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One of the recommended approaches in instructional design methods is to optimize the value of working 

memory capacity and avoid cognitive overload. Educational neuroscience offers innovative processes and 

methodologies to analyze cognitive load based on physiological measures. Observing psychophysiological 

changes when they occur in response to the course of a learning session allows adjustments in the learning 

session based on the individual learner’s capabilities. The availability of non-invasive electroencephalogram 

(EEG)-based devices and advanced near-real-time analysis techniques have improved our understanding of 

the underlying mechanisms and have impacted the way we design instructional methods and adapt them to 

the current learner’s cognitive load and valence states. We review Cognitive Load Theory, how cognitive 

load may be measured, and how analysis of EEG data can be applied to enhance learning through real-time 

measurements of the learner’s cognitive load. We show an experiment that provides a proof of concept of 

real-time measures based on EEG indicators and of mental states during learning.

 

1. INTRODUCTION 

Assessing a learner’s engagement and mental load during learning tasks is one of the main 

topics of educational method design. Educational neuroscience offers a conceptual framework 

for understanding in detail how the brain builds cognitive systems from sensory input. It offers 

a physiologically based assessment of variables that may affect these systems and improve the 

efficacy of learning methods (Ansari and Coch, 2006; Carew and Magsamen, 2010; 

Devonshire and Dommett, 2010; Immordino-Yang and Fischer, 2010; Goswami and Szũcs, 

2011). Neuroscience creates a new challenge for education because it provides new 

characterizations of learning through the ongoing physiological state of the student that are 

applicable to instructional design. Real-time measures, such as electroencephalogram (EEG), 

carry the potential to expand our ability to interface with technology and to acquire data 

regarding the impact of learning stimuli on the electrical activity of the brain. Through the 

broad availability of these noninvasive EEG-based devices and analysis techniques, we can 

determine which brain regions are involved in school-taught skills and how their neural 

correlates change over the course of study (Ansari, Smedt, and Grabner, 2012). EEG-based 

physiological measurements that assess learning variables may provide new details with a 
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potential impact on the theory of instructional design methods, and especially on methods of 

online adaptation of the learning environment the cognitive and valence states of the learner. 

We will review how analysis of EEG data can be applied to enhance learning through real-

time measures of the student’s mental load. In the following, we describe the underpinning 

theory and mental mechanisms, and describe a validated application: we start with a learning 

experiment to provide a proof of concept of learning and real-time measures of EEG as 

indicators of mental states. 

2. MENTAL LOAD AND COGNITIVE LOAD THEORY 

Mental load is a multidimensional concept with components drawn from factors such as age, 

mental tasks, physical tasks, and stress (Xie and Salvendy, 2000; Pickup, Wilson, Sharpies, 

Norris, Clarke, and Young, 2005; Wickens, 2008; Meshkati and Hancock, 2011). Borghini, 

Astolfi, Vecchiato, Mattia, and Babiloni (2012), looking for a complete description of mental 

workload, quoted an earlier work by O’Donnel and Eggemeier (1986, p. 41-42): “the portion 

of an individual’s limited capacity that is actually required by task demands.” 

From this perspective, the assessment of mental load is helpful in optimizing the design of 

the features of a learning session such as pace, order, details, and level of difficulty leading to 

increased effectiveness in learning. Such analysis may point to sustained periods of mental 

overload, which ultimately result in a reduction of comprehension, memorizing, and learning, 

with negative emotional effects (Parasuraman, Sheridan, and Wickens, 2008; Wickens, 2008; 

Holm, Lukander, Korpela, Sallinenderive, and Müller, 2009). 

Evaluation of mental load is based on the understanding of human cognitive processes and 

methodologies for the acquisition of measures. Individual mental load combines the situational 

demands with the cognitive efforts derived from the memory structure. Cognitive efforts are 

not necessarily efficient.  The effective mental burden is the mental workload “people must 

bear while working” and the inefficient workload is the one “that workers may avoid” (Xie 

and Salvendy, 2000, p. 221). This statement leads to the development of an information-

processing model; effective workload enables people to access critical data in the working 

memory using an optimized cognitive strategy, while the ineffective workload is generated by 

unnecessary use of mental resources (Sammer, 1996). Implementing the information 

processing model is the basis of the Cognitive Load Theory. 

Cognitive Load Theory is a theoretical concept increasingly involved in the design of 

instructional methods. The fundamental idea of Cognitive Load Theory is that working 

memory is limited so that if the learning task requires too much capacity, learning will be 

slowed down (Sweller, 1988). One of the recommended approaches in instructional design 

methods is to optimize the value of working memory capacity and avoid cognitive overload 

(Höffler and Leutner, 2007; Georgeon and Ritter, 2012). Cognitive Load Theory makes a 

distinction between three types of sources for the learners’ cognitive load: intrinsic, 

extraneous, and germane cognitive load. All three sources are involved in an individual’s 

attempt to solve a problem or to accomplish a task (Sweller, 1988; Chandler and Sweller, 

1991; DeLeeuw and Mayer, 2008; Goldman, 2009). 

Intrinsic cognitive load is determined by the interaction between the nature of the material 

being learned and the capacity of the learners (Sweller, 2010). Gerjets, Scheiter, and 

Catrambone (2004) trace intrinsic cognitive load to the number of elements that must be 

processed simultaneously in working memory for schema creation (i.e., element interactivity). 

Extraneous cognitive load is the effect of instructional techniques that require learners to 
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engage in working memory activities that are not directly related to schema construction or 

automation (Paas, Renkl and Sweller, 2004).  Furthermore, because of the intrinsic cognitive 

load, required for determining interactivity, and the extraneous cognitive load, needed for 

instructional design, are additive, the result may be fewer cognitive resources left in working 

memory to allocate to schema construction and automation during learning (Sweller, 1998). 

Consequently, learning in educational setups is impeded (Paas, Renkl and Sweller, 2004). 

Germane cognitive load is the result of favorable cognitive processes, such as abstractions and 

elaborations, that are promoted by the instructional presentation (Gerjets et al., 2004). 

Several findings suggest that extraneous cognitive load should be a primary consideration 

when designing instruction and facilitate knowledge acquisition (van Merriënboer and 

Sweller, 2005; Tabbers, Martens, and van Merriënboer, 2004; Plass et al., 2013). Extraneous 

cognitive load, by its definition, is under instructional control and can be varied by the way in 

which information is presented and the actions required by the students. Optimized efficiency 

in a learning task can be achieved when the distribution of learning tasks suits the learner’s 

needs and capabilities.  The goal is not necessarily minimizing cognitive (or mental) load 

during learning, but optimizing it for learning. 

Optimal management of cognitive resources must distinguish between external control 

through proper instructional design and internal control based on average learners’ strategies 

for dealing with high cognitive load (Bannert, 2002). Personal cognitive load (i.e., germane 

cognitive load) may be adjusted by the terms of optimization of the instructional assets subject 

to the assessment of the learners’ needs and abilities. An adequate measurement of the 

cognitive load may improve the structure of the necessary instructional aids and the personal 

efficacy in learning (Mayer and Moreno, 2003; Morrison and Anglin, 2005; Cooper, 2008; 

Eysink and de Jong, 2012). 

The novelty of the present study is in the methodology applied for assessing the 

effectiveness of a learning environment, based on the cognitive load of the user, as extracted 

from the changes in neural activation during learning scenarios. The relative cognitive load 

indices introduced in this study expand the current theoretical field of neurophysiological 

measures concerning cognitive load. 

3. MEASUREMENTS OF COGNITIVE LOAD 

Cognitive load measurement techniques are typically organized into three main domains: 

subjective measurements, based on perceived mental load; performance measures, based on 

the output of predetermined scales of normal task performance (including subdivisions of 

primary and secondary task measures); and psychophysiological measures (Cain, 2004). 

Subjective techniques typically involve asking the participant, in very structured ways, how 

he or she would rate the difficulty of the training material (Whelan, 2007). However, the 

setting, situation, and context can often affect the rater’s score as much as the actual task 

difficulty.  Individual differences play a significant role in the accurate assessment of 

cognitive load.  For example, Hancock and Meshkati (1988) cite research showing that 

subjects who scored highly on intelligence tests actually rated a problem as harder than 

subjects who scored less highly, even though the problems were the same. 

Subjective questionnaires have a limited sensitivity to changes in cognitive load levels; 

perceived cognitive load may go up as well as down, while performance remains the same, 

particularly when tasks present only a low cognitive load. There is also a lack of consistency 

between performance ratings and subjective ratings of cognitive load, difficulty, and effort. 
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Performance measures also tend to be task-specific, vary within tasks, and not be easily 

replicated across unrelated tasks.  

Performance measures of cognitive load can be classified into two broad types: primary 

task measures and secondary task measures (Cain, 2004). The performance of the primary task 

measures will always be of interest to determine participant cognitive load while performing 

the task and to examine whether it derives from the task difficulty or the participant’s ability to 

perform it. In secondary task procedures, the performance of the task itself may have no 

practical value and serves only to measure the cognitive load (Lysaght et al., 1989, Cain, 

2004). To have primary task measures that are reliable, tests must have an appropriate context, 

relevance, and representation. 

The combination of performance and cognitive load measures has been identified to 

constitute a reliable estimate of the mental efficiency of instructional techniques (Paas, 

Tuovinen, Tabbers, and Van Gerven, 2003). Further research into the sensitivity of the 

combined design has limited the scope of those methods, however. For example, Paas’ 

cognitive load questionnaire (Lepink et al., 2013) was shown to be sensitive to variations in 

intrinsic load, and a differential sensitivity to high and low extraneous load conditions was not 

evident. Workload profile index, a subjective, self-report questionnaire, may be sensitive to 

intrinsic load results under low extraneous load requirements but susceptible to extraneous 

load effects under high intrinsic load conditions (Rubio, Díaz, Martín, and Puente, 2004). The 

conclusion is that none of the methods used is entirely comprehensive in their diagnostic 

utility and predictive power for all types of load. 

Despite those limitations, the combined method, which merges questionnaires of perceived 

cognitive load (based on effort rating and challenging rating) with a measure of performance 

(such as response time, scores, etc.), is considered to measure the total cognitive load without 

distinction between its three sources (DeLeeuw and Mayer, 2008). 

4. PHYSIOLOGICAL METHODS 

The need to measure cognitive load objectively and validly has encouraged exploration of 

alternative methods. Physiological indices assume that cognitive load can be measured using 

the level of physiological activation. These responses are physical signals that make it possible 

to discover human psychological processes by monitoring the physical changes. 

Psychophysiological measures are grouped according to the controlling nervous system 

they measure (Dirican and Göktürk, 2011). The human nervous system has two parts, the 

central nervous system (CNS) and the peripheral nervous system (PNS). The CNS consists of 

the brain, brain stem, and spinal cord. The main measures related to CNS are 

electroencephalography (EEG), such as event-related brain potentials (ERP), oscillations and 

electrooculography (EOG). The leading measures of the PNS are heart rate (HR), heart rate 

variability (HRV), pupil dilation, eye movements, galvanic skin response (skin conductance), 

and electromyogram (EMG). 

The main benefits of the psychophysiological measures of cognitive load are the objectivity 

of the measures, the sensitivity to the different cognitive processes, the unobtrusiveness of the 

procedures, and their implicitness and continuity (Dirican and Göktürk, 2011). The last 

advantage is of crucial importance. Implicitness and continuity of EEG measures allow near 

real- time assessment of the cognitive load during learning. Thus, observing 

psychophysiological changes when they occur in response to the course of the learning session 

allows adjustments in the learning session based on the individual learner’s capabilities. 
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5. PHYSIOLOGICAL MEASUREMENTS AND INDICES 

Psychophysiological measures are grouped according to the control nervous system being 

measured (Dirican and Göktürk, 2011). As noted in the previous section, the human nervous 

system is mainly classified into two parts, the CNS and the PNS. Instantaneous measurements 

and methods focused on CNS, such as functional magnetic resonance imaging (fMRI; Buccino 

et al., 2004), EEG (Antonenko, Paas, Grabner, and van Gog, 2010), eye tracker recording 

(Reiner and Gelfeld, 2014) and others, have been studied during the last decade as part of an 

objective frame to establish cognitive load. 

Physiological methods are mainly of interest to the extent that they provide indications of 

neural activity related to the perceptual, cognitive, affective, or motor functioning of the 

person (Parasumaran, 2003). Physiological indices assume that the cognitive load can be 

measured using the level of neural activation. These are clear indications that support the 

determination of individual mental/cognitive processes by monitoring changes in their neural 

activation (Dirican and Göktürk, 2011). Cognitive processes such as memory, awareness, and 

decision making may be induced by computations performed by assemblages of 

synchronously active neurons (Teplan, 2002; Ward, 2003). 

The analysis of EEG waveforms, and their decomposition into different frequency bands, 

has often been used in the evaluation of the variation of the cognitive state of subjects during 

the execution of cognitive tasks, sensory-motor jobs, or while learning (Borghini et al., 2012; 

Smith et al., 2001; Gevins et al., 1998). The most useful analysis of the EEG is power spectral 

analysis, which allows us to determine the extent to which the neurons generating the EEG 

output are oscillating synchronously at different frequencies.  In obtaining the power spectrum 

for a time series of EEG samples, the voltage fluctuations recorded by an EEG electrode from 

moment to moment are analyzed into different sine wave frequencies. The fluctuations in 

spectral power of a particular frequency, with changes in experimental tasks, or over time, 

may indicate relationships between the mean diversion of groups of neuron and cognitive 

processes (Ward, 2004; Holm et al., 2009).  

The introduction of low-cost wireless EEG headsets allows now extensive use and 

commercialization and hence, has been recently integrated into research (Das, Chatterjee, Das, 

Sinharay, & Sinha, 2014).  The use of EEG signals in measuring educational states is growing 

fast, and identifying real-time applications in the educational practice and research is needed 

(Yuan, Chang, Xu, & Mostow, 2014). 

6. EEG MEASURES INDICATE COGNITIVE LOAD 

Başar et al. (1999) hypothesized that integrative brain functions are manifested in the 

superposition of several oscillations. According to a later study, Başar, Başar-Eroglu, Karakaş, 

and Schürmann (2001) argued that selectively distributed oscillatory systems (Delta, Theta, 

Alpha, and Gamma frequencies) are activated by cognitive events.  They concluded that it was 

not possible to assign a particular function to a given set of oscillatory activities. Cognitive 

events (or complex functions) evoke superimposed signals of multiple oscillations. 

Parallel to the previous work, Gevins, Smith, Leong, McEvoy, Whitfield, Du, and Rush 

(1998) and McEvoy, Smith, and Gevins (1998) used EEG indices to assess working memory 

states. They tested neural activations during pattern recognition. Their results explicitly 

revealed that there is an increase in frontal Theta frequency activity along with a decrease in 

Alpha frequency activity when there is an increasing mental load related to the memory task. 
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The results of Başar et al. (2001) and Gevins et al. (1998) provided the feasibility tests for 

using EEG-based methods for monitoring cognitive load. From this starting point on, 

researchers continue to seek the appropriate indices for measuring the cognitive load of 

learning and memorizing assignments.  

EEG measures of Theta–Alpha channels in frontal and parietal brain regions have been 

found to correlate with the mental/cognitive load. Most studies demonstrated that frontal Theta 

increases with higher cognitive load and Alpha decreases with a higher cognitive load (Gerě & 

Jaušcvec, 1999; Grimes, Tan, Hudson, Shenoy, & Rao, 2008; Itthipuripat, Wessel, & Aron, 

2013; Maurer et al., 2015; Zarjam, Epps, & Lovell, 2013). This observation led to several 

studies that linked Theta–Alpha frequency and cognitive load (Chick, 2013; Holm, Lukander, 

Korpela, Saline, & Müller, 2009; Käthner et al. 2014; Kawasaki, Kitajo, & Yamaguchi, 2010). 

Following these latest findings, we adopted the results of Holm et al. (2009) that the Theta 

middle frontal (Fz) to Alpha middle parietal (Pz) ratio is a reliable cognitive load index 

expressing changes in the cognitive load.  

7. APPLICATION EXAMPLE 

We reviewed the validity of using EEG-based indices to measure cognitive load, specifically 

EEG power for increased power of the Theta band power and a decreased power of the Alpha 

band, that occurred during important mental cognitive load tasks. T h i s  p r o v i d e s  a  

t e ch n o l o g y a n d  m e t h o d  to assess learning variables that potentially improve our 

instructional methods and adapt them to the ongoing cognitive and valence states of the 

learner. In the following example, we used this approach to assess in-near-real-time process, 

the cognitive load of participants during a difficult origami session.  
Ten Technion students (N=10, Mean Age=24.9 SE=0.876) were separated into two groups: 

A (n = 5) and B (n = 5). Groups were similar by age (Group A Mean Age=24, SE=1.21, Group 

B Mean Age =25.8 SD=1.21, one-way ANOVA α = 0.05, F (1,9) = 1.01, p > 0.32) and paper-

folding abilities (VZ-2 Brace Test: Group A Scores= 14.2, SD= 2.07, Group B Scores = 15.4, 

SD= 2.06, one-way ANOVA α = 0.05, F (1,9) = 0.167, p > 0.69). They sat behind a desk in 

front of a large 2.80m x 1.80m size screen, while an EEG cap was applied and calibrated. 

After calibration had been completed, all participants watched a 2D (group A) or a 3D virtual 

reality (group B) presentation of an instructor demonstrating origami paper folding of a crane 

for 5 minutes. Participants were asked to memorize the order of the folding steps of the crane 

while EEG signals were recorded. Recording went on for the entire session. After completion 

of the observation periods, participants were asked to repeat the folding.  

Sessions were divided into four 20-second periods of viewing the origami folding, followed 

by 30 seconds of actual paper folding, i.e., repeating the demonstrated instructions. The 

condition of group A was termed “Crane 2D.” Participants in Group B went through a similar 

process. They started by viewing a three-dimensional (3D) virtual world of the instructor 

demonstrating origami crane paper-folding. This condition was termed “Crane 3D.” Period 2 

and 4 folding tasks are known by the experts of the origami community as the most difficult 

steps in folding a crane  

We recorded spectral power (𝛍𝐕𝟐).from the middle frontal (Fz) and central parietal (Pz) 

electrodes. We averaged the spectra power over all periods, for each participant, electrode, 

experimental condition, and time window. Theta (4–8 Hz) spectral power from the middle frontal 

(Fz) and Alpha (8–12 Hz) spectra power from the central parietal (Pz) electrodes were measured. 

For each period, the average oscillations potential for each channel was calculated as the mean of 
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the intervals of the sessions. The Cognitive Load Index (CLI) was calculated based on the Theta 

Fz/Alpha Pz ratio (Holm et al., 2009). For each participant, we assessed the average CLI for each 

observation session (n = 1,2,3,4) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1: 𝐶𝐿𝐼𝑛 =  
𝑇ℎ𝑒𝑡𝑎 𝐹𝑧 𝑛

𝐴𝑙𝑝ℎ𝑎 𝑃𝑧 𝑛
 

 

We calculated the relative CLI by calculating the ratio of the average CLI in the observation 

sessions (n = 1, 2, 3, 4) and CLI in the first (n = 1) session. 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2: 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝐿𝐼 =
𝐶𝐿𝐼𝑛

𝐶𝐿𝐼1
 

 

The average relative CLI of Crane 2D participants (n = 5, M = 1.2698, SD= 0.045) was 

significantly higher than the average relative CLI of the “Crane 3D” participants (n = 5, M = 

0.7910, variance = 0.114), (t stat = −2.6788, DF=4. p = 0.027). In addition, the figure 1.  shows the 

differences in each observing period for each participant.  

 

 

Figure 1. The single Relative CLI of each participant (A…E F…J), while observing 

2D/3D instructions of folding a crane during four observing periods. The y-axis 

represents the relative intensity of the CLI. The x-axis represents the observing period in the 

learning scenario sequence (1…4). Dotted lines connect the relative CLI of the various 

participants (F…J) who observed the 2D crane scenario. Solid lines connect the relative CLI 

of participants (A…E) who observed the 3D crane scenario. The diagram shows clearly that 

the dotted lines are generally higher than the solid lines, i.e., the mental load associated 

with 2D is greater than with 3D. 

We analyzed the difference between the average relative CLI between 2D and 3D 

participants in observing periods 2, 3, and 4, using JMP statistical software. We found 

statistical differences in period 2 and 4. This analysis is described below in Table 1.  
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Table 1: Relative Cognitive Load Index comparison between learning sessions 

 Average Relative CLI  

Period 2D (n = 5) 3D (n = 5) Robust fit p-value 

2 1.35254 (SD = 0.169) 0.87029 (SD = 0.116) 0.041* 

3 1.31959 (SD = 0.194) 0.82694 (SD = 0.176) 0.06 

4 1.13745 (SD = (0.125) 0.67586 (SD = 0.125) 0.009** 

 

This example shows the potential of online measuring of brain potentials using EEG. 

Assessing the cognitive load helps to determine the differences between processing data in 

each environment (3D and 2D). Looking in depth into the learning scenario, we determined 

that two sessions (the second and the fourth) are significantly different in the mean relative-

CLI, measured for all participants, and it is implicit that the difficulty of those step is higher 

for the 2D Crane than for the 3D Crane demonstration. 

8. LIMITATIONS 

This study has several limitations. The number of participants in the experimental group was 

adequate for EEG-based research. However, the affirmation of these findings regarding 

segments of the experimental group (such as those relevant to participants with low spatial 

abilities) should be explored in a larger group. This experiment focused on the cognitive load 

that is associated mainly with a visual task, and, hence, visual working memory processes. 

Another research direction might involve adding sensory input other than visual, such as 

assessing the effect of auditory or haptic load. EEG indices (Cognitive Load Index, and 

Relative CLI) were designed to measure the students’ cognitive load during the observation 

sessions and provide useful information about the correlation between mental oscillations and 

learning scenarios. EEG-based indices are sensitive to electrical activity arising from sites 

other than the brain (artifacts). 

Artifacts limit the analysis of EEG output to observation periods only and demand a 

significant artifacts removal analysis, as performed in this experiment. Technological 

innovations in EEG equipment and the reduction in the number of necessary electrodes in the 

near future should improve the research setting and allow expanding to additional performance 

phases and population. Finally, due to the original nature of the innovation of the stereoscopic 

3D Digital Double learning environment, there is a lack of prior research studies. Near real-

time physiological measurements in the context of learning methods and environments is 

insufficiently studied and require additional research.  

9. FUTURE STEPS 

The experiment in this study was designed s to identify the mechanism involved in changes of 

cognitive load in real time and provided details on methodologies for real-time EEG-based 

measures of CLI. The Relative CLI that measures the individual cognitive load of the learner 
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while learning provides real-time data on difficulties.  Once such information is available, 

personal adjustment of the learning order can be made, to avoid a drop-in learning due to 

excessive extraneous cognitive load. CLI and is especially relevant for assessing VLEs that 

often expose the user to ambiguous or complex information, resulting in high cognitive load. 

This is especially important for new gadgets that provide large amounts of streaming 

information that crucially increases task-related cognitive load, leading to the possible 

erroneous performance. 

10. SUMMARY 

We reviewed how near-online physiological measures could improve Education Data Mining 

in the context of learning technologies and compares two conditions – flat 2D video and 3D 

immersive virtual reality demonstrations. Using EEG, we can acquire data on electrical the 

activity of the brain, use a mathematical model of relative-cognitive-load, then correlate with 

learning. Such correlates can be employed for mining association rules across learning 

variants and EEG variants from existing data. The opportunity of extracting physiological 

measurements that assess learning variables provide a valuable tool for the design of 

instructional methods and support the emerging new brain –computer interfaces, to adapt the 

features and responses of the technological learning environment to the measured cognitive 

load and emotional states of the learner.  

An additional motivation for this article is the recent emerging friendly and inexpensive 

technology for EEG measures. Integrating EEG systems with algorithms of near-real-time 

analysis of EEG-based mental load in e-learning, or MOOCS (Massive Online Open Courses), 

will potentially revolutionize assessment and allow a highly valid and objective evaluation. 

Objective assessment provides the cornerstone of Brain-Computer-Interface applied to e-

learning. 
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