent with the prior work on the 

categorization of mathematical word problems with respect to their types [Cetintas et al., 

2009]. The only exception occurs due to the fact that SVM_TermsQSSim classifier 

behaves relatively bad when stopwords are removed during the correlation estimation in 

which case estimated correlations are not accurate enough (note the same exception 

discussed in Section 4.1). One interesting observation for this set of experiments is that 

completely ignoring stopwords in either case does not lead to a sharp reduction on the 
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performance of SVM_TermsQSSim classifier due to the fact that incorporation of the 

sentence to question sentence similarities into the SVM model becomes effective enough 

for resulting in a superior performance over the configuration of the SVM_TermsOnly 

classifier that eliminates stopwords.  

 

4.3 The Performance of Utilizing Part of Speech (POS) Tagging 

The third set of experiments was conducted to evaluate the effectiveness of utilizing part 

of speech tagging (i.e., including part of speech frequencies) into the feature space of the 

feature space of the SVM models. The details about this approach are given in Section 

2.5. 

This section specifically compares all classifiers with themselves with respect to their 

performances when part of speech frequencies are included or not as additional 

dimensions to their feature spaces. It can be seen from the results in Table IV and V that 

utilization of part of speech tagging does not always improve the categorization 

performance. Statistical significance (with p-value less than 0.001) has been achieved for 

some of the comparisons both in favor of and against using part of speech tagging. 

Specifically, statistical significance (with p-value less than 0.05) has been achieved in 

favor of using POS tagging for SVM_TermsQSSim classifier for both stopword 

configurations in Table IV. Similarly, significant improvement has been observed (with 

p-value much less than 0.001) for SVM_TermsOnly classifier for the “default” 

configuration of stopwords in Table IV whereas significantly worse (with p-value less 

than 0.001) results have been observed for the “with stopwords” configuration in Table 

IV. For the JointProbClass_Model classifier, the observed results that can be seen in 

Table V have been found to be not significantly different (i.e., p-value bigger than 0.05) 

in favor of or against using POS tagging. Overall, utilizing POS tagging has not been 

found to be an effective approach to improve the effectiveness of the categorization 

although it has been shown to be effective for the categorization of math word problems 

with respect to their types in [Cetintas et al., 2009]. This can be explained by the fact that 

almost all of the POS frequencies (except for NNPN & WRP) are uniformly distributed 

among the relevant and irrelevant sentences in math word problems as it can be seen in 

Figure 2. Indeed, WRP tag covers some discriminative stopwords like “how” that can 

mostly be seen in relevant sentences. This helps the SVM_TermsOnly classifier alleviate 

the performance loss in case of stopwords removal (i.e., the “default” stopword 

configuration in Table IV). Yet, when stopwords are included, POS tagging again 

becomes ineffective. 
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4.4 The Performance of the Joint Probabilistic Classification Model 

(JointProbClass_Model) 

The final set of experiments was conducted to evaluate the effectiveness of incorporating 

the correlations between all sentences into the classification models, namely the joint 

probabilistic classification model. The details about this approach are given in Section 

2.3. 

 

Particularly JointProbClass_Model classifier is compared with SVM_TermsQSSim 

classifier (with the configuration that includes stopwords in the feature space used during 

the correlation estimation) and SVM_TermsOnly classifier. The performance of 

JointProbClass_Model classifier is shown in Table V. It can be seen that the 

JointProbClass_Model classifier outperforms both the SVM_TermsOnly classifier and 

the SVM_TermsQSSim classifier for both POS configurations. Statistical significance 

(with p-value much less than 0.001) has been achieved in favor of utilizing the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Distribution of parts of speech across relevant and irrelevant sentences (frequencies averaged per 

sentence) in math word problems. 

Table V. Results of the JointProbClass_Model, SVM_TermsQSSim and SVM_TermsOnly 

classifiers in comparison to each other for two configurations: when part of speech tagging is  i) 

utilized and ii) not utilized for the input space of the SVM classifiers. The performance is evaluated 

with the ܨଵ measure. 

 
Methods Part-of-Speech Configuration 

with POS without POS 
SVM_TermsOnly 0.644 0.668 
SVM_TermsQSSim 0.689 0.675 
JointProbClass_Model 0.710 0.716 
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correlation between all sentences for all four comparisons in Table V. It should be noted 

that the improvement gained by using the correlation between all sentences help to 

achieve the highest and most significant improvement among all models, and 

configurations (except the performance jump by the approach of including stopwords into 

the feature space of the SVM_TermsOnly classifier over the weak baseline). This set of 

experiments explicitly shows that although utilizing the correlation between the question 

sentence and other sentences in a problem is highly beneficial to better see the 

relationship between relevant sentences in the problem, it is not enough when some of the 

relevant sentences do not have too much in common with the question sentence. 

Therefore, a joint classification model in which the correlations between all sentences are 

taken into account becomes significantly much more effective. Regarding the fact that 

irrelevant sentences do not have much in common with the question sentence, this joint 

model is able to capture the relationship between irrelevant sentences as well as the 

relationship between relevant sentences. Prior work on categorization of relevant and 

irrelevant questions asked in a micro-blogging supported classroom showed the 

effectiveness of utilizing the correlation between the questions and available lecture 

materials [Cetintas et al., 2010]. Since i) there is no external source that can be utilized 

for the categorization of sentences in math word problems, and ii) there are much less 

sentences in a math word problem than questions asked in a lecture, a joint probabilistic 

model becomes tractable to capture the correlations between all sentences in math word 

problems. Experiments results demonstrate the effectiveness of utilizing a joint 

probabilistic classification approach as well as utilizing the correlations between all 

sentences. 

 

5. CONCLUSIONS, DISCUSSION AND FUTURE WORK  

Categorization of relevant and irrelevant sentences in math word problems is an 

important step for estimating the difficulty level of math word problems [Marzocchi et 

al., 2002; Mastropieri and Scruggs, 2006; Passolunghi and Siegel, 2001] and this is an 

important task for many applications. Systems that use problem posing for accelerating 

content authoring or for deepening students’ understanding need to automatically assess 

the difficulty level of problems posed by students (especially for being able to model 

students’ problem posing performances) [Birch and Beal, 2008]. Systems that try to 

automate the process of problem solving (e.g., STUDENT system) need to deal with 

verbose problems and irrelevant information [Bobrow, 1964]. Similarly, systems that try 

to automate the process of building problem libraries of intelligent tutoring systems by 
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analyzing the math word problems (e.g., by categorizing their types as in [Cetintas et al., 

2009]) need to also analyze the difficulty levels of the problems before the problems 

become usable.  

This paper proposes a novel application of text categorization to identify relevant and 

irrelevant sentences in math word problems. Several modeling approaches and several 

preprocessing configurations are studied for this application through extensive 

experiments. Empirical results show that utilizing the correlation between the question 

sentence and other sentences is significantly more effective than using sentence text only. 

Similarly, utilizing the correlations among all sentences (along with the correlation 

between the question sentence and other sentences and sentence text) has been found to 

be significantly more effective than i) the approach of utilizing the correlation between 

the question sentence and sentence text and ii) the approach that only uses sentence text. 

Furthermore, it is found to be significantly more effective to include stopwords into the 

feature space of SVM classifiers as well as into the feature space to be used by the Cosine 

measure during the correlation estimation. Finally, utilizing part of speech tagging is 

found not to be effective, although it has been shown to be useful for categorizing 

mathematical word problems with respect to their types in prior work.  

There are several possibilities to extend the research. The first direction for potential 

future work results from the fact that the accuracy of the proposed classifiers is not high 

enough to utilize directly. It should be noted that this is the first work on categorization of 

relevant and irrelevant sentences in mathematical word problems, and several state-of-

the-art text categorization techniques have been used as well as several novel approaches 

that have been proven to be effective. The fact that the accuracy of the best classifier is 

still not high enough is mainly due to three reasons. Firstly, sentences are very short (as 

shown in Table II), and this makes the classification task substantially harder due to data 

sparsity. Secondly, although both relevant and irrelevant sentences are correlated among 

themselves more, they are also correlated with each other since all of them give 

information about the same problem within the same context. This correlation makes the 

classification task significantly harder as well. These challenges have also been observed 

in the recent related study on identifying relevant and irrelevant questions in a micro-

blogging supported classroom [Cetintas et al., 2010; Cetintas et al., To Appear]. Thirdly, 

only a small amount of training data has been used in this study. Therefore, it is 

worthwhile to see the effect of using more training data on the performance of the 

classifiers. On the other hand, it is possible to use the decisions of the current classifiers 

with confidence scores (i.e., the decisions that the classifiers are confident enough can be 
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used directly whereas the decisions that the classifiers are not confident enough can be 

forwarded for human judgment). The second direction for potential future work is due to 

the fact that the SVM classifiers in this work are using single words as their features (i.e., 

unigram model). It may be helpful to explore n-gram models. However, it should be 

noted that bi-gram or n-gram models are harder to learn (due to much larger feature 

space). With the fact that the sentences are short and the number of available math 

problems is limited, overfitting will be a problem that will have to be dealt with. Yet, it is 

still worthwhile to explore this direction in detail in a separate throughout study.  
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