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Recent research has explored the use of Large Language Models (LLMs) to develop qualitative codebooks, 

mainly for inductive work with large datasets, where manual review is impractical. Although these efforts 
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show promise, they often neglect the theoretical grounding essential to many types of qualitative analysis. 

This paper investigates the potential of GPT-4o to support theory-informed codebook development across 

two educational contexts. In the first study, we employ a three-step approach—drawing on Winne & Hadwin’s 

and Zimmerman’s Self-Regulated Learning (SRL) theories, think-aloud data, and human refinement—to 

evaluate GPT-4o’s ability to generate high-quality, theory-aligned codebooks. Results indicate that GPT-4o 

can effectively leverage its knowledge base to identify SRL constructs reflected in student problem-solving 

behavior. In the second study, we extend this approach to a STEM game-based learning context guided by 

Hidi & Renninger’s four-phase model of Interest Development. We compare four prompting strategies: no 

theories provided, theories named, full references given, and full-text theory papers supplied. Human evalua-

tions show that naming the theory without including full references produced the most practical and usable 

codebook, while supplying full papers to the prompt enhanced theoretical alignment but reduced applicability. 

These findings suggest that GPT-4o can be a valuable partner in theory-driven qualitative research when 

grounded in well-established frameworks, but that attention to prompt design is required. Our results show 

that widely available foundation models—trained on large-scale open web and licensed datasets—can effec-

tively distill established educational theories to support qualitative research and codebook development. The 

code for our codebook development process and all the employed prompts and codebooks produced by GPT 

are available for replication purposes at: https://osf.io/g3z4x 

Keywords: large language models, qualitative codebooks, interest development, self-regulated learning, the-

matic analysis, codebook development 

 

1. INTRODUCTION 

Qualitative analysis has been used in the learning sciences to systematically examine large vol-

umes of rich, multimodal data (e.g., interview transcripts, field notes, and video recordings) to 

identify patterns and elaborate insightful and trustworthy interpretations (Gibbs, 2018). While 

earlier work in Educational Data Mining (EDM) has leveraged qualitative research as a mixed-

methods supplement to quantitative results, more recent work has sought to quantify the type of 

data often used in qualitative research to reveal systematic patterns in larger, complex datasets 

(e.g., Quantitative Ethnography, Shaffer et al., 2016). A key component of this approach is qual-

itative coding, where researchers identify and label themes within the data to evaluate their 

prevalence and guide further analysis (Saldaña, 2021; Shaffer and Ruis, 2021). Qualitative cod-

ing is often described as taking either an inductive, bottom-up approach, in which constructs are 

derived directly from the data itself (Braun and Clarke, 2012), or a deductive, top-down ap-

proach, in which codes are applied based on existing codebooks or theoretical frameworks 

(Bingham and Witkowsky, 2021).  

Although inductive and deductive approaches are often treated as distinct, codebook devel-

opment is rarely purely inductive or deductive (Charmaz, 1983; Weston et al., 2001). To achieve 

a high-quality codebook and coding, Weston et al. (2001) propose that codebook development 

should be conducted iteratively by human experts through a comprehensive review and under-

standing of relevant literature, theoretical frameworks, the cultural context of the data, and the 

data itself. However, manually examining an entire dataset can be time-consuming or even un-

feasible for large datasets. In such cases, researchers could review subsets of the data to 

inductively identify key constructs guiding their research. However, this approach carries the 

risk of selecting a subset that may lack examples of constructs or codes prevalent in the unin-

spected portions of the dataset, potentially missing important insights that could lead to different 

conclusions (Guest et al., 2006). 
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Since the recent emergence of Large Language Models (LLMs), some researchers have tested 

their ability to analyze entire datasets, identify key themes or constructs, and inductively develop 

a codebook to guide qualitative investigations (Barany et al., 2024; De Paoli, 2024; Gao et al., 

2024). For example, Barany et al. (2024) compared codebooks generated with LLM assistance, 

where the model either systematically identified themes across a large dataset or refined a hu-

man-developed codebook, with codebooks created entirely by human researchers. They found 

that the LLM-assisted codebooks not only contained a larger number of relevant codes but were 

also rated higher in comprehensiveness and quality by independent human reviewers. However, 

many of these studies have not grounded their codebook development in theory, instead adopt-

ing a fully inductive approach to code creation, which differs from the theory-guided approach 

used in the majority of qualitative coding research (Saldaña, 2021) and in much of the related 

work in the EDM community (e.g., Rupp et al., 2012; Zhang et al., 2022; Irgens et al., 2024; 

Ohmoto et al., 2024).  

A fully inductive approach also overlooks the possible perspectives or lenses that an LLM 

may implicitly apply when creating codes. Even when adopting an inductive approach, many 

qualitative researchers are concerned about sensitizing concepts—the constructs that influence 

the initial strategies researchers use when conducting grounded theory research, a methodology 

focused on developing theory from data rather than on applying existing frameworks (Blumer, 

1954; Charmaz, 2006). The goal when beginning this type of work is to start with an open mind 

rather than an empty one (Corbin and Strauss, 1990). Research suggests that the knowledge base 

of tools like GPT (and similar LLMs), comprised of the vast collection of open web text data 

they were trained on, is not neutral or atheoretical (Gallegos et al., 2024), which could influence 

how an LLM interprets data. If not prompted to consider specific theory, GPT might draw its 

sensitizing concepts from, for example, the folk theories or widely believed scientific miscon-

ceptions present in its training data (Nguyen et al., 2025; Tai et al., 2025).  

Although expert human oversight can help to mitigate some of the overt biases that might 

emerge from the LLM’s training data, (e.g., removing problematic codes, as in Barany et al., 

2024), it is more difficult to mitigate other manifestations of bias. For example, missing codes 

may go unnoticed because experts might not realize what the LLM has overlooked. As another 

example, it is possible that the LLM may draw from multiple, related theories as opposed to just 

one, and this implicit decision may go unnoticed by researchers (e.g., considering elements of 

multiple of the large set of self-regulated learning theories; Panadero, 2017). As such, research 

is needed to understand how best to guide LLMs to apply appropriate and relevant theoretical 

lenses for identifying the patterns in the data.  

One way to provide such guidance is to explicitly specify the theoretical lenses that should 

shape the LLM’s focus. In addition to providing prompt-based guardrails to the LLM’s analysis 

(Rebedea et al., 2023), this approach would also more closely mirror common practices in code-

book creation found in the broader literature, where researchers use theory to derive categories 

and to guide interpretation through conceptual frameworks (Saldaña, 2021). Such practices, 

when conducted by humans, enhance consistency across studies, support replicability, and con-

tribute to our understanding of how theory can be enacted across diverse contexts (Saldaña, 

2021). Building on this tradition, our approach tests whether LLMs (in this case, GPT-4o) can 

draw on their knowledge base of established learning theories to generate meaningful and theo-

retically grounded qualitative codebooks. 
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1.1. THE PRESENT STUDY 

Whereas prior research has mainly relied on bottom-up, inductive strategies to generate code-

books using LLMs (Barany et al., 2024; De Paoli, 2024; Gao et al., 2024; Katz et al., 2024), this 

study explores and compares several prompting approaches aimed at producing codes with in-

tentional theoretical alignment. Given that OpenAI’s GPT models have been the most widely 

studied LLMs in prior research, we employ GPT-4o, the most recent and cost-effective model 

in the GPT family at the time this study was conducted. We apply these multiple prompting 

approaches across two theoretical domains: self-regulated learning (SRL) and interest develop-

ment (ID), both of which are commonly used in EDM research (e.g., Zhang et al., 2022; Zhou 

and Paquette, 2024). Specifically, we investigate the following research questions: 

(RQ1) How effectively can GPT contribute to the qualitative codebook development 

process when guided by specific learning theories? 

(RQ2) What prompting approaches best guide GPT to apply specific theoretical frame-

works in collaboration with human researchers during codebook development? 

For the SRL context (Study 1), we implemented a three-step process to create a codebook 

grounded in two foundational SRL theories: Winne and Hadwin (1998) and Zimmerman (2000), 

both widely used in the learning sciences. First, we prompted GPT-4o to generate a baseline 

codebook drawing solely from its knowledge base about the two foundational SRL papers, ex-

plicitly including full references in the prompt. Second, we provided GPT with both the 

theoretical frameworks and our data (think-aloud transcripts from several learning contexts) to 

examine how it applied SRL theory to identify patterns in authentic student behavior. Finally, 

two human coders reviewed and refined the codebook generated in the second step (cf. Barany 

et al., 2024), allowing us to assess the outcomes of a collaborative human-AI coding process 

and the extent of human input needed to produce a usable, theory-aligned codebook.  

We then attempted to replicate this process in a second context, focusing on Hidi and Ren-

ninger’s (2006) four-phase model of ID (Study 2). This framework was chosen because, unlike 

SRL theories, it operates at a more abstract level, reflecting the many ways interest can manifest 

and thus posing a potentially greater challenge for GPT. Using the same prompt structure as in 

the SRL case, we observed that GPT produced theoretically aligned but less practical results. 

This suggested an opportunity to explore additional prompt engineering strategies to effectively 

operationalize this theory. In response, we expanded our investigation in this context to explore 

alternative prompting strategies that might yield more relevant and usable codes. Therefore, 

Study 2 compares four prompt-engineering strategies to evaluate GPT’s capacity to generate 

useful and practical, theory-informed codebooks: (1) no explicit reference to theory, replicating 

the approach used in prior inductive studies; (2) naming the target framework without providing 

references; (3) supplying a list of references, as in Study 1; and (4) providing the full text of the 

foundational papers (see Figure 1). By systematically comparing these conditions, we aim to 

understand how different types of theoretical input influence the constructs generated by GPT 

and identify which strategies yield the most valid and actionable codebooks. Overall, this work 

seeks to evaluate GPT’s effectiveness as a collaborator in codebook development when guided 

by established learning theories and to identify the most effective ways to communicate these 

frameworks in practice. 
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Figure 1: Prompt engineering approaches across the two contexts included in this study. 

2. LLMS IN QUALITATIVE RESEARCH 

2.1. LLMS FOR AUTOMATED CODING 

LLMs have been proposed as valuable tools for enhancing qualitative research. Most prior work 

has demonstrated promising performance on automating coding processes in educational re-

search (e.g., Morgan, 2023; Liu et al., 2025) as well as in other domains (Chew et al., 2023; 

Kirsten et al., 2024). For instance, Liu et al. (2025) compared GPT-4’s performance across three 

different contexts. In the first, they coded transcripts of human-human tutoring using three 

prompting strategies: Zero-shot (no examples), Few-shot (with examples), and Few-shot with 

context (prompts with examples and context). The study found that Zero-shot prompting was 

most effective for codes with clear, unambiguous definitions, Few-shot prompting worked better 

for concrete constructs that still require illustrative examples to clarify their meaning, and Few-

shot with context was only beneficial for constructs that explicitly require contextual infor-

mation. In some cases, however, this added context overwhelmed GPT and reduced 

performance. These prompting strategies were also tested by the authors on student-written ob-

servations while playing an astronomy-focused educational game, and on programming 

assignments from an introductory computer science course. Across these additional contexts, 

both Zero-shot and Few-shot approaches showed strong performance for most constructs. Sim-

ilarly, Morgan (2023) examined GPT’s ability to identify key themes in focus group transcripts 

from two contexts: first-year graduate students and dual-earner caregivers. They found that GPT 

performed reasonably well with concrete, descriptive themes but struggled to identify more sub-

tle, interpretive themes. Together, these studies suggest that GPT is well-suited for coding 

qualitative data involving clearly defined, concrete constructs, but tends to show greater disa-

greement with human researchers when dealing with constructs that require more interpretive 

nuance. 

Building on this line of inquiry, Borchers et al. (2025) evaluated a multi-agent system de-

signed to code interactions between tutors and students in a virtual environment. Their system 

included a single-agent coder to simulate individual annotation, a dual-agent discussion module 

to model inter-annotator dialogue, and a consensus agent responsible for finalizing codes after 

reviewing both responses. The findings showed that consensus was more easily reached when 

discussions involved LLMs operating at low temperature with assertive personas, and that both 

single-agent and consensus outputs demonstrated high agreement with human coding. These 
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findings strengthen the case for the viability and usefulness of incorporating LLMs into quali-

tative coding processes. 

Other work in this area has also focused on analyzing how GPT can assist in analyzing and 

discussing coding disagreements between researchers (both human-AI and even human-human; 

Zambrano et al., 2023; López-Fierro et al., 2025). In particular, Zambrano et al. (2023) proposed 

leveraging the conversational abilities of LLMs (ChatGPT-3.5) not only to automate coding but 

also to explain its coding decisions and revise coding categories. This process can help research-

ers evaluate whether their own code definitions and labeling strategies need refinement. 

Although overall LLM coding performance metrics were not as good as in later work, the au-

thors identified instances where human coders were inconsistent in their labeling, for which 

GPT was able to offer clarifications to construct definitions and explanations for why disagree-

ments may have occurred. Likewise, López-Fierro et al. (2025) found that even when ChatGPT-

4 disagrees with human coders, prompting GPT to explain not only its own rationale but also 

the potential sources of disagreement provided insights that can complement researchers’ label-

ing and encourage reflection on the clarity and precision of the construct definitions. Both 

studies suggest that GPT’s conversational capabilities may offer valuable support for broader 

aspects of qualitative research, including collaborative reflection, code validation and iteration, 

and deeper construct understanding. 

2.2. LLMS FOR CODEBOOK DEVELOPMENT 

Emerging studies have demonstrated the potential of human-AI collaboration across multiple 

qualitative tasks, including resolving ambiguity in human-developed codes (Jiang et al., 2025), 

revealing researcher positionality (Bialik et al., 2025), and identifying data subsets that may be 

especially informative for researchers (Schäfer et al., 2025). As LLMs become more integrated 

into collaborative coding processes, their role is shifting from functioning solely as automated 

coders to serving as reflective partners. Motivated by LLMs’ ability to use human-created code-

books to inform their decision-making, researchers have proposed frameworks for developing 

codebooks and conducting thematic analysis in collaboration with LLMs (De Paoli, 2024; Gao 

et al., 2024; Katz et al., 2024). For example, De Paoli (2024) introduced a workflow using 

OpenAI’s Application Programming Interface (API) and GPT-3.5 (the latest version at the time) 

in which human researchers prompt GPT to identify key themes and example sentences in a pre-

cleaned dataset, reduce duplicate codes, and generate definitions of those codes. De Paoli 

demonstrated that GPT could identify key items in two education-related datasets with minimal 

human intervention, requiring experts only to clean the input and review the output. Gao et al. 

(2024), also using OpenAI’s API and GPT-3.5, extended this framework to not only leverage 

GPT for suggesting codes based on data but also to facilitate discussions among multiple human 

researchers and suggest grouping constructs for overlapping codes. Lastly, Katz et al. (2024) 

employed an open-source LLM to identify common topics, sentiments, and themes, and then 

used text embeddings (numerical representations of language) and clustering analysis to group 

similar utterances. The LLM was then used to generate themes for each cluster, suggesting pre-

liminary codes that were reviewed and refined by human experts to ensure they accurately 

represented the data and aligned with the research objectives. 

To understand which aspects of thematic analysis are best supported by LLMs, Chen et al. 

(2025) analyzed open coding outcomes produced by five LLM-based approaches and four hu-

man coders using a dataset of online chat messages about a mobile learning application. The 

LLM-based approaches differed in several ways: the type of LLM used (BERT vs. GPT-4o), 

the method of presenting and coding the data (in chunks vs. line-by-line), and the nature of the 
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requested output (broad themes vs. more specific codes). In none of these approaches did the 

LLMs receive codebooks or example codes in advance. The authors found that LLMs, across 

all configurations, were effective at identifying concrete, content-grounded codes. In contrast, 

human coders excelled at generating codes that captured more interpretive and conversational 

dynamics (something LLMs struggled with). Similarly, Barany et al. (2024) examined four ap-

proaches to codebook development: a fully manual approach, a fully automated approach 

employing GPT-4, and two hybrid approaches incorporating GPT at specific steps of the code-

book development process. In the first hybrid approach, GPT was used to refine a codebook 

initially developed by human researchers. In the second, GPT generated an initial set of con-

structs, which were then refined by a human researcher. The authors found that hybrid 

approaches, whether GPT is involved early or later in the process, produced codebooks that can 

be more reliably applied even by human coders and rated as higher quality by independent hu-

man reviewers. 

These codebook development approaches have recently been applied across a range of edu-

cational contexts. For example, Wei et al. (2025) used a hybrid method in which GPT-4o 

generated initial constructs from a large dataset, which were then manually refined to create a 

codebook to compare in-game written observations from students with high and low situational 

interest in a Minecraft-based learning environment. The analysis revealed that students with 

higher situational interest made observations across a broader range of topics, particularly em-

phasizing scientific content. Similarly, Ruijten-Dodoiu (2025) asked ChatGPT to extract 

potential codes from student-AI interaction data and then manually validated and refined the 

themes. While the GPT-generated themes included some inaccuracies, such as a fabricated trend 

suggesting all students trusted AI, the iterative interaction with GPT ultimately produced useful 

insights. The refined themes identified key ways that students used AI in their writing: trans-

forming informal text into formal academic language, meeting word count requirements, 

exploring weaknesses in their own writing, retrieving factual or referenced information, and 

structuring discussion points. The analysis also highlighted that some students appeared to rely 

excessively on GPT for completing writing tasks. 

Multi-agent systems built on LLMs have also been investigated as tools to conduct thematic 

analysis. Simon et al. (2025) propose a workflow that automates the process previously carried 

out through more manual interactions with LLMs by Barany et al. (2024). In this workflow, an 

orchestrator agent breaks down the overall procedure of thematic analysis into smaller tasks and 

assigns those tasks to several coding and consensus agents. Each coding agent independently 

reviews the text data and generates potential themes or codes, much like individual human cod-

ers. A consensus agent then compares these outputs, merges similar codes, and resolves 

disagreements, mirroring the collaborative practices of human research teams. Using this ap-

proach, the authors found that a multi-agent system based on Claude 3.5 Sonnet achieved a high 

level of coding consistency with human experts when performing inductive thematic analysis 

on a benchmark dataset, particularly for concrete and descriptive themes.  

Although hybrid codebooks have proven useful in educational research, most prior ap-

proaches (Barany et al., 2024; De Paoli, 2024; Gao et al., 2024; Katz et al., 2024; Chen et al., 

2025) have used GPT in a primarily inductive fashion, without grounding the theme identifica-

tion in any theoretical framework. To address this limitation, Ramanathan et al. (2025) 

iteratively refined prompts using chain-of-thought prompting, applying consistency checks until 

a theoretically grounded operationalization was achieved. In their approach, theory was manu-

ally embedded into the prompt by providing GPT with a human-developed, theory-based 

codebook. While this represents an important step forward, the optimal method for identifying 

theoretically grounded constructs remains unclear. For instance, allowing GPT to generate the 
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codebook itself, drawing on both the data and the underlying theory rather than supplying a pre-

existing codebook, may lead to more insightful and contextually relevant results.  

Research in other areas outside of education also suggests that how the theoretical infor-

mation is presented to GPT could be important. For example, studies have found that prompting 

GPT with excessive contextual information or overly detailed instructions can reduce its accu-

racy in performing the intended task (Koopman and Zuccon, 2023; Peters and Chin-Yee, 2025). 

Moreover, research suggests that there are specific qualities of scientific write-ups (e.g., the 

differences in tense, the use of hedges) that may influence the degree to which LLMs generalize 

to new information (Peters and Chin-Yee, 2025). Therefore, it is possible that LLMs’ ability to 

generate new codes based on a specific theoretical framework could be influenced by the re-

searchers’ writing style. Finding ways to mitigate such concerns would be an important step in 

developing prompt-engineering frameworks (see review in Sahoo et al., 2024) that would im-

prove LLMs’ ability to effectively assist in this type of research tasks. To that end, this study 

explores multiple ways of presenting theoretical frameworks to GPT in order to identify strate-

gies that lead to more practical, relevant, and theoretically aligned codebooks. 

3. STUDY 1: DEVELOPING A CODEBOOK TO INVESTIGATE SELF-REGU-

LATED LEARNING 

3.1. THEORETICAL FRAMEWORK 

The first theoretical framework for which we developed codebooks in collaboration with GPT 

was SRL. Grounded in both information-processing and social-cognitive traditions, various the-

oretical frameworks have defined SRL as a cyclical and loosely sequenced process that involves 

a dynamic interplay among cognitive, metacognitive, motivational, and emotional components 

within and across learning episodes, while also being shaped by learner characteristics, task 

demands, and the social context (Panadero, 2017; Greene et al., 2023). Among these frame-

works, Zimmerman’s (2000) cyclical phases model and Winne and Hadwin’s (1998) four-stage 

model have been especially influential in guiding the development of qualitative codebooks for 

analyzing SRL behaviors (e.g., Bannert et al., 2014; Hutt et al., 2021; Borchers et al., 2024), 

making them an important reference point for testing GPT’s capacity to generate theory-based 

codebooks.  

Based on socio-cognitive theories, Zimmerman (2000) describes SRL as three cyclical 

phases (i.e., forethought, performance, and self-reflection), in which learners analyze a task, 

execute it, and assess their performance. In the forethought phase, learners set goals and develop 

strategies, with task analysis and self-motivation as key components. Motivational beliefs such 

as intrinsic interest or self-efficacy (personal beliefs about one’s abilities) can influence goal-

setting behaviors, ultimately impacting the level of difficulty of the goals a learner sets and their 

commitment to achieving them. In the performance phase, learners engage in two main pro-

cesses (self-control and self-observation) to ensure the successful execution of their plan. Self-

control involves strategies that help learners stay focused on the task and optimize their effort, 

while self-observation encompasses methods for monitoring their performance and the sur-

rounding conditions. Finally, in the self-reflection phase, learners evaluate their performance 

against a set of criteria (self-evaluation) to determine whether success or failure is due to internal 

or external factors. Their level of satisfaction with the outcome (self-satisfaction) and their pre-

ferred response style (adaptive-defensive) subsequently influences their future regulatory 

behaviors (see Figure 2). 
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Figure 2: Zimmerman’s (2000) SRL Model. Figure taken directly from the original publication.  

Grounded in information processing theory, Winne and Hadwin (1998) characterize SRL as 

a process involving four interdependent and recursive stages, in which learners: 1) define the 

task, 2) set goals and form plans, 3) enact the plans, and 4) reflect on and adapt strategies if 

goals are not met (Figure 3). Winne and Hadwin (1998) specifically highlight the importance of 

cognition and metacognition in this process. To describe how learners navigate tasks at each 

stage, they proposed the COPES model, which outlines five core components involved in self-

regulation. According to this model, learners assess task conditions (C), engage in cognitive 

operations (O) to generate a product (P), and evaluate (E) that product against internal or exter-

nal standards (S). 

 

Figure 3: Winne & Hadwin’s (1998) COPES model. Figure recreated from the original publica-

tion. 
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Zimmerman’s and Winne and Hadwin’s SRL models share several foundational assumptions 

about how learners manage their own learning processes. Both frameworks represent SRL as a 

cyclical and dynamic process in which learners set goals, select and implement strategies, mon-

itor their progress, and adjust behaviors based on feedback. They also emphasize the central role 

of metacognition (particularly monitoring, self-control, and adaptation) and acknowledge that 

motivation and contextual factors shape how learners engage with and sustain learning tasks. 

Despite these shared principles, the models differ in their theoretical grounding and in the em-

phasis they place on specific SRL components. Zimmerman’s model, rooted in social cognitive 

theory, organizes SRL into three broad phases (forethought, performance, and self-reflection) 

and highlights motivational constructs such as self-efficacy, goal orientation, and self-satisfac-

tion. It represents a relatively higher-level account of the processes of SRL, less fine-grained 

than Winne and Hadwin’s model. In contrast, Winne and Hadwin’s model adopts an infor-

mation-processing perspective, presenting SRL as a more fine-grained and mechanistic process 

in which learners regulate their behavior through the interaction of Conditions, Operations, 

Products, Evaluations, and Standards, offering a more detailed account of how learners interpret, 

monitor, and respond to task demands in real time. 

As a multidimensional construct, SRL encompasses various aspects that GPT can help ex-

amine and synthesize. The two selected frameworks capture a wide range of SRL processes, 

including behavioral, affective, cognitive, and metacognitive components, making them good 

tests of GPT’s ability to develop a comprehensive codebook. Moreover, both models are now 

well established in the literature, suggesting that sufficient information on these frameworks is 

likely included in the training data of GPT. Preliminary checks asking GPT about the theory 

confirmed that GPT can accurately summarize all the key elements of the model, suggesting it 

is appropriate for evaluating GPT’s ability to generate theoretically grounded codebooks. 

3.2. DATA CONTEXT 

To assess GPT’s capacity for suggesting constructs related to SRL, we selected an open dataset 

that has previously been coded (by humans) and analyzed for SRL using a custom codebook 

based on the theory by Winne and Hadwin (Borchers et al., 2024; Zhang et al., 2024a). The 

dataset consists of think-aloud transcripts from students working within three intelligent tutoring 

systems (ITSs). These systems covered topics in stoichiometry (Stoichiometry Tutor, McLaren 

et al., 2006; and ORCCA, King et al., 2022) and formal logic (Logic Tutor, Zhang et al., 2024b). 

Fourteen undergraduate students and one graduate student participated in the study between 

February and November 2023 in the United States. The participants’ demographics were 40% 

white, 47% Asian, and 13% multi- or biracial. Ten students were recruited from a private re-

search university and participated in person, while five students from a large public liberal arts 

university participated remotely via Zoom. 

Students participated in a 45-60 minute session, where they were assigned to one of three 

ITSs. Each system had at least five students, with six students working on both stoichiometry 

ITSs after completing one early. The session began with a demographic questionnaire, followed 

by a pre-recorded introductory video on the assigned ITS, with an opportunity to ask questions 

afterward. For Logic Tutor, students were also given the option to skim and ask questions about 

articles on formal logic. After becoming familiar with the tutoring software, students received a 

brief demonstration and an introduction to the think-aloud method. They then began working 

on the tutor problems at their own pace for up to 20 minutes while thinking aloud, with occa-

sional reminders from the experiment conductor to keep speaking. The problems were matched 

in difficulty across the ITSs. The stoichiometry tutors covered mole and gram conversion and 
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stoichiometric conversion (four problems each), while the Logic Tutor focused on simplifying 

and transforming logical expressions (seven and four problems, respectively). The data set in-

cludes a total of 955 utterances transcribed using Whisper, which were segmented based on 

logged interface interactions in the tutoring systems (see Zhang et al., 2024b). Log data and 

anonymized synchronized think-aloud transcripts are available upon request for Stoichiometry 

Tutor and ORCCA at https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5371 and for 

the Logic Tutor at https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5820. 

3.3. GPT-BASED CODEBOOK DEVELOPMENT 

To create the SRL codebook, we employed a three-step process. In the first step, we used GPT 

to generate a codebook based solely on GPT’s knowledge of foundational theory papers (i.e., 

Winne and Hadwin, 1998; Zimmerman, 2000) which inspired qualitative coding in past papers 

involving this data set (Borchers et al., 2024; Zhang et al., 2024a; 2024b). In the second step, in 

addition to the theory papers, we provided GPT with data intended to be analyzed within the 

SRL framework. In the final step, two human coders reviewed and refined the codebook gener-

ated in the second one, merging overlapping constructs and excluding constructs that the coders 

found challenging to identify from the data (cf. Weston et al., 2001; Barany et al., 2024). 

When prompting GPT, we used GPT-4o (version gpt-4o-2024-08-06) via OpenAI’s GPT 

API. Given the stochastic nature of GPT, which may generate different results for equivalent 

prompts, the temperature parameter was set to 0—a standard practice in this type of research, 

(e.g., Barany et al., 2024; Liu et al., 2025)—and each prompt was run three times to verify 

consistency across iterations (as in Wang et al., 2022). We conducted several rounds of prompt 

modifications to guide the model in generating consistent and reliable outputs, following the 

prompt engineering framework proposed by Giray (2023). This process began with a broad 

prompt asking GPT to develop a codebook for SRL. Then, multiple variations were tested, and 

iterative adjustments were made to add specificity and contextual details relevant to this code-

book development. The prompts presented here are the final versions obtained after the prompt 

engineering process. 

3.3.1. Step 1: Prompting GPT with Theory Paper References 

In the first step (Theory-only), we asked GPT to consider two foundational SRL theory papers 

(Winne and Hadwin, 1998; Zimmerman, 2000). The prompt shown below was given to GPT as 

both the system and user message. In the API, the system message defines the assistant’s behav-

ior, tone, and guiding context and the user message provides the specific question or instruction 

to which the assistant responds. 

 

System/User Message: 

You are an expert qualitative researcher in self-regulated learning. Please create a 

codebook for analyzing students’ think-aloud transcripts considering the following pa-

pers: 

- Winne, P.H. and Hadwin, A.F. 1998. Studying as Self-Regulated Learning. Metacog-

nition in Educational Theory and Practice. (1998), 277–304. 

- Zimmerman, B.J. 2000. Attaining Self-Regulation: A Social Cognitive Perspective. 

Handbook of Self-Regulation. 13–39. 

 

Each round of the prompt generates a codebook containing constructs along with their defi-

nitions and (synthetic) examples. Two researchers (the 1st and 2nd author) consolidated the 
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codebook by considering all constructs that appeared in any of the three runs. Specifically, con-

structs with similar names and definitions across multiple rounds were treated as the same (e.g., 

Self-Monitoring and Self-Observation). Constructs that appeared similar but were not clearly 

identical for both human researchers (e.g., Planning versus Goal Setting and Monitoring versus 

Evaluation) were not merged and were included in the codebook as individual and separate 

constructs. 

3.3.2. Step 2: Prompting GPT using both Theory Papers and Data: 

In the second step (Theory+Data), we incorporated student data into GPT’s prompting. We re-

tained the same system message used in the Theory-only approach but modified the user 

message (shown below) to include the dataset. The entire dataset was provided within a single 

prompt, with each utterance separated by a line break. This formatting allowed GPT to select 

specific utterances as examples for constructing the codebook. 

 

User Message: 

As a qualitative researcher, you can refine constructs proposed in previous theories and 

suggest new constructs by considering the transcripts that you analyze. Please refine 

this codebook considering the following transcripts: [FULL DATASET] 

 

In line with Step 1, authors 1 and 2 evaluated construct overlap across all three runs, consolidat-

ing all the generated constructs into a single codebook. Constructs that were similar but not 

clearly identical were again not merged. 

3.3.3. Step 3: Final Human Refinement 

In the third step (Human Refinement), the 1st and 2nd authors evaluated the specificity (the 

extent to which a construct is distinct and clearly distinguishable from other related concepts) 

and applicability (the extent to which a construct can be accurately identified in the data) of the 

definitions and examples for all constructs obtained in the previous steps. Constructs that did 

not match the context of the data or included example sentences that did not align with the 

construct’s definition were filtered out. For example, Imitation was defined by GPT in Step 1 as 

“observing and imitating the strategies or behaviors of others,” but no such instances were found 

in the data (as indicated by its absence in Step 2), and it was therefore excluded. No hallucina-

tions (i.e., example sentences created by GPT and not present in the data) were found in this 

study, but if suitable examples could not be identified in the data, the construct was excluded. 

Constructs that had similar definitions or overlapping examples but were not clearly identical 

(e.g., Planning versus Goal Setting and Monitoring versus Evaluation) were collapsed if both 

researchers agreed they should be combined; all others remained as generated by GPT. Addi-

tionally, constructs that were a subset of another construct also proposed by GPT were collapsed 

into the broader construct if this broader construct was concrete enough and easy to observe in 

the data. For instance, the construct Task Understanding, defined as correct task comprehension, 

was collapsed into a broader but comparable construct also in the codebook, Understanding the 

Task, defined as the process of trying to understand the task. These approaches aligned with 

existing practices for code refinement in qualitative research (e.g., Strauss, 1987). Given that 

the primary goal of the study was to evaluate the outcomes of using GPT for codebook devel-

opment, rather than to assess the researchers’ ability to propose theoretically grounded 

constructs, no additional constructs beyond those suggested by GPT were added by the research-

ers. 
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3.4. RESULTS 

3.4.1. Step 1: Prompting GPT with Theory Paper References without Providing Data 

As Table 1 shows, the codebook suggested by GPT based on the SRL foundational theory papers 

accurately represents most of the key elements of both SRL theories, indicating that the model’s 

knowledge base includes appropriate and accurate representations of these theoretical frame-

works. GPT proposed constructs that capture all the components across all three phases of 

Zimmerman’s cyclical self-regulatory model. For Zimmerman’s forethought phase, both the 

task analysis and self-motivation components were represented by the constructs Goal Setting, 

Strategic Planning, Self-Efficacy, Intrinsic Motivation, and Task Value. Similarly, Zimmer-

man’s performance phase, which includes self-control and self-observation, was reflected by 

the constructs Strategy Use, Resource Management, Adaptive Inferences, Task Monitoring, Self-

Monitoring, and Metacognitive Awareness. Finally, the self-reflection phase (self-judgment and 

self-reaction) was represented by the constructs Reflective Thinking, Adaptive Inferences, Self-

Evaluation, and Outcome Evaluation.  

Table 1: SRL codes obtained for the three steps of codebook generation. Thematically similar 
constructs are shown in the same row. Constructs that appear in all three iterations of the same 

step are highlighted in dark gray; those appearing in two iterations are shown in light gray; and 

constructs present in only one iteration are displayed in white. 

Step 1: Theory References Step 2: Theory + Data Step 3: Human Refinement 

 Understanding the Task Understanding the Task 

 Task Understanding  

Goal Setting Goal Setting Planning & Goal Setting 

Strategic Planning Strategic Planning  

Self-Evaluation Error Identification 

Error Identification Outcome Evaluation Outcome Evaluation 

Process Evaluation 

Self-Monitoring 

Monitoring 
Monitoring Task Monitoring 

Metacognitive Awareness 

Reflective Thinking  

Strategy Use Systematic Strategy Strategy Use 

Adaptive Inferences Strategy Adjustment Strategy Adjustment 

Seeking Help 
Seeking Help 

Help-seeking 

Resource Management  

 

Emotional Regulation Emotional Regulation &  

Perseverance 

Self-Efficacy Self-Efficacy  

 Frustration Frustration and Self-Doubt 

 Calculation & Conceptual 

Understanding 
Domain Knowledge Recall 

 Trial and Error Trial and Error 

Intrinsic Motivation   

Physical Environment   

Social Environment   
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Step 1: Theory References Step 2: Theory + Data Step 3: Human Refinement 

Imitation   

Task Value   

 

Similarly, GPT’s codebook contained constructs for three of the four phases of Winne & 

Hadwin’s SRL model: set goals and form plans, enact the plans, and reflect and adapt strategies 

when goals are not met) Only the task definition phase, which occurs before goal setting and 

planning, is not directly represented in the codebook. That said, Goal Setting and Strategic Plan-

ning necessitate a task definition, and it is possible that differentiating between the two would 

be hard to operationalize. 

Although Step 1 suggestions provided good coverage of the different phases of the SRL the-

ories, many of the codes suggested by GPT show substantial overlap with one another, even 

when they ostensibly cover different phases of SRL. For instance, constructs such as Self-Mon-

itoring, Task Monitoring, Reflective Thinking, and Metacognitive Awareness are conceptually 

distinct, but may manifest in similar ways. For example, the similarity between the examples 

like “I think I understand this part, but I’m not sure about the next section” (GPT’s example for 

Self-Monitoring) and “Next time, I should try a different strategy for better results” (GPT’s ex-

ample for Reflective Thinking) made it difficult to consistently differentiate between these codes. 

As will be discussed in the section on Step 3 (below), such codes were collapsed prior to further 

analysis. 

Another concern about the Step 1 codebook was related to the applicability of several codes 

to this particular data set. For example, constructs like Imitation and Social Environment are 

important components of SRL models, but their applicability is highly limited in the current data 

set, where students worked individually within the learning platform and while producing data 

through a think-aloud protocol. In this context, students were not given opportunities to produce 

data connected to these constructs. As a result, synthetic examples suggested by GPT for these 

constructs (e.g., “I noticed my classmate uses flashcards, so I will try that too”) were not plau-

sible. Hypothetically, students could have referred to past experiences involving others (e.g., 

strategies they copied from a teacher or classmate). However, our data showed no such refer-

ences, indicating that neither construct is appropriate for coding this specific data set and 

context. 

3.4.2. Step 2: Prompting GPT using both Theory Paper References and Data 

We next tested GPT’s sensitivity to the SRL study’s data to determine how that might influence 

the codebook generation process. When provided with the data, GPT produced a codebook that 

was more complete (see Table 1), capturing elements from all phases of both theoretical models. 

This is an improvement over the Step 1 (Theory-only), as the Step 2 (Theory+Data) codebook 

incorporated Winne & Hadwin’s phase of task definition, the only phase of their SRL model 

missing from the Step 1 approach. In Step 2, GPT differentiated between the process of attempt-

ing to grasp the task (Understanding the Task), attaining accurate task comprehension (Task 

Understanding), and the forethought phases focused on Goal Setting and Strategic Planning. 

All other stages from both Zimmerman’s and Winne and Hadwin’s SRL models were repre-

sented in the Theory+Data codebook.  

GPT also produced fewer overlapping constructs than it did in Step 1. For example, the The-

ory+Data codebook included a code called Monitoring, which was illustrated using the same 

examples from the four overlapping constructs in the Theory-only codebook (Self-Monitoring, 

Task Monitoring, Reflective Thinking, and Metacognitive Awareness). This suggests that the 
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Step 2 codebook may have more effectively identified and labelled these examples as a single 

construct. 

GPT also introduced a new construct, Error Identification, which was not present in Step 1. 

This construct captures instances where students explicitly recognize a previous mistake or in-

correct answer (e.g., “And now I just realized that I should have done all the equations first.”). 

Although this construct does seem to be a type of Monitoring, the specificity of Error Identifi-

cation made it easier to differentiate from other types of monitoring behaviors. 

Furthermore, GPT provided codes in Step 2 that better differentiated between different types 

of behaviors in the performance (Zimmerman) or enactment (Winne & Hadwin) phases of the 

SRL models. GPT suggested codes like Trial-and-Error (e.g., “I’m going to submit this guess 

now”), differentiating from Systematic Strategy (e.g., “Let’s make some notes that we don’t 

forget anything like the 6 before.”). GPT also identified instances where students used Calcula-

tions & Conceptual Understanding while solving tasks (e.g., “Let’s use inverse absorption to 

simplify this expression”). This additional code could help identify cases where conceptual 

knowledge guides students’ strategies and processes.  

Finally, constructs that were relevant to the theory but absent from the data (see discussion 

in Section 3.4.1), were appropriately filtered out by GPT once the data was available. For ex-

ample, Imitation and Social Environment, which emerged in Step 1, did not appear in Step Two. 

Several motivational constructs were also either excluded or replaced with more specific con-

structs such as Frustration (e.g., “This is driving me crazy with all the denominators”) and 

Emotional Regulation & Perseverance (e.g., “This is frustrating, but I’ll keep trying.”). As a 

result, the Step 2 codebook showed better alignment with the students’ think-aloud data. 

3.4.3. Step 3: Final Human Refinement 

The Step 2 (Theory+Data) codebook improved upon the Step 1 codebook by reducing the num-

ber of overlapping constructs, enhancing the specificity of proposed constructs, and providing 

constructs that were more relevant (sensitive) to the think-aloud data. However, further human 

refinement was still warranted. This refinement process resulted in a final codebook consisting 

of eleven constructs. Definitions and examples for each construct are presented in Table 2. 

In some cases, codes were simply renamed and refined. For example, GPT defined Calcula-

tion & Conceptual Understanding as the “explicit use of domain-specific knowledge or mental 

calculation to understand and solve the task,” and provided the example, “Let’s use inverse 

absorption to simplify this expression.” Given concerns about GPT’s ability to distinguish be-

tween correct and incorrect uses of technical terms (e.g., “absorption,” “Avogadro’s number,” 

or “De Morgan’s law”), human researchers refined and renamed this construct Domain 

Knowledge Recall. 

In many cases, codes generated by GPT were merged into a single category when the exam-

ples were too close to provide a meaningful distinction. For instance, GPT distinguished 

between students working towards understanding (Understanding the Task) and achieving un-

derstanding (Task Understanding). Example sentences for the former included “Let’s figure out 

how many hydrogen atoms are in a millimole of water, H2O molecules” while examples for the 

latter included “Let’s figure out how many CO2s there are in a single millimole of C2H6.” 

Although human experts with access to the data could discern whether students understood the 

task correctly, this approach may not be practical for large datasets where full human inspection 

is infeasible. Therefore, the researchers merged them into a single category: Understanding the 

Task.  
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Table 2: Final SRL Codebook obtained after human refinement. 

Code & Definition Example Utterances from the Data 

Understanding the Task: Specific mental processes 

used to understand the task. 

"Let’s figure out how many hydrogen at-

oms are in the millimole of water" 

Planning & Goal Setting: Students outline their 

goals, objectives, or strategy before engaging in the 

planned action. 

"I’m going to first handle the negation 

and then move to the next part."  

Error Identification: Students detect an error in the 

process or solution of the task 

"So I guess the 25m I wrote there is not 

correct." OR "Oh, I missed a negation, let 

me fix that." 

Monitoring: Checking understanding or progress 

during the task. 

"Am I reading the statement again and 

see if I forgot anything?" 

Strategy Use and Execution: Applying systematic 

steps to solve the problem. 

"I’m going to multiply this by Avoga-

dro’s number." 

Strategy Adjustment: Actions taken to correct or ad-

just strategies based on monitoring. 

"Let's make some notes that we don't for-

get anything like the 6 before." OR "So 

I'm going to do it the safe way." 

Help-seeking: Use of hints or external resources 

when the student is unsure or stuck. 

"OK, I’m asking for a hint now." OR  

"Let’s get the second hint." 

Emotional Regulation & Perseverance: Persever-

ance and determination despite difficulty, 

ambiguity, or frustration 

"This is frustrating, but I’ll keep trying." 

OR "I’m almost there, just one more 

step!" 

Frustration & Self-doubt: Frustration with repeated 

errors or setbacks. 

"This is driving me crazy for all the de-

nominators." 

Domain Knowledge Recall: Statements referring to 

subject-specific concepts, equations, or principles. 

“Let’s use inverse absorption to simplify 

this expression.” 

Trial & Error: Experimenting with various rules or 

strategies when uncertain. 

“I'm going to submit this guess now.” 

Similarly, GPT proposed Process Evaluation and Outcome Evaluation as distinct additional 

constructs to capture students’ reflections on their strategies and outcomes. However, the exam-

ple sentences provided for these constructs were repeated for Error Identification (e.g., “And 

now I just realized that I should have done all the equations first” and “The result is no 

100,000”), suggesting that all three may be capturing a similar underlying behavior. Conse-

quently, during human refinement, the constructs were consolidated under the broader and more 

clearly defined construct Error Identification. Several other codes were also merged for the 

same reason. For instance, the examples given for Strategic Planning (e.g., “So I should deter-

mine the amount of C6H1206 in mole”) were not distinguishable from those given for Goal 

Setting (e.g., “Let's create the formula and just sum up what we've learned so far”). Even though 

construct definitions appeared distinct, human inspection found many data examples that could 

fit both codes, (e.g., “We need to apply absorption and simplify this part first.”). Since both 

codes were also theoretically similar (i.e., both belong to either Zimmerman’s forethought phase 

or Winne & Hadwin’s planning stage), they were merged into Planning & Goal Setting. Moni-

toring and Evaluation, Error Identification and Outcome Evaluation, and Self-Efficacy and 

Emotional Regulation also showed substantial overlaps in their definitions, examples, and 
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theoretical mappings, and were therefore merged into Monitoring & Evaluation, Error Identifi-

cation, and Emotional Regulation & Perseverance, respectively. In sum, while the use of GPT 

in Step 1 and Step 2 shows the potential of the tool for supporting theory and data-relevant 

codebook development, human review remains essential for code merging and codebook refine-

ment. 

4. STUDY 2: DEVELOPING A CODEBOOK TO INVESTIGATE INTEREST 

DEVELOPMENT 

4.1. THEORETICAL FRAMEWORK 

The second theoretical framework that informed GPT-assisted codebook development was stu-

dent interest development. In particular, we focused on Hidi & Renninger’s Four-Phase Model 

of Interest Development (ID; Hidi and Renninger, 2006). This model outlines a progression of 

increasingly personal and sustained interest states: (1) triggered situational interest, a brief ini-

tial spark often stimulated by the learning environment; (2) maintained situational interest, 

involving prolonged engagement still influenced by external factors; (3) emerging individual 

interest, where learners begin forming personal connections and actively seeking out the topic; 

and (4) well-developed individual interest, characterized by long-term, self-sustained engage-

ment, even in the face of challenges (see Figure 4). 

In this framework, interest is not a fixed learner trait, but a dynamic, developmental process 

shaped by both environmental supports and individual motivation. In the early stages, external 

factors, such as engaging activities, novelty, and social interactions, play a critical role in spark-

ing and sustaining interest. As students acquire more knowledge in a given domain, interest is 

internalized, and learners demonstrate greater autonomy, persistence, and depth of engagement 

(Hidi and Renninger, 2006). The model further highlights how cognitive, emotional, and behav-

ioral indicators can signal different phases of interest development, ranging from momentary 

curiosity to sustained, meaningful engagement with a domain—often characterized by increased 

personal relevance, reflective thinking, and self-directed exploration. 

Hidi & Renninger’s model provides an important test case as it is now well established in the 

literature. It has also inspired the development of several instruments related to interest devel-

opment, including Linnenbrink-Garcia’s widely-used survey of situational interest 

(Linnenbrink-Garcia et al., 2010). Given its extensive recognition in the literature, we expect 

that sufficient data on this framework exists within the LLM training set. As with SRL models, 

preliminary checks confirmed that GPT can accurately summarize the key elements of the 

framework. 

The four-phase model has seen widespread use in empirical research, in part because its high-

level approach can be adapted to many settings. Although some scholars have noted that its 

conceptualization of interest development may appear broad or linear in certain contexts (e.g., 

Azevedo, 2011), this generality also allows for broad applicability. As a result, a codebook based 

on this theory must go beyond simply categorizing the four main stages of interest development. 

To generate deeper theoretical insights, the codebook must provide more detailed operationali-

zations that are suited to specific contexts (e.g., Linnenbrink-Garcia et al., 2010). This adds 

complexity to GPT’s task, requiring it to generate constructs, definitions, and examples that are 

not only theoretically grounded but also relevant to analysis in specific contexts. Consequently, 

this framework serves as a useful test case for assessing GPT’s ability to move beyond broad 

theoretical categories and produce nuanced, applicable codebooks. 
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Figure 4: Hidi & Renninger’s 4-Phase Interest Development Model. Figure first published by 

Renninger (2009) and adapted by Renninger & Hidi (2020). 

4.2. DATA CONTEXT 

To evaluate GPT’s ability to suggest theoretically-driven constructs related to interest develop-

ment, we analyzed 144 interview transcripts from 14 middle-school students who participated 

in a 5-day (15 hour) summer camp held in the northeastern United States in 2024 as part of the 

WHIMC project (Lane et al., 2022). The WHIMC project leverages Minecraft’s Java Edition to 

immerse learners in simulation environments where they can explore hypothetical astronomy 

scenarios that address “What-if” questions, such as “What if Earth had no moon?” or “What if 

Earth was orbiting a colder sun?”. Students differed in terms of gender (ten male, three female, 

and one non-binary) and race/ethnicity (eight White Americans, two Asian Americans, one Eu-

ropean, and three individuals who preferred not to disclose). Participation in the research was 

entirely voluntary, with consent and assent obtained from parents and participants, respectively. 

Interviews were collected using an open-source app called Quick Red Fox (Hutt et al., 2022), 

which enables researchers to conduct Data-Driven Classroom Interviews (DDCIs; Baker et al., 

2024) in the moment, as triggered by specific student actions that have been identified as poten-

tial indicators of interest, disinterest, or struggle. DDCIs allow interviewers to capture key 

moments in students’ interest development, resulting in a rich and timely dataset of student re-

flections that we then use to evaluate GPT’s codebook development capabilities. This data was 

provided to our team by members of the WHIMC research team. 

4.3. REPLICATION OF PROMPTS PROPOSED FOR STUDY 1 

We replicated the methods from Study 1, only modifying the prompt by changing the theoretical 

framework (ID instead of SRL) and the corresponding reference. We applied the same three-
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step process, generating codebooks using only the theoretical papers (Step 1), then with both the 

theoretical papers and the data (Step 2), and then through human refinement (Step 3). 

In Step 1 (Theory Only), GPT generated a codebook that produced codes that mirrored the 

four phases of the ID model as the primary constructs for the codebook (Triggered Situational 

Interest, Maintained Situational Interest, Emerging Individual Interest, and Well-Developed In-

dividual Interest; see Table 3). These four codes were proposed consistently across all three 

iterations. In addition, GPT also consistently identified the construct External Influences, de-

fined as “factors outside the individual that influence interest development, such as teachers, 

peers, resources, and environment,” which represents broader contextual elements that can 

shape any of the four stages. Finally, GPT suggested constructs like Internal Motivations, Emo-

tional Responses, and Barriers to Interest Development, though each appeared only once across 

the different runs. 

Table 3: Evolution of codebook for analyzing interest development using a theory paper. Con-

structs that appear in all three iterations of the same step are highlighted in dark gray; those 

appearing in two are shown in light gray; and constructs present in only one are shown in white. 

Step 1: Theory References Step 2: Theory Papers + Data Step 3: Human Refinement 

Triggered Situational Interest 
Triggered Situational Interest  

Engagement 

Theoretical Phases 

Maintained Situational  

Interest 

Maintained Situational  

Interest Engagement 

Emerging Individual Interest 
Emerging Individual Interest  

Engagement 

Well-Developed Individual  

Interest 

Well-Developed Individual  

Interest Engagement 

Internal Motivations   

External Influences 

Peer Interaction 

Peer Interaction 
Situational Interest Support 

Instructor Interaction 

Social Challenges 

Emotional Responses 

Situational Interest Emotion 
Positive Emotion 

Individual Interest Emotion 

Emotional Challenges Negative Emotion 

Barriers to Interest  

Development 

Technical Challenges Technical Issues 

Task Challenge 
Cognitive Challenges 

Resources 
 Situational Interest Stimulus 

Minecraft Environment 

Stimulus 
 Environmental Factors 
 Task Novelty 
 Knowledge Knowledge 
 Reflection Reflection 
 Task Relevance Perceived Value 
 Strategy Use Problem Solving 
 Learning Learning 

43 Journal of Educational Data Mining, Volume 18, No 1, 2026



Although these constructs align with the theoretical model, human reviewers found them to 

be too broad to effectively discriminate among different phenomena in the data. For example, 

GPT defined Maintained Situational Interest in a way that mirrors the theoretical literature (i.e., 

as characterized by “continued engagement with the subject matter over time, positive feedback 

or reinforcement from peers, teachers, or activities, and expressions of enjoyment or satisfaction 

from ongoing activities”). However, a code that reflects a broad, complex phase, characterized 

by considerable duration, is inappropriate for labeling an individual utterance in a student inter-

view. A more useful operationalization of this construct would likely require breaking it down 

into more granular subcodes (e.g., Positive Reinforcement, Enjoyment or Satisfaction). Simi-

larly, constructs such as Emotional Responses or Barriers to Interest Development, which 

emerged only once as a code across the runs on different data subsets, would benefit from further 

refinement to distinguish between positive and negative emotions or to identify specific chal-

lenges that may hinder students’ interest development. 

In Step 2 (Theory+Data), GPT produced a codebook that was more expansive, including 

more narrow codes that still aligned with the theoretical model. For example, components from 

the earlier definition of Maintained Situational Interest, such as peer and instructor interactions 

and expressions of enjoyment or satisfaction, were further differentiated into distinct constructs: 

Peer Interaction, Instructor Interaction, Interest Emotions, Task Novelty, and Task Relevance. 

Similarly, the broader construct of Emotional Responses was refined into more specific catego-

ries, such as Situational Interest Emotions, Individual Interest Emotions, and Emotional 

Challenges. Barriers to Interest Development were also subdivided into more specific con-

structs, including Emotional, Social, Technical, and Task-related Challenges. Notably, the 

construct Internal Motivations was not suggested by GPT in this second step, as it did not iden-

tify an explicit example of it in the data. 

Although many of the constructs generated in Step 2 were more practical than those in the 

original theory-only codebook, some still closely mirrored the theoretical interest development 

model without fully accounting for the practical challenges of identifying them in the dataset. 

For instance, Situational Interest Emotion and Individual Interest Emotion both refer to positive 

emotions or enjoyment associated with different phases of interest. While these distinctions are 

theoretically meaningful, they lack discriminant validity, since the positive emotions experi-

enced during each are unlikely to differ at the level of a student utterance. The same concern 

emerged for Situational Interest Engagement and Individual Interest Engagement which are 

similarly difficult (if not impossible) to reliably distinguish in the context of interview tran-

scripts.  

The Step 2 codebook showed other forms of conceptual redundancy, with considerable over-

lap between constructs like Situational Interest Stimulus, Task Novelty, and Environmental 

Factors, all of which refer to aspects of the Minecraft environment that could trigger situational 

interest. Human reviewers determined these constructs were not sufficiently distinct and merged 

them to form the construct Minecraft Environment Stimulus in Step Three. 

Other constructs from the Step 2 codebook offered finer-grained distinctions than the Step 1 

codebook, but some still had validity issues. For example, the Social Interactions code proposed 

in Step 1 aligned with Step 2 codes that appeared more specific (i.e., Peer Interaction, Instructor 

Interaction, and Social Challenges) but GPT assigned examples to these Step 2 codes that were 

misleading. For instance, the construct Social Challenges, which appeared in only one run, in-

cluded a question asked by the interviewer (i.e., “Your brother doesn’t like the sinking gravel?”) 

that did not refer to any conflict. In fact, the student responded that their brother was helping “a 

lot,” and corresponded to a moment of collaboration rather than challenge. Similarly, examples 

for Instructor Interaction include sentences referring to interviewer questions (e.g., “What are 
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you working on? What did you just do?”) instead of referring to any previous interaction or 

comment about the instructor. This indicates that although GPT suggests a division of social 

constructs into Peer Interaction, Instructor Interaction, and Social Challenges, which may be 

worth coding separately in some research contexts, it struggles to identify actual instances in the 

data that meaningfully differentiate these categories. 

As with the SRL codebook, Step 3 involved a human review to consolidate the codes gener-

ated in Steps 1 and 2 into a single, refined codebook. In this case, the need for human oversight 

was even more pronounced. Key issues included constructs that were too broad to be easily 

operationalized, as well as the absence of important constructs that were clearly observable in 

the data and feasible to define but were not suggested by GPT. For example, although we ob-

served multiple instances of students demonstrating scientific reasoning (an indicator of 

Emerging or Well-Developed Individual Interest) GPT did not suggest such a code. In response 

to these concerns about the quality and operationalization of GPT-generated codes, we expanded 

our prompting strategies to explore which techniques might improve GPT’s ability to generate 

usable constructs for qualitative coding in this context. 

4.4. EVALUATION OF MULTIPLE PROMPTS FOR GPT-BASED CODEBOOK DEVEL-

OPMENT 

4.4.1. Prompt Engineering 

We compared four approaches to codebook development using GPT-4o via OpenAI’s GPT API 

(version gpt-4o-2024-11-20) with the temperature parameter set to 0 to reduce randomness and 

enhance consistency in GPT’s output. Specifically, we examined different possible ways to in-

fluence the theoretical lens that GPT uses to develop qualitative codes for interpreting student 

interview data. Again following the prompt engineering framework proposed by Giray (2023), 

we began with a broad prompt asking GPT to develop a codebook capturing emerging themes 

tied to student interests in the interview transcripts. Then, multiple variations of the prompt were 

tested, and iterative adjustments were made to add specificity and contextual details relevant to 

this codebook development before the final version was selected. As Table 4 shows, we used 

both a system message (high-level directive that defines GPT’s behavior and role) and a user 

message (task-specific instructions) with each approach. Only minor modifications (those nec-

essary for changing the method) were made across approaches. Places where those prompts 

were modified from one approach to the next are marked in Table 4, and the variable text is 

shown in Tables 5 and 6. 

Table 4: Prompts used across the various stages of this analysis. Text specific to the four differ-

ent approaches has been excerpted from this table and replaced with placeholders. 

Stage Prompt  

System 

Message 

You are an experienced qualitative researcher with decades of expertise studying 

science interest development in middle school students. Your goal is to analyze in-

terview transcripts of middle school students playing a version of Minecraft that is 

designed to help them learn about science and astronomy. To achieve this, you will 

create a codebook [THEORETICAL/ATHEORETICAL APPROACH TEXT, SEE 

TABLE 5]. Please generate codes that emerge within a context like the one we are 

studying here. 
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Stage Prompt  

User 

Message 

Your task is to: 

1. Identify themes and codes focusing exclusively on direct, explicit evidence from 

the students’ responses. 2. Propose an actionable and structured codebook that in-

cludes: 

 - Code names and definitions: Concise, clear labels and explanations of each code. 

 - Examples from the data: Specific quotes or excerpts illustrating each code. 3. Pro-

vide 3 examples for each code. 

[USER MESSAGE APPROACH TEXT, SEE TABLE 6] 

**Qualitative Data Excerpts:** 

Analyze the following data excerpts to inform the codebook development: 

**Data Excerpts Start:** 

[Insert data excerpts here] 

**[Data Excerpts End]** 

Your reply should be the completed codebook, structured with code names, defini-

tions, and examples, ready for immediate use in qualitative analysis.  

Table 5: Approach specific text used in the system message. 

Approach System Message Addition 

1) Atheoretical grounded in the qualitative data. 

2-4) Theory-based 

Approaches 

grounded in both theoretical frameworks on interest development and the 

qualitative data itself. Please do not just use the major categories of the 

theoretical frameworks. 

Table 6: Approach specific text used in the user message. 

Approach User Message Addition 

2) Theory 

Named 

**Important Note:** 

I will provide qualitative data excerpts, which will be labeled with a starting 

identifier (e.g., **'Data Excerpts Start:'**) and an ending identifier (e.g., 

**'[Data Excerpts End]'**) for clarity. 

**Theoretical Lenses:** 

Consider the theoretical and empirical foundation of Hidi and Renninger's 4-

phase model of interest development as the basis for developing the codebook. 

3) Full Ref-

erences 

Given 

**Important Note:** 

I will provide qualitative data excerpts, which will be labeled with a starting 

identifier (e.g., **'Data Excerpts Start:'**) and an ending identifier (e.g., 

**'[Data Excerpts End]'**) for clarity. 

**Theoretical Lenses:** 

Consider the following articles as the theoretical foundation for developing the 

codebook: 

- Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest devel-

opment. Educational Psychologist, 41(2), 111-127. 

- Linnenbrink-Garcia, L., Durik, A.M., Conley, A.M., Barron, K.E., Tauer, 

J.M., Karabenick, S.A., & Harackiewicz, J.M. (2010). Measuring situational 
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Approach User Message Addition 

interest in academic domains. Educational and Psychological Measurement, 

70(4), 647-671. 

4) Papers 

Provided 

**Important Notes:** 

1. I will provide the theoretical frame- works in the form of full-text articles. 

Each article will be clearly labeled with a starting identifier (e.g., **'Article 

1:'**) and an ending identifier (e.g., **'[End of Article 1]'**) to help you distin-

guish between them. 

2. I will also provide qualitative data excerpts, which will be similarly labeled 

with a starting identifier (e.g., **'Data Excerpts Start:'**) and an ending identi-

fier (e.g., **'[Data Excerpts End]'**) for clarity. 

**Theoretical Lenses:** 

Consider the following articles as the theoretical foundation for developing the 

codebook: 

The four approaches differed in whether and how GPT was instructed to integrate a theoret-

ical lens into its codebook development approach. In all four approaches, GPT was prompted to 

consider student-produced data, delivered iteratively in three batches, each of which contained 

48 student interviews. The data was segmented this way due to the size of the dataset and the 

maximum token for a single prompt sent to GPT (128,000). Delimiters were added to mark the 

beginning and end of the data so that GPT could distinguish between the prompt instructions 

and the student interviews. Additional delimiters identified the speaker for each utterance (e.g., 

target student, interviewer, or another student) and the beginning and end of each interview. 

 

System Message Prompts. As shown in Table 5, Approach 1 did not reference a theoretical 

framework, instead simply instructing GPT to “create a codebook grounded in the qualitative 

data.” In contrast, Approaches 2–4 asked GPT to “create a codebook grounded in both theoret-

ical frameworks on interest development and the qualitative data itself.” The replication of Study 

1 produced codebooks with constructs identical to the four stages of interest development pro-

posed by Hidi and Renninger’s theoretical model, which proved challenging to operationalize 

in interview coding due to significant overlaps in how they appeared in the data (e.g., Main-

tained Situational Interest and Emerging Individual Interest). Therefore, we also instructed GPT 

to expand upon the major categories from the original framework, generating codes that would 

better capture how these stages manifest in the context being studied. These were the only dif-

ferences in the system-level prompts across the four approaches. 

 

User Message Prompts. The primary prompt differences, shown in Table 6, were executed in 

the first stage of the user message. Here, we systematically varied the prompt across the four 

approaches. Approach 1 (Atheoretical) did not specify an interest theory for GPT to use, and no 

additional prompts were included in the user message. Approach 2 (Theory Named) specified 

that GPT should use Hidi and Renninger’s theoretical framework for interest, but did not provide 

any additional reference information. Approach 3 (Full Reference Given) asked GPT to use Hidi 

and Renninger’s theoretical framework by providing the full reference for that paper and sup-

plementing it with the reference information for Linnenbrink-Garcia et al.’s (2010) article, 

which develops a now well-established survey to study Hidi and Renninger’s theory, providing 

a clear operationalization of that theory. Approach 4 (Papers Provided) asked GPT to use these 

same two papers by directly providing the full text of each paper, aiming to enhance the model’s 

ability to generate accurate responses by integrating external knowledge sources. 

47 Journal of Educational Data Mining, Volume 18, No 1, 2026



At the end of this process, GPT was also used to consolidate the individual codebooks ob-

tained for each subset of the data into a single codebook. This was achieved using the following 

user message (the system message remained the same as presented in Table 4): 

 

The following codebooks were created using qualitative data excerpts from interviews with 

middle school students playing Minecraft to learn about science and astronomy. The code-

book will be employed to analyze interest development of these students. 

 

Your task is to: 

1. Combine all individual codebooks into one comprehensive codebook.  

2. Identify overlapping codes and merge them into a single code, ensuring consistency in 

names, definitions, and examples.  

3. Preserve unique codes that capture distinct themes or insights from the data.  

4. Provide clear and actionable definitions for each code.  

5. Include examples for each code from the data, ensuring that the examples are representa-

tive and relevant. Provide 3 examples for each code. 

 

Individual Codebooks: 

[Insert the individual codebooks here] 

Your reply should be the final unified codebook, structured with: Code names, definitions, 

and examples. The final codebook should be ready for immediate use in qualitative analysis. 

 

Each approach was tested three times to check the consistency of the GPT’s output, generat-

ing a total of 12 codebooks (4 approaches  3 replications). 

4.4.2. Evaluation of Codebook Quality 

Two types of human assessment were used to analyze differences among the four approaches. 

First, two human raters (the first and second authors) evaluated the conceptual similarities of 

the constructs produced across the three iterations of each approach (i.e., 12 codebooks). They 

also considered the constructs generated in the previous study (Section 4.3). As in Step 3 of 

Study 1, no new codes were introduced during this refinement process. Instead, we excluded 

codes that were not applicable to the data set and grouped thematically similar constructs under 

a single category (see Corbin and Strauss, 1990). As the four new prompting approaches intro-

duced several novel constructs, this codebook (presented below in Tables 7 and 8) differs from 

the codebook presented in the interest-based replication of Study 1 (above, Table 3). The result-

ing consolidation and refinement (see Tables 7 and 8) served as the gold standard against which 

all GPT-generated constructs were compared. 

In addition to the construct overlap results, five human raters (authors 6 through 10) inde-

pendently rated each of the four codebooks, using an instrument adapted from Barany et al. 

(2024) and Liu et al. (2024), allowing us to compare the four approaches (see Appendix 1). In 

this evaluation, the five coauthors were asked to re-read Hidi and Renninger’s (2006) founda-

tional article and then assess each codebook on seven dimensions: (1) alignment with Hidi and 

Renninger’s theory, (2) usefulness for investigating interest development, (3) clarity of defini-

tions, (4) alignment between definitions and examples, (5) concreteness of the codes (i.e., their 

practicality for coding the given data), (6) exhaustiveness of the codebook, and (7) complemen-

tarity between constructs (i.e., lack of unnecessary redundancy). The instrument also included 

an open-ended question asking evaluators to share any additional thoughts on each codebook. 
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All raters had expertise in the four-phase model of interest development and familiarity with 

both qualitative coding practices and the data context. The codebooks were presented to the 

raters in random order without revealing which approach had been used. 

4.5. RESULTS 

4.5.1. Construct Overlap Evaluation 

The final combined codebook, derived through human refinement and consolidation of con-

structs proposed across multiple prompting approaches, contained 15 constructs and is presented 

in Table 7. The corresponding evaluation of construct overlap (based on this refined codebook) 

is shown in Table 8. Across the four approaches, many constructs overlapped in both their def-

initions and examples. For instance, the refined construct Scientific Reasoning consolidates 

eight GPT-generated codes from the different approaches, including Problem Solving & Strat-

egy, Experimentation & Testing, and Hypothesizing & Scientific Reasoning. Although these 

original codes highlight different facets of Scientific Reasoning, the data examples provided by 

GPT for each construct were often nearly indistinguishable to human researchers (e.g., “I’m 

going to put it on the inside, so then when it explodes, these will fall down there,” for Experi-

mentation & Testing versus “I think it might produce different amounts of radiation depending 

on heat, or temperatures, or anything like that” for Hypothesizing & Scientific Reasoning). 

We also identified constructs whose definitions did not fully align with the examples pro-

vided. For instance, the constructs Frustration and Perseverance included examples that did not 

explicitly convey either emotion or behavior (e.g., “I accidentally wrote the information on the 

wrong one.”). As a result, these constructs were consolidated under a broader category, Strug-

gling, to more accurately reflect the content of the example sentences. Similarly, constructs 

related to Engagement with Science Concepts primarily referred to students’ descriptions of 

physical variables or specific observations within the virtual environment (e.g., “The tempera-

ture is 39.1 degrees. Pretty cold.”). These were redefined as Scientific Description to better 

represent the nature of the examples. 

Moreover, the Papers Provided approach once again produced the four theoretical stages of 

interest development despite the explicit instruction not to do so. These categories—except for 

Triggered Situational Interest, which was retained as Triggered Curiosity—were excluded from 

the final human-refined codebook due to their limited practical definition. 

Table 7: Final interest development codebook obtained after human refinement considering all 

four approaches. 

Code & Definition Example Utterances from the Data 

Scientific Reasoning: Moments where students 

form hypotheses, make predictions, or reason 

about scientific phenomena based on their ob-

servations or gameplay. 

"I think it might produce different amounts 

of radiation depending on heat, or temper-

atures, or anything like that." OR "I’m 

going to put it on the inside, so then when 

it explodes, these will fall down there" 

Scientific Description: Statements in which 

students describe physical variables, scientific 

facts, or empirical evidence they observed dur-

ing gameplay. 

"The radiation is 4.3 times Earth's radia-

tion." OR "The temperature is 39.1 

degrees. Pretty cold." 
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Code & Definition Example Utterances from the Data 

Scientific Questioning: Moments when stu-

dents ask questions about science concepts or 

the environment. 

"What would happen if the planet was a 

moon?" OR "What’s a tectonic?" 

Personal Connection to Science: Instances 

where students relate their gameplay experi-

ences to prior knowledge, personal interests, or 

aspirations in science. 

"If I ever do become an astronaut, I kind 

of know what to do." OR "This is Earth if 

we don’t stop polluting." 

Reflective Thinking: Instances where students 

explicitly reflect on what they have learned, 

how their understanding has changed, or how 

the activity connects to prior knowledge. 

"I didn’t know how to do this before, but 

now I do." OR "I never really did com-

mands before, but now I know how." 

Peer Interaction: Instances where students in-

teract with peers, either competitively or 

cooperatively, to achieve shared goals, share 

discoveries, or influence each other’s actions. 

"Would anyone like to TPA to me? I’m on 

top of a tree." OR "Hey, [REDACTED], 

will you help me fill in this room with 

iron?" 

Humor & Playfulness: Instances where stu-

dents engage in playful, humorous, or 

mischievous behavior, often for entertainment 

or social bonding. 

"I’m gonna try to cause as much fun chaos 

for everyone as possible. That is my goal. 

Not, like, negative chaos that will get me 

in trouble. Just antics." OR "I'm the mu-

seum manager. Do not hit anything, or else 

I'll hit you." 

Sense of Achievement: Instances where stu-

dents express pride in their accomplishments. 

"I found a portal. No one else has found 

it." OR "I made a redstone door, which 

I’m really happy about." 

Triggered Curiosity: Instances where students 

express initial, spontaneous interest, excite-

ment, or surprise about a new feature, object, 

or phenomenon in the game. 

"Whoa, how did you get in here?" OR 

"What is that? Oh, I think it’s the pilot of 

the plane." 

Aesthetic Appreciation: Expressions of admira-

tion or enjoyment of the visual, structural, or 

creative aspects of the game environment or 

player creations. 

"I think the different buildings look pretty 

cool." OR "I like the color and I love dark 

oak." 

Game Tools and Mechanics: Evidence of stu-

dents actively engaging with or discussing the 

mechanics of the game, such as commands or 

tools, including glitches and mods. 

"I’m trying to figure out how to use the 

teleport command." OR "If you right-click 

and left-click at the same time, you can re-

place blocks instantly." 

Building: Moments where students engage in 

creative building, designing, or decorating 

structures. 

"My goal is to kind of make it so nice that 

you forget you're on Mars." OR "I’m go-

ing to build a satellite now." 

Exploration: Instances where students explore 

the game environment, discover new areas, or 

investigate objects, mechanics, or phenomena 

to learn about their surroundings. 

"I like being places I'm not supposed to 

be." OR "I don't know, I just ran it in the 

direction." 

Struggling: Moments where students express 

difficulty, confusion, or frustration with game 

"I have no idea where I'm going." OR " I 

accidentally wrote the information on the 

wrong one." 
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Code & Definition Example Utterances from the Data 

mechanics, tasks, or navigation but continue to 

engage and attempt solutions. 

Technical challenges: Moments where stu-

dents encounter technical issues, glitches, or 

bugs in the game and discuss or react to them. 

"I think I glitched into the wall." OR "I 

can’t place anything right now. Nothing’s 

working." 

Table 8: Heatmap of categories that emerged after human refinement considering all four ap-

proaches. Constructs that appear in all three iterations of the same approach are highlighted in 

dark gray; those appearing in two iterations are shown in light gray; and constructs present in 

only one iteration are displayed in white. 

Human  

Refinement 

Approach 1: 

Atheoretical 

Approach 2:  

Theory Named 

Approach 3:  

Full Ref. Given 

Approach 4: 

Papers Provided 

Scientific  

Reasoning 

Problem-Solving & 

Strategy 

Experimentation & 

Problem-Solving 

Problem-Solving 

& Strategy Dev. 

Problem-Solving 

& Strategy Dev. 

 Experimentation & 

Testing 

Hypothesizing & 

Sci. Reasoning 

Hypothesis For-

mation & Testing 
 

Scientific  

Description 

Engagement with 

Science Concepts 

Engagement with 

Science Concepts 

Science Concept 

Engagement 
 

 Environmental 

Awareness 
   

Scientific 

Questioning 

Curiosity &  

Inquiry 
  Curiosity & Ques-

tioning 

Personal  

Connection 

to Science 

Connection to 

Real-World 

Knowledge 

Connection to 

Real-World  

Science 

Reflection on 

Real-World  

Connections 

Connection to 

Real-World  

Science 

  Personal Connec-

tion to Science 

Connection to  

Prior Knowledge 
 

Reflective 

Thinking 

Reflection on 

Learning 

Reflection on 

Learning 

Reflection on 

Learning 

Reflection & Self-

Awareness 

 Learning through 

Failure 
   

Peer  

Interaction 

Social Interaction 

& Collab. 

Social Collab. & 

Peer Influence 

Social Collab. & 

Teamwork 

Social Collab. & 

Peer Influence 

Humor & 

Playfulness 

Playfulness  

& Humor 

Humor  

& Playfulness 

Humor  

& Playfulness 

Playfulness  

& Creativity 

 
Role-Playing &  

Immersion  
Role-Playing &  

Imaginative  

Engagement 

 

   Playful  

Experimentation 
 

Sense of 

Achievement 

Competition & 

Achievement 
 Sense of  

Achievement 
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Human  

Refinement 

Approach 1: 

Atheoretical 

Approach 2:  

Theory Named 

Approach 3:  

Full Ref. Given 

Approach 4: 

Papers Provided 

Triggered 

Curiosity 
 Triggered  

Curiosity 

Emotional  

Reaction 

Triggered  

Situational Interest 

Aesthetic 

Appreciation 
 Aesthetic  

Appreciation 

Interest in Mods & 

Customization 
 

Game Tools 

& Mechanics 

Use of Game-Spec. 

Language 

Technical Profi-

ciency & Mastery 

Engagement with 

Game Mechanics 

Game Mechanic & 

Technical Skills 

   Technical Skill  

Development 
 

Building 
Creative Building 

& Design 

Creative Building 

& Design 

Aesthetic &  

Creative Design 
 

Exploration 
Exploration &  

Discovery 
 Curiosity-Driven 

Exploration 
 

 Engagement with 

NPCs & Quests 
   

Struggling 
Frustration & 

Challenges 

Frustration &  

Perseverance 

Frustration &  

Perseverance 

Frustration &  

Persistence 

Technical 

challenges 

Technical Issues & 

Glitches 
 Technical  

Challenges 
 

Theoretical 

Phases 
   Maintained Situa-

tional Interest 

    Emerging Individ-

ual Interest 

    Well-Dev. Individ-

ual Interest 

Overall, the Full References Given and Atheoretical approaches yielded the highest number 

of refined codes (14/15 and 13/15, respectively), while the Theory Named and Papers Provided 

approaches produced fewer (11/15 and 9/15, respectively). However, the Theory Named ap-

proach demonstrated greater consistency, producing the same 11 constructs in each iteration. In 

contrast, the Atheoretical and Papers Provided approaches consistently identified nine catego-

ries across the three categories, and Full References Given identified only eight consistently. 

Thus, the higher number of codes in the Atheoretical and Full References Given approaches 

appears to reflect greater variability across the three iterations at the cost of output consistency. 

An in-depth analysis of each approach is presented in Section 4.5.2. 

4.5.2. Quantitative Human Evaluation of Codebooks 

Table 9 presents the results of the human evaluation (5 raters) of the four approaches across the 

seven selected dimensions. The Theory Named approach received the highest ratings in six of 

the seven dimensions, with the Papers Provided approach outperforming it only in theoretical 

alignment. 
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Table 9: Mean human evaluation scores of the four approaches for developing codebooks, meas-
ured on 5-point Likert scales. Standard deviations are shown in parentheses. The highest rating 

for each dimension is shown in bold. 

Dimensions Atheoretical Theory Named Full References Papers Provided 

Theoretical Alignment 2.80 (0.84) 3.60 (0.55) 2.80 (1.30) 4.60 (0.55) 

Usefulness 3.40 (0.89) 4.40 (0.55) 3.20 (1.30) 3.80 (0.84) 

Clarity 4.00 (0.00) 4.20 (0.45) 3.40 (0.89) 3.00 (0.00) 

Examples 3.80 (0.84) 4.40 (0.55) 3.00 (0.71) 3.60 (0.89) 

Concreteness 3.20 (1.30) 3.80 (0.45) 3.20 (1.10) 2.40 (0.55) 

Exhaustiveness 3.60 (0.55) 4.40 (0.55) 3.60 (1.14) 4.00 (0.00) 

Complementarity 3.00 (1.41) 3.80 (0.84) 2.60 (1.34) 3.20 (0.45) 

 

Atheoretical and Full References Given Approaches. Although the Atheoretical and Full 

References Given approaches generated more constructs, they received the lowest ratings for 

exhaustiveness, complementarity, usefulness, and theoretical alignment. Evaluators (beyond au-

thors 1 and 2 who conducted the human refinement) thought that these two approaches generated 

redundant, irrelevant, or not fully actionable codes. For instance, in the Full References Given 

approach, human evaluators noted that the constructs Technical Skill Development and Engage-

ment with Game Mechanics (see Table 8) might suggest two different phenomena (learning 

versus engagement), but they would be difficult to differentiate within this data. In addition, 

none of the examples provided for Technical Skill Development clearly demonstrated skill de-

velopment (e.g., “If you click on this, these two buttons at the same time, it breaks and places 

the block, which means you don’t have to go like this.”). Instead, they more broadly reflected 

game mechanics or tool usage. Authors 1 and 2 reached the same conclusion during the human 

refinement process and grouped these constructs under the broader construct of Game Tools and 

Mechanics. Similarly, evaluators found Environmental Awareness and Engagement with Sci-

ence Concepts (codes from the Atheoretical approach) to be redundant (see Table 5), as many 

examples could be coded as both constructs (e.g., “Blue orchids only spawn in swamp biomes, 

so technically that's not supposed to be here”). This perception was also consistent with the 

researchers’ observations during human refinement. 

Raters also noted a lack of specificity in some codes. For example, Emotional Reaction (see 

Table 8) is a compound code that includes both positive and negative emotions, which might 

have quite different effects on learning and motivation. Likewise, another compound code Frus-

tration & Perseverance, links constructs that do not always belong together. Additionally, these 

two codes introduce redundancy within the codebook, as frustration is inherently a type of emo-

tional reaction, an issue observed across multiple codebooks of these approaches. Although not 

all research requires mutually exclusive codes, greater specificity could improve coding accu-

racy in certain contexts. In such cases, further human refinement would be necessary to enhance 

the codebook’s clarity and utility. 

Another important limitation of both the Full References Given and the Atheoretical ap-

proaches is the lack of proposed codes related to Triggered Curiosity and Aesthetic 

Appreciation—which existed in other codebooks and were rated as useful for analyzing interest 

development. The Full References Given approach offered constructs such as Emotional Reac-

tion, Interest in Mods & Customization, and Aesthetic & Creative Building, which could be 

loosely related to these categories, as noted during human refinement (Table 8). However, hu-

man evaluators noted that these constructs lacked the clarity and specificity needed to effectively 
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identify Triggered Curiosity and Aesthetic Appreciation. Furthermore, these constructs were 

inconsistently proposed, appearing in only one of the three iterations of the Full References 

Given approach, or were conflated with other (i.e., Aesthetic & Creative Building was primarily 

associated with Building). The Atheoretical approach performed even worse, as it failed to iden-

tify these constructs in all three iterations. Consequently, while these two approaches generated 

a greater number of constructs than others, they received the lowest scores for exhaustiveness, 

complementarity, usefulness, and theoretical alignment. 

Papers Provided Approach. This approach consistently proposed the same 11 constructs in 

the three iterations, and its codebook achieved the highest score for theoretical alignment, pri-

marily due to its inclusion of the four stages from Hidi and Renninger’s theoretical model, 

ignoring explicit instructions to avoid doing so. Despite containing the fewest constructs, it was 

also rated as more exhaustive than both the Full References Given and Atheoretical codebooks. 

However, it received lower scores than the Theory Named approach for concreteness, clarity, 

alignment between examples and definitions, and complementarity. These lower ratings may be 

due to the inclusion of codes that mimic the four stages. 

Notably, the evaluators agreed that the codes that mimicked the theoretical model stages 

would be difficult to operationalize in the data. Specifically, evaluators noted a lack of clarity 

in the definitions and examples for these four codes that would indicate how the stages mani-

fested in the data. Examples from Maintained Situational Interest and Emerging Individual 

Interest were especially problematic (e.g., “I want to make a rocket ship, but they don’t have 

those in Minecraft,” or “I’m trying to make it so nice that you forget you’re on Mars”), as eval-

uators noted little clarity on how to differentiate between them. The one exception was the code 

related to the first stage of interest development, Triggered Situational Interest which offered 

examples (e.g., “Look at the tides, everybody! Look at the tides!”) that closely resembled codes 

provided by other approaches related to Triggered Curiosity. 

Theory Named Approach. Finally, the Theory Named prompt received the highest ratings 

from human evaluators in most dimensions. Although this codebook contained fewer constructs 

than some approaches, evaluators considered it the most exhaustive, since the codes that it omit-

ted (e.g., Exploration, Scientific Questioning, and Technical Challenges) were covered by other 

constructs (e.g., Experimentation & Problem-Solving, Hypothesizing & Scientific Reasoning). 

It was rated highest on complementarity (low redundancy) as well as on the dimensions of use-

fulness and concreteness. Although other overlaps were identified, as reflected in the groupings 

within the human-refined codebook (Table 8), human evaluators felt redundancy issues were 

more frequent and problematic in other approaches. Overall, the Theory Named codebook per-

formed highest for all dimensions except for alignment with theory. On that dimension, the 

Papers Provided codebook scored highest, but GPT ignored instructions to exclude codes solely 

consisting of the theory’s major stages. 

5. DISCUSSION 

Multiple researchers have begun investigating how Large Language Models (LLMs) can sup-

port qualitative researchers in developing codebooks, primarily through inductive approaches 

that involve identifying themes and constructs directly from the data (Barany et al., 2024; De 

Paoli, 2024; Gao et al., 2024; Katz et al., 2024). This study takes a novel direction by exploring 

how LLMs can contribute to the creation of theory-driven codebooks. We applied multiple 

prompt engineering strategies to assess GPT’s ability to identify key themes across two distinct 

contexts: (1) student think-aloud data related to Self-Regulated Learning (SRL; Winne and 
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Hadwin, 1998; Zimmerman, 2000), and (2) student interview data collected during gameplay, 

guided by Interest Development (ID) theory (Hidi and Renninger, 2006). 

5.1. GPT’S ABILITY TO PROPOSE THEORETICALLY GROUNDED CODEBOOKS 

We began by testing a relatively simple set of prompting strategies that provided GPT with the 

instruction, context, and theoretical framework to generate qualitative codebooks. In the SRL 

context, our results indicate that GPT-4o’s knowledge base contains sufficient information to 

produce a framework-aligned codebook, although some human refinement remains necessary. 

When data is not provided, GPT tends to suggest constructs that overlap or are less relevant to 

the dataset’s specific context and learning task. Our findings suggest that incorporating data into 

the codebook development process while still grounding it in theory, providing both theory and 

data in the prompt, helps to mitigate these issues. However, human refinement is still needed to 

resolve construct overlaps and clarify ambiguous or context-sensitive labels. As demonstrated, 

researchers familiar with both SRL theory and the dataset were able to refine GPT’s output, 

ultimately producing an appropriate codebook for analyzing the data. 

However, this prompting and refinement approach did not generalize well when applied to a 

different context and theoretical framework, analyzing ID in student interviews collected during 

gameplay in an educational video game. The same researchers who consolidated the SRL code-

book found that the GPT-generated codebook for ID was more difficult to refine and less 

helpful. This was primarily due to overlapping categories that, while theoretically aligned with 

Hidi and Renninger’s four-phase model, were too broadly defined to be effectively applied to 

the dataset. Unlike the SRL models used in this study—which propose concrete stages and be-

haviors that can be directly operationalized in student transcripts and detected using LLMs, as 

demonstrated in previous research within the EDM community (e.g., Zhang et al., 2024b)—the 

four-phase model is defined at a more abstract level, due to the wide range of ways interest can 

manifest. As a result, this framework (and others defined at a similarly high level) appears to 

require further refinement to align with the specific characteristics of a given context. Conse-

quently, frameworks of this kind may present greater challenges for GPT, often requiring more 

targeted guidance beyond the simpler prompt strategies that proved effective with SRL. 

To address these challenges, Study 2 tested four different prompting approaches (Atheoreti-

cal, Theory Named, Full References Given, and Papers Provided) to improve the quality of GPT-

generated codebooks, with the goal of simplifying the human refinement process and producing 

a higher-quality codebook through human-AI collaboration. In line with findings from the first 

study, all four approaches incorporated the actual qualitative data, but differed in how they in-

tegrated theoretical frameworks into the prompts.  

Our results of this refined analysis, like for Study 1, show that GPT can suggest theoretically 

aligned codes, but that prompt engineering techniques influence both the quantity and quality 

of the resulting codes. Specifically, while the Atheoretical and Full References Given ap-

proaches generated a higher number of constructs, their outputs were less consistent, showed 

weaker theoretical alignment, and were rated as less useful by human evaluators. In contrast, 

the Papers Provided and Theory Named approaches produced fewer constructs but were rated 

as more useful and more closely aligned with the theoretical frameworks.  

It is noteworthy and perhaps unsurprising that the Atheoretical approach produced results 

that were less theoretically aligned and that were (perhaps consequently) rated as less useful by 

our human research team. The more variable output of this approach also appears plausible, as 

GPT is probably drawing upon multiple (everyday, folk) types of definitions of interest, many 

of which are not informed by the research literature.   
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The Full References Given approach yielded unexpectedly low scores in both usefulness and 

theoretical alignment, especially since this strategy produced satisfactory results for SRL. One 

possible explanation is that providing explicit references without the full text may have led GPT 

to rely on incomplete or less detailed knowledge about the framework. When given access to 

the full papers, GPT may have been able to draw on a richer explanation of the theories, enabling 

it to generate more grounded and relevant constructs. Similarly, simply naming the framework, 

without constraining GPT to specific references, may have allowed GPT to draw on a broader 

knowledge base, including other interpretations or related work by the same authors, when iden-

tifying and proposing constructs. 

The ability of the Theory Named approach to outperform the Papers Provided approach on 

most evaluation measures is related to findings seen in other prompt-engineering research.  For 

example, researchers have found that higher levels of specificity or excessive contextual infor-

mation in the prompt are sometimes counterproductive (Shi et al., 2023; Mu et al., 2024). In our 

case, GPT may have difficulty following the prompt instructions (i.e., not using the four stages 

of the ID model as codes) because the prompt was overloaded by the inclusion of the entire 

theoretical papers. The Theory Named approach adhered better to the prompt, drawing more 

effectively from GPT’s broader knowledge base and generating more concrete, actionable 

codes. In contrast, the Papers Provided approach may have bounded GPT’s responses to the text 

of the supplied papers, limiting its ability to suggest constructs beyond those explicitly men-

tioned.  

Although human evaluators rated the Papers Provided codebook as more theoretically 

aligned, they found its codes lacked the practical specificity needed for application to interview 

data. The presence of overly broad constructs that were difficult to operationalize, combined 

with the omission of key concepts that were relevant and evident in the data but not explicitly 

mentioned in the framework, was precisely the issue that had originally motivated the explora-

tion of alternative prompting strategies. As a result, evaluators ultimately rated the Theory 

Named codebook more highly, as it offered clearer definitions and examples that were still the-

oretically grounded, but that were also better tailored to the data context rather than simply 

reiterating the model. 

5.2. LIMITATIONS AND CONSIDERATIONS FOR FUTURE WORK 

All findings across our two studies should be interpreted in context. First, both the SRL and ID 

frameworks were proposed nearly two decades ago and have been widely cited in thousands of 

studies, making their core concepts well-represented in GPT’s knowledge base. However, for 

newer or less widely known theories, where GPT’s knowledge base may be less comprehensive, 

the Papers Provided approach could potentially be required. Further research is needed to ex-

plore this possibility. 

Second, the effectiveness of the prompt engineering approaches is likely to depend on both 

the context of the data and the specificity of the core concepts of the theoretical frameworks 

guiding the analysis. In this study, we observed that GPT more easily generated theoretically 

aligned and operationalizable constructs when the framework included components that were 

practical and directly identifiable in the data, such as the distinct stages in Zimmerman’s or 

Winne and Hadwin’s models. In contrast, for frameworks with components that require further 

operationalization to be applicable to students’ transcripts, such as the four stages in Hidi and 

Renninger’s model, it may be necessary to explore more targeted prompts and provide GPT with 

additional guidance regarding the desired level of specificity in definitions and examples for the 

intended codebook. 
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Although our results primarily focused on evaluating the quality of GPT-generated code-

books and highlighting the potential of human-AI collaboration, the essential role of human 

researchers in developing such codebooks cannot be overlooked. Some constructs may lack 

practical utility due to vague or overly specific definitions, or include example sentences that 

are unclear or less explicit representations. Nevertheless, these constructs can still serve as val-

uable prompts for discussion among human experts, helping them to refine and select the most 

appropriate categories for a codebook. From this perspective, even the greater variability ob-

served in outputs from approaches like the Atheoretical prompt can be beneficial, particularly 

given the high clarity ratings of many of these constructs, when GPT is used as a brainstorming 

tool. This use case aligns with prior studies focused on inductive codebook creation (e.g., Barany 

et al., 2024; De Paoli, 2024; Gao et al., 2024). Future research should consider the degree to 

which these approaches offer greater exploratory power when analyzing large datasets.  

Beyond supporting the analysis of datasets too large for full human inspection, LLMs (par-

ticularly GPT-4o) may also be valuable for analyzing smaller datasets that human researchers 

can review in detail. By applying specific theoretical lenses, GPT-4o can assist researchers in 

identifying constructs that may have been overlooked or in refining those already proposed by 

humans (as noted by Barany et al., 2024). This is especially useful in frameworks such as SRL 

and ID, which, despite being well-established, can be operationalized differently across learning 

contexts. For instance, the manifestation of these constructs may vary between collaborative and 

individual learning settings or between learning supported by intelligent tutoring systems and 

educational games. 

However, these hybrid approaches should be applied with care. If researchers do not engage 

directly with the data and instead over-rely on GPT-generated outputs, they risk applying less 

useful or data-relevant constructs or even overlooking important constructs that GPT may have 

missed. In our study, we observed that the refined codebook for the ID dataset varied depending 

on the initial prompt provided to GPT. Although our primary goal was to evaluate the quality of 

GPT-generated codebooks, and we limited the human refinement process to constructs initially 

proposed by GPT, it became clear that different prompts led to different sets of constructs, and 

therefore, different refinements. The latent risk is that if a particular prompt fails to surface a 

relevant construct and researchers have not first familiarized themselves with the data, that con-

struct may never be considered. Additionally, GPT’s definitions may inadvertently shape 

researchers’ thinking unless they are approached critically. Therefore, again, we recommend 

that researchers review at least a subset of the data, even when working with large datasets that 

cannot be fully reviewed manually, and attempt to draft an initial codebook independently. This 

allows for a meaningful comparison with the GPT-generated output and facilitates a more active, 

reflective dialogue with the tool. 

Additionally, it is important to recognize that the true value of a codebook lies in its ability 

to address a specific research question. In this study, we qualitatively assess GPT-generated 

constructs and definitions across two contexts and theoretical frameworks, examining whether 

they are concrete, useful, and theoretically aligned. The codebooks we developed can inform 

multiple research questions, such as those concerning SRL behaviors in intelligent tutoring sys-

tems or evolving interests in educational games. However, each research question may require 

additional refinements of the prompts or the GPT-generated constructs, in order to precisely 

answer that question. While the prompts suggested here can help guide this process, researchers 

may also choose to revise codebooks after manually coding portions of the data with a specific 

research question in mind, as happens with any codebook regardless of its origin. Therefore, we 

view the process described here as a way for researchers to develop an initial codebook that is 

theoretically grounded and concrete enough to begin coding but that could be amenable to 
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further refinement. Such a codebook may not require extensive revisions but can be adapted as 

researchers (and LLMs, see Zambrano et al., 2023; and Borchers et al., 2025) uncover insights 

during the coding process. Future research could compare the inter-rater reliability and degree 

of refinements required for codebooks created with LLM support versus those developed with-

out it. It could also examine whether hybrid human-LLM-generated constructs, particularly 

those that human coders (or LLMs) might otherwise overlook, are meaningful and add interpre-

tive value or nuance to research conclusions. 

Moreover, it is important to note that while this study prompted GPT-4o using two specific 

theoretical frameworks (Winne and Hadwin, 1998; Zimmerman, 2000; Hidi and Renninger, 

2006; Linnenbrink-Garcia et al., 2010), the model’s training data likely includes additional texts 

(both peer-reviewed and non-peer-reviewed) by these authors and others interpreting these the-

ories in various ways. This is not inherently problematic, as GPT demonstrated a generally 

accurate understanding of the theoretical lenses used in this study. However, it does introduce 

the possibility of inaccuracies stemming from misinterpretations or oversimplifications present 

in the training data. While we did not observe such errors in our study, they remain a potential 

concern. In cases where they occur, alternative strategies such as directly providing the founda-

tional theory papers to the model may help reduce inaccuracies originating from the broader 

knowledge base.  

These potential limitations may be compounded by additional complexities in the nature of 

the theories themselves. In our study, for example, the model performed differently when gen-

erating codebooks for SRL versus ID. Although both of these have now been cited over 5000 

times in the last 20 years, the SRL models are at the level of iterative steps that a student might 

experience in sequence over a relatively short amount of time, while ID involves sometimes 

overlapping characteristics of long-term phases. Operationalizing these different processes for 

a given dataset may require distinct definitional strategies. This task may be more straightfor-

ward when dealing with constructs that are concrete and immediate (e.g., monitoring a task) 

compared to those that are abstract and longitudinal (e.g., reflecting on individual interest) 

Therefore, theories with differing structures or temporal scopes may require additional prompt 

engineering beyond the general strategies proposed here. Although we found that simply naming 

the theory and providing relevant data generally led to appropriate operationalizations, the spe-

cific way in which a theory is referenced, or how its key details are communicated to the model, 

may need to be adjusted on a case-by-case basis. 

Furthermore, while this study used GPT-4o given its widespread use for tasks of this nature, 

the challenges related to inaccuracies in its knowledge base due to its general-purpose training 

data could also be mitigated by fine-tuned models. For example, a model like LearnLM, which 

has been fine-tuned on instructional principles and educational reasoning, has been shown to 

have better performance than GPT-4o on teaching-related tasks (Modi et al., 2024). This im-

proved performance suggests that LearnLM—or, more broadly, education-specific fine-tuned 

models—may offer more accurate and pedagogically aligned representations of learning theo-

ries, making them potentially better suited for qualitative research tasks in the field. Although 

teaching tasks and qualitative research tasks differ, the use of fine-tuned educational models 

remains a potentially valuable direction for future research. 

6. CONCLUSIONS 

In summary, this study demonstrates the potential of using LLMs, specifically GPT-4o, to sup-

port the development of theory-driven codebooks for qualitative analysis. The integration of 
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qualitative data, theoretical frameworks, and human refinement substantially improved the use-

fulness, concreteness, and applicability of the resulting codebooks compared to approaches that 

lacked one or more of these components. GPT-4o also proved to be a valuable collaborator, 

helping to identify key themes aligned with the theoretical lenses provided by researchers, in-

cluding less common but important constructs that may be difficult for humans to identify in 

large-scale datasets. Relative to SRL, the ID use case required more specific and detailed 

prompting, suggesting that some theories and contexts may demand more extensive and iterative 

prompt engineering. This exploration suggested that, from the practical perspective, prompting 

the model with clear expectations for the codebook structure and naming the relevant theories, 

without supplying the full theoretical texts or references, may be the most effective strategy, 

allowing the model to draw from its broader knowledge base to propose constructs, definitions, 

and examples that are both useful and theoretically aligned. The overall success of our LLM-

based approach in supporting codebook development for complex theoretical frameworks—

such as Winne & Hadwin’s and Zimmerman’s models of self-regulated learning, and Hidi & 

Renninger’s four-phase model of interest development—suggests that LLMs hold strong poten-

tial for distilling a wide range of learning theories to support codebook development, among a 

range of qualitative research tasks.  

While GPT-4o was effective in suggesting codes and examples that human researchers could 

refine using their expertise and understanding of the theoretical and contextual nuances, the 

inherent limitations in any LLM’s knowledge base introduce a persistent risk of errors or hallu-

cinations. Although we believe these errors can be effectively managed through human 

oversight, this risk underscores the importance of researchers engaging deeply with both the 

theoretical frameworks and the dataset before prompting GPT. Doing so allows them to criti-

cally assess and address potential inaccuracies in the model’s output, rather than being 

potentially biased or misled by it. Despite these limitations, hybrid approaches that combine 

LLMs with human expertise offer promising pathways for applying specific theoretical frame-

works across both large-scale and smaller datasets, ultimately enhancing the quality, rigor, and 

theoretical alignment of qualitative research. 
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APPENDIX 1: CODEBOOK EVALUATION INSTRUMENT 

Before starting with this codebook evaluation, please carefully read the following foundational 

paper that explains the Hidi & Renninger Interest Development model: Hidi, S., & Renninger, 

K. A. (2006). The four-phase model of interest development. Educational psychologist, 41(2), 

111-127. 

 

Q1. Clarity: How clear are the definitions of the constructs? 

Are the construct definitions well-articulated and easy to understand?  

(1: Unclear – 5: Very Clear) 

 

Q2. Examples: How aligned are the examples with your understanding of the definitions 

of the constructs? 

Do the examples provided accurately reflect the definitions as you understand them? 

(1: Not aligned at all – 5: Very Aligned) 

 

Q3. Concreteness: Is this codebook practical for coding? 

Does the codebook have sufficient concreteness and specificity to facilitate coding and sup-

port achieving inter-rater reliability? 

(1: Impractical – 5: Very Practical) 

 

Q4. Exhaustiveness: Based on your understanding of the context and the nature of the 

data, how exhaustive do you think this codebook is? 

Does the codebook include most or all of the constructs you would expect to emerge from the 

data? 

(1: Incomplete – 5: Very Exhaustive) 

 

Q5. Complementarity: Considering both the definitions and examples provided, how 

well do the constructs complement each other without being redundant? 

Do the constructs cover distinct but potentially overlapping themes in a way that feels com-

plementary and not redundant? 

(1: Very Redundant – 5: Very Complementary) 

 

Q6. Usefulness: How well does this codebook facilitate the study of interest development 

in the context of the data? 

To what extent does the codebook serve as a useful tool for studying interest development 

within this data context? 

(1: Not Useful at all – 5: Very Useful)  

 

Q7. Theoretical Alignment: How aligned is this codebook with Hidi and Renninger’s 

Interest Development Model? 

Does the codebook reflect and align well with the principles and stages of Hidi and Ren-

ninger's model? 

(1: Not Aligned at all – 5: Very Aligned) 

 

Q8. Are there any codes that you think are missing? Do you have any additional 

thoughts about this codebook? 
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