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This article presents concept landscapes - a novel way of investigating the state and development of
knowledge structures in groups of persons using concept maps. Instead of focusing on the assessment
and evaluation of single maps, the data of many persons is aggregated, and data mining approaches are
used in analysis. New insights into the “shared” knowledge of groups of learners are possible in this way.
Electronic collection of concept maps makes it feasible to aggregate the data of a large group of persons,
which in turn favors a data mining approach to analysis.

The educational theories underlying the approach, the definition of concept landscapes, and accom-
panying analysis methods are presented. Cluster analysis and Pathfinder networks are used on the aggre-
gated data, allowing new insights into the structural configuration of learners’ knowledge. Two real-world
research projects serve as case studies for experimental results. The data structures and analysis methods
necessary for working with concept landscapes have been implemented in the freely available GNU R
package CoMaTo.

1. INTRODUCTION

This article is concerned with analyzing the shared knowledge structures of groups of persons
with regard to their common elements as well as their inherent subjective differences. Investi-
gating knowledge remains relevant in typical teaching scenarios: To become competent in an
area, a person must - in general - acquire a certain set of skills as well as a certain body of
knowledge. “Thus, one goal of instruction should be to help students acquire expert-like knowl-
edge structures in their domain of study” (Trumpower and Goldsmith, 2004, p. 427). In some
areas (e.g. sports or arts) experts are typically characterized by their skills, first and foremost.
In other areas (including STEM), however, an expert must necessarily have acquired a rich and
highly connected body of conceptual and factual knowledge (cf. Kinnebrew et al.; Trumpower
et al., 2014; 2010). Even basic programming skills, for example, require factual knowledge
about syntax elements and conceptual knowledge about program flow, among others.

Modern constructivist teaching implies that such a body of structured knowledge cannot
passively be transported from teachers to learners. Instead, learning is a subjective, personal
process, and teaching is mostly a fostering of learning. As Cañas and Novak (2006, p.495) put
it, “[l]earning is highly idiosyncratic and progresses over time.” Nevertheless, the knowledge
organization of experts tends to be similar (cf. Trumpower and Goldsmith, 2004), and when
teaching in larger groups, the effects of teaching will most probably tend to affect many learners
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in similar ways. Therefore, investigating how knowledge develops for a whole group of learners
is an insightful research endeavor as well: “An excellent way of understanding the mental world
of an individual, group or scientific community, or culture is to find out how they organize their
world into concepts.” (Goldstone and Kersten, 2003, p.601).

So, when investigating knowledge, either the subjectively constructed, idiosyncratic knowl-
edge structure of a single person or the knowledge structures of several persons regarding their
common elements and inherent differences may be of interest. These two facets lead to their
own respective, unique insights, as a simple example of an exam taken in a school illustrates:
On the one hand, one can be interested in the particular result of one student. A teacher, for
example, might be interested to know that this person failed the exam, or failed multiple exams
in a row. On the other hand, one can also be interested in the aggregated results for all students.
The school’s principal might be interested to know that almost all students failed the exam. In
the first case, no insight about the exam can be gained - unless the student would usually not fail
an exam. In the second case, no insight about the individual students can be gained, in general.
The emphasis on single persons is concerned with learning processes, whereas the emphasis
on many persons is concerned with educational processes (i.e. teaching). The same is done
in other studies that are concerned with evaluating educational processes like the international
large-scale study PISA (OECD, 2012), in which measurements of many individuals are com-
bined for analysis with the goal of deriving more information about the educational process than
about any single individual taking part in the experiment.

Trumpower et al. (2010, p. 6) describe the process of analyzing knowledge as consisting of
three phases: “1) knowledge elicitation, 2) knowledge representation, and 3) knowledge evalua-
tion.” The knowledge of a person is not directly observable. It is indirectly observable however
by using some form of externalization. This form can be rather direct, like conducting an in-
terview or indirect, by having the person take a multiple choice test, for example. Also, when
analyzing knowledge, it must not only be externalized but also represented in a suitable form for
this analysis. There will usually be very many ways to externalize and represent the knowledge;
any form will have its advantages and drawbacks.

Concept maps have been established as a method of investigating the structural knowledge of
a person. Based on this, we here present concept landscapes as a general notion for aggregating
the data of multiple concept maps with the goal of analyzing this combination instead of the
single maps. This allows using concept mapping for the investigation of educational processes.
The contribution of this article is twofold: First, we present a framework and formal definition
for the aggregation of concept maps that can be used in a broad variety of experimental setups.
Second, we present methods of analysis that can readily be applied (or modified to be applied)
to concept landscapes. The case studies present the results of applying these methods to real
world data and show that interesting insights into educational processes can be gained in this
way.

While the externalization of knowledge and its analysis don’t require computer support per
se, the use of data mining techniques and computer-supported analysis allows the processing
of larger bodies of data. Since such large amounts of data cannot be processed manually in
a reasonable timeframe, computer support is more than a way of effectively saving time: It
allows new insights into the (often statistical) properties of the data. Using larger amounts of
data can result in new findings that cannot be found in small samples due to noise or statistical
insignificance. The proposed methods can all readily be implemented in software. For the most
part, using a computer (e.g. for drawing concept maps) is a natural extension of the task and
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allows greatly enlarging the amount of data that can be handled. In this way, it is practical to
collect and immediately analyze data from many students worldwide without additional personal
labor costs. The analysis methods presented here have - among others - been implemented as
part of the freely available GNU R (R Core Team, 2013) package CoMaTo.

The rest of the article is organized as follows: The next section presents a brief overview of
the foundations of psychology and educational research on which our approach is based. Then,
we present the notion of concept landscapes as well as the relevant related work. Based on this,
we present how concept landscapes can be analyzed, focusing on two different methods. The
methods are applied to real-world data collected in three research studies. Finally, the limitations
and future directions of our research are discussed.

2. THEORETICAL BACKGROUND

2.1. KNOWLEDGE AND LEARNING

The kind of research we are undertaking is fundamentally tied to the organization of knowledge,
its creation (i.e. learning), and the elicitation of existing knowledge. The knowledge we are
interested in - subject-matter knowledge about some domain - resides in long-term memory.
More specifically, in declarative memory that Squire (1987, p. 152) describes rather succinctly:
“Declarative memory is memory that is directly accessible to conscious recollection. It can
be declared. It deals with the facts and data that are acquired through learning.” There are
other classifications of the components of human memory as well. For example, Trumpower
and Goldsmith (2004) distinguish between propositional and configural knowledge, the former
referring to facts and the latter meaning the interconnected structure of knowledge. The authors
de Jong and Ferguson-Hessler (1996, p. 107) use the term conceptual knowledge, defined as
“static knowledge about facts, concepts and principles that apply within a certain domain.”

In general, the organization of concepts in memory is assumed to be pivotal for the quality
of a person’s knowledge: “[K]nowledge requires not only acquiring facts, procedures, and con-
cepts, but also having an understanding of the interrelationships among those facts, procedures,
and concepts” (Trumpower et al., 2010). Without a structured connection to others, a concept
will not be kept in long-term memory (cf. Sousa, 2009). “In general, structured knowledge
enables inference capabilities, assists in the elaboration of new information, and enhances re-
trieval. It provides potential links between stored knowledge and incoming information, which
facilitate learning and problem-solving” (Glaser and Bassok, 1989, p. 648). Trumpower et al.
(2010) also state that “experts possess more knowledge and, perhaps more importantly, better
organize knowledge than novices”. Ruiz-Primo and Shavelson (1996, p. 570) point out:

“Most cognitive theories share the assumption that concept interrelatedness is an
essential property of knowledge. [...] As expertise in a domain is attained through
learning, training and/or experience, the elements of knowledge become increas-
ingly interconnected. [...] Assuming that knowledge within a content domain is or-
ganized around central concepts, to be knowledgeable in the domain thus includes
having a highly integrated structure among these concepts.”

Equally important for knowledge organization is how knowledge is created in the mind in
the first place. The theory of Constructivism holds that “[k]nowledge [...] cannot be imposed or
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transferred intact from the mind of one knower to the mind of another” (Karagiorgi and Symeou,
2005). Fundamentally, Constructivism is built upon two principles (von Glasersfeld, 1989):

1. “knowledge is not passively received but actively built up by the cognizing subject” and

2. “the function of cognition is adaptive and serves the organization of the experiential world,
not the discovery of ontological reality.”

Research has offered enough insight into the neurological mechanisms of learning, that
the constructivist theory can justifiably be seen as an explanatory model of human learning
and knowledge construction. Sabitzer (2011) provides insights into the neurological aspects
of teaching computer science, stating that learning is the process of subjectively construct-
ing knowledge. Wittrock (1992, p. 536) states from the perspective of cognitive research:
“[L]earning is not the internalization of information given to us whole by experience or an-
alyzed by a teacher. Instead, learning consists of the active generation of meaning, not the
passive recording of information.”.

When trying to probe into a person’s knowledge - especially given the implications of Con-
structivism - it is paramount to acknowledge that the object of interest - the mental model - is by
itself unobservable (cf. Cooke, 1994). Instead, only a model of this model can be observed (cf.
Shaw and Woodward, 1990). Each method of elicitation and each method of representation is
making assumptions about the knowledge itself (cf. Shaw and Woodward, 1990). The process
of externalization is also subject to uncertainties. The influences that incur these uncertainties
are numerous, like problems in communication or the amount to which the knowledge that is to
be externalized is compiled and more (cf. Cooke, 1994); also personal variables, like the degree
of introversion have been found to influence the process (cf. Hoffman et al., 1995). While all
methods inherently suffer from these uncertainties, the specific influences and their extent are
dependent on the method and context. The same goes for the requirements on the elicitor (e.g.
to be a subject-matter expert) or the analysis methods that are suitable afterward (cf. Cooke,
1994).

2.2. CONCEPT MAPS

Historically, concept maps were invented in the 1970s as a tool to help with structuring and
visualizing the responses of children in clinical interviews (cf. Novak and Cañas, 2010). Later
on, the use of concept maps shifted from a specific technique for data analysis to a general
technique for learning, teaching, and assessing structural knowledge (cf. Novak and Cañas,
2008).

Figure 1 shows an example of a concept map. It consists of labeled entities that represent
a concept. Concepts are defined as “perceived regularities or patterns in events or objects, or
records of events or objects, designated by a label” (Novak, 2010, p. 25). “When two or more
concepts are related by the use of what we will call linking words, propositions are formed.
These become the fundamental units of meaning stored in our cognitive structure.” (Novak,
2010, p. 26). A proposition is composed of the two concepts and the label of the connection
itself. The basic rules for creating a concept map are summarized by Hay and Kinchin (2006, p.
129) as follows:

• “The concepts that an individual deems important in illustrating their personal understand-
ing of a topic are placed in text-boxes and arranged hierarchically on a page (so that broad
and inclusive concepts are at the top and detail or illustrative example, at the bottom).”
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Figure 1: A concept map illustrating the concept “proposition” and its relation to knowledge.
Adapted from Novak (2010)
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• “Concepts are then linked with arrows that are annotated with “linking statements” to
explain the nature of the link.”

• “Concepts may be listed only once, but any number of links may be made between any
number of concepts at any number of conceptual links.”

The technique of concept mapping is fundamentally based on the ideas of Constructivism
and meaningful learning (cf. Novak and Musonda, 1991). To this day, concept maps have been
successfully used as learning and teaching aids as well as for the assessment and investigation of
persons’ knowledge structures in countless scenarios, studies, and subject domains. Novak and
Cañas (2010) present an in-depth review of relevant literature and many areas of application.
The subject domains include human resource development (Daley et al., 2010), mathematics
(Ozdemir, 2005), biology (Kinchin, 2000), training in dental medicine (Kinchin and Cabot,
2009), didactics of informatics (Gouli, 2007) computer programming (Keppens and Hay, 2008),
and computer science (Sanders et al., 2008).

Most of the specific details of concept mapping as originally defined by Novak have been
altered over time, allowing for a wide variety of concept mapping tasks to be found in literature
- sometimes showing almost no similarity to the original (cf. Sousa, 2009). Cañas et al. (2005,
p. 208) define a “well-constructed” concept map as one where “[e]ach pair of concepts, together
with their joining linking phrase, can be read as an individual statement or proposition that
makes sense” while “[c]oncepts and linking phrases are as short as possible, possibly single
words” and “[t]he structure is hierarchical and the root node of the map is a good representative
of the topic of the map.”

Following the distinctions between the different types of knowledge, concept maps can be
seen as an externalization of declarative knowledge as it has been “declared” by the concept
mapper (cf. Ruiz-Primo and Shavelson, 1996). Thus, a concept map, in general, is an external-
ization of parts of the declarative, semantic memory of a person (cf. Ruiz-Primo, 2004). Strictly
speaking, concept maps are not restricted to knowledge or semantic memory, as it is also possi-
ble to externalize beliefs or personal experiences. Within these limits, however, Novak (2010)
and Novak and Cañas (2010) point to the successful application of concept maps as a method
for assessing or evaluating students’ knowledge structures across many different fields of study.
In particular, it has been shown that assessments based on concept mapping can differentiate
between the knowledge of experts and novices as well as between meaningful learning and rote
learning (cf. Derbentseva et al., 2007).

The reliability and validity of concept mapping as a form of assessment have received atten-
tion from researchers over many years. Concerning the validity, the results found in the litera-
ture are generally positive: “The validity issue is relatively transparent since it is obvious that
the fundamental characteristics of constructivist learning is exemplified in a well-constructed
concept map” (Novak, 2010, p. 231). Rosas and Kane (2012) draw a similar conclusion. Albert
and Steiner (2005) present a more detailed overview of the problem regarding validity and sug-
gest methods of determining it. Establishing the reliability of an assessment task using concept
maps is not easy, as it suffers from the fundamental problems of every method of elicitation. In
general, every externalization will be influenced by many different variables which are neither
completely known nor easily (or at all) measurable. The extent to which the knowledge of a
person has been externalized in a concept map cannot be quantified. “[S]ources of error in a
concept map test include: (a) variations in students’ concept mapping proficiency, (b) variations
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in the content knowledge (domain expertise) of those evaluating the concept maps, and (c) the
consistency with which the concept maps are evaluated” (McClure et al., 1999, p. 477). How-
ever, at least under certain conditions, the reliability has been established by several different
studies (cf. Novak, 2010).

3. CONCEPT LANDSCAPES

Following the motivation presented in the introduction, our goal is to aggregate concept map
data systematically to gain insights into the state and development of knowledge of a group of
persons. Specifically, we are trying to provide a framework of definitions that makes working
with aggregated concept maps easy. We have chosen concept maps as our input data because of
their long history in assessments of knowledge. The method is especially useful for digitally cre-
ated concept maps, which can directly be used as input data for the data mining processes. Kwon
and Cifuentes (2009) investigated the difference between digitally drawn concept maps and pen
and paper based ones and concluded that digital creation seems to have a positive influence on
students’ motivation during the task.

3.1. RELATED WORK

Our main contribution is that we formalize the general approach of aggregating concept map
data mathematically and that we are linking it to the psychological foundations of both learning
and concept mapping which is often neglected in prior research. The analysis methods that we
are presenting have been adapted to work with concept landscapes, but are otherwise not new.
Prior research that is related to our work is mostly coming from two different directions: First,
the analysis of single concept maps with methods similar to ours and second, the analysis of
more than a single map.

There is a large body of previous work concerned with the analysis of single concept maps.
Valerio et al. (2008), Leake et al. (2005), and Leake et al. (2004) present graph-theoretic ap-
proaches to analyzing e.g. the importance of single concepts in a map. Koponen and Pehkonen
(2010) investigate the organization of concept maps with the help of physical graph models. The
Pathfinder algorithm that is used later on has been applied to single concept maps before (Tar-
icani and Clariana, 2006). Grundspenkis and Strautmane (2010) are analyzing concept maps
based on the occurrence of subgraph patterns. Villalon and Calvo (2008) present a framework
for mining concept maps from text documents like students’ essays.

Also, there is some work that considers more than a single concept map. For example,
Larraza-Mendiluze and Garay-Vitoria (2013) investigate a set of concept maps with techniques
of social network analysis by forming a weighted graph from a set of maps collected in a lecture.
Yoo and Cho (2012) present the results of applying algorithms from subgraph mining to a set
of concept maps. As part of the “Betty’s Brain” software, the development of students’ causal
maps are visualized by aggregating the single maps (Biswas and Sulcer, 2010).

3.2. POSSIBILITIES AND LIMITATIONS OF CONCEPT MAPS

A concept map has two facets: First, it encompasses a set of propositions, i.e. the factual “con-
tent”. Second, it encompasses the structural configuration as a network of linked concepts. The
task of concept mapping has close resemblance to the mental function of “integration” which
“refers to the process of finding a relationship that meaningfully links two concepts together”
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(Solomon et al., 1999, p. 102). Therefore, it is important that the concept mapper is specifically
asked to provide a linking phrase (even though this may be ignored in subsequent analysis) and
that the task is open-ended (i.e. there is not just a list of possible linking phrases to choose
from). The task of creating a concept map from scratch without any further constraints has been
referred to as the “gold standard” of concept map assessments (cf. Yin et al., 2005). However,
Cañas and Novak (2012) list several common restrictions, among which is providing a list of
concepts that should be used for map construction. They note that “research has shown that the
same students construct better maps when given a list of concepts [...]. More specifically, even
if the number of concepts is similar in both cases (with the given list and without), the structure
of the maps is different” (Cañas and Novak, 2012, p. 5).

For our work, we assume that the most gain from analyzing concept maps comes from
the structural information of the maps (i.e. the interrelations between the concepts) and not
from the list of propositions that they encode. Inferring domain knowledge from an assessment
of the structural configuration of conceptual knowledge has been shown to be valid in many
different areas (cf. Trumpower et al., 2010). Beyond the importance of structured knowledge
that has been hinted at in the last section, it has also been explicitly noted in the literature that the
structure of a concept map is an important aspect (cf. Cañas and Novak, 2012). McClure et al.
(1999, p. 491) assert that it is “the organizational component captured by concept maps that may
allow teachers to identify and correct student misconceptions.” Koponen and Pehkonen (2010,
p. 16709) have analyzed concept maps and conclude: ‘[W]ith more connections the structure
also becomes more ordered. This suggests that students that are able to provide more connection
(having more knowledge at their command) are also better at organizing that knowledge.”

From the perspective of classical test theory, a concept map is a “noisy” measurement of
a person’s knowledge. That measurements of knowledge are inherently “noisy” has been ob-
served at least for expert knowledge: “[A]lthough different experts may show variability in their
judgments of concept relations, this variability often appears to be the result of random error
rather than systematic differences in thinking” (Trumpower et al., 2010, p. 8).

One of the advantages that aggregating concept map data provides is that we expect an
improvement in validity: Many variables influence the externalization, including the volition of
the person, the prior experience with concept mapping, the time given to create the map and
more. While the extent of “noise” in concept mapping, in general, is not known, it is at least
plausible that for many of the influencing variables, the “noise” over many measurements is
normally distributed around 0 and does therefore not systematically add up. This is especially
true for personal variables that influence the externalization. For example, when a group of
persons is creating concept maps, it is reasonable to assume that the motivation will vary from
persons with only little motivation for the task to persons with rather high motivation. Overall,
therefore, the influence of a lack of motivation for concept mapping that is detrimental when
assessing only a single, unmotivated person is far less severe for a group where typically only a
few persons will be unmotivated. The same can be expected to hold, within reasonable bounds,
for the training necessary to create concept maps and the time given to create the map.

Also, due to the nature of concept mapping, it is in general not possible to deduct anything
for missing elements in a concept map. If concepts or propositions are not contained in a concept
map, the knowledge structure of the person might nevertheless contain them. When analyzing
groups and concept landscapes, this is different: If a single person is missing a particular con-
cept or connection, then this may be for a variety of reasons unrelated to the learning or the
instruction this person received. If, however, every person of, for example, a class misses a par-
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ticular concept or propositions, it becomes far more likely that this is due to their specific shared
learning environment or input they received. Therefore, it is expected that the combination of
many concept maps for analysis effectively reduces the influence of the main variables that may
negatively impact the externalization.

3.3. PRELIMINARIES

Following the basic definitions of graph theory, e.g. (Balakrishnan and Ranganathan, 2012),
it is self-evident that concept maps in their most general form can be modeled mathematically
as little more than a labeled, directed graph, as already noted in e.g. (Leake et al., 2005) or
(Koponen and Pehkonen, 2010). The concepts form the nodes of the graph, and the labeled
arrows form the edges. Care must be taken, however, that a concept should appear only once in
a concept map. The rest of this article will be based on the following model: A concept map
CM = (V,E, Lv, Le) consists of a finite (and usually non-empty) set of vertices and edges that
form a directed, labeled graph with two labeling functions Lv : V → Σ∗, Le : E → Σ∗ that map
the set of vertices and edges to their labels taken from the set of all words Σ∗ formed over some
appropriate alphabet Σ. Additionally, it must hold that Lv is injective, i.e. that Lv(x) = Lv(y)
if and only if x = y. The labels can be defined more precisely (e.g. by formal languages),
to restrict concepts to a single word, for example. Also, though not very common, self-loops
are allowed in this definition and are sometimes found in real-world concept maps, e.g. when
representing the statement “objects are communicating with objects” in the context of object-
oriented programming. Given a set of concept labels S, it is sometimes convenient for analysis
to restrict an existing map to the concepts of S. This is equivalent to using the subgraph induced
by the vertex set L−1V (S) for an appropriately defined inverse function of LV .

In the analysis of concept maps, it is often helpful and sometimes required that the proposi-
tions of a map be scored. This score can then be used for a more detailed evaluation. A scored
concept map CM(V,E,w, LV , LE) is a weighted, directed, labeled graph, with a weight func-
tion w : E → R, where w(i) denotes the score of the proposition formed by edge i and its
incident nodes.

3.4. DEFINITION

While in theory, any set of maps can be used to form a concept landscape, in practical settings
the maps typically have been created by several persons in the same (educational) context, e.g.
all students of a class at the same point in time. The aggregation itself can then happen in one
of two ways:

Accumulation The maps are still treated as individual entities; however, information contained
in them is combined in some form for analysis. Often, each map will be transformed into
a numeric vector, and a matrix will then be formed from all these vectors.

Amalgamation The individual maps are combined into a single graph that is then analyzed.
Often, this newly formed graph will be weighted to reflect some of the statistical properties
of the original set of concept maps.

Fig. 2 visualizes the difference. An accumulation still treats each concept map as an entity
that is recognizable in the data. When amalgamating, the single maps are integrated into a
whole, and the individual maps can no longer be identified.
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1 0 0 1 0 0 1
0 1 1 0 1 1 0
1 1 1 0 0 0 1

(a) Accumulation

(b) Amalgamation

Figure 2: Accumulations still treat each map as an identifiable entity in the resulting data. Amal-
gamations result in a graph or concept map. In both cases, the newly formed data is the input for
the subsequent analysis steps.
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More formally, we assume a set consisting of k concept maps:
M = {CM1(V1, E1, w1, L

1
V , L

1
E), CM2(V2, E2, w2, L

2
V , L

2
E), . . . , CMk(Vk, Ek, wk, L

k
V , L

k
E)}.

Typically, it makes sense to restrict the maps to a common set of concepts for analysis, but
this is not necessary.

For accumulations, each constituent map is still an identifiable part of the “whole”. In its
most basic form, this means that a function is applied to each concept map which extracts any
relevant features for future analysis, and the concept landscape is then simply the set of the
function values, i.e. CL = {f(CM1), f(CM2), . . . , f(CMk)} for some function f : M → X
and an appropriately defined features space X . A convenient special case of this notion is to
model the landscape as a (numerical) matrix with k rows, where row i is a vector that represents
map CMi. So, an accumulation is a matrix CL ∈ Rk×j , such that the i-th row is defined by
the value f(CMi, θ) of a mapping function f : M × Θ → Rj defined appropriately, for some
(optional) parameter space Θ.

The following mapping functions have been applied successfully in experimental studies:

Concept Vector Assuming that each of the k concept maps shares the same (ordered) set of
concepts C, the concept vector encodes for each concept in C whether or not a concept
map has an incident edge to this concept. Formally, the mapping function fC : M ×
{C} → B|C| maps a concept map on a binary vector such that:
fC(CMi, C) = (v1, v2, . . . , v|C|) with vk = min(|{(x, y) ∈ Ei : x = Li

V
−1

(ck) ∨ y =

Li
V
−1

(ck)}|, 1). If the concept map is scored, it is also possible to only regard edges above
a certain score limit, for example.

Edge Vector Again, assuming that each of the k concept maps share the same set of concepts
C, the edge vector encodes the presence or absence of each of the possible edges that are
appearing in a complete graph over the set of nodes C. Let EC be the (ordered) set of
edges of this complete graph and ek = (xk, yk) the k-th edge of this set, then the mapping
function fE : M × {E} → B|EC | is defined as fE(CMi, EC) = (v1, v2, . . . , v|EC |) with
vk = 1 if (Li

V
−1

(xk), Li
V
−1

(yk)) ∈ Ei and 0 otherwise. Again, edge scores can also be
incorporated to filter out edges below a certain score, for example.

Graph Similarity A mapping that doesn’t encode a particular feature of the concept map is
built upon the function fS : M × {M} → Rk which is defined as fS(CMi,M) =
(v1, v2, . . . , vk) such that vj = S(CMi, CMj) for some measure of graph similarity S.
In other words, the vector encodes the similarity between CMi and all maps of M .

In our case studies, we used a measure of graph similarity that has been reported by Gold-
smith and Johnson (1990) to work especially well for investigating structural knowledge. They
conclude that - in this context - the structural similarity can best be measured by comparing
the neighborhoods of all nodes between two given graphs. Specifically, let G1 = (V,E1) and
G2 = (V,E2) be two graphs that share a common set of vertices V = {v1, v2, . . . , vn}, Then the
similarity of G1 and G2 can be calculated by summing the similarity of each neighborhood as
follows:

C =
1

|V |
∑

v∈V

|NG1(v) ∩NG2(v)|
|NG1(v) ∪NG2(v)|
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The value of C will vary between 0 and 1, where 1 denotes structural identity and 0 de-
notes a completely different structure. Note, that the fraction is undefined, if the union of the
neighborhoods is empty, i.e. when both nodes are unconnected in both graphs. As they are then
structurally identical, however, it is convenient to define the value of the fraction as 1 in this
case. Other measures of graph similarity can be used just as well with our approach.

An amalgamation, by definition, is a graph that is formed in a precisely defined way out
of a set of concept maps. There are several possible ways of forming such a graph. In its
most abstract form, the set of nodes is the union over all nodes of the constituent concept maps
V = V1∪V2∪ . . .∪Vk. Sometimes it is convenient to first restrict all concept maps to a common
set of concepts C (such that V = V1 = V2 = . . . = Vk = L1

V
−1

(C)). The set of edges can
be defined as the union as well: E =

⋃k
i=1Ei. A vertical amalgamation is simply the graph

based on these sets of nodes and edges together with some weighing function CL = (V,E,w).
A simple weighing function is defined as: w(ei) = |{1 ≤ j ≤ k|ei ∈ Ej}|, for w : E → N.
This counts the number of original maps in which certain edges are present. If a lower value
should indicate a “more common” edge (as is the case for example in the Pathfinder algorithm
used below), one can simply use the number of concept maps plus one and subtract from this the
number of concept maps in which the edge is present: w(ei) = k + 1− |{1 ≤ j ≤ n|ei ∈ Ej}|
for a combination of k concept maps. An edge that appears in every map is assigned a weight
of 1 and an edge that appears in only 1 map is assigned a weight of k. Alternatively, instead
of forming the simple sum, some additional filtering or transformation may be applied. For
example, if the maps are scored, only edges with a score higher than some threshold could be
used. Or only edges that are used in more than a given number of maps might be regarded
in the analysis. A filtering that regards only edges with a score higher then t is defined as
ws(ei) = |{1 ≤ j ≤ k|ei ∈ Ej ∧ wj(ei) > t}|. Finally, a filtering that regards only edges that
appear in more than t maps is defined as wt(ei) = max{|{1 ≤ j ≤ k|ei ∈ Ej}| − t, 0}.

4. WORKING WITH CONCEPT LANDSCAPES

Working with concept landscapes means probing into knowledge structures. As knowledge isn’t
something that’s easily quantifiable, every approach will usually rely on some form of qualitative
evaluation in the end. Concept landscapes and related data mining methods are used to support
or enable the qualitative, interpretive steps of a research process. The workflow in a typical
research setting is:

1. Decide whether to use accumulation or amalgamation.

2. Decide on a specific transformation of the data.

3. Use the chosen method on the concept landscape.

4. Analyze and interpret the results - this may encompass repeating the steps for one or
several subsets of the data that have been identified.

There are two aspects that can be of interest in concept landscapes:

1. The inherent differences in the knowledge structures. This amounts to finding subgroups
of persons who differ in the way their knowledge structures are organized. This typically
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cannot be done “manually” and requires data mining approaches. To identify inherent
patterns in a set of concept maps, it is necessary that the single maps are still identifiable
entities in the concept landscapes. Therefore, this works usually only with accumula-
tions.

2. The common elements of the knowledge structures. That means identifying the salient
structural information inherent in a concept landscape, e.g. to make a manual inspection
of the results feasible. Again - this typically requires the support of data mining methods.
To identify salient common elements, it is usually best to use amalgamations.

An analysis can (and often will) encompass several steps. For example, when applying clus-
ter analysis to focus on inherent differences in knowledge structures, it makes sense to afterward
look for common elements among the identified clusters to better characterize them. Our formal
definition of the concept landscape framework encompasses typical research scenarios. As re-
ported in the related work section, sometimes a weighted graph has been formed from concept
maps. This corresponds to an amalgamation using any of the desired ways to define the edges.
When investigating the development of concept maps along with a lecture, for example, this
corresponds to an accumulation that does not result in a matrix but, for example, maps each
concept map onto itself (e.g. for visualization purposes) or onto some feature like the number
of concepts and edges.

In the following, we present two analysis methods - cluster analysis and the use of Pathfinder
networks. These methods have been tried on real world data and found to yield interesting re-
sults. Each section will include a case study that shows how the methods can help in educational
research.

The data of these case studies was collected at two different occasions:

1. Students entering Technical University of Munich with a major of CS. The students re-
ceived a list of 40 core CS concepts that have been extracted semi-automatically based
on their frequency of appearing in the CS curriculum of secondary schools in the German
federal state of Bavaria. The concepts are typically also appearing in the lectures of the
first semester of CS studies. Students were asked to draw a concept map as part of their
schedule of their first day at university.

2. All students taking part in a voluntary pre-course before the start of the first semester for
CS majors also at the Technical University of Munich. These students received a list of
concepts extracted manually from the printed material of the pre-course.

Data was collected in different years, so there is no overlap between these groups. In both
cases, the participants received a short introduction to concept mapping and were given an ex-
emplary concept map with non-CS concepts as part of their assignment. The students had about
40 minutes time and were asked to create a concept map based only on those concepts of the
given list that they were familiar with.

We do not expect students to have had a prior exposure to concept mapping in general - there
may be singular cases though. Based on the quality of maps - that is also reflected in the results
presented below - we do not expect a lack of experience in concept mapping to have a negative
effect on the analysis, as concept mapping is a technique that is reasonably well grasped by an
introduction and an example.
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4.1. PATHFINDER NETWORKS

The most basic form of an amalgamated concept landscape is a weighted graph with the edges
reflecting how “common” a connection between two concepts is in the chosen set of concept
maps. This graph is - by itself - not suited for qualitative inspection as it is usually very dense.
The structural information is encoded in the edge weights only.

It is possible to extract information from this graph by all kinds of graph theoretic ap-
proaches. For example, centrality measures like the “betweenness-centrality” of Freeman (1978)
yield interesting information about the importance of single concepts for the organization of the
knowledge structure. Another interesting option is to use community detection algorithms, e.g.
the one described in (Clauset et al., 2004), which produce a partition of the concepts into sub-
groups based on their interconnections.

However, it is also worthwhile to bring out the most dominant structural connections of the
complete landscape to interpret it - for example when comparing concept landscapes of different
groups. This amounts to pruning the dense graph such that the salient structural connections
remain and become visible. A simple method would be to filter out all edges with a weight lower
(or higher) than a chosen threshold, for example by using the weighing functionwt defined above
for some appropriate value of t. A more elaborate way would be to create a minimal spanning
tree of the graph.

A Pathfinder network is a generalization of a minimal spanning tree and particularly suited
for our context. Pathfinder networks are based on the psychological model of a “network.”
Schvaneveldt et al. (1989, p. 252) note that “networks entail the assumption that concepts and
their relations can be represented by a structure consisting of nodes (concepts) and links (re-
lations). Strength of relations are reflected by link weights and the intentional meaning of a
concept is determined by its connections to other concepts.” It is self-evident that concept maps
and amalgamated concept landscapes fit that definition.

Algorithmic methods can then be used to analyze such a network, or extract salient struc-
tural features. The Pathfinder algorithm is one such method. An alternative is, for example,
multi-dimensional scaling (MDS) (cf. Bartholomew et al., 2008). The lengths of paths in the
Pathfinder network contain information about how “close” or similar the connected concepts are
in the original data. From a graph-theoretical point of view, constructing a Pathfinder network is
simply an algorithmic method of (edge-)pruning a graph by keeping all nodes and systematically
removing edges.

The advantage of using the Pathfinder network for the analysis of concept landscapes is
twofold: In contrast to other scaling techniques like MDS, it can work directly on a graph
as input, and it also produces a graph, making it suitable for the format of concept landscapes.
Also, its original intention is directly related to analyzing the structure of conceptual knowledge,
in contrast to other graph pruning techniques, like minimal spanning trees or the simple edge
removal based on some threshold as in (Larraza-Mendiluze and Garay-Vitoria, 2013).

The actual Pathfinder algorithm based on matrix operations is described by Dearholt and
Schvaneveldt (1990). The Pathfinder network is a graph that consists of the same nodes and
components as the input graph but uses only a subset of its edges, with their weights preserved.
The edges are chosen such that an edge remains in the graph if and only if it does not violate
the triangle inequality when considering at most q intermediate steps (the resulting graph is q-
triangular) and when using the Minkowski- or r-metric) as measure of distance (cf. Dearholt
and Schvaneveldt, 1990). The weight of a path consisting of edges e1, e2, · · · , ek with weights
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w1, w2, · · · , wk according to the r-metric (r > 0) is defined as: (wr
1 +wr

2 + ...+wr
k)1/r. For r = 1

the r-metric defaults to the sum of the single edge weights, for r = 2 it is the Euclidean distance
and for r = ∞ the path weight is the maximum edge weight along the path (cf. Dearholt and
Schvaneveldt, 1990). An appropriate definition of the edge weights must somehow reflect an
edge’s “commonness” with a lower weight defining a higher commonness. One possibility is
the weight function presented above that uses “k + 1− number of maps with a given edge” as
weights.

The Pathfinder network is dependent on the choice of the parameters q and r. In general,
higher values for either parameter will produce sparser networks. From a perspective of graph
pruning, the typical choice for the value of q is |V | − 1. Using smaller values would be useful
only if there were a theory about why the structural information of paths that are exceeding a
certain number of intermediate steps is not as important as the information of shorter paths. For
r, the extreme values of 1 and ∞ are most appropriate. Euclidean distance (r = 2) might be
interesting if it can be assumed that the spatial placement of concepts in a map is an important
aspect of the organization of knowledge.

The pruning of the Pathfinder algorithm differs fundamentally from a manual removal of
edges with a low (or high) weight: A Pathfinder network will always contain the same compo-
nents and the same nodes as the original graph. This has two consequences for analysis:

First, it is paramount to keep in mind that it is in general not possible to compare, for exam-
ple, two different pairs of concepts based on the fact that the edge between one of these pairs
was removed by the Pathfinder algorithm, but not between the other. If a concept has only one
incident edge, it may happen that every edge that is pruned by the Pathfinder algorithm had a
lower weight than this one. In the most extreme case, a concept that is used in e.g. only one map
of a concept landscape will remain in the Pathfinder network using the one edge that is present
in the data, because pruning this edge would create a new component. However, this can hardly
be taken as an indicator that this edge is representative of the “common” knowledge structure,
as it is only there as an artifact of an idiosyncratic knowledge construct that is not removed by
the analysis method.

Therefore, second, it is important to filter out these idiosyncrasies by manual removal. This
can be done with a weighing function similar to wt - by setting the weights of filtered edges to
∞. Alternatively, this can be done directly on the weight matrix before applying the Pathfinder
algorithm. For example, rows with a sum above a given threshold can be removed (i.e. concepts
removed), or entries that have too high a value can be set to∞ (i.e. edges removed). There is no
best way to arrive at a threshold for filtering, but using percentiles provide a reasonable approach.
It seems advisable to try several threshold values and inspect the effects on the network.

4.1.1. Case Study 1

The research presented here is part of a larger research project that was concerned with the
impact of compulsory computer science (CS) education in secondary school on the structural
knowledge of beginning students. Such information is valuable for the design of pre-courses or
for the lecturers in the first semester as they can then accommodate the prior knowledge of their
students more effectively. Prior knowledge is a highly important aspect of successful learning
(cf. Ausubel; Gurlitt and Renkl, 2000; 2010).

Most of the CS students entering our university have attended secondary school in our fed-
eral state. In this state, a compulsory subject of “Informatics” had been introduced some years
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ago - together with a reform of the school system itself which led to a reduction from 9 to 8
years of secondary education. Therefore, at one year, the last class of the old system (9 years,
no compulsory CS education) and the first class of the new system (8 years, compulsory CS
education of - typically - 4 years) enrolled at university in the same term. We chose this oppor-
tunity to ask all beginning CS students at our university to draw a concept map to investigate
their understanding of basic CS concepts.

In total, 590 concept maps were collected, and after excluding empty and nonsensical maps,
roughly 350 remained for analysis.

Based on the prior formal CS education, the data naturally splits into two groups. We used
those groups to form a concept landscape from each. The maps were all restricted to the 40
concepts that were given to the students. Then, the maps of each group were amalgamated
canonically - the edge weights reflect the number of maps that show a connection between the
two concepts.

The Pathfinder algorithm was applied to each concept landscape. The parameters were set to
q = 39 and r = ∞ to create the sparsest possible network. Also, as described above, a manual
filtering step should occur before applying Pathfinder to filter out idiosyncrasies. In our case, all
edges that appeared in less than 10% of the maps (of each group) were removed.

Figure 3 and 4 show the resulting graphs (unconnected concepts have been removed).
These two networks allow a qualitative interpretation of the structural differences as they are

easily grasped visually. The colored edges show areas of interest:

Data structures and abstraction (red and green) While the green edges show that both groups
have a similar grasp of the concept of data structure and the examples that were included
in the list of concepts (graph, tree, array, list), there is a clear difference concerning the
connection of this “block” to the rest of the knowledge structures. The students who had a
prior CS education in school are showing a clear distinction between the theoretical notion
of data structures, the concept of data, and the more technical concept working memory
(where data often resides) - as seen in the red edges. The students without prior, formal CS
education do not show this distinction, and the red path is “collapsed” in their knowledge
structure.

Approach to programming (turquoise) In the subject “Informatics”, the students are learn-
ing to program in a strictly object-oriented fashion. This is visible in their knowledge
structures in the turquoise edges as the two programming constructs loop and conditional
statement are connected to method. The students have practically only been programming
methods that reside in classes which in turn are the basis of a program in an object-oriented
programming language. The other group connects these concepts via variable directly to
program which is more akin to a procedural programming language that they might have
taught themselves (most beginning CS students have at least some prior programming ex-
perience). They also do “know” about the object-oriented concepts, but it is less pivotal
for actual programming to them.

Formal languages (blue) A typical set of core CS concepts deals with the difference between
syntax and semantics and the formal definition of (programming languages with gram-
mars. The students with prior education show that these concepts are integrated into their
knowledge structure about CS. The other group of students is missing semantics com-
pletely, and grammar has no connection besides programming language.
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Figure 3: The Pathfinder network of the students with compulsory CS education in school.

Figure 4: The Pathfinder network of the students without CS education in school.
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There are also similarities like the obvious importance of the concept program. When
measuring the betweenness-centrality for the original concept landscapes (before applying the
Pathfinder algorithm) program receives the highest value for both groups. However, the second
highest value already differs: The group with prior education has the concept of class taking
this place while the other group has processor - again indicating the results of the clear object
orientated approach in the school subject and the more technical approach to CS from the other
students.

4.2. CLUSTER ANALYSIS

In the prior case study, a partitioning of the data due to a personal variable of the participants
(their prior formal CS education) was obvious. However, in other cases, the pattern that is
inherent in the data is not as readily observable. Cluster analysis is a typical research method
in exploratory analyses, as it identifies patterns in the data which can then be interpreted (cf.
Bartholomew et al., 2008). There is a plethora of clustering algorithms and approaches available,
and many of them will work with concept landscapes.

One large group of clustering algorithms is similarity based. These algorithms typically take
a distance matrix as an input and produce a clustering based on these distances. An often-used
algorithm that is appropriate for our kind of input data is k-medoids as described by Kaufman
and Rousseeuw (2005). To arrive at a distance matrix that encodes the pair-wise similarity
of observations (i.e. concept maps) we can use the graph similarity based mapping function
defined above. The resulting numerical matrix already is a distance matrix. When using mapping
functions that encode the presence or absence of features, the resulting binary matrix is not yet
a distance matrix. It can be transformed into one by applying a norm on the difference between
each pair of rows. When using the concept vectors to form the binary matrix for example,
the Manhattan distance (L1 norm), usually defined as

∑n
i=1 |xi| for an n-dimensional vector x

effectively encodes the number of concepts in which the two concept maps differ structurally -
in the sense that only one of the two maps has an incident edge to a concept. A higher value
corresponds to greater structural differences, making the maps more “dissimilar”.

Similarity-based clustering algorithms usually get the number of clusters they should pro-
duce as a parameter. Therefore, to determine the optimal number of clusters, some form of
quality measure must be applied. Typical choices in literature are the Calinski-Harabasz pseudo
F-statistic (cf. Gordon, 1999) or the Gap statistics (Tibshirani et al., 2001). Depending on the
method chosen it is also necessary to include the special case of only one cluster, i.e. the case
that the data is not uniformly enough to warrant a clustering. This can be checked, for example,
by the Hopkins index (Han and Kamber, 2010), or by the Duda-Hart test (Duda and Hart, 1976).

A model-based approach allows identifying the optimal number of clusters, including the
case of just one cluster, based on the likelihood of a set of parameters for an explicit stochastic
model of the data. Clustering is then no longer the task of assigning observations to clusters.
Instead, the task is to identify model parameters such that the likelihood of the model is max-
imized (cf. Han and Kamber, 2010). To avoid overfitting, evaluating AIC (Akaike, 1974) or
BIC (Schwarz, 1978) instead of the likelihood of the model is a common approach.

A stochastic model that can be used for describing a binary matrix that results from encoding
the presence or absence of features is a multivariate Bernoulli-mixture model (MBMM). This
allows for correlations among the entries of different columns. These exist in our case by defi-
nition - for example for the concept vector, a 1 in one column will always indicate the presence
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of another 1, as each edge has two incident concepts. Following e.g. Stibor (2008), such higher
order correlations can be modeled by using multivariate Bernoulli mixtures. The parameters of a
MBMM consist ofm vectors Θ = (Θ1,Θ2, . . . ,Θm) - with each vector Θi = (pi1, p

i
2, . . . , p

i
k) de-

scribing a single multivariate distribution of k different Bernoulli distributions with probability
pij - and m mixing coefficients α = (α1, α2, . . . , αm). It holds that

∑m
i=1 αi = 1. The αi encode

the contribution of each distribution to the observed result. Each Θi consists of k values, so an
MBMM hasm·k+m−1 parameters as there arem−1 mixing coefficients that are free to choose.
These must be chosen (optimally) to identify a clustering. The probability function for an ob-
servation x = (x1, x2, . . . , xk) ∈ {0, 1}k is P (x) = P (x|Θ, α) =

∑m
i=1 αmP (x|Θm), where the

probability of the multivariate distribution with parameters Θj , Pj(x) =
∏k

i=1(p
j
i )

xi(1−pji )1−xi .
Finding the optimal parameter values for given input data corresponds to maximizing the

likelihood of the observed data. A typical approach is to use the EM algorithm (Dempster et al.,
1977). The E- and M-steps in our specific case are (see e.g. (Wolfe, 1970) or (Stibor, 2008)):

E-Step Calculate for each mixture component m and each observation of the data xi the poste-
rior probability using Bayes theorem:

P (m|xi,Θ, α) =
P (xi|m,Θ, α)P (m)

P (xi)

M-Step Calculate for each mixture component m new parameter values Θ′m, α′m using the
current values Θm and αm, by:

α′m =
1

n

n∑

i=1

P (m|xi,Θ, α)

and

Θ′m =
1

nα′m

n∑

i=1

P (m|xi,Θ, α)xi

The computation can be effectively implemented using matrix operations. The output of the
EM-algorithm consists of the locally optimal (i.e. most probable) values of the probabilities Θ
and mixing coefficients α. These values can be used to calculate the posterior probability (as
given above) for each observation and each cluster. This, in other words, is the probability for
each observation to belong to any of the clusters.

When clustering the data of concept landscapes, it is always important to analyze the clusters
afterward as the clustering algorithms itself may or may not produce clusters that are worthwhile
from a researcher’s perspective. Also, it is important to note that in general the clusters can only
be interpreted by additional analysis steps. Otherwise it may happen that the algorithm produces
a clustering based on the influencing factors of the externalization that the concept landscape
tries to minimize. If, for example, the maps of one cluster are very sparse, then maybe this
cluster is formed by all the persons who didn’t understand concept mapping or weren’t motivated
at the time of creation to produce larger maps.

The next two subsections are presenting two case studies - the first uses k-medoids clustering,
the second uses MBMM clustering.
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4.2.1. Case Study 2

We use the same data as in the first case study. However, instead of manually forming clusters,
we are now interested in differences in the structural knowledge that may not be due to students’
prior education. To find out whether a clustering is worthwhile, we use both the Hopkins index
and the Duda-Hart test. Both indicate that a solution of only one cluster is not optimal. The
Calinski-Harabasz statistics points to an optimum of two clusters within the range of two to ten
clusters. The Gap statistics indicates an optimal number of three clusters. So, the data clearly
shows a tendency to form a small number of clusters at least for the chosen similarity measure.

We checked both the two-cluster solution and the three-cluster solution. The clustering is
indeed picking up other traits of the knowledge structures, as the manual groups formed in
case study 1 are not reproduced here. Instead, the students with and without prior formal CS
education are split almost evenly over the clusters. A χ2-test reveals no significant deviation
from a uniform distribution in both cases. The clusters are of roughly equal size in both cases:
169 and 164 for two clusters and 116, 95, and 122 for three clusters.

Figure 5: First cluster for three-cluster solution.

To investigate what separates the clusters, the maps of each cluster were amalgamated sepa-
rately and the Pathfinder network using the parameter values that yield the sparsest graph were
created from each landscape. Again, all edges that appeared in less than 10% of the maps of
each cluster were filtered out beforehand and concepts that were left unconnected afterward
were removed. The resulting Pathfinder networks of the three-cluster solution (Fig. 5, 6, and 7)
are shown here. The concepts discussed below have been colored in each network.

As the distance matrix is based upon a measure of graph similarity that is defined by the
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Figure 6: Second cluster for three-cluster solution.

similarity of neighborhoods, it makes sense to look how these neighborhoods differ between the
clusters over the given concepts. The following observations can be made:

Programming Language Here, there is a distinct difference between the two- and three-cluster
solution. While the concept programming language is always connected to program, it is
typically connected to only syntax, grammar, or semantics in differing configurations.
However, one of the clusters in the three-cluster solution has programming language addi-
tionally connected to instruction cycle, algorithm, and class. For this cluster, the concept
programming language is overall placed very centrally in the knowledge structure.

Method As before, the clusters show some differences regarding the object-oriented concepts
and their connection to other concepts. For the two-cluster solution, the concept method
is only connected to class for one cluster but connect to class, loop, algorithm and cond.
statement for the other cluster. The same trend is observable in the three-cluster solution:
One cluster shows only a connection of method to class, one cluster has an additional
connection to recursion and the third cluster has class, loop, cond. statement and recursion
connected to method. So, the three-cluster solution reproduces the trend of the two-cluster
solution but has an additional “intermediate” case.

Array For the concept array there is a similar distinction between the two- and three-cluster
solution as for programming language: In the two-cluster solution, this concept is only
connected to data structure for both clusters. The three-cluster solution however identifies
a subgroup that treats this concept differently. One cluster shows the same trend, one
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Figure 7: Third cluster for three-cluster solution.

additionally shows a connection to object and the third has additional connections to value,
variable, program, and table

Overall, the three-cluster solution shows some interesting features. Each of the three clus-
ters has a distinct separation in one region of the landscape: One cluster has a unique way of
integrating programming language with the other concepts, another cluster does have a more
elaborate way of connecting array with the other concepts. The third cluster has data structure
connected with program - a unique feature of this group that also leads to a very thematically
structured network, overall.

For the two-cluster solution, the difference between the clusters is mostly hinged on the
different integration of method - similar to the distinctions found in the first case study. Also,
both clusters are characterized by the appearance of concepts - or rather the remaining of these
in the Pathfinder network - exclusive to one of the two clusters: state and semantics for the first
cluster, recursion and flow for the second.

4.2.2. Case Study 3

A pre-course for beginning CS students - as suggested above - has been implemented in our
university. It deals with the basics of object-oriented programming. Only minimal teaching
input was given, and self-guided learning-by-doing was stressed. We extracted a list of concepts
from the worksheets that the students used and asked them to draw a concept map based on this
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list after the course. In total, there were 75 maps that we could use for analysis. In contrast to the
prior studies, for this case study, we scored each proposition manually with a score between 0
and 2 regarding their correctness. Using three values has proven to be a fast and reliable method
of scoring. We only used edges with a score of 2 for the rest of the analysis.

We were interested in finding out how the knowledge structures of the students develop
during their active experimentation with the concepts in the course. The resulting maps were
accumulated, and the MBMM based clustering described above was used together with the
mapping function that uses concept vectors. The AIC values indicate an optimum at two clusters.
Both clusters are of equal size with 37 and 38 members respectively. In the next step, the maps of
each cluster were accumulated separately, again using the mapping based on the concept vector.
Then, for each row of the resulting matrices, the relative frequency of entries with a 1 (i.e. the
relative frequency of concept occurrence) is plotted for both clusters, as shown in Fig. 8.
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Figure 8: The probabilities of concept occurrence as identified by the MBMM clustering algo-
rithm shown for both clusters.

The concepts with an inter-cluster difference of more than 0.5 of the corresponding prob-
abilities are (in descending order of the difference): data type, loop statement, assignment,
conditional statement, and initialization. This list is interesting insofar as there are no concepts
present that are “purely” object-oriented (like class). Instead, the list contains the very basic
concepts of procedural programming, namely assignment as well as the two control structures
conditional- and loop statement. Also, the members of the first cluster tend to focus mostly on
the basic concepts of object orientation in their maps.

From the perspective of the course designer, the results are encouraging as both clusters have
incorporated basics of object-orientation in their mental models. The rest is just about how much
they could take out of the course besides the basic concepts. For more details about this case
study and further results of the analysis, see (Berges et al., 2012).
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5. DISCUSSION OF THE CASE STUDIES

Since the first two case studies are based on the same dataset and different methods have been
used in the case studies, it seems worthwhile to investigate how the different approaches to
analyzing the data compare to each other1. Both the Pathfinder algorithm and a non-model-
based clustering are by itself agnostic to the underlying data. The Pathfinder algorithm will
always produce an output, as will a k-medoids clustering for a given k. The resulting graph(s)
can then be interpreted, and if one is set one finding artifacts in the results, this will usually be
possible. So, care must be taken to look at the data from as many angles as possible and look for
those artifacts that remain stable throughout the differing approaches, e.g. by using a different
number of clusters, a different algorithm, or a different measure of similarity.

While it is possible that a cluster analysis reproduces the “manual” clustering of case study
1, this would require the similarity measure to pick up on the specific traits that separate the two
groups. As case study 2 shows, this is not the case for the graph similarity measure used here.
This does not detract from the usefulness of the methods, however as they are exploratory in
nature. It is obvious that there are several distinct groupings of the constituent maps that may be
present in a given data set and that all reveal some interesting information. In the data of the first
two case studies, one constant concerning the structural configuration has been the approach to
object-orientation versus procedural programming, as exemplified by the concept method and
its connections, as well as a tendency to place program as a highly central concept. Indeed,
one of the major differences between the two-cluster solution and the three-cluster solution in
case study 2 is the appearance of a cluster that does not place program as centrally as the other
clusters. If configurations remain somewhat similar over different approaches and clusterings,
then these can indeed be taken as features of interest in the concept landscape that are not just
the product of the particular process that has been employed to obtain the results.

One can also wonder which clustering method is appropriate in each case. The results will
differ as MBMM uses a different approach based on different features than k-medoids. Again, it
is probably best to try both approaches and look for similarities. It is also possible, however, to
argue for one or the other method based on the hypothesis that one has. The MBMM approach
seems reasonable in case study 3, as we expected students to use only those concepts that they
learned something about during the course. So, a clustering based on the appearance of a con-
cept seems more appropriate than one that places more emphasis on the structural configuration.
Using the same reasoning, the k-medoids approach seems better suited to case study 2 where we
were expecting students to have a grasp of several of the given concepts already and we were
more interested in how their knowledge structure looks like at the beginning of their studies.

6. LIMITATIONS AND FUTURE WORK

The limitations of our current approach are mostly arising from two choices that we made: First,
the choice of concept maps as a method of externalization and second, the choice to disregard
the actual propositions and only focus on the structure.

Concerning our original research question regarding the knowledge structures of groups of
learners, it seems that concept maps are a reasonable choice with promising results. However,
alternative methods of externalization may also present viable alternatives for the specific task

1In particular, one reviewer of the original manuscript raised the question whether or not the results that are
obtained with these methods can always be interpreted when looking at it “from the right angle”.
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of research on knowledge structures. As Cañas and Novak (2012, p. 249) put it: “[T]he educator
needs to understand that the type and quality of the concept map may be more a reflection of
the process and conditions under which the concept map was constructed than of the student’s
understanding of the domain.” The structural information can also be externalized by relatedness
judgments - for example - and the propositional information may be collected afterward as
suggested by Albert and Steiner (2005). Madhyastha and Hunt (2009) analyze the similarity of
concepts by using multiple choice data as the input.

Regarding the epistemological limitations, when concept mapping is mostly seen as a way
of organizing and displaying knowledge, there are also better alternatives, due to the restrictions
of concept maps. However, concept mapping has the inherent advantage that it is easy to learn
for most people - in contrast to e.g. describing a knowledge base as an ontology - and it offers
a direct benefit for the mapping persons - in contrast to e.g. relatedness judgments, especially
when the mappers can keep or continue working on their concept maps. Also, concept maps
are a valuable tool for formative assessment, in contrast to many other methods of externalizing
knowledge. This makes concept maps valuable for applications in educational settings as there
is more to be gained than “just” the externalized knowledge. On the downside, however, the
method of concept mapping has to be explained to participants and may even require some
form of training until they become fluent enough in the process. Also, the relative freedom
of expression, especially for pen and paper based maps, often leads to highly variable results
concerning the actual syntax and semantics of concept maps.

So far, we have only considered the structural configuration of the concept maps without
regarding the actual propositions. As has been noted in the theoretical background, there is
good reason to investigate this structure from a psychological point of view. Nevertheless, we
are currently disregarding much information. A first step to incorporate the information has
been hinted at in the last case study: By scoring propositions, we are at least evaluating some
information of the proposition. Subsequent steps would most probably have to rely on some
form of automatic text analysis since a manual inspection of each proposition is inconsistent
with the idea of using data mining to process large bodies of data.

Concept landscapes should provide a framework for further research based on aggregated
concept maps. Our definition of concept landscape as either accumulation or amalgamation
encompasses every possible formalization. The specific definitions that were given here are,
however, only one possible way of defining concept landscapes. Nevertheless, we assume that
they are encompassing most, if not all, approaches towards analyzing concept landscapes with
further methods - in particular with more advanced techniques from the EDM community. For
example, there are many more features that could be encoded as the basis for clustering. Also,
the analysis methods that were presented here are only a first selection of suitable methods.
There are other ways of pruning graphs, other similarity measures, or ways of arriving at a
distance matrix for clustering and other ways of defining latent class models for concept map
data. Other methods can and will be investigated and used in the future. It is also important to
acknowledge that concept landscapes are a tool best used in exploratory research settings. The
results that are obtained can then serve as input for a more confirmatory approach.

7. CONCLUSION

This article has presented the notion of concept landscapes both in theory and practice. The
goal was to present a working framework and analysis methods that allow investigating shared
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knowledge structures and that are based on a thorough theoretical basis. Concept maps have
been chosen as the method for externalization because of their established validity and reliabil-
ity, the existing psychological and educational theory behind it, and the additional benefit they
can offer to participants (e.g. as learning aids). Based on these foundations, a novel view on the
application of concept mapping in investigating the state and development of structural knowl-
edge has been presented. Instead of focusing solely on the measurement of a single person, or
many measurements of single persons analyzed in isolation, the data of a group of persons is
aggregated. While motivational factors, the fluency regarding concept mapping itself, the spe-
cific location and time of the concept mapping task and other variables will, whether detectable
or not, influence the results of each concept map, many of these influences can be expected to
cancel out by aggregation.

The method of aggregation, as shown in Fig. 2, can either be a “loose” accumulation of maps
that remain identifiable in the aggregated data, or it can be a more transformative amalgamation
that results in a new graph that is influenced by the constituent maps of the landscape. Forming
either an amalgamation or an accumulation does cover all possibilities as the concept maps either
remain identifiable as entities in the aggregation or not.

Concept landscapes are only an abstract notion of a set of data items. In practical settings,
it is the analysis and the actual method of aggregation that determines the usefulness of the
approach. This article presented two basic analysis methods. Cluster analysis is best suited to
identify inherent differences within an accumulation. While many clustering algorithms and
similarity measures can be used, a latent model-based approach based on multivariate Bernoulli
mixture models and partitioning methods using, for example, graph similarities as a measure
of distance have been presented and shown to work well on actual data. Creating Pathfinder
networks from concept landscapes is a way of pruning edges that allows discovery of salient
structural information in amalgamations to identify the common structural elements in the data.
The two central methods of clustering and Pathfinder networks can achieve useful results, but
they will usually be accompanied by further ways of analyzing the results.

Typically, neither a purely quantitative nor a purely qualitative analysis yields optimal results
in exploratory, fundamental educational research. Instead, both approaches have been used
simultaneously and - one might say - non-dogmatically in order to improve on each other. For
instance, finding clusters and then using a t-test to identify that one cluster possesses denser maps
is a quantitative approach. Then continuing by searching graph communities in these clusters
and inspecting them regarding their intersections and differences, based on the given subject
matter context, is a qualitative analysis of the data. By using the strengths of both methods, a
much broader variety of insights into the data of concept landscapes can be gained.

Having a working software tool-chain available opens the door for an economical and flex-
ible way of monitoring certain aspects of educational processes in exploratory settings with
minimal prior work. This includes a software based drawing of concepts maps, the analysis of
the results and - possibly - the analysis of the learning stimulus. The R package CoMaTo offers
support for the analysis step. Educators or researchers who are interested in the development of
students’ knowledge can incorporate concept mapping into their teaching activities, collect, and
analyze the maps electronically with relatively minimal additional overhead.
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NOVAK, J. D. AND CAÑAS, A. J. 2010. The universality and ubiquitousness of concept maps. In Con-
cept Maps: Making Learning Meaningful, J. Sánchez, A. J. Cañas, and J. D. Novak, Eds. Vol. 1.
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