
The Continuous Hint Factory - Providing
Hints in Vast and Sparsely Populated Edit
Distance Spaces

Benjamin Paaßen Barbara Hammer
CITEC Center of Excellence CITEC Center of Excellence
bpaassen@techfak.uni-bielefeld.de bhammer@techfak.uni-bielefeld.de

Thomas W. Price Tiffany Barnes
North Carolina State University North Carolina State University
twprice@ncsu.edu tmbarnes@ncsu.edu

Sebastian Gross Niels Pinkwart
Humboldt-Universität zu Berlin Humboldt-Universität zu Berlin
sebastian.gross@informatik.hu-berlin.de niels.pinkwart@hu-berlin.de

Intelligent tutoring systems can support students in solving multi-step tasks by providing hints regarding
what to do next. However, engineering such next-step hints manually or via an expert model becomes
infeasible if the space of possible states is too large. Therefore, several approaches have emerged to infer
next-step hints automatically, relying on past students’ data. In particular, the Hint Factory (Barnes and
Stamper, 2008) recommends edits that are most likely to guide students from their current state towards
a correct solution, based on what successful students in the past have done in the same situation. Still,
the Hint Factory relies on student data being available for any state a student might visit while solving
the task, which is not the case for some learning tasks, such as open-ended programming tasks. In this
contribution we provide a mathematical framework for edit-based hint policies and, based on this theory,
propose a novel hint policy to provide edit hints in vast and sparsely populated state spaces. In partic-
ular, we extend the Hint Factory by considering data of past students in all states which are similar to
the student’s current state and creating hints approximating the weighted average of all these reference
states. Because the space of possible weighted averages is continuous, we call this approach the Contin-
uous Hint Factory. In our experimental evaluation, we demonstrate that the Continuous Hint Factory can
predict more accurately what capable students would do compared to existing prediction schemes on two
learning tasks, especially in an open-ended programming task, and that the Continuous Hint Factory is
comparable to existing hint policies at reproducing tutor hints on a simple UML diagram task.

Keywords: next-step hints, Hint Factory, edit distances, computer science education, Gaussian Processes

1. INTRODUCTION

In many educational domains, learning tasks require more than a single step to solve. For exam-
ple, programming tasks require a student to iteratively write, test, and refine code that accom-

1 Journal of Educational Data Mining, Volume 10, No 1, 2018

plishes a given objective (Gross et al., 2014; Price et al., 2017; Rivers and Koedinger, 2015).
When working on such multi-step-tasks, students start with an initial state and then change their
state by applying an action (such as inserting or deleting a piece of code). At some point, a
student may not know how to proceed or may be unable to find an error in her current state,
in which case external help is required. In particular, such a student may benefit from a next-
step hint, guiding her toward a more complete and/or more correct version and allowing her to
continue working on her own (Aleven et al., 2016). Many intelligent tutoring systems (ITSs)
attempt to create such next-step hints automatically, and adjust such hints to the student’s current
state as well as her underlying strategy (Van Lehn, 2006). Typically, hints are created using an
expert-crafted model. However, designing such an expert model becomes infeasible if the space
of possible states is to variable to cover with expert rules (Murray et al., 2003; Koedinger et al.,
2013; Rivers and Koedinger, 2015). This is the case for most computer programming tasks be-
cause the space of possible programs grows exponentially with the program length and the set
of programs which perform the same function is infinite (Piech et al., 2015). Other examples are
so-called ill-defined domains where explicit domain knowledge is not available or at least very
hard to formalize (Lynch et al., 2009).

Several approaches have emerged which provide next-step hints without an expert model.
Typically, these approaches provide hints in the form of edits, that is, actions which can be ap-
plied to the student’s current state to change it into a more correct and/or more complete state,
based on the edits that successful students in the past have applied (Gross and Pinkwart, 2015;
Price et al., 2016; Rivers and Koedinger, 2015; Zimmerman and Rupakheti, 2015, for exam-
ple). Such edit-based next-step hints constitute an elegant and simple approach to feedback for
complex learning tasks. The most basic version of the approach requires only two ingredients:
a function, which is able to compute the shortest sequence of edits to transform one partial so-
lution to the task into another one, and a correct solution for the task. If a student issues a help
request, the system can simply compute the edits from the student’s state to the solution and use
one of these edits as a hint (Rivers and Koedinger, 2015; Zimmerman and Rupakheti, 2015).
Even though this approach is fairly simple, it achieves personalized feedback, in the sense that
the hint depends on the student’s personal state and may thus be fitting to her specific strategy
and style (Le and Pinkwart, 2014). Further, this approach needs very little task-specific work on
the side of domain experts because they only need to construct example solutions for the task
and can apply a general-purpose edit function which is applicable across tasks or even across
domains (Mokbel et al., 2013).

A key challenge to such an edit-based hint approach is that it attempts to follow a single ref-
erence solution and tries to adjust the student’s individual solution in all aspects to the reference
solution. In contrast, it may be more desirable to provide hints which correspond to what capa-
ble students would do in any given situation in general but avoid emulating specific style choices
by individual solutions. To identify such generic solution steps, most existing approaches rely
on frequency information, that is, how often a certain edit or state has occurred in past student’s
data (Barnes and Stamper, 2008; Lazar and Bratko, 2014; Rivers and Koedinger, 2014; Piech
et al., 2015). Unfortunately, for many programming tasks, the space of possible programs is so
large that hardly any state is visited more than once, even if aggressive pre-processing methods
are applied to canonicalize program representations (Price and Barnes, 2015).

Therefore, a novel approach is needed which can select generic edits even in cases where
frequency information is not available. We base this approach on the Hint Factory, which gen-
erates hints that have led past students in the same situation to a correct solution (Barnes and

2 Journal of Educational Data Mining, Volume 10, No 1, 2018

Stamper, 2008; Stamper et al., 2012). To transfer this approach to vast and sparsely populated
spaces, we consider not only the data of past students who have visited the same state, but
also similar states, and we represent the reference state to which a student should move as a
weighted average of past students’ states, where the weights are chosen in a probabilistically
optimal sense. Because the space of possible weighted averages is continuous, our reference
states exist in an implicit, continuous state, which is why we call our approach the Continuous
Hint Factory (CHF). By performing a weighted average, we avoid any individual specificities
and focus on generic steps toward a correct solution.

More precisely, the key contributions of our paper are as follows: First, we provide precise
definitions of key concepts in the field of edit-based hint policies and integrate them into a
mathematical framework. Second, we extend this framework by introducing the notion of an
edit distance space, a continuous space in which each state corresponds to one vector and the
Euclidean distance between vectors corresponds to the edit distance between two states. Finally,
we utilize this space for the CHF by identifying the most likely hint as a vector in this space and
translating this vector back into a human-readable edit. As such, the CHF constitutes a novel hint
technique which is applicable whenever an edit distance and some, possibly few, data samples
of past students are available, making it an interesting option for vast and sparsely populated
state spaces. For example, such spaces occur in programming tasks where a solution involves
many lines of codes and solutions are highly variable in terms of strategy and style.

In experiments on two datasets we provide evidence that the CHF is able to predict what
capable students would do in solving a learning task, that the CHF is able to disambiguate
between many possible edits, and that the hints provided by the CHF match the hints of human
tutors at least as well as other established hint techniques.

We begin our work by introducing precise definitions of key concepts of edit-based hint
policies and review existing approaches within this novel framework. In Section 3 we intro-
duce the Continuous Hint Factory based on this framework and in Section 4 we report on our
experimental evaluation of the Continuous Hint Factory.

2. AN INTEGRATED VIEW OF EDIT-BASED HINT POLICIES

In this section, we review existing approaches to edit-based hint policies. Alongside this review,
we develop a mathematical theory of edit distances and edit-based hint policies, which helps us
to contextualize past approaches and will form a firm basis for our own approach in the next
section. First, let us start with an example of a learning task, for which an edit-based hint policy
may be helpful. Consider the task of programming a guessing game, which should ask the player
for their name, generate a random number between 1 and 10, and then let the player guess the
number, providing feedback to the player regarding whether the number was too low, too high,
or correct. A correct solution for this task in the Snap programming language1 is shown in
Figure 1a. In a tutoring system involving this task, a student would start off with an empty
program and then would add blocks to the program, delete them, or replace them with others
until the student obtains a correct solution or gets stuck. In the latter case, the student may hit
a “help” button in the system which would, in turn, provide a hint in the form of an edit which
leads the student closer to a correct solution (e.g., to add an “ask” block to ask for the player’s
name in the beginning).

1http://snap.berkeley.edu

3 Journal of Educational Data Mining, Volume 10, No 1, 2018

http://snap.berkeley.edu

(a)

−0.4 −0.2 0 0.2 0.4 0.6

−0.2

0

0.2

0.4

(b)

Figure 1: (a) A screenshot from the Snap programming environment. (b) A 2D embedding of
ten example traces in the Snap dataset The 2D embedding was obtained via non-metric multi-
dimensional scaling (Sammon, 1969) using the pairwise edit distances as input, that is, if two
states have an edit distance of 0, they are mapped to the same point in 2D, and if they have
a higher edit distance, they are mapped to points which are further apart. Colors are used to
distinguish between different traces. States within one trace are connected by arrows.

4 Journal of Educational Data Mining, Volume 10, No 1, 2018

From a pedagogical point of view, it may be suboptimal to immediately tell the student which
edit to apply. In doing so, we deprive students of the possibility of finding the correct next step
themselves and do not require the students to reflect on underlying concepts, as suggested by
Fleming and Levie (1993) as well as Le (2016). Indeed, Aleven et al. (2016) suggest displaying
such hints, which reveal the next step, only as a last resort after exhausting options for more
principle-based hints. This begs the question why the focus of our work lies on such bottom-out
hints.

First, edit hints are different from other bottom-out hints in that they display only a very
small part of the solution (a single edit), allowing the student to finish most of the problem
themselves. Second, bottom-out hints may lead to learning gains if students reflect on the hint
and engage in sense-making behavior (Aleven et al., 2016; Shih et al., 2008). Conversely, if
students aim to abuse the system, this is not hindered by principle-based hints: students simply
skip through such hints to reach the bottom-out hint (Aleven et al., 2016; Shih et al., 2008).
Third, we point to a study by Price et al. (2017b) which indicates that edit hints are judged as
relevant and interpretable by human tutors. Finally, and most importantly, we argue that more
elaborate hint strategies are simply not available in many important learning tasks because they
require expert-crafted hint messages which are difficult to apply at scale (Le and Pinkwart, 2014;
Murray et al., 2003; Rivers and Koedinger, 2015).

In particular, there have been some approaches to make expert-crafted hints available in
larger state spaces, for example, authoring tools for tutoring systems, which aim at reducing the
expert work that needs to be put in to design feedback for individual tasks. A prime example are
the Cognitive Tutor Authoring Tools (CTAT), which support the construction of cognitive tutors
(Aleven et al., 2006). Cognitive tutors can be seen as a gold standard of intelligent tutoring
systems because their effectiveness has been established in classroom studies, and they have
been successfully applied in classrooms across the US (Koedinger et al., 2013; Pane et al., 2014).
However, even with authoring tools, covering all possible variations in a suficiently variable
state space with many viable solutions may be infeasible (Le and Pinkwart, 2014; Murray et al.,
2003; Rivers and Koedinger, 2015). For example, in our programming dataset (see Figure 1a),
we consider more than 40 different solution strategies, each of which involves more than 40
steps.

Another approach is “force multiplication,” which assumes that a relatively small number
of expert-crafted hint messages are available, which are then applied to new situations automat-
ically, thereby “multiplying the force” of expert work (Piech et al., 2015). Examples include
the work of Choudhury et al. (2016), Head et al. (2017), as well as Yin et al. (2015) who apply
clustering methods to aggregate many different states and then provide the same hint to all states
in the same cluster. Another example is the work of Piech et al. (2015) who let experts develop
hints which are annotated with example states for which the respective hint makes sense and
example states for which the respective hint does not make sense. Then, they train a classifier
function for each hint via machine learning which decides for any new state whether the hint
should be displayed or not. Finally, Marin et al. (2017) annotate expert-crafted hints with small
snippets of Java code for which the given hint makes sense and then display the hint whenever
the respective snippet is discovered in a student’s state. Note that these approaches are limited
by the number of hints that are provided by the teaching experts. If for some situation no hint is
contained in the database, the system is not able to provide fitting feedback.

Due to these scaling limitations, we focus on edit-based bottom-out hints, which are easy
to individualize and generate automatically, as ample work in the past has demonstrated (Gross

5 Journal of Educational Data Mining, Volume 10, No 1, 2018

and Pinkwart, 2015; Lazar and Bratko, 2014; Price et al., 2016; Rivers and Koedinger, 2015;
Zimmerman and Rupakheti, 2015).

In the remainder of this section, we will analyze edit-based next-step hint approaches in
more detail. We will highlight key concepts, provide precise definitions and shed some light on
the theory behind edit-based hint approaches. We start our investigation by defining edits, legal
move graphs, and edit distances in a rigorous fashion. Second, we discuss techniques to change
our data representation in order to support meaningful hints. Third, we incorporate student data
in the form of traces and interaction networks. Finally, we provide an overview of the different
approaches that have emerged in the literature and compare them in light of our mathematical
framework.

2.1. EDIT DISTANCES AND LEGAL MOVE GRAPHS

Recall that we wish to support students in solving a multi-step learning task by providing on-
demand edit hints. More precisely, we assume the following scenario. A student starts in some
initial state provided by the system, and then successively edits this initial state until she finishes
the task or gets stuck and asks the system for help. An edit hint for such a case should be an edit
which gets the student closer to a desirable next state. To formalize this notion, we first define
what kind of edits are possible at all (the edit set). Then, we define how to combine such edits
to transform some student state into another (the legal move graph). Finally, we can define a
notion of distance between states based on how many edits are necessary at least to transform
one state into another (the edit distance).

The notion of an edit set should cover all actions which a student can perform to change
their current partial solution to a different state. Recall our example of the guessing game pro-
gramming task in Figure 1a. In this scenario, the set of possible states is the set of possible Snap
programs. The possible edits are to add a block at any point in the program, replacing a block
with another one, or deleting a block. For example, we may delete the “say ’Hello!’ for 2 secs”
block in Figure 1a or replace it with a “say ’Hello!’ for 1 sec”-block. Note that this edit set is
symmetric, in the sense that we can reverse every edit we have applied by deleting an inserted
block, re-inserting a deleted block, or replacing a replaced block with its prior version. This is
a desirable property for edit sets because it ensures that any action of a student can be reversed
and thus any state that can be reached by edits from the initial state is reachable from each other
state. Formally, we define edit sets as follows.

Definition 1 (Edit Set). Let X be the set of all possible states for a learning task. Then we call
X the state space of the learning task. An edit on X is a function δ : X → X . A set ∆ of edits
on X is called an edit set. We call an edit set symmetric if for all states x ∈ X and all edits
δ ∈ ∆ there exists an edit δ−1 ∈ ∆ such that δ−1(δ(x)) = x. We call δ−1 an inverse edit for δ
on x.

Formally, our goal is to devise a function which can, for any state students may find them-
selves in, return an edit they should apply. Inspired by Piech et al. (2015) we call such a function
a hint policy.2

2Note that Piech et al. (2015) define a hint policy differently, namely as a function π′ mapping a state to a
state the student should proceed to next. Our definition presented here is a proper generalization of Piech et al.’s
definition because every policy π according to our definition we can be converted into a Piech-style hint policy π′

by setting π′(x) = δ(x) where δ = π(x).

6 Journal of Educational Data Mining, Volume 10, No 1, 2018

Definition 2 (Hint Policy). Let X be a set and ∆ be an edit set on X . A hint policy is a function
π : X → ∆.

A helpful hint policy should return a hint that gets students closer to a desirable next state.
For example, the hint policy of Zimmerman and Rupakheti (2015) recommends the first edit in
the shortest sequence of edits which transforms the student’s current state to a correct solution
for the task. To develop such a hint policy, we need to properly define what closeness between
two states means and what the shortest sequence of edits is. To provide an intuitive meaning to
closeness and shortest sequences, we can rely on graph theory. In particular, we can regard the
state space as nodes of a directed graph and the edits as edges in that graph. More precisely, we
draw an edge from a state x to another state y if and only if there is an edit in the edit sets ∆
which transforms x into y. This results in the notion of a legal move graph (Piech et al., 2015).

Definition 3 (Legal Move Graph). Let X be a set and ∆ be an edit set on X . Then, the legal
move graph according to X and ∆ is defined as the directed graph GX,∆ = (X,E) where
E = {(x, y)|∃δ ∈ ∆ : δ(x) = y}.

For our programming example in Figure 1a, the legal move graph is too large to list here.
Instead, consider the set of stringsX = {a, aa, aac, ab, abc, b, bb, bbc} and as edit set ∆ consider
deletions, replacements, and insertions of single characters in these strings. More precisely, we
have

∆ =
{

deln, insn,u, repn,u|n ∈ N, u ∈ {a, b, c}
}

where (1)

deln(v1, . . . , vN) = v1, . . . , vn−1, vn+1, . . . , vN (2)
insn,u(v1, . . . , vN) = v1, . . . , vn, u, vn+1, . . . , vN (3)
repn,u(v1, . . . , vN) = v1, . . . , vn−1, u, vn+1, . . . , vN (4)

An excerpt of the legal move graph for this example is shown in Figure 2a. In particular, “ab”
is connected to “a”, “aa”, “b”, “bb”, and “abc” because we can delete b, replace b with a, delete
a, replace a with b, and insert c to transform “ab” to the respective other strings. Note that all
arrows in this legal move graph are bi-directional, indicating the symmetry of the edit set.

The notion of a shortest sequence of edits transforming a student’s state x to a solution y now
has a proper graph-theoretical interpretation. It is the shortest path from x to y in the legal move
graph. The length of this shortest path is a distance d between x and y. As an example, consider
once more the legal move graph in Figure 2a (right). Here we find, for example, d(ab, ab) = 0,
d(ab, abc) = 1 and d(ab, bbc) = 2.

We implicitly assumed that all edges in a legal move graph have the length 1. We can
generalize this notion by specifying the length of each edge via an edit cost function, which
leads us to the concept of an edit distance.

Definition 4 (Edit Cost Function and Edit Distances). Let X be a set and ∆ be an edit set on X .
A function C : ∆ × X → R+ is called an edit cost function on ∆. We call C(δ, x) the cost of
applying edit δ to the state x.

We call an edit cost function symmetric if C(δ, x) = C(δ−1, δ(x)) for all states x ∈ X , all
edits δ ∈ ∆, and all inverse edits δ−1 for δ on x.

Let GX,∆ be the legal move graph according to X and ∆ and let C be an edit cost function
on ∆. The edit distance d∆,C according to ∆ and C is defined as the shortest path distance in

7 Journal of Educational Data Mining, Volume 10, No 1, 2018

a
x1

b
x2

abx

aa aac
y1

bb bbc
y2

abc

(a) The legal move graph using
the edit set of the string edit
distance on the state spaceX =
{a, aa, aac, ab, abc, b, bb, bbc}.
x = ab is the current student
state (red). Further, two
traces are given with the
states x1 = a, y1 = aac, and
x2 = b, y2 = bbc respectively
(blue).

~φ(x1)

~φ(x2)

~φ(x)

~φ(y1)

~φ(y2)

πGPR(x)

(b) The embedding of the trace
states (blue) and the student
state (red) from the left into
the edit distance space via the
embedding ~φ. The recommen-
dation of the Gaussian Pro-
cess Regression (GPR) policy
πGPR(x) for the current student
state x is shown in orange.

a
x1

b
x2

abx

aa aac
y1

bb bbc
y2

abc

δ

(c) The legal move graph from
the left figure, including the
edit δ (orange) which corre-
sponds to the recommended
edit of GPR from the center fig-
ure.

Figure 2: An illustration of the Continuous Hint Factory on a simple dataset of strings. First, we
compute pairwise edit distances between the student’s current state (red) and trace data (blue).
These edit distances correspond to the shortest paths in the legal move graph (left). The edit
distances correspond to a continuous embedding, which we call the edit distance space (center).
In this space, we can infer an optimal edit (orange) using machine learning techniques, such as
Gaussian Process regression (GPR). Finally, we infer the corresponding hint in the original legal
move graph (right), which can then be displayed to the student.

8 Journal of Educational Data Mining, Volume 10, No 1, 2018

the legal move graph GX,∆ with the edge weights β(x, y) = minδ∈∆{C(δ, x)|δ(x) = y}. So the
formula for the edit distance is:

d∆,C(x, y) := min
δ1,...,δT∈∆
x1,...,xT∈X

{
T∑

t=1

C(δt, xt)

∣∣∣∣∣x1 = x, δt(xt) = xt+1, δT (xT) = y

}
(5)

If no path between x and y exists, we define d∆,C(x, y) =∞.

Edit distances enable us to specify hint policies formally. For example, the policy of Zim-
merman and Rupakheti selects for the input state x the closest correct solution y according to a
given edit distance and returns the first edit on the shortest path between x and y.

Unfortunately, not all edit distances are applicable in practice. Consider the Snap example
from Figure 1a. In this domain, the order of many blocks in the program is insignificant to the
function of the program. Therefore, one may wish to apply an edit distance which works on
unordered trees. However, edit distances on such unordered trees are NP-hard (Zhang et al.,
1992), making them infeasible in practice. The subset of efficiently computable edit distances
includes the following. First, the string edit distance (Levenshtein, 1965) from our example in
Figure 2a. For this example, we can define the cost function as C(deln, x) = C(insn,u, x) =
C(repn,u, x) = 1 for all n ∈ N, x ∈ X, u ∈ {a, b, c}. Note that C is symmetric. In this case, the
overall edit distance can be computed in O(N2) using a dynamic programming algorithm (Lev-
enshtein, 1965). This dynamic programming scheme can be extended to a broad class of edit
distances on strings, including skip operations and arbitrary (metric) cost functions (Giegerich
et al., 2004; Paaßen et al., 2016). Such string edit distances have also been successfully applied
to computer programs by representing them as sequences of code statements or as execution
traces (Paaßen et al., 2016; Paaßen et al., 2016).

Second, we note the tree edit distance of Zhang and Shasha (1989) which permits deletions,
insertions, and replacements of single nodes in trees. The tree edit distance has been particularly
popular in learning environments for computer programming tasks as computer programs are
oftentimes represented by abstract syntax trees (Choudhury et al., 2016; Freeman et al., 2016;
Nguyen et al., 2014; Rivers and Koedinger, 2015). For example, the program shown in Figure 1a
would correspond to the abstract syntax tree shown in Figure 3. The added complexity of tree
data structures compared to strings is reflected in the higher computational complexity of the
tree edit distance of O(N4) (Zhang and Shasha, 1989). More flexibility is offered by a two-
stage approach where some special subtrees, such as functions in a program, may be arbitrarily
re-ordered and a string or tree edit distance is used to compare the single functions (Mokbel
et al., 2013; Price et al., 2017a). A computationally cheaper alternative has been suggested by
Zimmerman and Rupakheti (2015) who compute an edit distance on pq-grams in trees, meaning
small subtrees, which results in a considerably faster runtime of O(N · log(N)) (Augsten et al.,
2008).

Beyond computational complexity, a key challenge to edit distances is that they do not nec-
essarily correspond to the semantic distance between states. Consider again the Snap example
in Figure 1a. Here, we could replace any of the strings in “say” or “ask” blocks with a slightly
different version without changing the basic computed function of the program. We could also
exchange the “too high” and “too low” statements in the program if we also replace the “ran-
dom < answer” comparison with a “random > answer” comparison. In theory, we can apply
arbitrarily many edits to a given program without changing the computed function. Conversely,

9 Journal of Educational Data Mining, Volume 10, No 1, 2018

When clicked

say

“Hello!”

. . . repeat until

answer = random ask and wait

“What’s the number?”

if

random = answer say

“Good job! You got it!”

if

random < answer say

“Too high!”

say

“Too low!”

Figure 3: An abstract syntax tree, simplified for clarity, corresponding to the Snap program
shown in Figure 1a.

we could also remove the “repeat until” block in the program, changing only a single block, and
severely change the behavior of the program. This mismatch between edit distance and semantic
distance can negatively impact the utility of generated hints. In particular, edits may be recom-
mended which get the student syntactically closer to a correct solution but may be semantically
irrelevant or even confusing.

One approach to address this issue is canonicalization, which essentially transforms the raw
states in a state spaceX to a canonic form, such that semantically equivalent states have the same
canonic form. The edit distance is then defined between canonic forms instead of raw states,
leading to a smaller legal move graph and edits which put stronger emphasis on semantically
relevant changes. Canonicalization is particularly common for computer programs, where the
order of binary relations (such as <) or variable names can be normalized or unreachable code
can be removed (Rivers and Koedinger, 2012). Note that canonicalization is a quite general
and powerful concept. In particular, canonicalization enables us to apply an edit distance to
any kind of data, as long as we can provide a canonicalization f which converts this data to
editable canonic forms. For example, Paaßen et al. (2016) canonicalize computer programs by
representing them in terms of their execution trace, to which simple string edit distance measures
can be applied. As such, a canonicalization f can also be seen as an extension of an edit distance
d to a new domain by defining the edit distance d̃ on the new domain as d̃(x, y) = d(f(x), f(y)).

A challenge in canonicalization lies in the fact that edits on the canonic form may not be
directly applicable or interpretable for students. For example, students cannot easily adapt their
program to directly influence the program’s execution in the way indicated by an edit on the exe-
cution trace. To address this problem, Rivers and Koedinger (2015) suggest aligning the edits on
the canonic form with the student’s original state in a process called state reification. Another

10 Journal of Educational Data Mining, Volume 10, No 1, 2018

challenge lies in the fact that too drastic canonicalization may remove features of the origi-
nal state for which feedback would be desirable. For example, tutoring systems for computer
programming often not only intend to teach functionally correct programming but also program-
ming style, such that important stylistic differences, even though semantically irrelevant, need
to be preserved in the canonic form (Piech et al., 2015; Choudhury et al., 2016).

Another approach to adapting an edit distance is offered by metric learning. Instead of
mapping two semantically equivalent states x and y to the same canonic form, metric learning
lowers the cost of edits which transform x to y, such that the edit distance between x and y
is reduced (Paaßen et al., 2016). This makes it possible to smoothly regulate the emphasis on
semantics, style, and syntax and keeps the legal move graph intact, such that state reification is
unnecessary. On the other hand, metric learning is limited by the neighborhood structure in the
legal move graph and thus can not easily map equivalent states which are far apart in the legal
move graph to the same point. One potential approach is to first apply (mild) canonicalization
in order to map distant but semantically equivalent states to the same or similar canonic forms
and subsequently apply metric learning such that the resulting distance measure mostly takes
semantics into account but does not disregard stylistic differences entirely.

In summary, the concepts of edit set, legal move graph, and edit distance permit us to define
a hint policy that recommends the first edit on the shortest path to a solution (Zimmerman and
Rupakheti, 2015). In order to ensure that such hints are helpful, we require an edit distance
which roughly corresponds to the semantic distance, but also takes important stylistic features
into account. Still, our definitions are insufficient to select helpful edits as hints reliably. In
particular, there may be many equally short paths toward a correct solution, and we do not know
which one to take. Consider the Snap programming example from Figure 1a again and assume
that a student requests help without having written any code. In that case, to get to the closest
correct solution in Figure 1a, we need to insert all code statements of the abstract syntax tree in
Figure 3, and a priori each of these insertions is an equally valid hint. Past research suggests that
we should focus on insertions which other students have performed in the same situation, which
brings us to the notion of traces and interaction networks.

2.2. TRACES AND INTERACTION NETWORKS

If we wish to capture what students have done in the past, we require a formal notion of student
movement through the state space. This is offered by the notion of a trace suggested by Eagle
et al. (2012)3.

Definition 5 (Trace). LetX be a set and ∆ be an edit set onX . Then, a sequence x1, δ1, . . . , δT−1, xT
is called a trace if for all t xt ∈ X , δt ∈ ∆ and xt+1 = δt(xt).

We are particularly interested in how close a trace is to a new student’s solution. To answer
this question, we need to couple the notion of a trace with the notion of the legal move graph.
This coupling is provided by the notion of an interaction network (Eagle et al., 2012) and a
solution space (Rivers and Koedinger, 2014; Rivers and Koedinger, 2015).

Definition 6 (Interaction Network). Let X be a set and ∆ be an edit set on X . Further, let
{(xi1, δi1, . . . , δiTi−1, x

i
Ti

)}i=1,...,N be a set of traces. The interaction network corresponding to

3Note that this definition is not exactly equivalent to the one given by Eagle et al. (2012). In particular, they do
not require actions to be deterministic, that is, in their framework the same action applied to the same state may
lead to different subsequent states. For the sake of brevity, we refrain from this probabilistic extension here.

11 Journal of Educational Data Mining, Volume 10, No 1, 2018

this set of traces is defined as the graph G = (V,E) where

V =
{
xit

∣∣∣i ∈ {1, . . . , N}, t ∈ {1, . . . , Ti}
}

(6)

E =
{

(xit, x
i
t+1)
∣∣∣i ∈ {1, . . . , N}, t ∈ {1, . . . , Ti − 1}

}
(7)

We also call V a solution space.

Consider the example shown in Figure 2a, which shows two traces in blue. These traces
cover the strings “a,” “aac,” “b,” and “bbc”. Therefore, the interaction network for this case
would only contain these four strings and the edges (“a,” “aac”) as well as (“b,” “bbc”).

Ideally, the edit set used by students exactly corresponds to the edit set of the legal move
graph, but there are many cases where this condition may not hold. For example, the edit
sets might be different because students work on a different representation compared to the
representation used to compute edit distances, for example, due to canonicalization (Rivers and
Koedinger, 2012; Rivers and Koedinger, 2015). Another reason may be that student’s states
may be recorded only at certain points in time (e.g., when they explicitly hit a “save” button)
such that multiple actions may have been performed since the last recorded state. Finally, the
concrete actions of a student may not be available because the students work on the task off-line
and submit their current state only if they need help from the system. In these cases, we have to
assume that students may “jump” in the legal move graph from state to state and the exact path
they have taken needs to be inferred by the system (Piech et al., 2015).

With a formal notion of the actions of past students, we have now aggregated all concepts
we need to provide an integrated view of existing hint policies in the literature.

2.3. HINT POLICIES

Recall the definition of a hint policy (Definition 2). We are referring to a function which outputs
an edit for each possible input state. In the remainder of this section, we are going to provide a
short review of the hint policies that have been suggested in the literature.

The arguably simplest policy is the one of Zimmerman and Rupakheti (2015), which always
recommends the first edit on the shortest path to the closest solution. Such an approach does
not even require student data, except for at least one example of a correct solution of the task.
A drawback of the Zimmerman policy is that it does not consider whether the edits towards the
closest correct solution correspond to critical steps toward a solution or relatively unimportant
stylistic differences. Rivers and Koedinger (2015) address this issue in their Intelligent Teach-
ing Assistant for Programming (ITAP), an intelligent tutoring system for Python programming.
Their technique involves the following steps: First, they retrieve the closest solution accord-
ing to the tree edit distance on canonic forms. Second, they use the edits which transform the
student state into the closest correct solution to construct intermediate states. Third, of these
intermediate states, the one with the highest desirability score is selected for feedback, where
the desirability score is a weighted sum of the frequency in past student data, the distance to
the student’s state, the number of successful test cases the state passes, and the distance to the
solution (Rivers and Koedinger, 2015). Finally, an inverse canonicalization (state reification)
step is applied to infer edits that can be directly applied to the student’s state to transform it to
the selected state. This approach has been shown to provide helpful edits in almost all cases for
a broad range of tasks (Rivers and Koedinger, 2015). Note that the success of the Rivers policy

12 Journal of Educational Data Mining, Volume 10, No 1, 2018

hinges upon meaningful frequency information. If no or little frequency information is avail-
able, the hints provided by the Rivers policy may not be representative of generic steps toward a
solution but rather of specificities of the reference solution that was selected.

The approaches of Zimmerman and Rupakheti (2015) as well as Rivers and Koedinger
(2015) have been part of a study by Piech et al. (2015) who compared several hint policies
with expert recommendations on a large-scale dataset consisting of over a million states from
the Hour of Code Massive Open Online Course (MOOC). The data was collected from two
beginner’s programming tasks in a block-based programming language. They found that the
policy which agreed most with the recommendations of tutors was a variant of the Zimmerman
policy, in which the cost of an edit δ was determined based on the inverse frequency of the target
state in the dataset, that is, edits which lead to less frequent states were considered more expen-
sive (Piech et al., 2015). This approach makes states appear closer when they can be reached by
crossing states that have been visited often. Note that this approach critically relies on frequency
information, which may not be available in sparsely populated spaces, where almost no state is
visited more than once.

An alternative approach to approaching the closest correct solution directly is to guide stu-
dents along a trace, as proposed by Gross and Pinkwart (2015) in the JavaFIT system4. They
distinguish between two types of help-seeking behavior, namely searching for errors or search-
ing for a next-step. In both cases, they retrieve the closest state to the student’s state in the
interaction network. If students are trying to find an error in their code, the system recommends
an edit leading the student toward this reference state, thereby attempting to correct the error.
If students assume that their current state is correct, but they are looking for a next step, the
system recommends an edit toward the successor of the reference state, thereby guiding the stu-
dent closer to a solution (Gross and Pinkwart, 2015). This policy can be seen as an instance of
case-based reasoning, where recommendations are based on a similar case from an underlying
case base. Freeman et al. (2016) have taken this view to analyze Python programs and used
a weighted tree edit distance to retrieve similar cases. Also similar to case-based reasoning,
Gross et al. (2014) proposed example-based feedback, in which the closest prototypical state
in a dataset is retrieved and shown to the student to elicit self-reflection and sense-making in
order to improve their own state. If the closest state in the case base is sufficiently similar to the
student’s state and corresponds to a capable student, such an approach can provide hints which
emulate the actions of a capable “virtual twin” of the student. However, if only few reference
solutions exist, the selected next state may still be fairly dissimilar and edits toward the next
state may include not only error-correcting hints or next-step hints but also stylistic or strategic
choices which do not correspond to the student’s goals.

Lazar and Bratko (2014) propose yet a different approach by applying edits that have been
frequent in past student traces to manipulate the current student’s state until an edit is found
that achieves better unit test scores. As with the Piech policy, the policy of Lazar and Bratko
(2014) critically relies on frequency information, albeit for edits instead of states, which may
not always be available. Furthermore, edits which may be generally important for a task may
not necessarily be helpful in a specific situation.

An alternative view is provided by the Hint Factory, which analyzes the question of choos-
ing the optimal edit in a given state in a mathematically precise fashion via Markov Decision
Processes (Barnes and Stamper, 2008). In particular, the Hint Factory always returns the edit

4https://javafit.de/

13 Journal of Educational Data Mining, Volume 10, No 1, 2018

https://javafit.de/

which maximizes the expected future reward, where a reward is given whenever a student has
achieved a correct solution. The Hint Factory was originally created as a hint-generation add-on
to the DeepThought instruction system for deductive logic (Barnes and Stamper, 2008). Several
studies have demonstrated that the Hint Factory reduces student dropout and helps students to
complete more problems more efficiently (Stamper et al., 2012; Eagle and Barnes, 2013). The
Hint Factory has also been applied to further domains, such as the serious game BOTS (Hicks
et al., 2014) or the SNAP programming environment (Price et al., 2017).

Note that the Markov Decision Process model relies on an estimate of the transition prob-
ability distribution P (x′|x, δ) of moving to state x′ from x via the edit δ. The Hint Factory
estimates this probability distribution based on transition frequencies in the trace data and there-
fore requires meaningful frequency information. As such, the Hint Factory can provide hints
only for states that are part of the interaction network, and for which a directed path to a correct
solution in the interaction network exists. This has been dubbed the hintable subgraph (Barnes
et al., 2016). In practice, students may move outside the hintable subgraph. Indeed, research
has shown that for a reasonably small, open-ended programming task, over 90% of states are
visited only once, indicating that future students will likely visit states that have not been seen
before and may not even be connected to previously seen states in the legal move graph (Price
and Barnes, 2015). Also note that the number of unique states remained high even after apply-
ing harsh canonicalization (Price and Barnes, 2015). This result matches our own two datasets,
where 97.23% and 82.79% of states were visited only once. So how can the Hint Factory be
extended to such sparsely populated state spaces? A first approach has been proposed by Price
et al. (2016), who suggest contextual tree decomposition (CTD) which generates interaction net-
works only for small subtrees of the students’ abstract syntax trees. Due to the size limitation,
the state space for each subtree is significantly smaller and thus more densely populated with
student data. However, the approach faces an ambiguity challenge in that one hint is generated
for each (small) subtree of the student’s state, and the student or the system has to select from
these possible hints (Price et al., 2017a).

Overall, we observe that all previous approaches are either limited by their reliance on fre-
quency data, namely the Hint Factory, the Piech policy, and the Lazar policy, or by generating
hints based only on a single reference solution, namely the Zimmerman policy, the Gross policy,
or the Rivers policy. Our approach is an attempt to generate hints based on multiple reference
solutions, but without relying on frequency information. More specifically, we use a weighted
average of multiple reference solution to express a virtual state to which the student should
move, and we select the weights for this average such that the resulting virtual state corresponds
to the probabilistically optimal next state of a capable student. As such, we use the same basic
approach as the Hint Factory, in that we also try to bring the student closer to the next state
of capable students in the same situation. However, we extend the Hint Factory by basing our
prediction not on frequency counting, but on the movements of students in similar situations
through the space of possible solutions. This state of possible virtual solutions, expressible as
weighted averages of states we have seen before, is continuous; hence the name Continuous
Hint Factory (CHF).

Note that embedding states in a continuous state has already been proposed by Piech et al.
(2015), who constructed such an embedding via neural networks. The embedding is computed
by executing the programs on example data and recording the variable states P before executing
a block of code A as well as the variable states Q after A has been executed. Both P and Q are
embedded in a common space via a single-layer neural network, yielding the representations fP

14 Journal of Educational Data Mining, Volume 10, No 1, 2018

and fQ. Then, a matrix MA is constructed which maps fP to fQ, that is, MA is constructed such
that fQ ≈ MA · fP . This matrix MA is the embedding of the code block A (Piech et al., 2015).
However, this work has two crucial limitations: First, it relies on a task-specific representation
of fP and fQ, which is generated via execution, whereas the CHF only relies on edit distances,
which are not task-specific (Mokbel et al., 2013). Second, we provide a technique to convert
the predictive result in the continuous space to an actual, human-readable edit, which the Piech
approach lacks.

We also note connections to other approaches cited before. First, the CHF is connected to
the work of Gross and Pinkwart (2015), in that we also recommend following the actions of
students in a similar situation, but we integrate knowledge of more than one student. Second,
similar to the work of Lazar and Bratko (2014), we recommend edits which are frequent in past
student data but focus on those edits which have been applied in similar states. Finally, we
incorporate many of the key concepts and approaches of Rivers and Koedinger (2015), in that
we also apply canonicalization, and build upon the concept of path construction, a desirability
score, as well as state reification to infer an edit which corresponds to the optimal hint in the
embedding space. However, we extend this approach by considering not only edits toward the
closest correct solution but edits toward all reference solutions and by replacing their desirability
score with the distance to the recommended next state in the edit distance space. This alternative
score incorporates the spirit of many of the criteria proposed by Rivers and Koedinger (2015),
as it also punishes going too far away from the student’s current solution, rewards getting closer
to the goal, and represents what other students generally did, but it relies neither on frequency
information, nor on an expert-chosen weighting between the different criteria.

In the next section, we introduce the CHF in more detail.

3. CONTINUOUS HINT FACTORY

The goal of the Continuous Hint Factory (CHF) is to identify a state which represents where
students should move next on their way towards a correct solution and to recommend an edit
which gets as close as possible to this selected state. In doing so, we also want to be able to select
next states which are not contained in the data of past data but can be represented as mixtures of
previously seen states.

To implement this goal, the CHF involves three steps. First, we embed past student data in
a continuous space by means of an edit distance. In this space, we can represent any mixture of
known states as a vector. Second, we develop a hint policy in this embedding space based on
Gaussian process prediction for structured data (Paaßen et al., 2017). This policy returns what
a capable student would do in the respective input state, represented as a mixture of states from
traces of such capable students. In a final step, we transform this mixture into a human-readable
edit by selecting the edit which brings us closer to all states with positive mixture coefficients
and further away from all states with negative mixture coefficients.

In the remainder of this section, we describe each of these three steps - embedding in the
edit distance space, prediction, and pre-image identification - in turn.

3.1. THE EDIT DISTANCE SPACE

In a first step, we embed the states of past students in a Euclidean vector space, such that the
edit distances between any two states x and y corresponds to the Euclidean distance between the

15 Journal of Educational Data Mining, Volume 10, No 1, 2018

corresponding vectors ~φ(x) and ~φ(y). Such a space is necessary to ensure that “mixing” states
becomes meaningful. If we have vectors ~φ(x) and ~φ(y) which correspond to x and y, we can
easily mix those two vectors by adding them or subtracting them from each other.

A simple example of such an embedding is shown in Figure 2b (left). In this figure, the
strings “a”, “b”, “ab”, “aa”, “aac”, “bb”, “bbc”, and “abc” are embedded in a two-dimensional
space, namely the two dimensions of the paper. The Euclidean distance between the strings on
the paper approximately corresponds to their edit distance, that is, strings with an edit distance
of 2, such as “ab” and “aac”, are about twice as far away from each other on the paper compared
to strings with an edit distance of 1, such as “ab” and “aa”. Note that this embedding is not
exact. For example, the distance on the paper between “a” and “b” is much larger compared
to the distance between “a” and “ac”, even though in both cases the edit distance is 1. Another
example is shown in Figure 1b. This figure displays ten traces of students working on the
guessing game task from Figure 1a, such that the distance between states roughly corresponds
to the edit distance between them. In both cases we observe that finding a vectorial embedding,
such that the edit distance corresponds exactly to the Euclidean distance in the embedding, is
not trivial. Importantly, though, theoretical results show that such an embedding does always
exist.

Theorem 1 (Latent Distance Space). Let X be some finite set and d : X×X → R be a function
such that for all x, y ∈ X it holds: d(x, x) = 0, d(x, y) ≥ 0 and d(x, y) = d(y, x). Then, there
exists a vector space Y ⊂ Rs for some s ∈ N, and a mapping ~φ : X → Y , such that for all
x, y ∈ X:

d(x, y)2 = (~φ(x)− ~φ(y))
T · Λ · (~φ(x)− ~φ(y)) (8)

where Λ is a diagonal matrix with entries in {−1, 0, 1}.

Proof. Refer to Theorem 1 in Hammer and Hasenfuss (2010) as well as page 122 in Pekalska
and Duin (2005).

Note that if Λ has no negative entries, d corresponds to the Euclidean distance in the em-
bedding space. Otherwise, there exist points in the latent vector space Y for which the pairwise
distance becomes negative, which may cause errors in subsequent processing. These negative
entries can be addressed by various eigenvalue correction techniques, such as setting the neg-
ative entries to zero (clip eigenvalue correction), replacing them with their absolute value (flip
eigenvalue correction) or adding an offset to Λ, such that all entries become positive (Gisbrecht
and Schleif, 2015). Note that this correction is an approximation and does distort the distances,
but only to the extent to which negative entries are present.

Based on this embedding, we can prove the main theorem of our work, namely that for any
symmetric edit distance we can find an Euclidean embedding, which we call the edit distance
space.

Theorem 2 (Edit Distance Space). Let V ⊂ X be a solution space taken from a state space X ,
let ∆ be a symmetric edit set on X and let C : ∆×X → R+ be a symmetric edit cost function
on ∆. Further, let D be the eigenvalue-corrected version of the distance matrix with entries
Dij = d∆,C(xi, xj)

2 for all xi, xj ∈ X .
Then, there exists a vector space Y = Rs for some s ∈ N which we call the edit distance

space for d∆,C; and there exists a mapping ~φ : X → Y , such that for all x, y ∈ V it holds:

16 Journal of Educational Data Mining, Volume 10, No 1, 2018

‖~φ(x)−~φ(y)‖2
2 = D(x, y), i.e. the Euclidean distance inY corresponds to d∆,C , up to eigenvalue

correction.

Proof. We first show that, under our constraints on ∆ and C, the resulting edit distance d∆,C

fulfills the constraints of Theorem 1.

d∆,C(x, y) ≥ 0: If x and y are connected in the legal move graph, d∆,C(x, y) is a sum of non-
negative contributions (because C is non-negative), and thus d∆,C(x, y) ≥ 0. Otherwise
d∆,C(x, y) =∞ > 0.

d∆,C(x, x) = 0: For all x we can use the empty edit sequence to transform x to x. The cost
of the empty edit sequence is 0, independent of the cost function C. As we have shown
that d∆,C(x, x) ≥ 0, there can also be no cheaper edit sequence. Therefore, we obtain
d∆,C(x, x) = 0

d∆,C(x, y) = d∆,C(y, x): Let x, y ∈ X such that x and y are connected in the legal move graph.
Let δ1, . . . , δT be a sequence of edits that transforms x to y such that the cost is minimal.
Because ∆ is symmetric, we can construct the sequence of edits δ−1

T , . . . , δ−1
1 which trans-

forms y to x. Because C is symmetric we know that the cost of this path is equal to the
cost of δ1, . . . , δT , which in turn implies d∆,C(x, y) ≥ d∆,C(y, x). We can do the same
argument in the other direction (from y to x), such that d∆,C(x, y) ≤ d∆,C(y, x), which
implies d∆,C(x, y) = d∆,C(y, x). If there is no path from x to y in the legal move graph,
then there is also no path from y to x, and it holds d∆,C(x, y) =∞ = d∆,C(y, x).

Theorem 1 now yields the required embedding. Because of eigenvalue correction, this embed-
ding is Euclidean.

Note that the construction of the edit distance space depends on example data. How we
select this example data is crucial for a viable edit distance space and, in turn, for a helpful hint
policy. We suggest selecting example data with two heuristics. First, we should limit ourselves
to data of successful students, meaning data of students who did end up in a correct solution to
the task. Second, we should incorporate the goal-directedness criterion suggested by Rivers and
Koedinger (2014), that is, we should only incorporate those intermediate solutions which get
closer to the correct solution the student ended up in.

In our approach, we make extensive use of the edit distance space. In particular, we replace
the problem of finding a hint policy for the original edit set of the edit distance by finding a hint
policy in the edit distance space.

3.2. A HINT POLICY IN THE EDIT DISTANCE SPACE

Due to Theorem 2 we know that, for a symmetric edit distance d∆,C , there exists an embedding
in a vector space Y ⊂ Rs, such that the edit distance corresponds to the Euclidean distance in Y
after eigenvalue correction. The main advantage of the edit distance space Y is that construct-
ing a hint policy for vectors is much easier compared to a hint policy for arbitrary states. In
particular, we can define edits in a vector space as vectors which are added to the input states.
Consider the example edit distance space in Figure 2b. In this space, string edits become vec-
tors, displayed here as blue and orange arrows, and the resulting state after applying the edit
corresponds to adding the vector to the original state.

17 Journal of Educational Data Mining, Volume 10, No 1, 2018

In formal terms, we define the edit set ∆Y and the cost function CY in the edit distance space
as follows.

∆Y = {δ~ξ|~ξ ∈ Y} where ∀~φ ∈ Y : δ~ξ(
~φ) = ~φ+ ~ξ and CY(δ~ξ,

~φ) = ‖~ξ‖ (9)

The edit distance resulting from this definition of edit set ∆Y and edit cost function CY
in the edit distance space is provably equivalent to the original edit distance, up to eigenvalue
correction.

Theorem 3. Let V ⊂ X be some solution space from a state space X , let ∆ be a symmetric edit
set on X and let C : ∆×X → R be a symmetric edit cost function on ∆. Further, let D be the
eigenvalue-corrected version of the matrix with entries Dij = d∆,C(xi, xj)

2 for all xi, xj ∈ V .
Finally, let dY(xi, xj) be the edit distance in the edit distance space according to ∆Y and CY .

Then, for all xi, xj ∈ V it holds: Di,j = dY(~φ(xi), ~φ(xj))
2, i.e. the edit distance in the edit

distance space is equivalent to the original edit distance d∆,C , up to eigenvalue correction.

Proof. Recall that Theorem 2 already shows that Di,j corresponds to the squared Euclidean
distance ‖~φ(x) − ~φ(y)‖2

2. It remains to show that the edit distance in the edit distance space Y
is equivalent to the Euclidean distance in the edit distance space as well.

Let ~φ(x), ~φ(y) ∈ Y . Then, the edit δ~φ(y)−~φ(x) is in ∆Y . Therefore, dY(~φ(x), ~φ(y)) is at most

‖~φ(y) − ~φ(x)‖. Due to the triangular inequality on the Euclidean distance we also know that
there exists no point ~φ(z) ∈ Y , such that ‖~φ(x) − ~φ(z)‖ + ‖~φ(z) − ~φ(y)‖ < ‖~φ(x) − ~φ(y)‖.
Therefore, there can exist no sequence of edits which is cheaper than ‖~φ(y) − ~φ(x)‖, which
concludes the proof.

Thanks to this theorem we can replace a hint policy in the original space with a hint policy
in the edit distance space. We can infer such a hint policy based on example data of successful
students. In particular, assuming a dataset of traces of successful students, we denote any state
in one of these traces as xi and the next state in the trace as yi. If xi is the final solution of a
trace, then yi = xi. Constructing a hint policy in the edit distance space corresponds to finding
a function which outputs for any ~φ(xi) the edit vector ~φ(yi) − ~φ(xi). In machine learning
terms, this is a regression problem. The simplest approach to this problem would be one-nearest
neighbor regression (1-NN), which looks for the closest data point in the database and returns
the edit that has been done for that point, that is, π1NN(~φ(x)) = ~ξi where d(x, xi) is minimal.
Unfortunately, such a policy tends to overestimate the importance of particularities of individual
traces. Consider the example shown in Figure 2b. We wish to provide a hint for point ~φ(x),
shown in red. Our trace data consists of the points x1 and y1 as well as x2 and y2. Both x1

and x2 are equally close to x. Still, one-nearest neighbor has to arbitrarily choose between both
points and predict the edit corresponding to only one. In practical examples, we observe similar
problems. Consider the excerpt of the Snap dataset shown in Figure 4a and assume we want to
provide feedback for a state located at the red point. In that case, a one-nearest neighbor policy
would recommend a movement in upwards direction which is not representative of the overall
movement in the data, which rather goes straight to the left.

We can address the overemphasis of individual particularities by integrating information
from multiple student traces. In particular, we propose to construct a hint policy which returns a
weighted average of all past edits, that is π(x) =

∑M
i=1 γi(x) · ~ξi, where γi(x) ∈ R are numeric

weights. These weights should result in a compromise between past data, such that individual

18 Journal of Educational Data Mining, Volume 10, No 1, 2018

0.1 0.2 0.3 0.4 0.5

−0.1

0

0.1

0.2
user
1-NN
NWR
GPR

(a) An excerpt of the embedding for the Snap guess-
ing game task from Figure 1b (blue), a hypotheti-
cal new student state (red) and the outputs of a one-
nearest neighbor hint policy (1-NN), a Nadaraya-
Watson kernel regression hint policy (NWR) and a
Gaussian Process hint policy (GPR) for this state,
based on a length scale of ψ = 0.5.

0 1 2 3
0

0.5

1

ψ

d(x, y)

k
ψ
,d

(x
,y

)

(b) The output of the radial basis func-
tion (RBF) kernel (y-axis) for distances
between two states x and y in the range
[0, 3] (x-axis) and a length-scale of ψ = 1
(red line).

Figure 4: Two figures illustrating regression techniques (left) and the radial basis function kernel
(right).

particularities are averaged out, and general trends in the data are emphasized. In the example
in Figure 2b, we could simply set the weights for both traces to an equal value, resulting in a
viable edit (shown in orange).

The key question in such an averaging approach is how to obtain the weights γi(x). The
simplest way is to scale γi(x) inversely to the distance d(x, xi) between x and xi, i.e., such
that states xi which are close to x are emphasized. For that purpose, we can define γi(x) as
k(x, xi) divided by

∑M
j=1 k(x, xj) where k may be any function which decreases monotonically

with rising edit distance d(x, xi). A particularly popular choice is the radial basis function
(RBF) or Gaussian function which is defined as kψ,d(x, y) = exp(−0.5 · d(x,y)2

ψ2) (Rasmussen
and Williams, 2005). The RBF assigns a value of 1 for a distance of 0 and assigns lower values
for higher distance, quickly approaching 0. ψ is a hyper-parameter called length-scale which
controls the distance value at which kψ,d reaches its maximum slope (see Figure 4b).

This way of setting γi(x) is called Nadaraya-Watson kernel regression (NWR) and often-
times yields more accurate predictions compared to simple 1-NN (Paaßen et al., 2017). How-
ever, NWR is highly sensitive to the choice of ψ. In particular, for small ψ values, NWR is
equivalent to 1-NN, and for large ψ values, NWR overemphasizes distant states, as is visible in
Figure 4a. Here, NWR recommends a downward motion, which does not reflect the movement
in the local environment. An alternative to NWR is Gaussian Process Regression (GPR), which
is well-justified via probability theory (Rasmussen and Williams, 2005), and has been shown to
be more accurate in prediction (Paaßen et al., 2017). To apply GPR, the function k needs to be a
kernel function. For an exact definition of kernel functions, we point to the work of Rasmussen

19 Journal of Educational Data Mining, Volume 10, No 1, 2018

and Williams (2005). For our purposes here, it suffices to state that the RBF is one such kernel
function.

Let now ~k(x) be the row vector of kernel values k(x, xi) for all i = 1, . . . ,M and let K be
the matrix of pairwise kernel values k(xi, xj) for all i = 1, . . . ,M and j = 1, . . . ,M . Then, for
the point ~φ(x), we define the result of the GPR hint policy as πGPR(x) =

∑M
i=1 γi(x) · ~ξi, where

the vector ~γ(x) = (γ1(x), . . . , γM(x)) is computed as follows (Paaßen et al., 2017).

~γ(x) = ~k(x) ·
(
K + σ̃2 · IM

)−1

(10)

and where σ̃ is a hyper-parameter which quantifies the assumed amount of noise in our data
and IM is the M ×M identity matrix. Increasing σ̃ tends to decrease the accuracy of GPR but
enhances smoothness in the predictions as well as numerical stability (Rasmussen and Williams,
2005).

We highlight two key properties of GPR. First, if x is equal to some state xi in the recorded
trace data, then ~k(x) equals the ith column in the matrix K. The product ~k(x) ·K−1 is then
equal to a vector of zeros which is only one at position i. So for σ̃ = 0, the GPR policy will
return exactly the vector ~ξi. Second, if x is distant from all states xi in the trace data, ~k(x) is
approximately a zero vector, such that the hint recommended by the GPR policy degrades to
zero. In other words, if the student’s solution is dissimilar to everything we have seen before,
the GPR hint policy cannot provide feedback. While this limits coverage, it also implies that
the GPR hint policy automatically detects where its hints may not be useful anymore, namely in
case of truly novel strategies for which new example data are required.

As an example for the application of the GPR hint policy, consider the string edit distance ex-
ample shown in Figure 2b. Note that the string edit distances are: d∆,C(x, x1) = d∆,C(x, x2) = 1
and d∆,C(x1, x2) = d∆,C(x2, x1) = 1. For the length scale ψ = 1 and a noise variance σ̃2 = 0
we obtain

~k(x) = (
1√
e
,

1√
e

), K =

(
1 1√

e
1√
e

1

)
, and ~γ(x) = ~k(x) ·K−1 ≈ (0.3775, 0.3775).

Thus, the recommended edit, shown as orange arrow, is πGPR(x) ≈ 0.3775 · ~ξ1 + 0.3775 · ~ξ2. For
the Snap example, the result of the GPR hint policy is shown in orange in Figure 4a. As can be
seen, the GPR policy is able to return a hint that represents the local trend in the data, thereby
improving upon both the one-nearest neighbor (1-NN) and the Nadaraya-Watson regression
(NWR) policy.

Via the hint policy πGPR, we can now recommend edits in the edit distance space which are
optimal according to a Gaussian Process model. However, this edit has the form of a coefficient
vector ~γ(x), which is not directly interpretable to a student. So our last challenge is to derive a
viable hint from our prediction in the edit distance space. More precisely, we wish to obtain an
edit in our original edit set ∆ which corresponds to the recommended edit in the edit distance
space.

3.3. EDIT PRE-IMAGE PROBLEMS

The problem of finding an unknown original object which maps to a known point in an em-
bedding space is called a pre-image problem (Bakır et al., 2003), so the problem of finding the

20 Journal of Educational Data Mining, Volume 10, No 1, 2018

edit which best corresponds to a recommended edit in the edit distance space can be described
as an edit pre-image problem. We want to emphasize here that such pre-image problems are
typically hard to solve (Bakır et al., 2003), and, to our knowledge, no approach exists to date
which addresses edit pre-image problems. We also note a connection to the state reification
(Rivers and Koedinger, 2014) because the mapping to the edit distance space ~φ can be seen as a
canonicalization, and we now try to align the edit returned by a hint policy in the edit distance
space with the student’s original state. In this section, we provide an approximate solution to the
edit pre-image problem.

First, following Bakir et al., we re-frame our edit pre-image problem as a minimization
problem: Starting from the student’s current state x, we try to find an edit δ which brings us
as close as possible to the recommended state of the Gaussian Process regression (GPR) hint
policy in the edit distance space.

min
δ∈∆
‖~φ
(
δ(x)

)
−
(
~φ(x) + πGPR(x)

)
‖2 (11)

This optimization problem is infeasible because it requires us to estimate the effect of an
edit δ to the student’s state x after mapping this state to the edit distance space. Fortunately, our
established edit distance theory lets us replace this minimization problem with a simpler form.

Theorem 4. Let ~γ be the weights applied by GPR, that is, ~γ = ~k(x) · (K + σ̃2 · IM)−1. Then
the maximization problem in 11 can be re-written as:

min
δ∈∆

d∆,C(δ(x), x)2 +
M∑

i=1

αi · d∆,C(δ(x), xi)
2 (12)

where αi = −γi if xi is the start point of a trace, αi = γi−1 − γi if xi is an intermediate element
of a trace, and αi = γi−1 if xi is the end point of a trace.

Proof. In a first step, we note that we can re-write:

~φ(x) + πGPR(x) = ~φ(x) +
M∑

i=1

αi · ~φ(xi) (13)

According to Theorems 3 and 4 in the paper by Paaßen et al., we can now re-write the distance
‖~φ
(
δ(x)

)
−
(
~φ(x) + πGPR(x)

)
‖2 as

‖~φ(δ(x))− ~φ(x)‖2 +
M∑

i=1

αi · ‖~φ
(
δ(x)

)
− ~φ
(
xi
)
‖2 − Z (14)

where Z is a constant that does not depend on δ (Paaßen et al., 2017). Due to Theorem 2
we know that the Euclidean distance in the edit distance space corresponds exactly to the edit
distance, which concludes the proof.

This form of the minimization problem in Equation 12 has multiple key advantages. First,
it does not require us to compute the vectorial embedding for any state anymore. Instead, we
can infer the optimal edit sequence solely based on the edit distance d∆,C(δ(x), x), as well as
the edit distances d∆,C(δ(x), xi). Second, our revised form of the problem provides a useful re-
interpretation. We need to find an edit δ, such that the resulting state stays close to the original

21 Journal of Educational Data Mining, Volume 10, No 1, 2018

state x, gets closer to states xi for which αi is positive, and gets further away from state xi for
which αi is negative. Note that this re-interpretation is consistent with the criterion of Rivers
and Koedinger (2014) that a next state should stay close to the student’s current state. Finally,
the re-formulation shrinks our search space, because we only have to consider edits which bring
us closer to states xi with positive coefficients αi. We can extract such edits from the shortest
edit sequences between x and states xi with positive coefficients αi. For all these possible edits
we can evaluate the error in Equation 12 and select the edit with the lowest error.

Consider the example illustrated in Figure 2c. Recall that the coefficients α resulting from
the GPR hint policy are αx1 = αx2 ≈ −0.3775 and αy1 = αy1 ≈ +0.3775. So we need to
find an edit which brings us closer to y1 = aac and y2 = bbc but further away from x1 = a
and x2 = b. The cheapest edit sequence between x and y1 is rep2,a, ins3,c, and the cheapest
edit sequence between x and y2 is rep1,b, ins3,c. Therefore, we need to consider the edits rep2,a,
ins3,c, and rep1,b. The resulting states of these edits would be aa, abc, and bb. Amongst these
options, abc minimizes our error because it is closer to both aac and bbc, further away from both
a and b, and stays close to ab. Therefore, we would recommend ins3,c as hint.

In practical examples, this approach would be limited by the number of edits to be consid-
ered. For many training data points with positive coefficients and long shortest edit sequences,
this number can become unreasonable. One way to limit the number of edits is to incorporate
more of the criteria suggested by Rivers and Koedinger (2014) and consider only edits which
result in syntactically correct states, result in programs which fulfill at least as many test cases
or get us closer to a correct solution. In addition, we propose to limit the search space to a
reasonable size by using fewer coefficients to represent the recommended state. More precisely,
we are looking for a coefficient vector α̃ which is nonzero for at most m training states. Further,
we propose to use only those states to represent the recommended state which are between the
student’s current state x and the next correct solution x∗. This is consistent with the criteria
of Rivers and Koedinger (2014) that the recommended state should both be close to a correct
solution and to the student’s current state. Thus, we look for a coefficient vector α̃, such that
α̃i is nonzero only if d(xi, x) ≤ d(x, x∗) and d(xi, x

∗) ≤ d(x, x∗), such that at most m entries
are nonzero, such that the sum over all entries of α̃ is 1, and such that the state represented
by α̃ is as close as possible to the state represented by ~α. While this is an NP-hard problem,
multiple simple heuristics exist which have been summarized by Hofmann et al. (2014). In our
experiments, we apply both kernelized orthogonal matching pursuit and an approximation via
the largest entries of ~α and use whatever approximation is closer to the actual recommended
state.

Consider the example illustrated in Figure 5. Here, the original coefficients α returned by the
GPR hint policy are shown in orange and represent the state shown as an orange diamond. Now,
assume that the student’s current state is the string “ab” and the closest correct solution is the
string “abcd”. In that case, only the strings “ab,” “aac,” “bbc,” and “abcd” fulfill the constraints
d(xi, x) ≤ d(x, x∗) and d(xi, x

∗) ≤ d(x, x∗) (indicated by dashed purple lines). If we now
try to represent the recommended state by using only 3 of those four strings, this results in a
representation via the strings “aac,” “bbc,” and “abcd” with roughly equal coefficients, resulting
in a represented state (shown in purple) close to the original hint. The selected hint, in this case,
would still be ins3,c.

22 Journal of Educational Data Mining, Volume 10, No 1, 2018

a

b

ab

aa aac

bb bbc

abcd

-0.3775

-0.3775

+0.3775

+0.3775

1

+0.3043

+0.3043

+0.3914

Figure 5: An illustration of the sparse representation of the recommended state for the string
example of Figure 2. The student’s current state is the string x = ab (shown in red), the closest
correct solution is the string x∗ = abcd (shown in green). The coefficients αi and the represented
state ~φ(x) + πGPR(x) returned by the Gaussian Process Regression (GPR) policy are shown in
orange. The sparse coefficients and the corresponding represented state are drawn in purple.
The constraints d(xi, x) ≤ d(x, x∗) and d(xi, x

∗) ≤ d(x, x∗) are illustrated by dashed purple
lines.

3.4. SUMMARY

To conclude our description of the Continuous Hint Factory (CHF) we provide a short summary
of all steps involved in the CHF hint policy. First, we need to perform the following preparation
steps:

1. Collect trace data from successful students.

2. Remove all intermediate states in the traces which do not get closer to the goal.

3. Compute the canonic forms of the trace data and their pairwise edit distances.

4. Perform eigenvalue correction on the pairwise edit distances.

5. Compute the pairwise radial basis kernel values K. The length scale parameter ψ, as well
as the noise parameter σ̃, can be selected such that the predictive accuracy of the GPR
model on unseen evaluation data is as high as possible.

Now, assume that a new student is in state x and requests help. In that case, the following
steps need to be performed.

1. Compute the canonic form of x and the edit distance of this canonic form to all canonic
forms in the trace data before.

2. Extend the eigenvalue correction to the new distances.

3. Compute the radial basis kernel values ~k(x) based on these corrected distances.

4. Compute the coefficients α of the GPR hint policy via the formulas in Theorem 4.

23 Journal of Educational Data Mining, Volume 10, No 1, 2018

5. Optionally, sparsify these coefficients via one of the techniques of Hofmann et al. (2014).

6. Compute the cheapest edit scripts between x and all training states xi for which αi is
positive.

7. Subselect edits δ from these edit scripts which result in states δ(x) that conform to further
criteria, e.g., unit test fulfillment, or syntactic correctness (Rivers and Koedinger, 2014).

8. Compute the error term in Equation 12 for all remaining edits.

9. Select the edit with the lowest error as hint.

This concludes our description of the CHF. In the next section, we evaluate the CHF ap-
proach experimentally.

4. EXPERIMENTS

We consider two datasets for our analysis. First, a dataset collected in an introductory undergrad-
uate computing course for non-computer science majors during the Fall of 2015 at a research
university in the south-eastern United States. The course had approximately 80 students, split
among six lab sections. The first half of the course focused on learning the Snap5 program-
ming language through a curriculum based on the Beauty and Joy of Computing (Garcia et al.,
2015). Here, we focus on the “Guessing Game” task, which had the following description: “The
computer chooses a random number between 1 and 10 and continuously asks the user to guess
the number until they guess correctly.” Students did not receive specific instructions regarding
the form of the program. An example solution for the task is presented in Figure 1a. Students
worked on this assignment during class for approximately one hour, with a teaching assistant
available to assist them and the option of working in pairs. The class was conducted as normal,
and the students were not informed that data was being collected. The state of the student’s
program was recorded after every edit. Students who did not correctly select the assignment
they were working on were excluded from the analysis. The dataset consists of 52 traces with
8669 states overall.

Each of the final states was graded by two independent graders. The graders used a rubric
consisting of nine assignment objectives and marked whether each state successfully or un-
successfully completed each objective. The graders had an initial agreement of 94.5%, with
Cohen’s κ = 0.544. After clarifying objective criteria, each grader independently regraded each
state where there was disagreement, reaching an agreement of 98.1%, with Cohen’s κ = 0.856.
Any remaining disagreements were discussed to create final grades for each assignment. As
our aim is to predict what capable students would do, we kept only traces which successfully
completed at least eight of the nine objectives. This left 47 traces with 7864 states.

As a second dataset, we utilize data collected in an introductory programming course for
computer scientists at a German university in 2012. The students were asked to draw a UML
activity diagram which described the process of adding two binary numbers. An example so-
lution is shown in Figure 6. From the available student data, we extracted six typical strategies
and created two correct traces and one erroneous trace for each strategy. Overall, the correct
traces contained 364 states and the erroneous traces 115 states. We presented each state in the

5http://snap.berkeley.edu

24 Journal of Educational Data Mining, Volume 10, No 1, 2018

http://snap.berkeley.edu

0

Let x be the first input.
Let m = |x|. 1

Let y be the second input.
Let n = |y|. 2

3

Pad x with zeros
to length n.4

m← n.5

Pad y with zeros
to length m. 6

7

Initialize z as binary number with m digits. 8

Initialize c← 0. 9

Initialize i← m. 10

11

12

zi ← 0.14

zi ← 1.15

c← 0.16

zi ← 0. 17

c← 1. 18
zi ← 1. 19

20

i← i− 1. 21

return z.
22

23

m ≤ n n < m

0 < i
xi + yi + c = 0

xi + yi + c = 1 xi + yi + c = 2

xi + yi + c = 3

i = 0

Figure 6: A correct example solution for the UML binary adder task. Numbers indicate the
order in which nodes have been added to the UML diagram.

25 Journal of Educational Data Mining, Volume 10, No 1, 2018

erroneous traces to three graders who independently were asked to suggest all possible edit hints
that could be given to a student in the particular situation, taking past states into account. We
also instructed the tutors to provide an estimate of hint quality in the interval [0, 1] for each of
their hints, taking into account the following criteria: 1) Does the hint follow the strategy of the
student? 2) Does the hint conform to the student’s current focus of attention or does it address
a different part of the state? 3) Is the hint effective in addressing the problems in the student’s
state? 4) Is the hint effective in guiding the student toward a solution? In a second meeting, all
tutors met to add ratings for the hints of the respective other tutors and to discuss discrepancies
in the ratings. If after discussion at least one expert rated a hint with a grade below 0.5, the hint
was excluded from the set. 1053 hints remained after this process. The average inter-rater cor-
relation via Pearson’s r was r = 0.588, indicating moderate agreement. This dataset is available
online under the DOI 10.4119/unibi/2913083.

We represent the states of both datasets as trees. In the UML dataset, we removed back-
references, such as the arrow from node 20 to node 11 in Figure 6, to obtain a tree structure. We
labeled all tree nodes with the name of the respective syntactic construct (e.g., “doIf,” “var,” and
“literal”). In case of the UML dataset, we also added the text of the respective node to the label,
for example, “return z” for node 21 in Figure 6. In both datasets, we canonicalized the trees by
normalizing variable names and literals, normalizing the order of binary relations, and removing
non-executable code, as recommended by Rivers and Koedinger (2012).

As an edit distance, we employ the tree edit distance of Zhang and Shasha (1989) as im-
plemented in the TCS Alignment Toolbox (Paaßen et al., 2015). For the Snap dataset we use a
uniform edit cost of 1 for deletions, insertions, and replacements. For the UML dataset, we de-
fine deletion and insertion costs as 1, replacement costs between unequal node types as infinite,
and replacement costs between action nodes (displayed as ellipses in Figure 6) as the string edit
distance between the node text, normalized to the interval [0, 1]. We post-process the tree edit
distances via clip eigenvalue correction (Gisbrecht and Schleif, 2015). Based on the tree edit
distance, we excluded states which did not get closer to the final state in the respective trace,
which left 1005 states. Of these states, 812 were unique, and of these unique states, 94.09% were
visited only once. Similarly, 215 of the 354 training states in the UML dataset were unique, and
of these unique states, 82.79% were visited only once. These numbers indicate that meaningful
frequency information is only available for very few training states, which is consistent with
the findings reported by Price and Barnes (2015) on similar data from an open-ended Snap pro-
gramming task.

To evaluate the utility of the CHF fairly, we need to compare to existing reference hint
policies. Due to the lack of meaningful frequency information in our data, however, we can
neither apply the Hint Factory (Barnes and Stamper, 2008) nor the Piech policy (Piech et al.,
2015). Furthermore, to keep the approach generic, we do not use task-specific syntactic or
unit test information for our experiments, which rules out the policy of Lazar and Bratko (2014).
There remain the policy of Gross and Pinkwart (2015), which uses the successor of the next state
in the trace data to construct a hint, the policy of Zimmerman and Rupakheti (2015), which uses
the closest correct solution to construct a hint, and the policy of Rivers and Koedinger (2015),
which also uses the closest correct solution. The Zimmerman policy and the Rivers policy
mainly differ in how hints are constructed from the closest correct solution. However, given that
we use neither frequency nor syntactic or semantic correctness information, and consider only
single edits instead of edit combinations, both policies become very similar, such that we only
consider the Gross policy and the Zimmerman policy in this case.

26 Journal of Educational Data Mining, Volume 10, No 1, 2018

http://doi.org/10.4119/unibi/2913083

Table 1: Mean RMSE ± standard deviation in predicting the next step and the final step of
capable students for both the Snap dataset, as well as the UML dataset. The first column lists
the different prediction schemes. Lower values are better, and a value of 0 is ideal.

Snap UML

Prediction scheme Next Final Next Final

Do nothing 17.5± 3.89 39.3± 9.36 5.27± 0.53 28.9± 5.28
Successor-of-closest 23.7± 5.39 39.1± 9.49 7.89± 3.50 29.1± 6.00
Closest-correct 26.7± 5.46 43.0± 8.60 25.50± 1.23 19.9± 8.42
Gaussian Process 16.6± 4.09 37.8± 9.15 3.18± 1.66 27.8± 5.32

We implemented all hint policies in MATLAB R© 6. To optimize the kernel length scale ψ
and the noise standard deviation σ̃ of the Gaussian Process model, we employ a random hyper-
parameter search with 10 repeats as recommended by Bergstra and Bengio (2012). We set the
maximum number of training states to represent the hint of the CHF policy to m = 11.

In our experiments, we investigate two research questions, which we will cover in turn. We
evaluate statistical significance using a paired Wilcoxon sign-rank test. Further, we apply a
Bonferroni correction to avoid type I errors due to multiple tests.

RQ1: How well does the Gaussian Process model capture the behavior of capable students,
that is, can the Gaussian Process predict what a capable student would do?

To investigate RQ1, we consider two measures of predictive accuracy. First, we measure
the distance between the predicted next state of the Gaussian Process model and the actual next
state of the respective student (next-step error). Second, we measure the distance between the
predicted next state and the final state of the respective student (final-step error). We square
these distances, average them over a trace, and then compute the root, resulting in a root mean
square error (RMSE), which estimates the standard deviation of the error distribution of the
model and is a well-established measure for model evaluation (Chai and Draxler, 2014). We
evaluate the next-step error and the final-step error in a leave-one-out crossvalidation over the
traces, which means that in each fold we use all but one trace as training data for the prediction
and the remaining trace to evaluate the model.

Note that RQ1 is only concerned with the prediction module of each hint policy, that is, the
reference state based on which edits are generated, not the edits which are used as hints. As such,
we do not directly compare with the Gross or Zimmerman policy but with the reference states
they would use, namely the successor of the closest next solution (Successor-of-closest), and the
closest correct solution (Closest-correct) respectively. Given the nature of these references, we
would expect that the Successor-of-closest prediction would perform well in the next-step error
but badly in the final-step error and that the Closest-correct prediction would perform badly in
terms of the next-step error but good in terms of the final-step error.

Table 1 shows the RMSE averaged over the crossvalidation folds (± standard deviation) for

6Our implementation of the GPR hint policy is available under the DOI 10.4119/unibi/2913104

27 Journal of Educational Data Mining, Volume 10, No 1, 2018

http://doi.org/10.4119/unibi/2913104

both datasets where each column lists one error measure for all prediction schemes7. As an
additional reference, we provide the error for the trivial prediction of staying in the same state,
that is, π(x) = x. Statistical analysis reveals that the Gaussian Process is significantly better in
predicting the next state compared to all other baselines for both datasets (p < .01). Further,
the Gaussian Process is significantly better in predicting the final state compared to the “Do
nothing” and the Successor-of-closest prediction for both datasets (p < .01), and better than
the Closest-correct prediction for the Snap dataset (p < .001). Interestingly, the Successor-of-
closest prediction does not perform better in predicting the actual next state of a student com-
pared to staying in the same state, indicating that students in both data sets do not necessarily
move along the same states, even though their directions may be consistent, which is consistent
with the embedding in Figure 1b. Furthermore, we note that, counter to our expectations, the
Closest-correct prediction has a higher final-step error on the Snap dataset than any other pre-
diction scheme, which indicates that, on average, the closest correct solution of other students
is far away from the student’s actual final solution in this dataset. This effect is likely explained
by the high strategic variability in an open-ended programming task such as the guessing game
task. For such tasks, we expect that the averaging approach of the Gaussian Process to be partic-
ularly helpful, because the general trends in the datasets may be more akin to the student’s actual
plans than a single closest correct solution. Conversely, the UML dataset features less strategic
variability, and the closest correct solution of another student is still close to the final state of the
student for which the prediction is made, which is reflected in significantly better predictions of
the Closest-correct prediction compared to all other prediction schemes (p < 10−3). Overall, we
can conclude that the Gaussian Process is more accurate in predicting the next state of students
compared to other baselines on our example datasets and that this is especially the case for the
Snap dataset, which is characterized by high strategic variability.

RQ2: Do the hints of the Continuous Hint Factory correspond to the hints of human tutors?
To investigate RQ2, we require a reference measure of hint quality, which is provided by the

quality judgments of human tutors in the UML dataset. In particular, we iterate over every state
in the erroneous traces of the UML dataset and generate a hint with each hint policy, using all
correct traces as training data. If multiple edits achieve the lowest error rank, we resolve ties by
selecting the edit as hint which is closest to the root of the tree. If the recommended hint of the
policy matches at least one tutor hint, we assign the average quality rating of the human tutors
for that hint. Otherwise we set the rating to 0. This is similar to the evaluation scheme suggested
by Price et al. (2017a). We report five evaluation measures, namely the median and mean hint
quality, the fraction of hints with a quality > 0, the distance between the policy hint and the
closest human tutor hint in terms of RMSE, and the fraction of states for which a hint could be
generated. In addition to the Gross and the Zimmerman policy, we also compare to a random
policy, which selects a random reference state from the training state and recommends an edit
on the shortest path towards that state as hint. Finally, we also provide the best-rated tutor hint
as the gold standard.

The experimental results are shown in Table 2, where each column displays one evaluation
measure, and each row lists the results for one hint policy. Regarding hint quality, we observe

7Note that the RMSE cannot be interpreted directly as the average number of edits between the predicted next
state and the gold standard because the RMSE assigns higher weight to larger deviations due to the square (Chai
and Draxler, 2014). Further, in this particular evaluation, but not for RQ2, Eigenvalue correction distorts the edit
distances to become larger.

28 Journal of Educational Data Mining, Volume 10, No 1, 2018

Table 2: The hint evaluation measures for all hint policies on the UML dataset. Mean hint
quality and mean ambiguity are reported with standard deviation. For all measures except the
RMSE, higher numbers are better with a value of 1 and 100% respectively being ideal.

Hint quality RMSE Hintable

Hint policy Median Mean > 0

Random 0.0 0.360± 0.456 39.1% 1.42 83.5%
Tutor 1.0 0.994± 0.021 100.0% 0.00 100.0%
Gross 0.8 0.569± 0.465 60.9% 1.42 100.0%
Zimmerman 0.8 0.557± 0.431 64.3% 1.48 100.0%
CHF 0.9 0.590± 0.471 61.7% 1.36 97.4%

that the CHF performs significantly better compared to a random policy (p < .01), and signif-
icantly worse compared to human tutor hints (p < .001), but otherwise there are no significant
differences between the hint policies. This indicates that for simple datasets like the UML
dataset, which feature low strategic variability, single reference states are sufficient to generate
viable hints. Interestingly, though, we could also observe cases where this was not the case.
In particular, Figure 7 displays a UML diagram where the Zimmerman policy recommends ap-
pending a decision node close to the root (purple), which is outside the student’s current focus
of attention because the last node the student added was the “return z” node at the bottom of the
diagram. Accordingly, the CHF recommends appending a “finish” node to that branch (orange).

Another interesting finding is that the CHF and the Gross policy consistently achieved per-
fect hint quality for the first three steps in each trace. This is important in light of the research of
Price et al. (2017b), which indicates that students are more likely to seek help and follow hints
if early hints provided by the system were useful.

5. CONCLUSION

This work makes three primary contributions. First, we have provided a mathematical frame-
work for edit-based hints and placed prior contributions within this framework. Second, we have
introduced the concept of the edit distance space, which is a continuous embedding of student
states such that the edit distance corresponds to the Euclidean distance in the embedding space.
Finally, we introduced the Continuous Hint Factory (CHF), a novel hint policy which provides
edit hints to students by choosing an edit consistent with the general trend of capable students
in similar states.

In our experiments, we have shown that the CHF model is able to predict what capable stu-
dents would do better than other predictive schemes, especially on an open-ended programming
dataset with high strategic variability. We also showed that the CHF reproduces human tutor
hints about as well as existing hint policies on a simple UML diagram task. These results indi-
cate that the averaging approach of the CHF is beneficial for prediction, but that this advantage
is not necessarily reflected in higher hint quality, at least for a simple learning task with low

29 Journal of Educational Data Mining, Volume 10, No 1, 2018

0

Let x be the first input.
Let m = |x|.1

Let y be the second input.
Let n = |y|.2

Initialize z as binary number with m digits.3

Initialize c← 0.4

Initialize i← m.5

6 return z.
7i < 0

CHF policy

Zimmerman policy

Figure 7: An example state from the UML dataset, where the Zimmerman policy generates a
hint (purple) which is not in the student’s current focus of attention. In contrast, the Continuous
Hint Factory generates a hint (orange), which adds upon the last added node.

30 Journal of Educational Data Mining, Volume 10, No 1, 2018

strategic variability.
We note that the Continuous Hint Factory still has several limitations. In particular, the

CHF can only be applied if an edit distance is available which is efficient, takes syntax and
semantics into account appropriately, and yields edits that are viable as next-step-hints for the
student. This is not an issue for the domain of computer programming, as edit distances appear
as a natural fit for syntax-tree-based representations of programs but may be an issue for other
domains. Further, as any data-driven hint approach, hint quality will suffer if the strategy of
a new student is substantially different from anything that the system has seen before. With
regards to evaluation, our assessment of hint quality is not definitive, and it appears likely that
our proposed approach only yields significant advantages compared to existing work on more
complicated tasks compared to the ones we investigated. Further, we do not yet know how
a difference in hint quality translates to learning outcomes in students. After all, better hints
from the view of a tutor may not always yield better learning outcomes, due to difficulties in
sense-making or lack of prior knowledge on the student’s side (Aleven et al., 2016). Finally,
we acknowledge that our evaluation is rather narrow, including only two learning tasks from
different domains.

With regards to future work, it appears promising to integrate the CHF even better with prior
work presented in the literature. In particular, we could take syntactic and unit test information
into account (Rivers and Koedinger, 2014), combine multiple edits instead of single edits (Rivers
and Koedinger, 2015), or apply more sophisticated edit distances as suggested by Mokbel et al.
(2013), Paaßen et al. (2016), as well as Price et al. (2017a). Finally, it would be interesting to
evaluate the CHF on more learning tasks, especially more open-ended learning tasks where the
advantages of the CHF are more likely to be visible.

6. ACKNOWLEDGEMENTS

This research was funded by the German Research Foundation (DFG) as part of the project
“Learning Dynamic Feedback for Intelligent Tutoring Systems” under the grant number HA
2719/6-2 as well as the Cluster of Excellence Cognitive Interaction Technology ’CITEC’ (EXC
277), Bielefeld University and the NSF under grant number #1432156 “Educational Data Min-
ing for Individualized Instruction in STEM Learning Environments” with Min Chi & Tiffany
Barnes as Co-PIs. We also wish to express our gratitude to our anonymous reviewers and our
editors who helped to increase the quality of our contribution substantially.

REFERENCES

ALEVEN, V., MCLAREN, B. M., SEWALL, J., AND KOEDINGER, K. R. 2006. The cognitive tutor
authoring tools (CTAT): Preliminary evaluation of efficiency gains. In Proceedings of the 8th Inter-
national Conference on Intelligent Tutoring Systems (ITS 2006), M. Ikeda, K. D. Ashley, and T.-W.
Chan, Eds. Springer Berlin Heidelberg, Jhongli, Taiwan, 61–70.

ALEVEN, V., ROLL, I., MCLAREN, B. M., AND KOEDINGER, K. R. 2016. Help helps, but only so
much: Research on help seeking with intelligent tutoring systems. International Journal of Artificial
Intelligence in Education 26, 1, 205–223.

AUGSTEN, N., BÖHLEN, M., AND GAMPER, J. 2008. The pq-gram distance between ordered labeled
trees. ACM Transactions on Database Systems 35, 1, 4:1–4:36.

31 Journal of Educational Data Mining, Volume 10, No 1, 2018

BAKIR, G. H., WESTON, J., AND SCHÖLKOPF, B. 2003. Learning to find pre-images. In Proceedings of
the 16th International Conference on Neural Information Processing Systems (NIPS 2003), S. Thrun,
L. K. Saul, and P. B. Schölkopf, Eds. MIT Press, 449–456.

BARNES, T., MOSTAFAVI, B., AND EAGLE, M. J. 2016. Data-driven domain models for problem solv-
ing. In Domain Modeling, R. A. Sottilare, A. C. Graesser, X. Hu, A. M. Olney, B. D. Nye, and A. M.
Sinatra, Eds. Design Recommendations for Intelligent Tutoring Systems, vol. 4. US Army Research
Laboratory, 137–145.

BARNES, T. AND STAMPER, J. 2008. Toward automatic hint generation for logic proof tutoring using
historical student data. In Proceedings of the 9th International Conference on Intelligent Tutoring
Systems (ITS 2008), B. P. Woolf, E. Aïmeur, R. Nkambou, and S. Lajoie, Eds. Montreal, Canada,
373–382.

BERGSTRA, J. AND BENGIO, Y. 2012. Random search for hyper-parameter optimization. Journal of
Machine Learning Research 13, 281–305.

CHAI, T. AND DRAXLER, R. R. 2014. Root mean square error (RMSE) or mean absolute error (MAE)?
- arguments against avoiding RMSE in the literature. Geoscientific Model Development 7, 3, 1247–
1250.

CHOUDHURY, R. R., YIN, H., AND FOX, A. 2016. Scale-driven automatic hint generation for coding
style. In Proceedings of the 13th International Conference on Intelligent Tutoring Systems (ITS 2016),
A. Micarelli, J. Stamper, and K. Panourgia, Eds. Zagreb, Croatia, 122–132.

EAGLE, M. AND BARNES, T. 2013. Evaluation of automatically generated hint feedback. In Proceedings
of the 6th International Conference on Educational Data Mining (EDM 2013), S. K. D’Mello, R. A.
Calvo, and A. Olney, Eds. Memphis, Tennessee, USA, 372–374.

EAGLE, M., JOHNSON, M., AND BARNES, T. 2012. Interaction networks: Generating high level hints
based on network community clustering. In Proceedings of the 5th International Conference on Edu-
cational Data Mining (EDM 2012), K. Yacef, O. Zaïane, H. Hershkovitz, M. Yudelson, and J. Stam-
per, Eds. Chania, Greece, 164–167.

FLEMING, M. L. AND LEVIE, W. H. 1993. Instructional Message Design: Principles from the Behav-
ioral and Cognitive Sciences. Educational Technology Publications, Englewood Cliffs, NJ, USA.

FREEMAN, P., WATSON, I., AND DENNY, P. 2016. Inferring student coding goals using abstract syntax
trees. In Proceedings of the 24th International Conference on Case-Based Reasoning Research and
Development (ICCBR 2016), A. Goel, M. B. Díaz-Agudo, and T. Roth-Berghofer, Eds. Atlanta, GA,
USA, 139–153.

GARCIA, D., HARVEY, B., AND BARNES, T. 2015. The Beauty and Joy of Computing. ACM In-
roads 6, 4, 71–79.

GIEGERICH, R., MEYER, C., AND STEFFEN, P. 2004. A discipline of dynamic programming over se-
quence data. Science of Computer Programming 51, 3, 215 – 263.

GISBRECHT, A. AND SCHLEIF, F.-M. 2015. Metric and non-metric proximity transformations at linear
costs. Neurocomputing 167, 643–657.

GROSS, S., MOKBEL, B., HAMMER, B., AND PINKWART, N. 2014. Example-based feedback provision
using structured solution spaces. International Journal on Learning Technologies 9, 3, 248–280.

GROSS, S. AND PINKWART, N. 2015. How do learners behave in help-seeking when given a choice?
In Proceedings of the 17th International Conference on Artificial Intelligence in Education (AIED
2015), C. Conati, N. Heffernan, A. Mitrovic, and M. F. Verdejo, Eds. Madrid, Spain, 600–603.

HAMMER, B. AND HASENFUSS, A. 2010. Topographic mapping of large dissimilarity data sets. Neural
Computation 22, 9, 2229–2284.

32 Journal of Educational Data Mining, Volume 10, No 1, 2018

HEAD, A., GLASSMAN, E., SOARES, G., SUZUKI, R., FIGUEREDO, L., D’ANTONI, L., AND HART-
MANN, B. 2017. Writing reusable code feedback at scale with mixed-initiative program synthesis.
In Proceedings of the Fourth ACM Conference on Learning@Scale (L@S 2017). ACM, Cambridge,
MA, USA, 89–98.

HICKS, A., PEDDYCORD, B., AND BARNES, T. 2014. Building games to learn from their players:
Generating hints in a serious game. In Proceedings of the 12th International Conference Intelligent
Tutoring Systems (ITS 2014), S. Trausan-Matu, K. E. Boyer, M. Crosby, and K. Panourgia, Eds.
Honolulu, HI, USA, 312–317.

HOFMANN, D., SCHLEIF, F.-M., PAASSEN, B., AND HAMMER, B. 2014. Learning interpretable ker-
nelized prototype-based models. Neurocomputing 141, 84–96.

KOEDINGER, K. R., BRUNSKILL, E., BAKER, R. S., MCLAUGHLIN, E. A., AND STAMPER, J. 2013.
New potentials for data-driven intelligent tutoring system development and optimization. AI Maga-
zine 34, 3, 27–41.

LAZAR, T. AND BRATKO, I. 2014. Data-driven program synthesis for hint generation in programming tu-
tors. In Proceedings of the 12th International Conference on Intelligent Tutoring Systems (ITS 2014),
S. Trausan-Matu, K. E. Boyer, M. Crosby, and K. Panourgia, Eds. Honolulu, HI, USA, 306–311.

LE, N.-T. 2016. A classification of adaptive feedback in educational systems for programming. Sys-
tems 4, 2, 22.

LE, N.-T. AND PINKWART, N. 2014. Towards a classification for programming exercises. In Proceedings
of the 2nd Workshop on AI-supported Education for Computer Science (AIEDCS), K. E. Boyer, N.-T.
Le, S. I.-H. Hsiao, S. Sosnovsky, B. Di Eugenio, and B. Chaudry, Eds. Honolulu, Hawaii, 51–60.

LEVENSHTEIN, V. I. 1965. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady 10, 8, 707–710.

LYNCH, C., ASHLEY, K. D., PINKWART, N., AND ALEVEN, V. 2009. Concepts, structures, and goals:
Redefining ill-definedness. International Journal of Artificial Intelligence in Education 19, 3, 253–
266.

MARIN, V. J., PEREIRA, T., SRIDHARAN, S., AND RIVERO, C. R. 2017. Automated personalized
feedback in introductory Java programming MOOCs. In 33rd International IEEE Conference on
Data Engineering (ICDE 2017). San Diego, CA, USA, 1259–1270.

MOKBEL, B., GROSS, S., PAASSEN, B., PINKWART, N., AND HAMMER, B. 2013. Domain-Independent
Proximity Measures in Intelligent Tutoring Systems. In Proceedings of the 6th International Confer-
ence on Educational Data Mining (EDM 2013), S. K. D’Mello, R. A. Calvo, and A. Olney, Eds.
Memphis, Tennessee, USA.

MURRAY, T., BLESSING, S., AND AINSWORTH, S. 2003. Authoring tools for advanced technology
learning environments: Toward cost-effective adaptive, interactive and intelligent educational soft-
ware. Springer, Berlin/Heidelberg.

NGUYEN, A., PIECH, C., HUANG, J., AND GUIBAS, L. 2014. Codewebs: Scalable homework search
for massive open online programming courses. In Proceedings of the 23rd International Conference
on World Wide Web (WWW 2014). Seoul, Korea, 491–502.

PAASSEN, B., GÖPFERT, C., AND HAMMER, B. 2017. Time Series Prediction for Graphs in Kernel
and Dissimilarity Spaces. Neural Processing Letters. epub ahead of print, https://arxiv.org/
abs/1704.06498.

PAASSEN, B., JENSEN, J., AND HAMMER, B. 2016. Execution Traces as a Powerful Data Representation
for Intelligent Tutoring Systems for Programming. In Proceedings of the 9th International Conference

33 Journal of Educational Data Mining, Volume 10, No 1, 2018

https://arxiv.org/abs/1704.06498
https://arxiv.org/abs/1704.06498

on Educational Data Mining (EDM 2016), T. Barnes, M. Chi, and M. Feng, Eds. Raleigh, North
Carolina, USA, 183–190.

PAASSEN, B., MOKBEL, B., AND HAMMER, B. 2015. A toolbox for adaptive sequence dissimilar-
ity measures for intelligent tutoring systems. In Proceedings of the 8th International Conference on
Educational Data Mining (EDM 2015), O. C. Santos, J. G. Boticario, C. Romero, M. Pechenizkiy,
A. Merceron, P. Mitros, J. M. Luna, C. Mihaescu, P. Moreno, A. Hershkovitz, S. Ventura, and M. Des-
marais, Eds. International Educational Datamining Society, 632–632.

PAASSEN, B., MOKBEL, B., AND HAMMER, B. 2016. Adaptive structure metrics for automated feed-
back provision in intelligent tutoring systems. Neurocomputing 192, 3–13.

PANE, J. F., GRIFFIN, B. A., MCCAFFREY, D. F., AND KARAM, R. 2014. Effectiveness of Cognitive
Tutor Algebra I at scale. Educational Evaluation and Policy Analysis 36, 2, 127–144.

PEKALSKA, E. AND DUIN, R. P. W. 2005. The Dissimilarity Representation for Pattern Recognition:
Foundations And Applications (Machine Perception and Artificial Intelligence). World Scientific Pub-
lishing Co., Inc., River Edge, NJ, USA.

PIECH, C., HUANG, J., NGUYEN, A., PHULSUKSOMBATI, M., SAHAMI, M., AND GUIBAS, L. 2015.
Learning program embeddings to propagate feedback on student code. In Proceedings of the 32nd
International Conference on Machine Learning (ICML 2015), F. Bach and D. Blei, Eds. International
Conference on Machine Learning. Lille, France, 1093–1102.

PIECH, C., SAHAMI, M., HUANG, J., AND GUIBAS, L. 2015. Autonomously generating hints by infer-
ring problem solving policies. In Proceedings of the Second ACM Conference on Learning @ Scale
(L@S 2015), G. Kiczales, D. M. Russel, and B. Woolf, Eds. Vancouver, BC, Canada, 195–204.

PRICE, T. W. AND BARNES, T. 2015. An exploration of data-driven hint generation in an open-ended
programming problem. In Workshops Proceedings of the 8th International Conference on Educa-
tional Data Mining (EDM 2015), O. C. Santos, J. G. Boticario, C. Romero, M. Pechenizkiy, A. Mer-
ceron, P. Mitros, J. M. Luna, C. Mihaescu, P. Moreno, A. Hershkovitz, S. Ventura, and M. Desmarais,
Eds. Madrid, Spain.

PRICE, T. W., DONG, Y., AND BARNES, T. 2016. Generating data-driven hints for open-ended program-
ming. In Proceedings of the 9th International Conference on Educational Data Mining (EDM 2016),
T. Barnes, M. Chi, and M. Feng, Eds. Raleigh, NC, USA.

PRICE, T. W., DONG, Y., AND LIPOVAC, D. 2017. iSnap: Towards intelligent tutoring in novice pro-
gramming environments. In Proceedings of the 2017 ACM Technical Symposium on Computer Sci-
ence Education (SIGCSE). Seattle, Washington, USA, 483–488.

PRICE, T. W., ZHI, R., AND BARNES, T. 2017a. Evaluation of a data-driven feedback algorithm
for open-ended programming. In Proceedings of the 10th International Conference on Educational
Datamining (EDM 2017), X. Hu, T. Barnes, A. Hershkovitz, and L. Paquette, Eds. Wuhan, China,
192–197.

PRICE, T. W., ZHI, R., AND BARNES, T. 2017b. Hint generation under uncertainty: The effect of
hint quality on help-seeking behavior. In Proceedings of the 18th International Conference on Ar-
tificial Intelligence in Education (AIED 2017), E. André, R. Baker, X. Hu, M. M. T. Rodrigo, and
B. du Boulay, Eds. Springer, Wuhan, China, 311–322.

RASMUSSEN, C. E. AND WILLIAMS, C. K. I. 2005. Gaussian Processes for Machine Learning (Adap-
tive Computation and Machine Learning). The MIT Press.

RIVERS, K. AND KOEDINGER, K. R. 2012. A canonicalizing model for building programming tutors. In
Proceedings of the 11th International Conference on Intelligent Tutoring Systems, (ITS 2012), S. A.
Cerri, W. J. Clancey, G. Papadourakis, and K. Panourgia, Eds. Chania, Greece, 591–593.

34 Journal of Educational Data Mining, Volume 10, No 1, 2018

RIVERS, K. AND KOEDINGER, K. R. 2014. Automating hint generation with solution space path con-
struction. In Proceedings of the 12th International Conference on Intelligent Tutoring Systems (ITS
2014), S. Trausan-Matu, K. E. Boyer, M. Crosby, and K. Panourgia, Eds. Honolulu, HI, USA, 329–
339.

RIVERS, K. AND KOEDINGER, K. R. 2015. Data-driven hint generation in vast solution spaces: a
self-improving Python programming tutor. International Journal of Artificial Intelligence in Edu-
cation 27, 1, 37–64.

SAMMON, J. W. 1969. A nonlinear mapping for data structure analysis. IEEE Transactions on Comput-
ers 18, 5, 401–409.

SHIH, B., KOEDINGER, K. R., AND SCHEINES, R. 2008. A response time model for bottom-out hints
as worked examples. In Proceedings of the 1st International Conference on Educational Datamining
(EDM 2008), C. Romero, S. Ventura, M. Pechenizkiy, and R. Baker, Eds. Montreal, Quebec, Canada,
117–126.

STAMPER, J. C., BARNES, T., CROY, M., AND EAGLE, M. 2012. Experimental evaluation of automatic
hint generation for a logic tutor. International Journal of Artificial Intelligence in Education 22, 1,
3–18.

VAN LEHN, K. 2006. The behavior of tutoring systems. International Journal of Artificial Intelligence in
Education 16, 3, 227–265.

YIN, H., MOGHADAM, J., AND FOX, A. 2015. Clustering student programming assignments to multiply
instructor leverage. In Proceedings of the Second ACM Conference on Learning @ Scale (L@S 2015),
G. Kiczales, D. M. Russel, and B. Woolf, Eds. ACM, Vancouver, BC, Canada, 367–372.

ZHANG, K. AND SHASHA, D. 1989. Simple fast algorithms for the editing distance between trees and
related problems. SIAM Journal on Computing 18, 6, 1245–1262.

ZHANG, K., STATMAN, R., AND SHASHA, D. 1992. On the editing distance between unordered labeled
trees. Information Processing Letters 42, 3, 133 – 139.

ZIMMERMAN, K. AND RUPAKHETI, C. R. 2015. An automated framework for recommending program
elements to novices (N). In Proceedings of the 30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2015), M. Cohen, L. Grunske, and M. Whalen, Eds. Lincoln, NE,
USA, 283–288.

35 Journal of Educational Data Mining, Volume 10, No 1, 2018

